NASA Astrophysics Data System (ADS)
Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2017-05-01
Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.
Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D
2016-10-12
We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics
NASA Astrophysics Data System (ADS)
Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.
2013-08-01
This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.
Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; ...
2011-12-27
HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho 1-xTb xAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increasesmore » further the transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less
Final Report: Identification and Manipulation of Novel Topological Phases
2016-02-09
ps at TG and then exhibits a marked change in temperature dependence below TG [Fig. 4(d)]. A sharp rise in relaxation time at TN typically signifies...description, which predicts sharp first-order MITs like in V2O3.28 Although our measurements do not rule out gaps beginning to form in microscopically...Sr2IrO4 defies a strictMott-Hubbard description.We rule out the possibility of a disorder broadened TMIT in our samples based on their sharp magnetic
NASA Technical Reports Server (NTRS)
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures
Haglund, A.; Koehler, M.; Catoor, D.; ...
2014-12-05
A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less
Popova, V A; Surovtsev, N V
2014-09-01
The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.
High temperature coercive field behavior of Fe-Zr powder
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2009-04-01
We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.
Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, E. R.; Yu, Y.; Kim, T. K.
The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less
Pressure and magnetic field effects on the valence transition of EuRh2Si2
NASA Astrophysics Data System (ADS)
Mitsuda, Akihiro; Kishaba, Eigo; Fujimoto, Takumi; Oyama, Kohei; Wada, Hirofumi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki
2018-05-01
We have measured the X-ray absorption spectra (XAS), electrical resistivity and magnetic susceptibility of EuRh2Si2, which undergoes a valence transition under high pressures. A sharp decrease in the Eu valence determined from the XAS was observed at around 70 K in the temperature dependence at P = 1.2-1.9 GPa. In the temperature dependence of electrical resistivity and magnetic susceptibility, we observed jumps associated with the temperature-induced valence transition under high pressures. The magnetoresistance detected a field-induced valence transition. The results are discussed from the thermodynamic point of view.
Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x=0.075)
NASA Astrophysics Data System (ADS)
Sato, Takafumi; Souma, Seigo; Sugawara, Katsuaki; Nakayama, Kosuke; Raj, Satyabrata; Hiraka, Haruhiro; Takahashi, Takashi
2007-09-01
We have performed low-energy ultrahigh-resolution photoemission spectroscopy on Co(S1-xSex)2 (x=0.075) to elucidate the bulk electronic states responsible for the ferromagnetic transition. By using a newly developed plasma-driven low-energy xenon (Xe) discharge lamp (hν=8.436eV) , we clearly observed a sharp quasiparticle peak at the Fermi level together with the remarkable temperature dependence of the electron density of states across the transition temperature. Comparison with the experimental result by the HeIα resonance line (hν=21.218eV) indicates that the sharp quasiparticle is of bulk origin and is produced by the Fermi-level crossing of the Co 3d eg↓ subband.
Lim, J.; Fabbris, G.; Haskel, D.; ...
2015-05-26
In previous studies the pressure dependence of the magnetic ordering temperature T o of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence T o(P) mirrors that of both Dy and Gd. However, at higher pressures T o(P) for Tb becomes highly anomalous. Thismore » result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less
Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettige, Jeevapani J.; Araque, Juan C.; Margulis, Claudio J., E-mail: claudio-margulis@uiowa.edu
In a recent communication [J. J. Hettige et al., J. Chem. Phys. 140, 111102 (2014)], we investigated the anomalous temperature dependence of the X-ray first sharp diffraction peak (or prepeak) in the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid. Contrary to what was expected and often observed, the first sharp diffraction peak in this system was shown to increase in intensity with increasing temperature. This implies higher intermediate-range periodicity at a higher temperature. Is this counter-intuitive behavior specific to the combination of cation and anion? The current work analyzes the structural behavior of the same cation coupled with six different anions ranging frommore » the small and spherically symmetric Cl{sup −} to the more structurally complex and charge-diffuse NTf{sub 2}{sup −}. In all cases, the same temperature behavior trend for the prepeak is observed independent of anionic nature. We will show that the intensity increase in the prepeak region is associated with the structural behavior of charged liquid subcomponents. Instead, upon a temperature increase, the apolar subcomponents contribute to what would be an expected decrease of prepeak intensity.« less
Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa
2018-04-18
Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2011-01-01
For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Zachary M.; Kim, Hyun-Sik; Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803
In characterizing thermoelectric materials, electrical and thermal transport measurements are often used to estimate electronic band structure properties such as the effective mass and band gap. The Goldsmid-Sharp band gap, E{sub g} = 2e|S|{sub max}T{sub max}, is a tool widely employed to estimate the band gap from temperature dependent Seebeck coefficient measurements. However, significant deviations of more than a factor of two are now known to occur. We find that this is when either the majority-to-minority weighted mobility ratio (A) becomes very different from 1.0 or as the band gap (E{sub g}) becomes significantly smaller than 10 k{sub B}T. For narrow gapsmore » (E{sub g} ≲ 6 k{sub B}T), the Maxwell-Boltzmann statistics applied by Goldsmid-Sharp break down and Fermi-Dirac statistics are required. We generate a chart that can be used to quickly estimate the expected correction to the Goldsmid-Sharp band gap depending on A and S{sub max}; however, additional errors can occur for S < 150 μV/K due to degenerate behavior.« less
NASA Astrophysics Data System (ADS)
Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip
2018-05-01
We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.
Semiconductor-like behavior in superconducting Nb/Al films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, M.; Menichetti, E.; Rinaudo, G.
1999-04-20
The authors report here the experimental evidence of semiconductor-superconductor transitions in relatively thick Nb/Al structures. The temperature dependence of resistivity {rho}(T) shows a sharp superconducting transition followed by either a normal metallic behavior in low-resistivity samples, or a semiconducting behavior when the sample resistivity at 10 K is above 100 {mu}{Omega} cm. The authors discuss here the fabrication conditions and the electron localization regime associated with the measured {rho}(T) dependence.
Estella Gilbert; James A. Powell; Jesse A. Logan; Barbara J. Bentz
2004-01-01
In all organisms, phenotypic variability is an evolutionary stipulation. Because the development of poikilothermic organisms depends directly on the temperature of their habitat, environmental variability is also an integral factor in models of their phenology. In this paper we present two existing phenology models, the distributed delay model and the Sharpe and...
NASA Astrophysics Data System (ADS)
Wenderoth, S.; Bätge, J.; Härtle, R.
2016-09-01
We study sharp peaks in the conductance-voltage characteristics of a double quantum dot and a quantum dot spin valve that are located around zero bias. The peaks share similarities with a Kondo peak but can be clearly distinguished, in particular as they occur at high temperatures. The underlying physical mechanism is a strong current suppression that is quenched in bias-voltage dependent ways by exchange interactions. Our theoretical results are based on the quantum master equation methodology, including the Born-Markov approximation and a numerically exact, hierarchical scheme, which we extend here to the spin-valve case. The comparison of exact and approximate results allows us to reveal the underlying physical mechanisms, the role of first-, second- and beyond-second-order processes and the robustness of the effect.
Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery.
Choi, Chang Kuk; Lee, Kang Ju; Youn, Young Nam; Jang, Eui Hwa; Kim, Woong; Min, Byung-Kwon; Ryu, WonHyoung
2013-02-01
Spatially discrete thermal drawing is introduced as a novel method for the fabrication of biodegradable microneedles with ultra-sharp tip ends. This method provides the enhanced control of microneedle shapes by spatially controlling the temperature of drawn polymer as well as drawing steps and speeds. Particular focus is given on the formation of sharp tip ends of microneedles at the end of thermal drawing. Previous works relied on the fracture of polymer neck by fast drawing that often causes uncontrolled shapes of microneedle tips. Instead, this approach utilizes the surface energy of heated polymer to form ultra-sharp tip ends. We have investigated the effect of such temperature control, drawing speed, and drawing steps in thermal drawing process on the final shape of microneedles using biodegradable polymers. XRD analysis was performed to analyze the effect of thermal cycle on the biodegradable polymer. Load-displacement measurement also showed the dependency of mechanical strengths of microneedles on the microneedle shapes. Ex vivo vascular tissue insertion and drug delivery demonstrated microneedle insertion to tunica media layer of canine aorta and drug distribution in the tissue layer. Copyright © 2012 Elsevier B.V. All rights reserved.
Thioune, El-Hadji; McCarthy, James; Gallagher, Thomas; Osborne, Bruce
2017-03-01
Climate change is expected to increase the frequency of above-normal atmospheric water deficits contemporaneous with periods of high temperatures. Here we explore alterations in physiology and gene expression in leaves of Coffea canephora Pierre ex A. Froehner caused by a sharp drop in relative humidity (RH) at three different temperatures. Both stomatal conductance (gs) and CO2 assimilation (A) measurements showed that gs and A values fell quickly at all temperatures after the transfer to low RH. However, leaf relative water content measurements indicated that leaves nonetheless experienced substantial water losses, implying that stomatal closure and/or resupply of water was not fast enough to stop excessive evaporative losses. At 27 and 35 °C, upper leaves showed significant decreases in Fv/Fm compared with lower leaves, suggesting a stronger impact on photosystem II for upper leaves, while at 42 °C, both upper and lower leaves were equally affected. Quantitative gene expression analysis of transcription factors associated with conventional dehydration stress, and genes involved with abscisic acid signalling, such as CcNCED3, indicated temperature-dependent, transcriptional changes during the Humidity Shock ('HuS') treatments. No expression was seen at 27 °C for the heat-shock gene CcHSP90-7, but it was strongly induced during the 42 °C 'HuS' treatment. Consistent with a proposal that important cellular damage occurred during the 42 °C 'HuS' treatment, two genes implicated in senescence were induced by this treatment. Overall, the data show that C. canephora plants subjected to a sharp drop in RH exhibit major, temperature-dependent alterations in leaf physiology and important changes in the expression of genes associated with abiotic stress and senescence. The results presented suggest that more detailed studies on the combined effects of low RH and high temperature are warranted. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Grigorian, H.
2007-05-01
We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon, and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters, light and strange quark masses and coupling strength (G S) and range of the interaction (Λ), have been fixed by the same phenomenological inputs: pion and kaon masses and the pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials, where separable models have been proven successfully.
Chiral dynamics in the low-temperature phase of QCD
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel
2014-09-01
We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.
Characteristics of energy harvesting using BaTiO3/Cu laminates with changes in temperature
NASA Astrophysics Data System (ADS)
Mori, K.; Takeuchi, H.; Narita, F.
2018-03-01
The energy harvesting characteristics of piezoelectric/copper (BaTiO3/Cu) laminates rising from sharp temperature changes were investigated both numerically and experimentally. First, a phase field simulation was performed to determine the temperature-dependent piezoelectric coefficient and permittivity values. Then, the output voltages of the BaTiO3/Cu laminates were calculated for variations from room temperature to either a cryogenic temperature (77 K) or a higher temperature (333 K) using a 3D finite element simulation with the properties calculated from the phase field simulation. Finally, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured for the same temperature changes and were compared to the simulation results.
Optical study of phase transitions in single-crystalline RuP
NASA Astrophysics Data System (ADS)
Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.
2015-03-01
RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.
Bi-directional phase transition of Cu/6H-SiC(0 0 0 1) system discovered by positron beam study
NASA Astrophysics Data System (ADS)
Zhang, J. D.; Weng, H. M.; Shan, Y. Y.; Ching, H. M.; Beling, C. D.; Fung, S.; Ling, C. C.
2002-06-01
The slow positron beam facility at the University of Hong Kong has been used to study the Cu/6H-SiC(0 0 0 1) system. The S- E data show the presence of the Cu/SiC interface buried at a depth of 30 nm. Keeping the beam energy fixed and sweeping the sample temperature, sharp discontinuities are noted in the S-parameter at both ˜17 and ˜250 K. The S-parameter transitions, which are in opposite directions, are indicative of sharp free volume changes that come as a result of the sudden changes in the structure at the Cu/SiC interface accompanying some phase transition. Energy dispersive X-ray spectroscopy (EDXS) room temperature scans reveal the presence of O in addition to Cu, C, Si at the interface, and thus copper oxide phases should be considered in interpreting this new phenomenon. It is suggested that TEM investigation together with temperature dependent X-ray diffraction spectroscopy may be able to shed further light on the nature of this interesting bi-directional phase transition.
NASA Astrophysics Data System (ADS)
Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir
2017-11-01
Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.
NASA Astrophysics Data System (ADS)
Shyam Prasad, K.; Rao, Ashok; Tyagi, Kriti; Singh Chauhan, Nagendra; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay
2017-05-01
We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1-xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F 4 ̅ 3 m . The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax 0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, A. V.; Drozdov, M. N.; Novikov, A. V., E-mail: anov@ipmras.ru
2015-11-15
The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures withmore » a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.« less
Temperature dependent exchange bias training effect in single-crystalline BiFeO{sub 3}/Co bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, M. C.; You, B.; Tu, H. Q.
2015-05-07
Single-crystalline BiFeO{sub 3} (BFO)/Co bilayers were prepared by combined pulsed laser deposition and magnetron sputtering on (001) SrTiO{sub 3} substrates. Exchange bias (EB) and accompanying training effect have been studied as a function of temperature (T) between 5 K and 300 K. A non-monotonic exchange field variation with sharp increase below 100 K has been observed. In the meanwhile, strong training effect was recorded when T < 100 K and it weakens monotonically with increasing T up to 300 K. These temperature dependent EB and training effect may be caused by the uncompensated spins in both the interfacial spin-glass (SG) phase at low temperature and the antiferromagneticmore » BFO layer at higher temperature. The low temperature EB training results can be well fitted by a modified Binek's model considering asymmetric changes of the pinning SG spins at the descending and the ascending branches.« less
Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.
1994-09-15
The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less
1989-01-01
Compressor Rear Frame (ClF) which exhibits extensive cract:ing of the forward flange. ThL 1988 Actuarial Function data shows CRF crackiing As the number 2...Creep-Rupture properties of Waspaloy sheet to Sharp-Edged Notches in the Temperature Range of 1O000F-14O0OF. Journal of Basle Engineering, Trans ASME ...Dependence of the Notch Sensitivity of Waspaloy at 10000F-1400F on the Gamma Prime Phase, Journal of Basic Engineering, Trans ASME (in print at time of
Large but uneven reduction in fish size across species in relation to changing sea temperatures.
van Rijn, Itai; Buba, Yehezkel; DeLong, John; Kiflawi, Moshe; Belmaker, Jonathan
2017-09-01
Ectotherms often attain smaller body sizes when they develop at higher temperatures. This phenomenon, known as the temperature-size rule, has important consequences for global fisheries, whereby ocean warming is predicted to result in smaller fish and reduced biomass. However, the generality of this phenomenon and the mechanisms that drive it in natural populations remain unresolved. In this study, we document the maximal size of 74 fish species along a steep temperature gradient in the Mediterranean Sea and find strong support for the temperature-size rule. Importantly, we additionally find that size reduction in active fish species is dramatically larger than for more sedentary species. As the temperature dependence of oxygen consumption depends on activity levels, these findings are consistent with the hypothesis that oxygen is a limiting factor shaping the temperature-size rule in fishes. These results suggest that ocean warming will result in a sharp, but uneven, reduction in fish size that will cause major shifts in size-dependent interactions. Moreover, warming will have major implications for fisheries as the main species targeted for harvesting will show the most substantial declines in biomass. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.
1994-04-01
Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.
Temperature-dependent microindentation data of an epoxy composition in the glassy region
NASA Astrophysics Data System (ADS)
Minster, Jiří; Králík, Vlastimil
2015-02-01
The short-term instrumented microindentation technique was applied for assessing the influence of temperature in the glassy region on the time-dependent mechanical properties of an average epoxy resin mix near to its native state. Linear viscoelasticity theory with the assumption of time-independent Poisson ratio value forms the basis for processing the experimental results. The sharp standard Berkovich indenter was used to measure the local mechanical properties at temperatures 20, 24, 28, and 35 °C. The short-term viscoelastic compliance histories were defined by the Kohlrausch-Williams-Watts double exponential function. The findings suggest that depth-sensing indentation data of thermorheologically simple materials influenced by different temperatures in the glassy region can also be used, through the time-temperature superposition, to extract viscoelastic response functions accurately. This statement is supported by the comparison of the viscoelastic compliance master curve of the tested material with data derived from standard macro creep measurements under pressure on the material in a conformable state.
An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature
NASA Astrophysics Data System (ADS)
Ye, Jiping
2012-08-01
Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.
Magnon Polarons in the Spin Seebeck Effect.
Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji
2016-11-11
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
Šálek, Miroslav E.; Zárybnická, Markéta
2015-01-01
Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch. PMID:25658846
Šálek, Miroslav E; Zárybnická, Markéta
2015-01-01
Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch.
Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A
2013-01-23
The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.
Electronic transport and photovoltaic properties in Bi2Sr2Co2Oyepitaxial heterostructures
NASA Astrophysics Data System (ADS)
Guo, Hai-Zhong; Gu, Lin; Yang, Zhen-Zhong; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Le; Jin, Kui-Juan; Lu, Hui-Bin; Wang, Can; Ge, Chen; He, Meng; Yang, Guo-Zhen
2013-08-01
Epitaxial heterostructures constructed from the thermoelectric cobalt Bi2Sr2Co2Oy thin films and SrTiO3 as well as SrTi0.993Nb0.007O3 substrates were fabricated by pulsed-laser deposition. The scanning transmission electron microscopy results confirm that the heterostructures are epitaxial, with sharp and coherent interfaces. The temperature-dependent electrical transport properties and the Hall effects were systematically investigated. The Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 p-n heterostructure exhibits good rectifying current-voltage characteristics over a wide temperature range. A strong photovoltaic effect was observed in the Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 heterostructure, with the temperature-dependent photovoltage being systematically investigated. The present work shows a great potential of this new heterostructures as photoelectric devices.
Qualitative change in structural dynamics of some glass-forming systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, Vladimir N.; Sokolov, Alexei P.
2015-12-14
Analysis of the temperature dependence of the structural relaxation time Τα(T) in supercooled liquids revealed a qualitatively distinct feature a sharp, cusplike maximum in the second derivative of log Τα(T) at some T max. It suggests that the super-Arrhenius temperature dependence of Τα(T) in glass-forming liquids eventually crosses over to an Arrhenius behavior at T < T max, and there is no divergence of Τα(T) at nonzero T . T max can be above or below T g, depending on the sensitivity of τ(T) to a change in the liquid's density quantified by the exponent γ in the scaling Τα(T)more » ~exp(A/Tρ –γ). Lastly, these results might turn the discussion of the glass transition in a different direction toward the origin of the limiting activation energy for structural relaxation at low T.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contrera, G. A.; CONICET, Rivadavia 1917, 1033 Buenos Aires; Dumm, D. Gomez
2010-03-01
We study the finite temperature behavior of light scalar and pseudoscalar meson properties in the context of a three-flavor nonlocal chiral quark model. The model includes mixing with active strangeness degrees of freedom, and takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. We analyze the chiral restoration and deconfinement transitions, as well as the temperature dependence of meson masses, mixing angles and decay constants. The critical temperature is found to be T{sub c{approx_equal}}202 MeV, in better agreement with lattice results than the value recently obtained in the local SU(3) PNJL model. Itmore » is seen that above T{sub c} pseudoscalar meson masses get increased, becoming degenerate with the masses of their chiral partners. The temperatures at which this matching occurs depend on the strange quark composition of the corresponding mesons. The topological susceptibility shows a sharp decrease after the chiral transition, signalling the vanishing of the U(1){sub A} anomaly for large temperatures.« less
Terahertz conductivity of MnSi thin films
NASA Astrophysics Data System (ADS)
Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore
2013-03-01
We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.
Superconductivity and weak localization of PdxBi2Se3 whiskers at low temperatures
NASA Astrophysics Data System (ADS)
Druzhinin, Anatoly; Ostrovskii, Igor; Khoverko, Yuriy; Rogacki, Krzysztof; Liakh-Kaguy, Natalia
2018-02-01
The temperature dependencies of Bi2Se3 whiskers' resistance with Pd doping concentration of (1÷2)×1019 cm-3 where measured in the temperature range 1.5÷77 K. At temperature 5.3 K a sharp drop in the whisker resistance was found. The observed effect is likely connected with the contribution of two processes such as the electron localization and superconductivity at temperatures below 5.3 K. The magnetoresistance in the n-type conductivity Bi2Se3 whiskers with different doping concentration of palladium that correspond to metal side of the metal-insulator transition was studied at low temperatures and magnetic field 0÷10 T. The whisker magnetoconductance is considered in the framework of the weak antilocalization model and connected with subsurface layers of Bi2Se3 whiskers.
NASA Astrophysics Data System (ADS)
Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Start A.; Toloczko, Mychailo B.
2014-01-01
The temperature dependence of fracture toughness in HT9 steel irradiated to 3-145 dpa at 380-503 °C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm × 3 mm × 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 °C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180-200 MPa √{m} at 350-450 °C, and then decreased with the test temperature. At an irradiation temperature ⩾430 °C, the fracture toughness was nearly unchanged up to about 450 °C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.
Transport of a Bose gas in 1D disordered lattices at the fluid-insulator transition.
Tanzi, Luca; Lucioni, Eleonora; Chaudhuri, Saptarishi; Gori, Lorenzo; Kumar, Avinash; D'Errico, Chiara; Inguscio, Massimo; Modugno, Giovanni
2013-09-13
We investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a contribution of quantum phase slips to the dissipation. We identify a set of critical disorder and interaction strengths for which such critical momentum vanishes, separating a fluid regime from an insulating one. We relate our observation to the predicted zero-temperature superfluid-Bose glass transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S
2014-01-01
The temperature dependence of fracture toughness in HT9 steel irradiated to 3 145 dpa at 380 503 C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm 3mm 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperaturemore » than the irradiation dose. At an irradiation temperature <430 C, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180 200 MPa ffiffiffiffiffi m p at 350 450 C, and then decreased with the test temperature. At an irradiation temperatureP430 C, the fracture toughness was nearly unchanged up to about 450 C and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.« less
Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; ...
2015-02-04
Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat
Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less
Experimental And Numerical Study Of CMC Leading Edges In Hypersonic Flows
NASA Astrophysics Data System (ADS)
Kuhn, Markus; Esser, Burkard; Gulhan, Ali; Dalenbring, Mats; Cavagna, Luca
2011-05-01
Future transportation concepts aim at high supersonic or hypersonic speeds, where the formerly sharp boundaries between aeronautic and aerospace applications become blurred. One of the major issues involved to high speed flight are extremely high aerothermal loads, which especially appear at the leading edges of the plane’s wings and at sharp edged air intake components of the propulsion system. As classical materials like metals or simple ceramics would thermally and structurally fail here, new materials have to be applied. In this context, lightweight ceramic matrix composites (CMC) seem to be prospective candidates as they are high-temperature resistant and offer low thermal expansion along with high specific strength at elevated temperature levels. A generic leading edge model with a ceramic wing assembly with a sweep back angle of 53° was designed, which allowed for easy leading edge sample integration of different CMC materials. The samples consisted of the materials C/C-SiC (non-oxide), OXIPOL and WHIPOX (both oxide) with a nose radius of 2 mm. In addition, a sharp edged C/C-SiC sample was prepared to investigate the nose radius influence. Overall, 13 thermocouples were installed inside the entire model to measure the temperature evolution at specific locations, whereby 5 thermocouples were placed inside the leading edge sample itself. In addition, non-intrusive techniques were applied for surface temperature measurements: An infrared camera was used to measure the surface temperature distribution and at specific spots, the surface temperature was also measured by pyrometers. Following, the model was investigated in DLR’s arc-heated facility L3K at a total enthalpy of 8.5 MJ/kg, Mach number of 7.8, different angles of attack and varying wing inclination angles. These experiments provide a sound basis for the simulation of aerothermally loaded CMC leading edge structures. Such fluid-structure coupled approaches have been performed by FOI, basing on a modal approach for the conduction model. Results show, that the temperature profiles are correctly depicted dependent on the model’s angle of attack.
Thermal hysteresis of the phase-transition temperature of single-crystal GdB6
NASA Astrophysics Data System (ADS)
Reiffers, M.; Ebek, J.; Antavá, E.; Pristá, G.; Kunii, S.
2006-01-01
The phase transition of a single-crystal sample of GdB6, oriented along the 111 axis using the temperature dependence of electrical resistivity (T ), susceptibility (T ) and heat capacity C (T ) under an applied magnetic field was studied. ρ (T ) has shown 2 anomalies - a sharp drop at T N1 = 15.4 K and a small maximum at T N2 = 9.1 K with thermal hysteresis effect. χ (T ) shows the anomalies at both transition temperatures. C (T ) shows similar thermal hysteresis effect at T N2. The small maximum at T N2 decreases its position to lower temperatures with increasing magnetic field. The peak at T N1 is practically unaffected by an applied magnetic field up to 9 T.
Large magnetoresistance and sharp switching in FexTiS2
NASA Astrophysics Data System (ADS)
Choe, Jesse; Morosan, Emilia
Large magnetoresistance materials are suitable for applications in sensors, read heads, and random access memories. Most metals, though having excellent ductility which is important for manufacturing processes, have changes of magnetoresistance on the order of only 1 % . Very large magnetoresistances in Fe0.30TaS2 ( 140 %) have been attributed to misalignment of magnetic moments causing spin disorder scattering. We performed measurements of the magnetic field dependence of resistivity and magnetization of FexTiS2 single crystals (x = 0 . 1 - 0 . 5), which show both the large magnetoresistance, as well as the sharp switching in magnetization as those reported in the Ta analogue. By comparing and contrasting these two materials, we can gain deeper understanding of the underlying physics, allowing us to strategically search for materials with higher transition temperature, lower switching fields, and larger magnetoresistances. NSF DMREF 1629374.
Morishige, Kunimitsu; Tateishi, Masayoshi; Hirose, Fumi; Aramaki, Kenji
2006-10-24
To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.
Phase diagram of the underdoped cuprates at high magnetic field
NASA Astrophysics Data System (ADS)
Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine
2018-06-01
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Starr, Francis W.; Poole, Peter H.
2017-07-01
Experiments and computer simulations of the transformations of amorphous ices display different behaviors depending on sample preparation methods and on the rates of change of temperature and pressure to which samples are subjected. In addition to these factors, simulation results also depend strongly on the chosen water model. Using computer simulations of the ST2 water model, we study how the sharpness of the compression-induced transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is influenced by the preparation of LDA. By studying LDA samples prepared using widely different procedures, we find that the sharpness of the LDA-to-HDA transformation is correlated with the depth of the initial LDA sample in the potential energy landscape (PEL), as characterized by the inherent structure energy. Our results show that the complex phenomenology of the amorphous ices reported in experiments and computer simulations can be understood and predicted in a unified way from knowledge of the PEL of the system.
Plate-like convection in fluids with temperature-dependent viscosity
NASA Astrophysics Data System (ADS)
Curbelo, J.; Mancho, A. M.
2015-12-01
The study of instabilities in fluids in which viscosity experiences a transition at a certain temperature range is of great interest for the understanding of planetary interiors, since this phenomena is suitable for representing a very viscous lithosphere (and thus rather rigid) over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value within a narrow temperature gap. Notable solutions are found for a sharp transition viscosity law which are fundamentally related to the presence of a symmetry in the problem. For instance, cyclic series are found consisting of spontaneous plate-like behaviors emerging sporadically through abrupt bursts, and rapidly evolving towards a stagnant lid regime. The plate-like evolution alternates motions towards either right or left, introducing temporary asymmetries on the convecting styles. Further time-dependent regimes with stagnant and plate-like lids are described, which are also greatly influenced by the presence of the symmetry. These results provide convection examples of moving plates, that coexist with subsurface upwards and downwards meandering jets, but without a proper subduction, and can be particularly illustrative for understanding convective styles of the Earth prior to subduction, or that of other planetary bodies.
Conduction quantization in monolayer MoS2
NASA Astrophysics Data System (ADS)
Li, T. S.
2016-10-01
We study the ballistic conduction of a monolayer MoS2 subject to a spatially modulated magnetic field by using the Landauer-Buttiker formalism. The band structure depends sensitively on the field strength, and its change has profound influence on the electron conduction. The conductance is found to demonstrate multi-step behavior due to the discrete number of conduction channels. The sharp peak and rectangular structures of the conductance are stretched out as temperature increases, due to the thermal broadening of the derivative of the Fermi-Dirac distribution function. Finally, quantum behavior in the conductance of MoS2 can be observed at temperatures below 10 K.
NASA Astrophysics Data System (ADS)
Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.
2018-04-01
The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.
Baturina, T I; Mironov, A Yu; Vinokur, V M; Baklanov, M R; Strunk, C
2007-12-21
We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.
Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet
NASA Astrophysics Data System (ADS)
Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.
2018-05-01
The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.
Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy
NASA Astrophysics Data System (ADS)
Samanta, Tamalika; Bhobe, P. A.; Das, A.; Kumar, A.; Nigam, A. K.
2018-05-01
We present here a detailed investigation into the magnetic ordering of a full Heusler alloy Ga2MnCo using dc and ac magnetization measurements, neutron diffraction, and neutron depolarization experiments. The crystal structure at room temperature was first confirmed to be L 21 using the highly intense synchrotron x-ray diffraction technique. Temperature-dependent magnetization reveals that Ga2MnCo enters a ferromagnetic (FM) state at TC=154 K, characterized by a sharp increase in magnetization and a plateaulike region hereafter. As the temperature is decreased further, a sharp drop in magnetization is observed at Tf=50 K, hinting toward an antiferromagnetic (AFM) phase change. Neutron diffraction (ND) recorded over the range of temperature from 6 to 300 K provides combined information regarding crystal as well as magnetic structure. Accordingly, an increase in the intensity of the ND pattern is seen at 150 K, signaling the onset of long-range FM order. However, there is no sign of the appearance of superlattice reflections corresponding to the AFM phase in the patterns recorded below 50 K. An unusual discontinuity in the unit-cell volume is seen around Tf, indicating a coupling of this second transition with the contraction of the lattice. Attempts to unravel this interesting magnetic behavior using ac susceptibility measurements led to the existence of glassy magnetism below Tf. Systematic analysis of the susceptibility results along with neutron depolarization measurement identifies the low-temperature phase as a reentrant cluster glass.
Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...
2014-10-10
Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.
2014-01-01
The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than themore » irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.« less
Search for O[-1] earthquake-like precursors: a ME μSR MgO study
NASA Astrophysics Data System (ADS)
Boekema, C.; Cabot, A.; Lee, A.-L.; Lin, I.; Colebaugh, A.; Freund, Ft
We study O-1 earthquake-like precursor effects by analyzing Muon-Spin-Resonance (μSR) MgO data using Maximum Entropy (ME). Due to its presence in the Earth's crust, MgO is ideal to study these features. O-1 formation results from a 2-stage break-up in an O anion pair at high-temperature or high-pressure conditions. As T increases above room temperature, a small % of oxygen is predicted to produce an O-1 state. ME analysis of 100-Oe μSR data of a pure 3N-MgO single crystal produces a broad Gaussian at 1.36 MHz and a sharp Lorentzian at 1.4 MHz. The latter could be effects of extended O-1 states, as positive muons probe near O ions. There is no sharp 1.4-MHz signal observed in the μSR data of insulators Al2O3 and PrBCO6 data, only the expected 100-Oe Gaussian. We have fitted ME μSR transforms of MgO to obtain an empirical description of 1.36- and 1.4- MHz peaks. Their T dependences above room temperature appear to be positive-hole effects. Relations to precursor earthquake-like O-valency effects are discussed. Research supported by ISIS-UK, LANL-DOE, SETI-NASA, SJSU & AFC.
Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission.
Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia
2017-02-27
The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.
Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission
Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia
2017-01-01
The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential. PMID:28264427
Thermally activated rotational disorder in CaMoO 4 nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, Sean P.; Brutchey, Richard L.
2016-04-12
In this study, a dual-space approach, combining Rietveld and pair distribution function (PDF) analyses, has been applied to temperature-dependent synchrotron X-ray total scattering data collected on vapor diffusion sol–gel derived CaMoO 4 nanocrystals. A sharp transition in Ca–O bond distances in the range of 151–163 K was identified by PDF analysis, which is attributed to the thermal activation of rotational disorder associated with the rigid MoO 4 tetrahedra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Swanee J.; Kozioziemski, Bernard J.
In this work, we performed a series of experiments to elucidate the characteristics of a good template for solid hydrogen nucleation. Zinc stands out among several materials with comparable size and shape. Nucleation could be observed to occur on top of sharp features, such as grain boundaries and cracks, but our attempts proved unsuccessful to fabricate or replicate such features. The variations of the supercooling (ΔT) values measured for comparable samples and the dependence of ΔT on the cell temperature cycling revealed that templated nucleation of solid hydrogen is a very delicate process.
NASA Astrophysics Data System (ADS)
Sadowski, W.; Hagemann, H.; François, M.; Bill, H.; Peter, M.; Walker, E.; Yvon, K.
1990-09-01
We report on the growth of Nd 2- xCe xCuO 4- δ single crystals (0< x<0.2) from Cu 2O flux. Free separated crystals with maximum size of 5x8x0.15 nm 3 have been obtained. Magnetic AC susceptibility measurements show a sharp superconducting transition at temperatures up to 23 K. The temperature dependence of the lattice parameters has been measured by means of X-ray powder diffraction between 10 K ( a=3.9413(3) Å, c=12.0290(18) Å) and 290 K ( a=3.9482(3) Å, c=12.0590(18) Å). Room temperature Raman spectra reveal a new band at 320 cm -1 which is not observed in Nd 2CuO 4. Raman spectra of crystals with Tc ranging from 7 to 22 K show a systematic intensity change of the broad band at 590 cm -1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Tomo; Shahed, Syed Mohammad Fakruddin; Sainoo, Yasuyuki
We formed an epitaxial film of CeO{sub 2}(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce{sup 4+}/Ce{sup 3+} ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO{sub 2}(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown atmore » 1060 K was more than twice of that grown at 1040 K. On the surface grown above the reduction temperature, the surface with a wide terrace and a sharp step was confirmed, but small dots were also seen in the terrace part, which are considerably Ce atoms adsorbed at the oxygen vacancies on the reduced surface. This experiment demonstrated that it is required to use the substrate temperature close to the reduction temperature to obtain CeO{sub 2}(111) with wide terrace width and sharp step edges.« less
NASA Astrophysics Data System (ADS)
Savvatimskiy, A. I.; Onufriev, S. V.; Muboyadzhyan, S. A.; Seredkin, N. N.
2017-11-01
The temperature dependences of the thermal and electro physical properties of the zirconium carbide ZrC + C and ZrCa0.95 were studied in the temperature range 2000-5000 K. The Zr+C specimens were in the form of thin layers sputtered on quarts substrate and ZrC0.95 specimens were in the form of plates cut off from the sintered block. The properties are measured: temperature and heat of fusion, enthalpy, specific heat and resistivity, referred to the initial dimensions. A steep increase in the specific heat of these substances before melting and a sharp decrease after melting were observed at a heating rate of ∼ 108 K/s, which is possibly due to the formation of Frenkel pair defects in the specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta
The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneousmore » interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.« less
Large magnetocaloric effect of NdGa compound due to successive magnetic transitions
NASA Astrophysics Data System (ADS)
Zheng, X. Q.; Xu, J. W.; Shao, S. H.; Zhang, H.; Zhang, J. Y.; Wang, S. G.; Xu, Z. Y.; Wang, L. C.; Chen, J.; Shen, B. G.
2018-05-01
The magnetic behavior and MCE property of NdGa compound were studied in detail. According to the temperature dependence of magnetization (M-T) curve at 0.01 T, two sharp changes were observed at 20 K (TSR) and 42 K (TC), respectively, corresponding to spin reorientation and FM-PM transition. Isothermal magnetization curves up to 5 T at different temperatures were measured and magnetic entropy change (ΔSM) was calculated based on M-H data. Temperature dependences of -ΔSM for a field change of 0-2 T and 0-5 T show that there are two peaks on the curves corresponding to TSR and TC, respectively. The value of the two peaks is 6.4 J/kg K and 15.5 J/kg K for the field change of 0-5 T. Since the two peaks are close, the value of -ΔSM in the temperature range between TSR and TC keeps a large value. The excellent MCE performance of NdGa compound benefits from the existence of two successive magnetic transitions.
Infrared signatures of the peptide dynamical transition: A molecular dynamics simulation study
NASA Astrophysics Data System (ADS)
Kobus, Maja; Nguyen, Phuong H.; Stock, Gerhard
2010-07-01
Recent two-dimensional infrared (2D-IR) experiments on a short peptide 310-helix in chloroform solvent [E. H. G. Backus et al., J. Phys. Chem. B 113, 13405 (2009)] revealed an intriguing temperature dependence of the homogeneous line width, which was interpreted in terms of a dynamical transition of the peptide. To explain these findings, extensive molecular dynamics simulations at various temperatures were performed in order to construct the free energy landscape of the system. The study recovers the familiar picture of a glass-forming system, which below the glass transition temperature Tg is trapped in various energy basins, while it diffuses freely between these basins above Tg. In fact, one finds at Tg≈270 K a sharp rise of the fluctuations of the backbone dihedral angles, which reflects conformational transitions of the peptide. The corresponding CO frequency fluctuations are found to be a sensitive probe of the peptide conformational dynamics from femtosecond to nanosecond time scales and lead to 2D-IR spectra that qualitatively match the experiment. The calculated homogeneous line width, however, does not show the biphasic temperature dependence observed in experiment.
Rheology and tribology of lubricants with polymeric viscosity modifiers
NASA Astrophysics Data System (ADS)
Babak, LotfizadehDehkordi
Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, H. B.; Zhao, Z. Y.; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
2015-06-01
High quality single crystals of BaFe{sub 12}O{sub 19} were grown using the floating zone technique in 100 atm of flowing oxygen. Single crystal neutron diffraction was used to determine the nuclear and magnetic structures of BaFe{sub 12}O{sub 19} at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe{sup 3+} ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range frommore » 1.90 to 300 K. The inverse dielectric permittivity, 1/ε, along the c-axis shows a T{sup 2} temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in 1/ε. These features resemble those of classic quantum paraelectrics such as SrTiO{sub 3}. The presence of the upturn in 1/ε indicates that BaFe{sub 12}O{sub 19} is a critical quantum paraelectric system with Fe{sup 3+} ions involved in both magnetic and electric dipole formation.« less
Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Xu, Wu; Zheng, Jianming
The temperature dependence of the oxygen reduction mechanism in Li-O 2 batteries was investigated using carbon nanotube-based air electrodes and 1,2-dimethoxyethane-based electrolyte within a temperature range of 20C to 40C. It is found that the discharge capacity of the Li-O 2 batteries decreases from 7,492 mAh g -1 at 40C to 2,930 mAh g -1 at 0C. However, a sharp increase in capacity was found when the temperature was further decreased and a very high capacity of 17,716 mAh g -1 was observed at 20C at a current density of 0.1 mA cm-2. When the temperature increases from 20C tomore » 40C, the morphologies of the Li 2O 2 formed varied from ultra-small spherical particles to small flakes and then to large flake-stacked toroids. The lifetime of superoxide and the solution pathway play a dominate role on the battery capacity in the temperature range of -20C to 0C, but the electrochemical kinetics of oxygen reduction and the surface pathway dominate the discharge behavior in the temperature range of 0C to 40C. These findings provide fundamental understanding on the temperature dependence of oxygen reduction process in a Li-O 2 battery and will enable a more rational design of Li-O 2 batteries.« less
Field-induced dielectric response saturation in $o$ -TaS 3
Ma, Yongchang; Lu, Cuimin; Wang, Xuewei; ...
2016-08-03
The temperature and electric field dependent conductivity spectra of o-TaS 3 sample with 10 μm 2 in cross section were measured. Besides the classical electric threshold E T₋Cl, we observed another novel threshold E T₋N at a larger electric field, where an S-shaped I-V relation revealed. The appearance of E T₋N may be due to the establishment of coherence among small charge-density- wave domains. Under a stable field E > E T-N, a sharp dispersion emerged below kHz. At a fixed temperature, the scattering rate of the charged condensate was extremely small and decreased with increasing field. With decreasing temperature,more » the scattering Fröhlic-mode conductivity would be consistent with the meta-stable state.« less
Coexistence of charge order and antiferromagnetism in (TMTTF)2SbF6: NMR study
NASA Astrophysics Data System (ADS)
Nomura, K.; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.
2015-03-01
The electronic state of (TMTTF)2SbF6 was investigated by the 1H and 13C NMR measurements. The temperature dependence of T1-1 in 1H NMR shows a sharp peak associated with the antiferromagnetic transition at TAF=6 K. The temperature dependence of T1-1 is described by the power law T2.4 below TAF. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In 13C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μB and 0.24 μB at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μB per dimer are quite different from 0.11 μB of another AF (AFII) state in (TMTTF)2Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF)2SbF6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velişa, G.; Wendler, E.; Zhao, S.
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Velişa, G.; Wendler, E.; Zhao, S.; ...
2017-12-17
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Cube-textured nickel substrates for high-temperature superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, E.D.; Goyal, A.; Lee, D.F.
1998-02-01
The biaxial textures created in metals by rolling and annealing make them useful substrates for the growth of long lengths of biaxially textured material. The growth of overlayers such as high-temperature superconductors (HTS) require flat substrates with a single, sharp texture. A sharp cube texture is produced in high-purity Ni by rolling and annealing. The authors report the effect of rolling reduction and annealing conditions on the sharpness of the cube texture, the incidence of other orientations, the grain size, and the surface topography. A combination of high reduction, and high temperature annealing in a reducing atmosphere leads to >more » 99% cube texture, with mosaic of 9.0{degree} about the rolling direction (RD), 6.5{degree} about the transverse direction (TD), and 5.0{degree} about the normal direction (ND).« less
NASA Astrophysics Data System (ADS)
Kebukawa, Yoko; Zolensky, Michael E.; Chan, Queenie H. S.; Nagao, Keisuke; Kilcoyne, A. L. David; Bodnar, Robert J.; Farley, Charles; Rahman, Zia; Le, Loan; Cody, George D.
2017-01-01
Primitive xenolithic clasts, often referred to as ;dark clasts;, are well known in many regolith breccias. The Sharps H3.4 ordinary chondrite contains unusually large dark clasts up to ∼1 cm across. Poorly-graphitized carbon (PGC), with Fe, Ni metal and described as ;carbon-rich aggregates;, has been reported in these clasts (Brearley, 1990). We report detailed analyses of carbonaceous matter in several identical Sharps clasts using FTIR, Raman, C-XANES, and TEM that provide insight on the extent of thermal processing and possible origin of such clasts. We also prepared acid residues of the clasts using the HCl/HF method and conducted mass spectrometric analysis of the entrained noble gases. Carbonaceous matter is often used to infer thermal history due to its sensitivity to thermal processes. The FTIR spectra of the acid residue from the Sharps clast suggest that carbonaceous matter in the clast contains less hydrogen and oxygen compared to acid residues from typical type 3.4 ordinary chondrites. The metamorphic temperatures obtained by Raman spectroscopy ranges between ∼380 °C and ∼490 °C. TEM observations indicate that the clasts experienced a peak temperature of 300 °C to 400 °C, based on the carbon d002 layer lattice spacing of C-rich aggregates. These estimates are consistent with an earlier estimate of 330 ± 50 °C, that is also estimated by the d002 layer lattice spacing (Brearley, 1990). It should be noted that the lattice spacing thermometer is based on terrestrial metamorphose rocks, and thus temperature was probably underestimated. Meanwhile, the C-XANES spectra of the C-rich aggregates show high exciton intensities, indicative of graphene structures that developed at around 700-800 °C following an extensive period of time (millions of years), however, the surrounding matrix areas experienced lower temperatures of less than 300-500 °C. Noble gas analysis of the acid residue from the Sharps clasts shows that the residue is almost identical with some material reported in carbonaceous chondrites, i.e., heavily enriched in the Q-gas component as well as HL-gas from presolar diamonds and Ne-E(H) from presolar SiC. These results indicate that the C-rich aggregates in the Sharps clasts formed under relatively high temperature conditions, up to 800 °C, and were subsequently mixed with lower temperature matrix, probably in a different parent body, before they were incorporated into the final Sharps lithology by collision.
NASA Astrophysics Data System (ADS)
Ochoa, D. A.; Levit, R.; Fancher, C. M.; Esteves, G.; Jones, J. L.; E García, J.
2017-05-01
Ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot be associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel-Fulcher-Tammann phenomenological equation. Results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.
Zhang, Chao; Yin, An-Xiang; Jiang, Ruibin; Rong, Jie; Dong, Lu; Zhao, Tian; Sun, Ling-Dong; Wang, Jianfang; Chen, Xing; Yan, Chun-Hua
2013-05-28
Food safety is a constant concern for humans. Besides adulteration and contamination, another major threat comes from the spontaneous spoilage of perishable products, which is basically inevitable and highly dependent on the temperature history during the custody chain. For advanced quality control and assessment, time-temperature indicators (TTIs) can be deployed to document the temperature history. However, the use of TTIs is currently limited by either relatively high cost or poor programmability. Here we describe a general, kinetically programmable, and cost-efficient TTI protocol constructed from plasmonic nanocrystals. We present proof-of-principle demonstrations that our TTI can be specifically tailored and thus used to track perishables, dynamically mimic the deteriorative processes therein, and indicate product quality through sharp-contrast multicolor changes. The flexible programmability of our TTI, combined with its substantially low cost and low toxicity, promises a general applicability to each single packaged item of a plethora of perishable products.
NASA Astrophysics Data System (ADS)
Sun, Zhuting; Burgess, Tim; Tan, H. H.; Jagadish, Chennupati; Kogan, Andrei
2018-04-01
We have investigated the nonlinear conductance in diffusion-doped Si:GaAs nanowires contacted by patterned metal films in a wide range of temperatures T. The wire resistance R W and the zero bias resistance R C, dominated by the contacts, exhibit very different responses to temperature changes. While R W shows almost no dependence on T, R C varies by several orders of magnitude as the devices are cooled from room temperature to T = 5 K. We develop a model that employs a sharp donor level very low in the GaAs conduction band and show that our observations are consistent with the model predictions. We then demonstrate that such measurements can be used to estimate carrier properties in nanostructured semiconductors and obtain an estimate for N D, the doping density in our samples. We also discuss the effects of surface states and dielectric confinement on carrier density in semiconductor nanowires.
NASA Astrophysics Data System (ADS)
Montoya, Javier A.; Goncharov, Alexander F.
2012-06-01
The time-dependent temperature distribution in the laser-heated diamond anvil cell (DAC) is examined using finite element simulations. Calculations are carried out for the practically important case of a surface-absorbing metallic plate (coupler) surrounded by a thermally insulating transparent medium. The time scales of the heat transfer in the DAC cavity are found to be typically on the order of tens of microseconds depending on the geometrical and thermochemical parameters of the constituent materials. The use of much shorter laser pulses (e.g., on the order of tens of nanoseconds) creates sharp radial temperature gradients, which result in a very intense and abrupt axial conductive heat transfer that exceeds the radiative heat transfer by several orders of magnitude in the practically usable temperature range (<12 000 K). In contrast, the use of laser pulses with several μs duration provides sufficiently uniform spatial heating conditions suitable for studying the bulk sample. The effect of the latent heat of melting on the temperature distribution has been examined in the case of iron and hydrogen for both pulsed and continuous laser heating. The observed anomalies in temperature-laser power dependencies cannot be due to latent heat effects only. Finally, we examine the applicability of a modification to the plate geometry Ångström method for measurements of the thermal diffusivity in the DAC. The calculations show substantial effects of the thermochemical parameters of the insulating medium on the amplitude change and phase shift between the surface temperature variations of the front and back of the sample, which makes this method dependent on the precise knowledge of the properties of the medium.
Magneto-optical study of holmium iron garnet Ho3Fe5O12
NASA Astrophysics Data System (ADS)
Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.
2012-09-01
Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.
This dataset contains the research described in the following publication:Brown, C.A., D. Sharp, and T. Mochon Collura. 2016. Effect of Climate Change on Water Temperature and Attainment of Water Temperature Criteria in the Yaquina Estuary, Oregon (USA). Estuarine, Coastal and Shelf Science. 169:136-146, doi: 10.1016/j.ecss.2015.11.006.This dataset is associated with the following publication:Brown , C., D. Sharp, and T. MochonCollura. Effect of Climate Change on Water Temperature and Attainment of Water Temperature Criteria in the Yaquina Estuary, Oregon (USA). ESTUARINE, COASTAL AND SHELF SCIENCE. Elsevier Science Ltd, New York, NY, USA, 169: 136-146, (2016).
NASA Technical Reports Server (NTRS)
Lee, H. C.; Hariz, A.; Dapkus, P. D.; Kost, A.; Kawase, M.
1987-01-01
This paper reports the study of growth conditions for achieving the sharp exciton resonances and low-intensity saturation of these resonances in AlGaAs-GaAs multiple quantum well structures grown by metalorganic chemical vapor deposition. Low growth temperature is necessary to observe this sharp resonance feature at room temperature. The optimal growth conditions are a tradeoff between the high temperatures required for high quality AlGaAs and low temperatures required for high-purity GaAs. A strong optical saturation of the excitonic absorption has been observed. A saturation density as low as 250 W/sq cm is reported.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2018-01-01
Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.
NASA Astrophysics Data System (ADS)
Servali, A.; Levin, V. L.; VanTongeren, J. A.
2015-12-01
In this study we evaluate crustal thickness and Moho sharpness beneath seismic stations in three different tectonic units of the North American continent: the Archean Superior Province, the Proterozoic Grenville Province, and the Paleozoic Appalachian Orogen. Our analysis involves two steps. First, for each site, we produce P-to-S receiver functions (RFs) organized by backazimuth and epicentral distance, and use them to identify the phase most likely representing a conversion from the Moho. Second, we construct averaged RFs for groups of telesismic events located in a similar geographic region, which we employ to examine shapes of Moho P-to-S converted phases in time series with maximum frequencies increasing from 0.25Hz to 2-3 Hz. At some sites we observe a progressive narrowing of a simple Moho converted phase with an increase in frequency, typical of a vertically instantaneous boundary, while at others the converted phase becomes progressively more complex, typical of a diffuse Moho. Thus, we adopt this difference in converted wave shape dependence on increasing frequency as a measure of Moho thickness. Our estimates of Moho thickness range from less than 300 m to over 2 km, with some locations showing evidence for multiple converting boundaries in the 35-50 km depth range. In this study we define "sharp" Moho at those sites where its vertical thickness is less than 1 km. Our results show that sharp Moho is universal in the Archean terranes regardless of surface lithology, likely due to higher Moho temperatures facilitating wide-spread delamination of dense lower crustal rocks. While a sharp Moho is not unique to the Superior Province, all Grenville and Appalachians sites where we find sharp Moho are in regions of granitic plutonism, suggesting a possible general association with reworking and density sorting of the crustal material (e.g. volcanic arc).
A New Optical Technique for Rapid Determination of Creep and Fatigue Thresholds at High Temperature.
1984-04-01
measurements, made far away from the crack tip, produced much smoother and more sensible results. Measurements by Macha et al (16) agree very well with...dependent upon the measurement positin. It becomes independent of position far enough away from the tip; this is consistent with the results of Macha , et...D. E. Macha , W. N. Sharpe, Jr., and A. P. ’ral(11, ’.., "A Laser Interferometry Method for ,xp.rim,-rit;a1 Stress Intensity Factor Calibration", AST
Residential heating costs: A comparison of geothermal solar and conventional resources
NASA Astrophysics Data System (ADS)
Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.
1980-08-01
The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.
Materials and Morphology Study for Templated Hydrogen Solidification
Shin, Swanee J.; Kozioziemski, Bernard J.
2017-11-29
In this work, we performed a series of experiments to elucidate the characteristics of a good template for solid hydrogen nucleation. Zinc stands out among several materials with comparable size and shape. Nucleation could be observed to occur on top of sharp features, such as grain boundaries and cracks, but our attempts proved unsuccessful to fabricate or replicate such features. The variations of the supercooling (ΔT) values measured for comparable samples and the dependence of ΔT on the cell temperature cycling revealed that templated nucleation of solid hydrogen is a very delicate process.
NASA Astrophysics Data System (ADS)
Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui
2018-03-01
This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
Experiments are performed in a 24.4 mm diameter choked circular hot and cold jets issuing from a sharp-edged orifice at a fully expanded jet Mach number of 1.85. The stagnation temperature of the hot and the cold jets are 319 K and 299 K respectively. The results suggest that temperature effects on the screech amplitude and frequency are manifested for the fundamental, with a reduced amplitude and increased frequency for hot jet relative to the cold jet. Temperature effects on the second harmonic are also observed.
Role of the d -d interaction in the antiferromagnetic phase of λ -(BEDT-STF ) 2FeCl4
NASA Astrophysics Data System (ADS)
Minamidate, Takaaki; Shindo, Hironori; Ihara, Yoshihiko; Kawamoto, Atsushi; Matsunaga, Noriaki; Nomura, Kazushige
2018-03-01
Magnetic susceptibility and proton nuclear magnetic resonance (1H-NMR ) measurements were performed for the quasi-two-dimensional π -d interacting system λ -(BEDT-STF ) 2FeCl4 at ambient pressure. Magnetic susceptibility arising from the 3 d spins of the FeCl4 anion show an anisotropy at low temperature and its temperature dependence for the external field parallel to the c axis is described as a broad peak structure at 8 K. A sharp peak in the temperature dependence of T1-1 associated with the antiferromagnetic (AF) transition is observed at TAF=16 K, together with the drastic splitting of the NMR spectrum below TAF. The relation between the static susceptibility and the splitting of the NMR shift suggests the existence of the relatively strong d -d AF interaction. These results can be explained by the model considering the AF-coupled d -spin system in the AF long-range-ordered π -spin system. We find that the AF phases in λ -type salts can be universally explained by this model.
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Sharp-front wave of strong magnetic field diffusion in solid metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian
When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kebukawa, Yoko; Zolensky, Michael E.; Chan, Queenie H. S.
Primitive xenolithic clasts, often referred to as “dark clasts”, are well known in many regolith breccias. The Sharps H3.4 ordinary chondrite contains unusually large dark clasts up to ~1 cm across. Poorly-graphitized carbon (PGC), with Fe, Ni metal and described as “carbon-rich aggregates”, has been found in these clasts (Brearley, 1990). We report detailed analyses of carbonaceous matter in several identical Sharps clasts using FTIR, Raman, C-XANES, and TEM that provide insight on the extent of thermal processing and possible origin of such clasts. We also prepared acid residues of the clasts using the HCl/HF method and conducted mass spectrometric analysismore » of the entrained noble gases. Carbonaceous matter is often used to infer thermal history due to its sensitivity to thermal processes. The FTIR spectra of the acid residue from the Sharps clast suggest that carbonaceous matter in the clast contains less hydrogen and oxygen compared to acid residues from typical type 3.4 ordinary chondrites. The metamorphic temperatures obtained by Raman spectroscopy ranges between ~380 °C and ~490 °C. TEM observations indicate that the clasts experienced a peak temperature of 300 °C to 400 °C, based on the carbon d 002 layer lattice spacing of C-rich aggregates. These estimates are consistent with an earlier estimate of 330 ± 50 °C, that is also estimated by the d 002 layer lattice spacing (Brearley, 1990). It should be noted that the lattice spacing thermometer is based on terrestrial metamorphose rocks, and thus temperature was probably underestimated. Meanwhile, the C-XANES spectra of the C-rich aggregates show high exciton intensities, indicative of graphene structures that developed at around 700–800 °C following an extensive period of time (millions of years), however, the surrounding matrix areas experienced lower temperatures of less than 300–500 °C. Noble gas analysis of the acid residue from the Sharps clasts shows that the residue is almost identical with some material reported in carbonaceous chondrites, i.e., heavily enriched in the Q-gas component as well as HL-gas from presolar diamonds and Ne-E(H) from presolar SiC. These results indicate that the C-rich aggregates in the Sharps clasts formed under relatively high temperature conditions, up to 800 °C, and were subsequently mixed with lower temperature matrix, probably in a different parent body, before they were incorporated into the final Sharps lithology by collision.« less
SHARP-B2: Flight Test Objectives, Project Implementation and Initial Results
NASA Technical Reports Server (NTRS)
Salute, Joan; Bull, Jeff; Rasky, Dan; Keese, David; Arnold, Jim (Technical Monitor)
2001-01-01
On September 28, 2000 the SHARP-B2 flight experiment was launched from Vandenberg Air Force Base, California. SHARP-B2 is the 2nd Ballistic flight test in the SHARP (Slender Hypervelocity Aerothermodynamic Research Probes) program which develops and tests new thermal protection materials and sharp body concepts. The flight tested Ultra-High Temperature Ceramics (UHTCs), which may radically change the design and performance of future aerospace vehicles. The new designs may overturn an age-old tenet of aerodynamics: that blunt-body aerospace vehicles, but not those with sharp leading edges, can survive the searing temperatures created as the vehicles tear through the atmosphere. Sharp leading edges offer numerous advantages over the blunt-body design currently in use. They could allow a space shuttle or crew return vehicle to maneuver in space more like an airplane and potentially allow astronauts to return to Earth from anywhere on orbit. They may allow improved astronaut safety by decreasing the risk of aborting into the ocean. They may reduce the electromagnetic interference that causes the communications blackouts that plague reentering blunt-body space vehicles. Reducing the amount of drag could lead to a reduction in propulsion requirements. Planetary probes could make use of sharp-body technology for aerobraking and to maximize their maneuvering capability. SHARP-B2 was a joint effort among NASA Ames, Sandia National Laboratories, the U.S. Air Force and the U.S. Army. It was funded by the Pathfinder Program at NASA's Marshall Space Flight Center. The SHARP-B2 payload was carried aboard a U.S. Air Force Minuteman III missile carrying a modified Mk 12A reentry vehicle (RV), which blasted off from Vandenberg Air Force Base near Lompoc, CA, at 3:01 a.m. PDT on Sept. 28. The RV was equipped with four 5. 1 inch-long strakes, or sharp leading edges. Each strake contained three UHTCs: ZrB2/SiC/C; ZrB2/SiC; and HfB2/SiC. Once it reached an altitude of about 400 nautical miles, the RV was released, returning through Earth's atmosphere at speeds exceeding Mach 22. One pair of strakes was designed to retract just before reaching temperatures high enough to cause the material to begin ablating. The other pair was designed to retract shortly after ablation began, at an expected temperature of nearly 5,100 degrees Fahrenheit. Sensors in the strakes measured how closely performance matched pre-flight calculations, and data was successfully collected throughout the 23-minute flight. A parachute was deployed (but not fully inflated) and the RV splashed down in a lagoon at the Kwajalein missile range in the Pacific Ocean. Within 3 hours radar track analysis showed ocean entry to be precisely at the latitude/longitude coordinates estimated during pre-flight simulation. An hour later a ship was deployed by the Army to recover the reentry vehicle, which was recovered in 165 feet of water, just 500 feet from its planned splash-down point. This is the first RV recovery in over a decade.
Kowalski, M E; Jin, J M
2003-03-07
A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.
Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.
Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E
2012-10-09
We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.
Mirage effect from thermally modulated transparent carbon nanotube sheets.
Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H
2011-10-28
The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.
Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-05-01
The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.
Spectroscopy Study on the Location and Distribution of Eu3+ Ions in TiO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Tsuboi, Taiju; Setiawati, Elly; Kawano, Katsuyasu
2008-09-01
Eu3+- and non-doped TiO2 nanoparticles were synthesized by the sol-gel method at sintering temperatures of 500 or 900 °C. The photoluminescence spectra of these nanoparticles have been investigated at various temperatures between 290 and 12 K. Two kinds of Eu3+ photoluminescence spectra were observed. One spectrum consists of sharp lines; the other consists of broad bands. The former was obtained by indirect excitation into Eu3+ with light of wavelengths shorter than 330 nm, while the latter was obtained by direct excitation into Eu3+ with light of wavelengths longer than 380 nm which correspond to the Eu3+ absorption bands. In the latter case, different spectra were obtained depending on the excitation wavelength even in the same absorption band. It is suggested that the sharp line spectrum is caused by Eu3+ ions substituted for Ti4+ but with some distortion around the Eu3+ ions in the matrix of TiO2 due to the large difference in ionic radius between the Ti4+ and Eu3+ ions, which are mainly present in the interior region of the nanoparticle. The broad band spectrum is caused by the disordered Eu3+ ions with Eu-O-Ti bonds which are predominantly present in the near surface region.
The impact of summer rainfall on the temperature gradient along the United States-Mexico border
NASA Technical Reports Server (NTRS)
Balling, Robert C., Jr.
1989-01-01
The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.
Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars.
Wang, Liming; Liu, Tao; Wang, Shuguang; Zhong, Zhenyang; Jia, Quanjie; Jiang, Zuimin
2016-10-07
Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are believed to come from the intrinsic Mn-doped amorphous or crystalline Ge ferromagnetic phase rather than any intermetallic ferromagnetic compounds of Mn and Ge. After being annealed at a temperature of 500 °C, all the samples exhibit the same Curie temperature of 220 K, which is in sharp contrast to the different Curie temperature for the as-grown samples, and the ferromagnetism for the annealed samples comes from Mn5GeSi2 compounds which are formed during the annealing.
NASA Astrophysics Data System (ADS)
Plass, Richard; Marks, Laurence D.
1996-06-01
Room temperature gold depositions onto Si(111)-( 3 × 3) R30° Au surfaces with diffuse and sharp diffraction spots [Surf. Sci. 242 (1991) 73] (diffuse and sharp 3 × 3 Au hereafter) under UHV conditions has been monitored using transmission electron diffraction (TED). Both systems display an increase in surface structure diffraction spot intensities up to the completion of 1.0 monolayer (ML) after which the surface beams display an exponential decrease in intensity with coverage. The exponential decay rate decreases after roughly 1.33 ML. These results can be attributed to gold initially diffusing to and filling 3 × 3 Au gold trimer sites in vacancy type surface domain walls [Surf. Sci. 342 (1995) 233], then filling one of three possible sites on the 3 × 3 Au structure with essentially no surface diffusion, disrupting nearby gold trimers. Gold deposition onto the diffuse type structure caused the formation and expansion of satellite arcs around the strongest 3 × 3 beams similar to those seen by others [Surf. Sci. 242 (1991) 73; Jpn. J. Appl. Phys. 16 (1977) 891; J. Vac. Sci. Technol. A 10 (1992) 3486] at elevated temperatures while the sharp structure displayed only a modest shoulder formation near the strongest 3 × 3 beams.
NASA Technical Reports Server (NTRS)
Howson, T. E.; Tien, J. K.; Mervyn, D. A.
1980-01-01
The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and gamma-prime precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles.
Temperature Evolution of Excitonic Absorptions in Cd(1-x)Zn(x)Te Materials
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Henry, Ross
2007-01-01
The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the UV/Visible and infrared frequency ranges for Cd(l-x),Zn(x),Te materials for x=0 and x=0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors.
TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS
Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.
1962-01-01
Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975
Combustion Noise at Elevated Pressures in a Liquid-Fueled Premixed Combustor
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo
1997-01-01
Noise generated in gas turbine combustors can exist in several forms-broadband noise, sharp resonant peaks, and regular or intermittent nonlinear pulsing. In the present study, dynamic pressure measurements were made in several JP-5-fueled combustor configurations, at various mean pressures and temperatures. The fluctuating pressure was measured at mean pressures from 6 to 14 atm and inlet temperatures from 550 K to 850 K. The goal of the present work was to study the effect of changes in mean flow conditions on combustor noise: both broadband noise and sharp tones were considered. In general, the shape of the broadband noise spectrum was consistent from one configuration to another. The shape of the spectrum was influenced by the acoustic filtering of the combustion zone. This filtering ensured the basic consistency of the spectra. In general, the trends in broadband noise observed at low mean pressures were also seen at high mean pressures; that is, the total sound level decreased with both increasing equivalence ratio and increasing inlet temperature. The combustor configurations without a central pilot experienced higher broadband noise levels and were more susceptible to narrow peak resonances than configurations with a central pilot. The sharp peaks were more sensitive to the mean flow than was the broadband noise, and the effects were not always the same. In some situations, increasing the equivalence ratio made the sharp peaks grow, while at other conditions, increasing the equivalence ratio made the sharp peaks shrink. Thus, it was difficult to predict when resonances would occur; however, they were reproducible. Acoustic coupling between the upstream and downstream regions of the combustor may play a role in the sharp-peaked oscillations. Noise was also observed near lean blow out. As with other types of noise, lean blow out noise was affected by the combustion chamber acoustics, which apparently maintains the fluctuations at a uniform frequency. However, the actual conditions when this type of noise was experienced appeared to simply follow the lean blow out limit as it varied with mean temperature and pressure.
High-pressure study of layered nitride superconductors
NASA Astrophysics Data System (ADS)
Taguchi, Y.; Hisakabe, M.; Ohishi, Y.; Yamanaka, S.; Iwasa, Y.
2004-09-01
Pressure dependence of critical temperature, lattice constant, and phonon frequency has been investigated for layered nitride superconductors, ZrNCl0.7 and Li0.5(THF)yHfNCl . The analysis of the data in terms of MacMillan’s theory indicated that the relevant phonon frequencies are low ( ≈50 and 100cm-1 , respectively), and that the electron-phonon coupling constant λ is larger than 3 in both compounds in sharp contrast with previous experimental and theoretical results. This result may suggest a possibility that other bosonic excitation than phonon additionally contributes to the pairing interaction in these materials.
Hyslop, P A; Kuhn, C E; Sauerheber, R D
1984-01-01
The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells. PMID:6324752
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
NASA Astrophysics Data System (ADS)
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-05-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.
Ochoa, D. A.; Levit, R.; Fancher, C. M.; ...
2017-04-05
We report that ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot bemore » associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel–Fulcher–Tammann phenomenological equation. Finally, results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.« less
Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation
Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre
2015-01-01
Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high—temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T3 dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s—wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s—wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry. PMID:26286229
Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A
2016-06-01
Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface electronic states of low-temperature H-plasma-exposed Ge(100)
NASA Astrophysics Data System (ADS)
Cho, Jaewon; Nemanich, R. J.
1992-11-01
The surface of low-temperature H-plasma-cleaned Ge(100) was studied by angle-resolved UV-photoemission spectroscopy and low-energy electron diffraction (LEED). The surface was prepared by an ex situ preclean followed by an in situ H-plasma exposure at a substrate temperature of 150-300 °C. Auger-electron spectroscopy indicated that the in situ H-plasma clean removed the surface contaminants (carbon and oxygen) from the Ge(100) surface. The LEED pattern varied from a 1×1 to a sharp 2×1, as the substrate temperature was increased. The H-induced surface state was identified at ~5.6 eV below EF, which was believed to be mainly due to the ordered or disordered monohydride phases. The annealing dependence of the spectra showed that the hydride started to dissociate at a temperature of 190 °C, and the dangling-bond surface state was identified. A spectral shift upon annealing indicated that the H-terminated surfaces were unpinned. After the H-plasma clean at 300 °C the dangling-bond surface state was also observed directly with no evidence of H-induced states.
Driving force for indentation cracking in glass: composition, pressure and temperature dependence
Rouxel, Tanguy
2015-01-01
The occurrence of damage at the surface of glass parts caused by sharp contact loading is a major issue for glass makers, suppliers and end-users. Yet, it is still a poorly understood problem from the viewpoints both of glass science and solid mechanics. Different microcracking patterns are observed at indentation sites depending on the glass composition and indentation cracks may form during both the loading and the unloading stages. Besides, we do not know much about the fracture toughness of glass and its composition dependence, so that setting a criterion for crack initiation and predicting the extent of the damage yet remain out of reach. In this study, by comparison of the behaviour of glasses from very different chemical systems and by identifying experimentally the individual contributions of the different rheological processes leading to the formation of the imprint—namely elasticity, densification and shear flow—we obtain a fairly straightforward prediction of the type and extent of the microcracks which will most likely form, depending on the physical properties of the glass. Finally, some guidelines to reduce the driving force for microcracking are proposed in the light of the effects of composition, temperature and pressure, and the areas for further research are briefly discussed. PMID:25713446
Landcover Based Optimal Deconvolution of PALS L-band Microwave Brightness Temperature
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh S.; Crosson, William L.; Laymon, Charles A.; Njoku, Eni G.
2004-01-01
An optimal de-convolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on landcover, which is characterized by sharp boundaries. In this study, we mathematically de-convolve the observations into brightness temperature at the field scale (500-800m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.
NASA Astrophysics Data System (ADS)
Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Van de Wiel, Bas J. H.; Gallée, Hubert; Madeleine, Jean-Baptiste; Beaumet, Julien
2018-01-01
Observations evidence extremely stable boundary layers (SBL) over the Antarctic Plateau and sharp regime transitions between weakly and very stable conditions. Representing such features is a challenge for climate models. This study assesses the modeling of the dynamics of the boundary layer over the Antarctic Plateau in the LMDZ general circulation model. It uses 1 year simulations with a stretched-grid over Dome C. The model is nudged with reanalyses outside of the Dome C region such as simulations can be directly compared to in situ observations. We underline the critical role of the downward longwave radiation for modeling the surface temperature. LMDZ reasonably represents the near-surface seasonal profiles of wind and temperature but strong temperature inversions are degraded by enhanced turbulent mixing formulations. Unlike ERA-Interim reanalyses, LMDZ reproduces two SBL regimes and the regime transition, with a sudden increase in the near-surface inversion with decreasing wind speed. The sharpness of the transition depends on the stability function used for calculating the surface drag coefficient. Moreover, using a refined vertical grid leads to a better reversed "S-shaped" relationship between the inversion and the wind. Sudden warming events associated to synoptic advections of warm and moist air are also well reproduced. Near-surface supersaturation with respect to ice is not allowed in LMDZ but the impact on the SBL structure is moderate. Finally, climate simulations with the free model show that the recommended configuration leads to stronger inversions and winds over the ice-sheet. However, the near-surface wind remains underestimated over the slopes of East-Antarctica.
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...
2017-09-28
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal
NASA Astrophysics Data System (ADS)
Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin
2017-07-01
Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhigang, E-mail: zsun@dicp.ac.cn; Yu, Dequan; Xie, Wenbo
The O + O{sub 2} isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the {sup 18}O + {sup 32}O{sub 2} and {sup 16}O + {sup 36}O{sub 2}more » reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.« less
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri
2017-07-21
This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.
NASA Astrophysics Data System (ADS)
Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.
2012-10-01
Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K1, determined by fitting the temperature-dependent linewidths, was ˜50 kJ/m3, which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures.
Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2016-01-01
Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705
The cosmological Higgstory of the vacuum instability
Espinosa, José R.; Giudice, Gian F.; Morgante, Enrico; ...
2015-09-24
We report that the Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finallymore » we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.« less
Applications of NASTRAN to nuclear problems
NASA Technical Reports Server (NTRS)
Spreeuw, E.
1972-01-01
The extent to which suitable solutions may be obtained for one physics problem and two engineering type problems is traced. NASTRAN appears to be a practical tool to solve one-group steady-state neutron diffusion equations. Transient diffusion analysis may be performed after new levels that allow time-dependent temperature calculations are developed. NASTRAN piecewise linear anlaysis may be applied to solve those plasticity problems for which a smooth stress-strain curve can be used to describe the nonlinear material behavior. The accuracy decreases when sharp transitions in the stress-strain relations are involved. Improved NASTRAN usefulness will be obtained when nonlinear material capabilities are extended to axisymmetric elements and to include provisions for time-dependent material properties and creep analysis. Rigid formats 3 and 5 proved to be very convenient for the buckling and normal-mode analysis of a nuclear fuel element.
NASA Astrophysics Data System (ADS)
Bera, Aindrila; Ghosh, Manas
2017-10-01
We explore the profiles of self-polarization effect (SPE) of doped GaAs QD under simultaneous presence of hydrostatic pressure (HP), temperature and in presence of noise. Noise term carries Gaussian white character and it has been administered to the system via two different pathways; additive and multiplicative. Profiles of SPE have been monitored as a function of HP, temperature and noise strength. Under a given condition of HP and temperature, noise marks its prominent signature on the SPE profile. However, the extent to which noise affects the SPE profile visibly depends on the noise strength and the pathway through which noise is introduced. As interesting observations we have found that SPE exhibits minimization at a pressure of ∼ 170 kbar in absence of noise and at ∼ 150 kbar when noise is present. Furthermore, in presence of multiplicative noise SPE exhibits a very faint decrease with increase in T up to T ∼ 420 K. However, beyond T ∼ 420 K, further increase in temperature causes abrupt fall of SPE in a highly sharp way. The findings highlight viable ways of tuning SPE of doped QD system through subtle interplay between HP, temperature and noise.
Compositional dependence of defect mobility and damage buildup in Al xGa 1- xAs
NASA Astrophysics Data System (ADS)
Stonert, A.; Turos, A.; Nowicki, L.; Breeger, B.; Wendler, E.; Wesch, W.
2001-04-01
Defect transformations at low temperatures in ion implanted Al xGa 1- xAs (0⩽ x⩽1) ternary compounds were studied. Experiments consisted of ion implantation with 150 keV N or 200 keV Ar ions with different doses at temperatures between 18 and 77 K, and in situ RBS/channeling measurements at selected temperatures. An important recovery stage attributed to the defect mobility in the Ga(Al) sublattice was revealed near 280 K. For x>0.5 this stage was largely suppressed. Instead, a continuous damage recovery at low temperatures was observed. It was noticed that defect recombination can also be produced upon prolonged storage at the implantation temperature. For AlAs ( x=1) the 280 K stage disappeared completely and only a small defect recovery at low temperatures was noticed. Upon N- or Ar-ion bombardment, after an incubation period, a sharp crystalline-to-amorphous transition appeared. The amorphization dose increases with increasing x and is a factor of 10 higher for x=0.96 than that for x=0. A further increase of the dose by a factor of 15 was required to amorphize AlAs ( x=1).
Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
Vanounou, Sharon; Pines, Dina; Pines, Ehud; Parola, Abraham H; Fishov, Itzhak
2002-07-01
In this study we sought the detection and characterization of bacterial membrane domains. Fluorescence generalized polarization (GP) spectra of laurdan-labeled Escherichia coli and temperature dependencies of both laurdan's GP and fluorescence anisotropy of 1,3-diphenyl-1,3,5-hexatriene (DPH) (rDPH) affirmed that at physiological temperatures, the E. coli membrane is in a liquid-crystalline phase. However, the strong excitation wavelength dependence of rlaurdan at 37 degrees C reflects membrane heterogeneity. Time-resolved fluorescence emission spectra, which display distinct biphasic redshift kinetics, verified the coexistence of two subpopulations of laurdan. In the initial phase, <50 ps, the redshift in the spectral mass center is much faster for laurdan excited at the blue edge (350 nm), whereas at longer time intervals, similar kinetics is observed upon excitation at either blue or red edge (400 nm). Excitation in the blue region selects laurdan molecules presumably located in a lipid domain in which fast intramolecular relaxation and low anisotropy characterize laurdan's emission. In the proteo-lipid domain, laurdan motion and conformation are restricted as exhibited by a slower relaxation rate, higher anisotropy and a lower GP value. Triple-Gaussian decomposition of laurdan emission spectra showed a sharp phase transition in the temperature dependence of individual components when excited in the blue but not in the red region. At least two kinds of domains of distinct polarity and order are suggested to coexist in the liquid-crystalline bacterial membrane: a lipid-enriched and a proteolipid domain. In bacteria with chloramphenicol (Cam)-inhibited protein synthesis, laurdan showed reduced polarity and restoration of an isoemissive point in the temperature-dependent spectra. These results suggest a decrease in membrane heterogeneity caused by Cam-induced domain dissipation.
Spin Multiphoton Antiresonance at Finite Temperatures
NASA Astrophysics Data System (ADS)
Hicke, Christian; Dykman, Mark
2007-03-01
Weakly anisotropic S>1 spin systems display multiphoton antiresonance. It occurs when an Nth overtone of the radiation frequency coincides with the distance between the ground and the Nth excited energy level (divided by ). The coherent response of the spin displays a sharp minimum or maximum as a function of frequency, depending on which state was initially occupied. We find the spectral shape of the response dips/peaks. We also study the stationary response for zero and finite temperatures. The response changes dramatically with increasing temperature, when excited states become occupied even in the absence of radiation. The change is due primarily to the increasing role of single-photon resonances between excited states, which occur at the same frequencies as multiphoton resonances. Single-photon resonances are broad, because the single-photon Rabi frequencies largely exceed the multi-photon ones. This allows us to separate different resonances and to study their spectral shape. We also study the change of the spectrum due to relaxational broadening of the peaks, with account taken of both decay and phase modulation.
Thermodynamics of Sultana-Dyer black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@mail.huji.ac.il
The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies themore » first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.« less
NASA Astrophysics Data System (ADS)
Liu, Yan; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Ling, Langsheng; Tong, Wei; Qu, Zhe; Cao, Gang; Zhang, Yuheng; Tian, Mingliang
2017-04-01
The magnetic structure in the strongly correlated ruthenate S r4R u3O10 has been debated for a long time and still remains elusive. Here, we perform a systematically planar Hall effect study on a single-crystalline S r4R u3O10 nanostripe with a thickness of less than 100 nm. Large sharp switching behavior is observed in the planar Hall resistance, unambiguously indicating a strong anisotropic in-plane ferromagnetic order in the nanostripe, which is in contrast to the bulk system. Temperature-dependent evolution of the in-plane magnetism reveals that the in-plane spin order transforms from a single-domain state below a Curie temperature TC into a multidomain state below a critical temperature TM, probably due to the inherent strong spin-orbit coupling driven reconfiguration of spins between the c axis and the a b plane.
Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer
NASA Astrophysics Data System (ADS)
Kumar, Virendra; Gaur, Anurag; Choudhary, R. J.; Gupta, Mukul
2016-05-01
Epitaxial 150 nm thick LSMO/BFO bilayer is deposited on STO (100) substrate by pulsed laser deposition, to study magnetoelectric effect. Unexpected low value of room temperature magnetization in bilayer indicates towards the possibility of interdiffusion. Further, sharp fall in the value of TC (53 K) also added our anxiety towards possible interdiffusion in BFO/LSMO system. Low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena, and the temperature-dependent interdiffusivity is obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. It has been found that the diffusivity at different temperatures follows Arrhenius-type behavior. X-ray reflection (XRR) pattern obtained for the bilayer could not be fitted in the Parratt's formalism, which confirms the interdiffusion in it. Depth profiles of 209Bi, 56Fe ions measured by secondary ion mass spectroscope (SIMS) further substantiate the diffusion of these ions from upper BFO layer into lower LSMO layer.
Raila, Emilia Mmbando; Anderson, David O
2017-04-01
Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO 2 ). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.
A sharp knife for high temperatures
NASA Technical Reports Server (NTRS)
Heisman, R. M.; Iceland, W. F.
1978-01-01
Electrically heated nickel-chrome-steel alloy knife may be used to cut heat resistant plastic felt and similar materials with relative ease. Blade made of commercially available alloy RA 330 retains edge at temperatures as high as 927 C.
Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
NASA Astrophysics Data System (ADS)
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
The physical and functional thermal sensitivity of bacterial chemoreceptors.
Frank, Vered; Koler, Moriah; Furst, Smadar; Vaknin, Ady
2011-08-19
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.
NASA Astrophysics Data System (ADS)
Weiss, S. B.; Bunn, A. G.; Tran, T. J.; Bruening, J. M.; Salzer, M. W.; Hughes, M. K.
2016-12-01
The interpretation of ring-width patterns in high elevation Great Basin bristlecone pine is hampered by the presence of sharp ecophysiological gradients that can lead to mixed growth signals depending on topographic setting of individual trees. We have identified a temperature threshold near the upper forest border above which trees are limited more strongly by temperature, and below which trees tend to be moisture limited. We combined temperature loggers and GIS modeling at a scale of tens of meters to examine trees with different limiting factors. We found that the dual-signal patterns in radial growth can be partially explained by the topoclimate setting of individual trees, with trees in locations where growing season mean temperatures below about 7.4°C to 8°C were more strongly associated with temperature variability than with moisture availability. Using this threshold we show that it is possible to build both temperature and drought reconstructions over the common era from bristlecone pine near the alpine treeline. While our findings might allow for a better physiological understanding of bristlecone pine growth, they also raise questions about the interpretation of temperature reconstructions given the threshold nature of the growth response and the dynamic nature of the treeline ecotone over past millennia.
Unusually sharp paramagnetic phase transition in thin film Fe3Pt invar
NASA Astrophysics Data System (ADS)
Drisko, Jasper; Cumings, John
2013-03-01
Invar alloys, typically 3d transition metal rich systems, are most commonly known for their extremely low coefficients of thermal expansion (CTE) over a wide range of temperatures close to room temperature. This anomalous behavior in the CTE lends Invar to a variety of important applications in precision mechanical devices, scientific instruments, and sensors, among others. Many theoretical models of Invar have been proposed over the years, the most promising of which is a system described by two coexisting phases, one high-spin high-volume and the other low-spin low-volume, that compete to stabilize the volume of the material as the temperature is changed. However, no theory has yet been able to explain all experimental observations across the range of Invar alloys, especially at finite temperature. We have fabricated thin films of a Fe3Pt Invar alloy and investigate them using Lorentz Transmission Electron Microscopy (TEM). 23nm films are deposited onto SiN membrane substrates via radio-frequency magnetron sputtering from a pure Fe target decorated with Pt pieces. We observe novel magnetic domain structures and an unusually sharp phase transition between ferromagnetic (FM) and paramagnetic (PM) regions of the film under a temperature gradient. This sharp transition suggests that the FM-to-PM transition may be first order, perhaps containing a structural-elastic component to the order parameter. However, electron diffraction reveals that both the FM and PM regions have the same FCC crystal structure.
Consistency relations for sharp inflationary non-Gaussian features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less
NASA Astrophysics Data System (ADS)
Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong
2015-03-01
Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.
Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals
NASA Astrophysics Data System (ADS)
Natsik, V. D.; Smirnov, S. N.
2017-10-01
We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].
Investigating the thermal dissociation of viral capsid by lattice model
NASA Astrophysics Data System (ADS)
Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume
2017-11-01
The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.
Nanowire growth and sublimation: CdTe quantum dots in ZnTe nanowires
NASA Astrophysics Data System (ADS)
Orrù, M.; Robin, E.; Den Hertog, M.; Moratis, K.; Genuist, Y.; André, R.; Ferrand, D.; Cibert, J.; Bellet-Amalric, E.
2018-04-01
The role of the sublimation of the compound and of the evaporation of the constituents from the gold nanoparticle during the growth of semiconductor nanowires is exemplified with CdTe-ZnTe heterostructures. Operating close to the upper temperature limit strongly reduces the amount of Cd present in the gold nanoparticle and the density of adatoms on the nanowire sidewalls. As a result, the growth rate is small and strongly temperature dependent, but a good control of the growth conditions allows the incorporation of quantum dots in nanowires with sharp interfaces and adjustable shape, and it minimizes the radial growth and the subsequent formation of additional CdTe clusters on the nanowire sidewalls, as confirmed by photoluminescence. Uncapped CdTe segments dissolve into the gold nanoparticle when interrupting the flux, giving rise to a bulblike (pendant-droplet) shape attributed to the Kirkendall effect.
NASA Astrophysics Data System (ADS)
Mosley, W. D.; Dykes, J. W.; Klavins, P.; Shelton, R. N.; Sterne, P. A.; Howell, R. H.
1993-07-01
Temperature-dependent positron-lifetime experiments have been performed from room temperature to 15 K on single crystals of the oxide superconductor Ba1-xKxBiO3-y. Results indicate that the filling of oxygen vacancies has a marked impact on the superconducting properties of this system. Cation defect concentrations were below the detectable limit of positron-annihilation-analysis techniques in this material, which is in sharp contrast to identical studies on polycrystalline samples. We find that the positron lifetime in these electrochemically deposited single crystals is determined by the oxygen stoichiometry of the lattice, but there is no experimental signature of strong positron localization. By performing a subsequent oxygen anneal on the crystals, the superconducting transition is sharpened and the onset is raised. The observed change in positron lifetime associated with this annealing procedure is in quantitative agreement with theory.
IR-thermography for Quality Prediction in Selective Laser Deburring
NASA Astrophysics Data System (ADS)
Möller, Mauritz; Conrad, Christian; Haimerl, Walter; Emmelmann, Claus
Selective Laser Deburring (SLD) is an innovative edge-refinement process being developed at the Laser Zentrum Nord (LZN) in Hamburg. It offers a wear-free processing of defined radii and bevels at the edges as well as the possibility to deburr several materials with the same laser source. Sheet metal parts of various applications need to be post-processed to remove sharp edges and burrs remaining from the initial production process. Thus, SLD will provide an extended degree of automation for the next generation of manufacturing facilities. This paper investigates the dependence between the deburring result and the temperature field in- and post-process. In order to achieve this, the surface temperature near to the deburred edge is monitored with IR-thermography. Different strategies are discussed for the approach using the IR-information as a quality assurance. Additional experiments are performed to rate the accuracy of the quality prediction method in different deburring applications.
NASA Astrophysics Data System (ADS)
Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.
2017-08-01
We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments.
NASA Technical Reports Server (NTRS)
Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.
2012-01-01
The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis. At low latitudes, despite the decreasing number of COSMIC RO soundings and the lower percentage of soundings that penetrate into the lowest 500-m above the mean-sea-level, there are small sampling errors in the mean ABL height climatology. The difference of ABL height climatology between COSMIC RO and ECMWF analysis over SE Pacific is significant and requires further studies.
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.
2018-05-01
We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
Evaluation of an improved finite-element thermal stress calculation technique
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1982-01-01
A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.
Superconductivity in two-dimensional NbSe2 field effect transistors
NASA Astrophysics Data System (ADS)
El-Bana, Mohammed S.; Wolverson, Daniel; Russo, Saverio; Balakrishnan, Geetha; Mck Paul, Don; Bending, Simon J.
2013-12-01
We describe investigations of superconductivity in few molecular layer NbSe2 field effect transistors. While devices fabricated from NbSe2 flakes less than eight molecular layers thick did not conduct, thicker flakes were superconducting with an onset Tc that was only slightly depressed from the bulk value for 2H-NbSe2 (7.2 K). The resistance typically showed a small, sharp high temperature transition followed by one or more broader transitions which usually ended in a wide tail to zero resistance at low temperatures. We speculate that these multiple resistive transitions are related to disorder in the layer stacking. The behavior of several flakes has been characterized as a function of temperature, applied field and back-gate voltage. We find that the conductance in the normal state and transition temperature depend weakly on the gate voltage, with both conductivity and Tc decreasing as the electron concentration is increased. The application of a perpendicular magnetic field allows the evolution of different resistive transitions to be tracked and values of the zero temperature upper critical field, Hc2(0), and coherence length, ξ(0), to be independently estimated. Our results are analyzed in terms of available theories for these phenomena.
Nanofriction: Skating on hot surfaces
NASA Astrophysics Data System (ADS)
Meyer, Ernst; Gnecco, Enrico
2007-03-01
Simulations of nanoscale sharp tips sliding on a salt surface predict vanishing friction at temperatures close to the melting temperature, as the tip skates on a layer of liquefied salt. This insight opens the way to applications in MEMS, NEMS and auto/aerospace engines.
Out of plane magnetoresistance of organic superconductors; κ-(BEDT)2 salts
NASA Astrophysics Data System (ADS)
Maki, Kazumi; Won, Hye Kyung
1998-03-01
It is well documented that the out of plane manetoresistances of κ-(BEDT)_2X with X=Cu(NCS)2 and Cu[N(Cu)_2]Br exhibit a sharp peak before disappearance in the superconducting state (H. Ito et al. J. of Superconductivity 7), 667 (1994). ^, (M. V. Kartsovnik, (private communication).). We analyze this feature in terms of the superconducting fluctuation. Indeed, generalizing the formula for the clean limit (V. V. Dorin et al. Phys. Rev. B 48), 12951 (1993)., the superconducting fluctuation accounts for both the field and the temperature dependence of the magnetoresistance. In this description, d-wave nature of the superconducting order parameter in organic superconductors is crucial.
Delocalized metallic state on insulating, disordered BiSbTeSe2 thin films - a test of Z2 protection.
NASA Astrophysics Data System (ADS)
Gopal, Rk; Singh, Sourabh; Sarkar, Jit; Patro, Reshma; Roy, Subhadip; Mitra, Chiranjib; Quantum computation; Topological matter Group Team
We present thickness and temperature dependent magneto transport properties of bulk insulating and granular BiSbTeSe2 thin films, grown by pulsed laser deposition technique. The temperature dependent resistivity (R-T) of these films is found to be insulating (d ρ/dT <0) and resistivity changes thrice the magnitude measured at room temperature as temperature is varied from 300K to 1.8K. On application of small perpendicular magnetic field in the low temperature regime, the R-T takes an upward shift from the zero field R-T - a trademark signature of a metallic state on an insulating bulk film. The grain boundaries in these films, as seen by scanning electron microscopy, present an additional disorder and hence confinement/trapping centers to the surface Dirac states in comparison to the films grown by molecular beam epitaxy and single crystals, which have atomically flat surface. Therefore these films present real test for the topological protection of surface Dirac states and their immunity against localization which is known as Z2 protection. From the magnetoresistance (MR) measurements at low temperatures a sharp and relatively large rise in MR is found a signature of weak - antilocalization (WAL) -a signature of topologically protected surface states. The WAL analysis of the MR data reveals a phase breaking length of the order of grain size suggesting that grain Author is grateful to the Government of India and IISER-Kolkata for providing funding and experimental facilities for the following research work.
Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon
2017-01-01
Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.
The mysterious malleability of titanomagnetite Curie temperatures: An update
NASA Astrophysics Data System (ADS)
Jackson, M. J.; Bowles, J.; Lappe, S. C.; Berquo, T. S.; Solheid, P.
2015-12-01
Intermediate-composition titanomagnetites (TM30-TM50) have recently been shown to have Curie temperatures (Tc) that depend not only on composition but also quite strongly on thermal history, with increases of 100°C or more in Tc produced by moderate-temperature (300-400° C) annealing in the lab or in slow natural cooling, and equally large decreases produced by more rapid cooling ("quenching") from higher temperatures [e.g., Bowles et al 2013, Nature Communications]. The phenomenon is robustly defined and repeatable, but the underlying mechanism remains enigmatic, although it presumably involves some rearrangement of metal cations within the spinel lattice. New high-and low-temperature measurements, including hysteresis, frequency-dependent AC susceptibility (k(f,T)) and Mössbauer spectroscopy, were carried out to help shed light on the nanoscale mechanisms responsible for the observed changes in Tc. Fabian et al [2015, GJI] have shown for ferrimagnetic compositions in the hematite-ilmenite system that high-T hysteresis measurements exhibit a peak in high-field slope at the Curie temperature, and that the magnitude (area) of this peak is a strong function of cation ordering degree. Our data for synthetic titanomagnetites in quenched and annealed states show some indications of this, although the relationship is not perfectly systematic. On the other hand, our new low-T Mössbauer spectra, measured in the quenched and annealed states, are indistinguishable and argue against any change in site occupancy. Church et al [2011, G3] have proposed that the sharp change in low-T magnetic behavior of intermediate titanomagnetites is a "pinning transition" due to redistribution and localization of ferrous ions within the octahedral sites. Our new k(f,T) results show that the pinning transition in some samples is strongly affected by prior annealing or quenching, suggesting that these treatments affect the intrasite cation distributions. Such an idea is consistent with atomistic models of the qandlite-magnesioferrite system [Harrison et al., 2013, Am. Mineralogist], which show temperature-dependent octahedral-site chemical clustering.
Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.
Asay, David B; Kim, Seong H
2007-11-20
The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
NASA Astrophysics Data System (ADS)
Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun
2015-12-01
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
NASA Astrophysics Data System (ADS)
Folkerts, Timothy John
A systematic study of Ba_ {1-x}K_ xBiO_3 (BKBO) in the range 0 <= x <= 0.5 is presented in this work, concentrating especially on the superconducting range 0.35 <= x <= 0.5. Samples were studied using powder x-ray diffraction, thermal analysis, magnetization as a function of both temperature and applied field, and resistivity as a function of both temperature and pressure. Particular effort went into producing high quality samples. This proved difficult because of the moisture sensitivity of the starting materials and of the intermediate products, and because of the tendency of the material to phase separate into regions of varying potassium concentrations. Once synthesis techniques were developed which allowed production of high quality samples, systematic studies could be undertaken. The sharpness of the powder x-ray diffraction peaks, along with least squares fits, were used to determine phase purity and to exclude poor quality samples. The lattice parameters of the remaining samples were seen to obey Vegard's Law. Magnetization studies as a function of temperature were used to determine the superconducting transition temperature (T_ c). Onsets for superconductivity were observed as high as 30 K for samples with broad transitions, although samples with sharp transitions had a maximum T_ c of only 28.8 K. This high T_ c, as well as the crystal structure clearly link BKBO to the high T_ c superconductors. Hysteresis measurements were undertaken to determine the upper and lower critical fields, critical currents, and the normal state susceptibility. Estimates of the coherence length, penetration depth, and the electronic contribution to the specific heat based on these measurements agree well with BCS theory. Resistivity data are quit dependent on sample quality, as well as potassium doping. At low potassium concentrations, the material is semiconducting, while at higher potassium concentrations where the material is superconducting, the normal state resistivity of Ba_ {1-x}K_ xBiO_3 is nearly temperature independent. This is in contrast to other oxide superconductors, which typically show metallic behavior. We conclude that the BCS theory adequately describes the properties of Ba_{1-x }K_ xBiO_3, as determined in this study.
Kinetics of (2 × 4) → (3 × 1(6)) structural changes on GaAs(001) surfaces during the UHV annealing
NASA Astrophysics Data System (ADS)
Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.
2018-06-01
The peculiarities of superstructural transition (2 × 4) → (3 × 1(6)) on the GaAs(001) surface were studied by the RHEED method in the conditions initiated by a sharp change of the arsenic flux. The specular beam intensities RHEED picture dependences on time were obtained during the transition. The measurement results were analyzed within the JMAK (Johnson - Melh - Avrami - Kolmogorov) kinetic model. It was established that the process of structural rearrangement proceeds in two stages and it is realized through the state of intermediate disordering, domains with different reconstructions being coexistent on the surface. The activation energies and phase transition velocities were determined for each of the stages. The procedure for precise determination of GaAs(001) surface temperature using the features of the α(2 × 4) → DO transition process kinetic was proposed. The results of this work allow us to broaden our understanding of the reconstruction transitions mechanisms. This information has a key (fundamental and applied) nature for the technologies of epitaxial growth of multilayer heterostructures, where the interface planarity and the sharpness of composition profile are of particular importance.
Wang, Yaju; Shankar, Shilpa Rani; Kher, Devaki; Ling, Belinda Mei Tze; Taneja, Reshma
2013-01-01
Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a. PMID:23637228
Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; ...
2017-06-09
Transport and magnetic studies of PbTaSe 2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ~ 0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ~ 425 K. The new, high temperature/high pressure phase has a similar crystal structuremore » and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe 2 has an exceptionally pressure sensitive, structural phase transition with Δ T s / Δ P ≈ -1400 K/GPa near room temperature, and ≈ -1700 K/GPa near 4 K. This first order transition causes a ~ 1 K (~ 25 % ) steplike decrease in T c as pressure is increased through 0.25 GPa.« less
Magnetically-related properties of bismuth containing high Tc superconductors
NASA Astrophysics Data System (ADS)
Vezzoli, Gary C.; Chen, M. F.; Craver, F.; Safari, A.; Moon, B. M.; Lalevic, B.; Burke, Terence; Shoga, M.
1990-08-01
The effect of magnetic fields to 15 T on electrical resistance has been measured for the BiSrCaCuO superconductor at precise temperatures during the transition to the superconducting state from pre-onset conditions to essentially zero resistance conditions. The results show that the temperature at which the magnetic field causes a divergence in the resistance versus 1000/ T curve is approximately the same temperature as the value at which, during cooling, the positive Hall coefficient begins its abrupt descent to zero. This temperature gives the best measure of Tc. It is also shown that small oscillations of low frequency start near onset conditions, the amplitude of which at a given temperature is B-field dependent. Additionally, Hall effect studies as a function of temperature at 4 T in three separate experiments (including high Tc BiSrCaCu PbO of > 90% theoretical density) show that sharp delta-function-like peaks in + RH are observed near Tc and are superimposed on a broader maximum. The Hall data are explicable in terms of exciton formation and ionization. The bound holes associated with these excitons are believed to be the mediators producing Cooper-pairing, and scale very well with Tc for all the known high Tc oxides.
Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide
NASA Astrophysics Data System (ADS)
Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay
2008-10-01
One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probemore » solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.« less
NASA Astrophysics Data System (ADS)
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-01
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.
Pal, Bappaditya; Giri, P K
2011-10-01
Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.
Morphology-Dependent Resonances of Spherical Droplets with Numerous Microscopic Inclusions
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2014-01-01
We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz-Mie resonance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned microscopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indicative of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective refractive index of an inhomogeneous spherical particle.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumari, Shalini; Borkar, Hitesh; Katiyar, Ram S.; Scott, James Floyd
2017-01-01
We present detailed Raman studies of SrZrO3 (SZO) that show three anomalies in Raman modes: One has a small jump in frequency ω, one has its intensity vanish, and a third has a sharp change in temperature derivative dω(T)/dT from flat below T = 600 K to a Curie-Weiss dependence above 600 K with extrapolation to zero frequency at the known transition temperature T = 970 K, thereby proving the latter to be displacive. In addition, the P4mm ferroelectric phase predicted at high stresses has preliminary support from polarization-voltage experiments. The inference of a new transition in the temperature region 600-650 K is in disagreement with neutron studies. Comparisons are given for family member SrSnO3 and SrHfO3, and we discuss the different conclusions of Kennedy and Knight. We show that a known transition in SrHfO3 is also displacive with a well-behaved soft mode.
Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film
NASA Astrophysics Data System (ADS)
Das, Amit Kumar; Meikap, Ajit Kumar
2017-12-01
In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.
Probing the remarkable thermal kinetics of visual rhodopsin with E181Q and S186A mutants
NASA Astrophysics Data System (ADS)
Guo, Ying; Hendrickson, Heidi P.; Videla, Pablo E.; Chen, Ya-Na; Ho, Junming; Sekharan, Sivakumar; Batista, Victor S.; Tully, John C.; Yan, Elsa C. Y.
2017-06-01
We recently reported a very unusual temperature dependence of the rate of thermal reaction of wild type bovine rhodopsin: the Arrhenius plot exhibits a sharp "elbow" at 47 °C and, in the upper temperature range, an unexpectedly large activation energy (114 ± 8 kcal/mol) and an enormous prefactor (1072±5 s-1). In this report, we present new measurements and a theoretical model that establish convincingly that this behavior results from a collective, entropy-driven breakup of the rigid hydrogen bonding networks (HBNs) that hinder the reaction at lower temperatures. For E181Q and S186A, two rhodopsin mutants that disrupt the HBNs near the binding pocket of the 11-cis retinyl chromophore, we observe significant decreases in the activation energy (˜90 kcal/mol) and prefactor (˜1060 s-1), consistent with the conclusion that the reaction rate is enhanced by breakup of the HBN. The results provide insights into the molecular mechanism of dim-light vision and eye diseases caused by inherited mutations in the rhodopsin gene that perturb the HBNs.
Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film
NASA Astrophysics Data System (ADS)
Das, Amit Kumar; Meikap, Ajit Kumar
2018-06-01
In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.
Optical study of the band structure of wurtzite GaP nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assali, S., E-mail: simone.assali@polymtl.ca; Greil, J.; Zardo, I.
2016-07-28
We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading tomore » a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ{sub 8C} conduction band edge.« less
Dynamic strain-aging effect on fracture toughness of vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S.S.; Kim, I.S.
1992-03-01
In this paper the effect of dynamic strain aging (DSA) on fracture is investigated on the quenched and tempered specimens of American Society of Mechanical Engineers (ASME) standard SA508 class 3 nuclear pressure vessel steel. Serrated flow by DSA is observed between 180 and 340{degrees}C at a tensile strain rate of 2.08 {times} 10{sup {minus}4}/s and 1.25 {times} 10{sup {minus}3}/s. The DSA causes a sharp rise in the ultimate tensile strength and a marked decrease in ductility. The DSA range shifts to higher temperatures with increased strain rates. The temperature and strain rate dependence of the onset of serrations yieldsmore » an activation energy of 16.2 kcal/mol, which suggests that the process is controlled by interstitial diffusion of carbon and nitrogen in ferrite. The J{sub i} value obtained from the direct current potential drop (DCPD) method, for true crack initiation, is lowered by DSA. The drop in J{sub i} at elevated temperatures may be because of the interaction of the interstitial impurities with dislocations at the crack front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emin, David, E-mail: emin@unm.edu
Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness ofmore » this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy.« less
Consideration of vision and picture quality: psychological effects induced by picture sharpness
NASA Astrophysics Data System (ADS)
Kusaka, Hideo
1989-08-01
A psychological hierarchy model of human vision(1)(2) suggests that the visual signals are processed in a serial manner from lower to higher stages: that is "sensation" - "perception" - "emotion." For designing a future television system, it is important to find out what kinds of physical factors affect the "emotion" experienced by an observer in front of the display. This paper describes the psychological effects induced by the sharpness of the picture. The subjective picture quality was evaluated for the same pictures with five different levels of sharpness. The experiment was performed on two kinds of printed pictures: (A) a woman's face, and (B) a town corner. From these experiments, it was found that the amount of high-frequency peaking (physical value of the sharpness) which psychologically gives the best picture quality, differs between pictures (A) and (B). That is, the optimum picture sharpness differs depending on the picture content. From these results, we have concluded that the psychophysical sharpness of the picture is not only determined at the stage of "perception" (e.g., resolution or signal to noise ratio, which everyone can judge immediately), but also at the stage of "emotion" (e.g., sensation of reality or beauty).
Spin glass freezing and superconductivity in YBa2(Cu(1-x)Fe(x))3O7 alloys
NASA Technical Reports Server (NTRS)
Mirebeau, I.; Hennion, M.; Dianoux, J.; Caignaert, V.; Phillips, T. E.; Moorjani, K.
1991-01-01
The dynamics were studied of the iron spins in superconducting YBa2(Cu(0.94)Fe(0.06))3O7 by neutron time of flight measurements. Two samples were studied with slightly different characteristics, as shown by resistivity and neutron diffraction measurements. The same dynamical anomalies are observed by neutrons in both samples. Differences appear qualitative but not quantitative. In the whole temperature range, the q-dependence of the magnetic intensity mainly reflects the magnetic form factor of iron which shows that the iron spins are almost uncorrelated. The elastic and quasielastic intensities strongly vary with temperature. A spin glass like freezing is revealed at low temperature by a sharp decrease of the quasielastic intensity, an increase of the 'elastic' or resolution limited intensity and a minimum in the quasielastic width. The freezing temperature (T sub f - 18 K) corresponds to that already determined by a magnetic splitting in Mossbauer experiments. Above T sub f, the relaxation of the iron spins in the paramagnetic state is modified by the occurrence of superconductivity. An increase was observed of the quasielastic intensity and of the quasielastic width at the superconducting transition.
Fluid inclusions in Martian samples: Clues to early crustal development and the hydrosphere
NASA Technical Reports Server (NTRS)
Brown, Philip E.
1988-01-01
Major questions about Mars that could be illuminated by examining fluid inclusions in Martian samples include: (1) the nature, extent and timing of development (and decline) of the hydrosphere that existed on the planet; and (2) the evolution of the crust. Fluid inclusion analyses of appropriate samples could provide critical data to use in comparison with data derived from analogous terrestrial studies. For this study, sample handling and return restrictions are unlikely to be as restrictive as the needs of other investigators. The main constraint is that the samples not be subjected to excessively high temperatures. An aqueous fluid inclusion trapped at elevated pressure and temperature will commonly consist of liquid water and water vapor at room temperature. Heating (such as is done in the laboratory to fix P-V-T data for the inclusion) results in moderate pressure increases up to the liquid-vapor homogenization temperature followed by a sharp increase in pressure with continued heating because the inclusion is effectively a fixed volume system. This increased pressure can rupture the inclusion; precise limits are dependent on size, shape, and composition as well as the host material.
NASA Astrophysics Data System (ADS)
Diop, L. V. B.; Isnard, O.
2018-01-01
The effects of cerium substitution on the structural and magnetic properties of the L a1 -xC exF e12B6 (0 ≤x ≤0.175 ) series of compounds have been studied. All of the compounds exhibit an antiferromagnetic ground state below the Néel temperature TN≈36 K . Both antiferromagnetic and paramagnetic states can be transformed into the ferromagnetic state irreversibly and reversibly depending on the magnitude of the applied magnetic field, the temperature, and the direction of their changes. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of sharp magnetization steps separated by plateaus, giving rise to an unusual avalanchelike behavior. At constant temperature and magnetic field, the evolution with time of the magnetization displays a spectacular spontaneous jump after a long incubation time. L a1 -xC exF e12B6 compounds exhibit a unique combination of exceptional features like large thermal hysteresis, giant magnetization jumps, and remarkably huge magnetic hysteresis for the field-induced first-order metamagnetic transition.
Dislocation Mobility and Anomalous Shear Modulus Effect in ^4He Crystals
NASA Astrophysics Data System (ADS)
Malmi-Kakkada, Abdul N.; Valls, Oriol T.; Dasgupta, Chandan
2017-02-01
We calculate the dislocation glide mobility in solid ^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid ^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid ^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid ^4He.
NASA Astrophysics Data System (ADS)
Puchkovska, G. O.; Danchuk, V. D.; Makarenko, S. P.; Kravchuk, A. P.; Kotelnikova, E. N.; Filatov, S. K.
2004-12-01
In the present paper, we report temperature dependent FTIR spectra studies of Davydov splitting value for CH 2 rocking vibrations of pure crystalline n-paraffins C nH 2 n+2 ( n is the number of carbon atoms) and some isomorphically substituted binary mixtures of n-paraffins C 22H 46:C 24H 50. Temperature dependencies of Davydov splitting value have been shown to be characterized by the amount of irregularities (sharp decreasing), which corresponds to the phase transitions into the high-temperature (hexagonal) state for pure n-paraffins or different rotator crystalline states for the mixtures. Statistic and dynamic models have been proposed, which provides an adequate description of the observed effect. In the framework of these models, two different mechanisms are responsible for the temperature behavior of the vibrational mode splitting value. Besides the thermal expansion of crystals at heating, the quenching of vibrational excitons on the orientational defects of different nature takes place, accompanied with the breakage of the crystal lattice translational symmetry. The creation of such defects is resulted from the excitation of librational and rotational molecular degrees of freedom at the crystal polymorphic transitions into different rotary crystalline states. The manifestation of the resonance dynamical intermolecular interaction in the spectra of intramolecular vibrations in these crystals has been theoretically analyzed in terms of stochastic equations, taking into consideration the above mentioned phase transition. We have obtained the explicit expression for the theoretically predicted dependence of Davydov splitting value on temperature. The absorption bands, corresponding to Davydov splitting components, have been shown to approach rapidly each other at the transition to the high-temperature (hexagonal) phase. Computer simulation of such dependence has been performed for some aliphatic compounds. Good agreement between the experimental and computer simulation results has been obtained. The theoretical approach developed in the present paper for the resonance dynamical intermolecular interaction near such transitions from the three-dimensional to one-dimensional phase of crystalline n-paraffins has a general character and can be applied to the description of some specific features observed in the vibrational spectra of rotary crystals.
Anomalous magnetic behavior of Sm0.8Ca0.2MnO3 nanoparticles.
Mogilyansky, D; Fita, I; Wisniewski, A; Markovich, V; Puzniak, R; Gorodetsky, G
2012-11-01
Magnetic properties of compacted Sm0.8Ca0.2MnO3 (SCMO) particles with average particle size of 23-100 nm, prepared by the glycine-nitrate method, have been investigated. It was found that the relative volume of the ferromagnetic phase decreases with decreasing particle size. Curves of field cooled and zero filed cooled magnetization (M(ZFC)) exhibit a bifurcation just below the Curie temperature (T(c) approximately 55-64 K) for all particles studied. The field dependence of M(ZFC) peak follows de Almeida-Thouless line. Both features are characteristic of spin-glasses (SG). Measurements of ac-susceptibility in the temperature range 5-300 K and the frequency range f = 10 Hz-10 kHz show a sharp peak for both real and imaginary components in the vicinity of T(c), apparently attributed to the Hopkinson effect. A second small peak is seemingly associated with antiferromagnetic or ferrimagnetic ordering. Though, for smaller particles both peaks depend on frequency, no shift to higher temperatures with increasing f, characteristic for SG systems, was observed. The dissimilarity in magnetic properties and dynamic characteristics observed for SCMO and for La0.8Ca0.2MnO3 nanoparticles is discussed, taking into account a difference in the width of the band and the strength of double exchange and interparticle interactions.
Pressure-induced reinforcement of interfacial superconductivity in a Bi2Te3/Fe1+yTe heterostructure
NASA Astrophysics Data System (ADS)
Shen, Junying; Heuckeroth, Claire; Deng, Yuhang; He, Qinglin; Liu, Hong Chao; Liang, Jing; Wang, Jiannong; Sou, Iam Keong; Schilling, James S.; Lortz, Rolf
2017-12-01
We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the chalcogenide iron-based superconductors. Under pressure, a significant increase in the superconducting transition temperature Tc is observed. We interpret our data in the context of a pressure-induced enhanced coupling of the Fe1+yTe interfacial layer with the Bi2Te3 surface state, which modifies the electronic properties of the interface layer in a way that superconductivity emerges and becomes further enhanced under pressure. This demonstrates the important role of the TI in the interfacial superconducting mechanism.
Extracellular signal fluctuations in shark electrosensors
NASA Astrophysics Data System (ADS)
Brown, Brandon R.; Hughes, Mary E.; Hutchison, John C.
2003-05-01
We examine the roll of an extracellular gel in the functioning of the electrosensors of elasmobranchs (sharks, skates, and rays). Here we focus on physical characteristics of the gel and their mechanistic relevance to the observed functioning of the electrosensors. The electrosensitive organs show sharp transient responses to both tiny electrical fluctuations and temperature fluctuations. We present a thermoelectric characterization of the gel. The data suggest a gel-mediated mechanism of transducing thermal fluctuations to electrical fluctuations in the electrosensor, independent of the sensing cells. We also present frequency-dependent electrical properties of the gel collected using electrical impedance spectroscopy. From these measurements we try to extract characteristic relaxation times. We analyze these results within the context of the electrosensors" bandwidth, as demonstrated in previous behavioral experiments.
Effect of 50 MeV Li3 + irradiation on structural and electrical properties of Mn-doped ZnO
NASA Astrophysics Data System (ADS)
Neogi, S. K.; Chattopadhyay, S.; Banerjee, Aritra; Bandyopadhyay, S.; Sarkar, A.; Kumar, Ravi
2011-05-01
The present work aims to study the effect of ion irradiation on structural and electrical properties and their correlation with the defects in the Zn1 - xMnxO-type system. Zn1 - xMnxO (x = 0.02, 0.04) samples have been synthesized by the solid-state reaction method and have been irradiated with 50 MeV Li3 + ions. The concomitant changes have been probed by x-ray diffraction (XRD), temperature-dependent electrical resistivity and positron annihilation lifetime (PAL) spectroscopy. The XRD result shows a single-phase wurtzite structure for Zn0.98Mn0.02O, whereas for the Zn0.96Mn0.04O sample an impurity phase has been found, apart from the usual peaks of ZnO. Ion irradiation removes this impurity peak. The grain size of the samples is found to be uniform. For Zn0.98Mn0.02O, the observed sharp decrease in room temperature resistivity (ρRT) with irradiation is consistent with the lowering of the full width at half maximum of the XRD peaks. However, for Zn0.96Mn0.04O, ρRT decreases for the initial fluence but increases for a further increase in fluence. All the irradiated Zn0.98Mn0.02O samples show a metal-semiconductor transition in temperature-dependent resistivity measurements at low temperature. But all the irradiated Zn0.96Mn0.04O samples show a semiconducting nature in the whole range of temperatures. Results of room temperature resistivity, XRD and PAL measurements are consistent with each other.
Effect of 50 MeV Li3+ irradiation on structural and electrical properties of Mn-doped ZnO.
Neogi, S K; Chattopadhyay, S; Banerjee, Aritra; Bandyopadhyay, S; Sarkar, A; Kumar, Ravi
2011-05-25
The present work aims to study the effect of ion irradiation on structural and electrical properties and their correlation with the defects in the Zn(1 - x)Mn(x)O-type system. Zn(1 - x)Mn(x)O (x = 0.02, 0.04) samples have been synthesized by the solid-state reaction method and have been irradiated with 50 MeV Li(3+) ions. The concomitant changes have been probed by x-ray diffraction (XRD), temperature-dependent electrical resistivity and positron annihilation lifetime (PAL) spectroscopy. The XRD result shows a single-phase wurtzite structure for Zn(0.98)Mn(0.02)O, whereas for the Zn(0.96)Mn(0.04)O sample an impurity phase has been found, apart from the usual peaks of ZnO. Ion irradiation removes this impurity peak. The grain size of the samples is found to be uniform. For Zn(0.98)Mn(0.02)O, the observed sharp decrease in room temperature resistivity (ρ(RT)) with irradiation is consistent with the lowering of the full width at half maximum of the XRD peaks. However, for Zn(0.96)Mn(0.04)O, ρ(RT) decreases for the initial fluence but increases for a further increase in fluence. All the irradiated Zn(0.98)Mn(0.02)O samples show a metal-semiconductor transition in temperature-dependent resistivity measurements at low temperature. But all the irradiated Zn(0.96)Mn(0.04)O samples show a semiconducting nature in the whole range of temperatures. Results of room temperature resistivity, XRD and PAL measurements are consistent with each other.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Thomas, J. W.
SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It is comprised of several components including physical modeling tools, tools to integrate the physics codes for multi-physics analyses, and a set of tools to couple the codes within the MOAB framework. Physics modules currently include the neutronics code PROTEUS, the thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the three individual physics modules are available with the SHARP distribution to help the user to either carry out the primary multi-physics calculationmore » with basic knowledge or perform further advanced development with in-depth knowledge of these codes. This manual provides step-by-step instructions on employing SHARP, including how to download and install the code, how to build the drivers for a test case, how to perform a calculation and how to visualize the results. Since SHARP has some specific library and environment dependencies, it is highly recommended that the user read this manual prior to installing SHARP. Verification tests cases are included to check proper installation of each module. It is suggested that the new user should first follow the step-by-step instructions provided for a test problem in this manual to understand the basic procedure of using SHARP before using SHARP for his/her own analysis. Both reference output and scripts are provided along with the test cases in order to verify correct installation and execution of the SHARP package. At the end of this manual, detailed instructions are provided on how to create a new test case so that user can perform novel multi-physics calculations with SHARP. Frequently asked questions are listed at the end of this manual to help the user to troubleshoot issues.« less
NASA Astrophysics Data System (ADS)
Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher
2013-03-01
We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.
NASA Astrophysics Data System (ADS)
Lu, Chuanyang; He, Yanming; Gao, Zengliang; Yang, Jianguo; Jin, Weiya; Xie, Zhigang
2017-11-01
Nuclear power, as a reliable clean and economical energy source, has gained great attention from all over the world. The A508-3 steel will be introduced as the structural materials for Chinese nuclear reactor pressure vessels (RPVs). This work investigated the temperature-dependence microstructural evolution during high-temperature heat treatments, and built the relationship between the microstructure and mechanical properties for the steel before and after phase transition. The results show that the original steel consists of the bainite, allotriomorphic ferrite, retained austenite and few Mo-rich M2C carbides. The phase-transition temperature of the steel is determined to be 750 °C. The tensile tests performed at 20-1000 °C indicate that both of the yield strength and ultimate tensile strength decrease monotonously with increasing the temperature. Before phase transition, precipitation of cementite from the retained austenite and coarsening of cementite at the austenite-ferrite interphases should be responsible for their sharp decrease. After phase transition, the growth of austenite grain reduces the strength moderately. As for the elongation, however, it increases dramatically when the testing temperature is over 750 °C, due to the dissolution of cementite and formation of austenite. The obtained results will provide some fundamental data to understand and implement the In-Vessel Retention strategy.
Direct observation of surface-state thermal oscillations in SmB6 oscillators
NASA Astrophysics Data System (ADS)
Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing
2018-01-01
SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.
Responses of spinothalamic lamina I neurons to repeated brief contact heat stimulation in the cat.
Craig, A D; Andrew, D
2002-04-01
It was recently shown that repeated heat stimulation, using brief contacts (<1 s) with a preheated thermode at sufficiently short interstimulus intervals (ISIs <5 s) and high temperatures (> or =51 degrees C), will elicit in humans a sensation of rapidly augmenting "second" (burning) pain with only a weak "first" (sharp) pain sensation. Most strikingly, at short intertrial intervals (ITIs >5 s) such summation will reset, or begin again at baseline. In the present experiments, the responses of nociceptive lamina I spinothalamic (STT) neurons in the lumbosacral dorsal horn of barbiturate-anesthetized cats were examined using this repeated brief contact heat paradigm. The neurons were classified as nociceptive-specific (NS, n = 8) or polymodal nociceptive (HPC, n = 8) based on their responses to quantitative thermal stimuli; all had receptive fields on the glabrous ventral hindpaw. A pneumatic piston was used to apply a thermode preheated to 34, 46, 49, 53, or 58 degrees C with a contact dwell time of approximately 0.7 s to the ventral hindpaw repeatedly (15 times) at ISIs of 2, 3, and 5 s, with 3-5 min between trials. The mean responses of the 16 nociceptive lamina I STT cells showed rapid temporal summation that was directly dependent on temperature and inversely dependent on ISI, with the greatest increases occurring between the 3rd and 10th contacts. The temporal profiles of this family of curves correspond with the psychophysical data on human sensation. Further analysis showed that this summation was due to the HPC cells, which all showed strong summation; in contrast, the NS cells showed little, if any. The HPC responses to the repeated heat stimuli lagged each contact by approximately 1 s, consistent with the strong, monosynaptic C-fiber input that is characteristic of HPC cells and also with the dependence of second pain on C-fiber nociceptors. HPC cells also displayed the reset phenomenon at short ITIs, again in correspondence with the psychophysical data. The summation and the reset displayed by HPC cells were not related to skin temperature. Thus the results presented in this study, together with those in the preceding article, demonstrate a double dissociation indicating that NS and HPC lamina I STT cells can subserve the qualitatively distinct sensations of first (sharp) and second (burning) pain, respectively. These findings support the concept that the lamina I STT projection comprises several discrete sensory channels that are integrated in the forebrain to generate distinct sensations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Persson, Ingemar; Nilsson, Daniel
A high mobility of 2250 cm{sup 2}/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm{sup 2}/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, andmore » trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.
SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less
End-point sharpness in thermometric titrimetry.
Tyrrell, H J
1967-07-01
It is shown that the sharpness of an end-point in a thermometric titration where the simple reaction A + B right harpoon over left harpoon AB takes place, depends on Kc(A') where K is the equilibrium constant for the reaction, and c(A') is the total concentration of the titrand (A) in the reaction mixture. The end-point is sharp if, (i) the enthalpy change in the reaction is not negligible, and (ii) Kc(A') > 10(3). This shows that it should, for example, be possible to titrate 0.1 M acid, pK(A) = 10, using a thennometric end-point. Some aspects of thermometric titrimetry when Kc(A') < 10(3) are also considered.
Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B
2008-05-19
Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.
Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy
NASA Astrophysics Data System (ADS)
Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph
A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.
NASA Astrophysics Data System (ADS)
Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong
2018-05-01
The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.
Doping β-Ga2O3 with europium: influence of the implantation and annealing temperature
NASA Astrophysics Data System (ADS)
Peres, M.; Lorenz, K.; Alves, E.; Nogales, E.; Méndez, B.; Biquard, X.; Daudin, B.; Víllora, E. G.; Shimamura, K.
2017-08-01
β-Ga2O3 bulk single crystals were doped by ion implantation at temperatures from room temperature to 1000 °C, using a 300 keV Europium beam with a fluence of 1 × 1015 at cm-2. Rising the implantation temperature from room temperature to 400-600 °C resulted in a significant increase of the substitutional Eu fraction and of the number of Eu ions in the 3+ charge state as well as in a considerable decrease of implantation damage. Eu is found in both charge states 2+ and 3+ and their relative fractions are critically dependent on the implantation and annealing temperature, suggesting that defects play an important role in stabilizing one of the charge states. The damage recovery during post-implant annealing is a complex process and typically defect levels first increase for intermediate annealing temperatures and a significant recovery of the crystal only starts around 1000 °C. Cathodoluminescence spectra are dominated by the sharp Eu3+ related intra-ionic 4f transition lines in the red spectral region. They show a strong increase of the emission intensity with increasing annealing temperature, in particular for samples implanted at elevated temperature, indicating the optical activation of Eu3+ ions. However, no direct correlation of emission intensity and Eu3+ fraction was found, again pointing to the important role of defects on the physical properties of these luminescent materials.
Marked surface inversions and wind shear: A safety risk for departing aircraft
NASA Technical Reports Server (NTRS)
Korhonen, O.
1983-01-01
Marked surface inversions occur most frequently in dry continental climates, where low atmospheric humidity allows heat transfer by long wave thermal radiation. In the northern latitudes, surface inversions reach their maximum intensity during the winter, when the incoming Sun's radiation is negligible and radiative cooling is dominant during the long nights. During winter, air mass boundaries are sharp, which causes formation of marked surface inversions. The existence of these inversions and sharp boundaries increase the risk of wind shear. The information should refer to marked inversions exceeding a temperature difference of 10 deg C up to 1000 feet. The need to determine the temperature range over which he information is operationally needed and the magnitude of the inversion required before a notification to pilots prior to departure is warranted are outlined.
Structural, electrical and magnetic characteristics of improper multiferroic: GdFeO3
NASA Astrophysics Data System (ADS)
Sahoo, Sushrisangita; Mahapatra, P. K.; Choudhary, R. N. P.; Nandagoswami, M. L.; Kumar, Ashok
2016-06-01
Studies of dielectric, impedance, conductivity, magnetic and magneto-electric (ME) properties of GdFeO3 ceramics fabricated by chemical method are reported here. The synthesized powder is phase-pure and crystallizes in the orthorhombic crystal structure. Below 50 °C, the impedance has only grain contribution, while at higher temperatures, it has both grain and grain boundary contributions. Based on the depression angle of the Nyquist plot, the inhomogeneity of the sample is estimated. The capacitance data reveal that at low temperatures, the sample behaves as a leaky capacitor while at higher temperatures the sample shows the effect of the diffusion of thermally excited charge carriers across a barrier. In the low-frequency domain, the dielectric characteristics were explained on the basis of the Maxwell-Wagner mechanism, while in the high-frequency range those were correlated to the grain effect. The frequency dependent characteristic of the tangent loss is explained as a combined contribution from the Debye-like relaxation and dc conductivity related mechanism at higher temperatures. The temperature dependence of the dielectric characteristic and data are found to fit with two Gaussian peaks centered at 148 °C and 169 °C. While the first peak is explained on the basis of the Maxwell-Wagner mechanism, the second has its origin in magnetic reordering and the shifting of Gd3+ ions along the c-axis. The magnetic reordering also results in a sharp decrease of conductivity between 169 °C and 243 °C. The frequency dependent ac conductivity is explained on the basis of the correlated barrier hopping model and the quantum mechanical hopping model for the different frequency domain. The existence of P-E and M-H loops support its improper ferroelectric behavior and canted anti-ferromagnetism respectively. The ME coefficient of the sample is found to be 1.78 mV cm-1 Oe-1.
Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling
NASA Astrophysics Data System (ADS)
Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei
2018-05-01
In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.
Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature
NASA Astrophysics Data System (ADS)
Davis, P. M.
2016-12-01
Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the brittle-ductile transition corresponds to the transition from long-range to short-range stress correlation.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- andmore » ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.« less
NASA Astrophysics Data System (ADS)
Gunaydin-Sen, Ozge
2005-03-01
Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.
Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.
Udalov, O G; Beloborodov, I S
2017-05-04
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
Enhancements to the SHARP Build System and NEK5000 Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay
The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase inmore » overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.« less
NASA Astrophysics Data System (ADS)
Fukuoka, Shuhei; Yamashita, Satoshi; Nakazawa, Yasuhiro; Yamamoto, Takashi; Fujiwara, Hideki; Shirahata, Takashi; Takahashi, Kazuko
2016-06-01
The results are presented for systematic heat capacity measurements of π-d interacting systems of κ -(BETS) 2Fe Br4 and κ -(BETS) 2FeC l4 [BETS = bis(ethylenedithio)tetraselenafulvalene] performed under in-plane magnetic fields. We observed sharp thermal anomalies at 2.47 K for κ -(BETS) 2FeB r4 and at 0.47 K for κ -(BETS) 2FeC l4 at 0 T that are associated with antiferromagnetic transitions of the 3 d electrons in the anion layers. From analyses of the magnetic heat capacity data, we indicate that the two compounds show unconventional thermodynamic behaviors inherent in the π-d interacting layered system. In the case of κ -(BETS) 2FeB r4 , a small hump structure was observed in the magnetic heat capacity below the transition temperature when a magnetic field was applied parallel to the a axis. In the case of κ -(BETS) 2FeC l4 , a similar hump structure was observed at 0 T that remained in the data with magnetic fields applied parallel to the a axis. We demonstrate that the temperature dependencies of the magnetic heat capacities scale well by normalizing the temperatures with dominant one-dimensional direct interactions (Jdd/kB) of each compound. The field dependencies of the transition temperatures and the hump structures are elucidated in one simple magnetic field vs temperature (H -T ) phase diagram. These results indicate that the thermodynamic features of both κ-type BETS salts are essentially equivalent, and the observed hump structures are derived from the one-dimensional Jdd interaction characters, which are still influential for magnetic features even in the long-range magnetic ordered states.
NASA Astrophysics Data System (ADS)
Hull, Alexander W.; Field, Robert W.; Ono, Shuhei
2017-06-01
Sulfur mass independent fractionation (S-MIF) describes anomalous sulfur isotope ratios commonly found in sedimentary rocks older than 2.45 billion years. These anomalies likely originate from photochemistry of small, sulfur-containing molecules in the atmosphere, and their sudden disappearance from rock samples younger than 2.45 years is thought to be correlated with a sharp rise in atmospheric oxygen levels. The emergence of atmospheric oxygen is an important milestone in the development of life on Earth, but the mechanism for sulfur MIF in an anoxic atmosphere is not well understood. In this context, we present an analysis of the B-X UV spectrum of S_{2}, an extension of work presented last year. The B state of S_{2} is strongly perturbed by the nearby B" state, as originally described by Green and Western (1996). Our analysis suggests that a doorway-mediated transfer mechanism shifts excited state population from the short-lifetime B state to the longer-lifetime B" state. Furthermore, access to the perturbed doorway states is strongly dependent on the population distribution in the ground state. This suggests that the temperature of the Achaean atmosphere may have played a significant role in determining the extent of S-MIF.
Electron energetics in the inner coma of Comet Halley
NASA Astrophysics Data System (ADS)
Gan, L.; Cravens, T. E.
1990-05-01
A quasi-two-dimensional model of the spatial and energy distribution of electrons in the inner coma of Comet Halley has been constructed from a spherically symmetric ion density profile based on Giotto measurements, using the two-stream electron transport method and the time-dependent electron energy equation. A sharp jump in the electron temperature was found to be present at a cometocentric distance of about 15,000 km. This thermal boundary separates an inner region where cooling processes are dominant from an outer region where heat transport is more important. Both thermal and suprathermal electron populations exist inside the thermal boundary with comparable kinetic pressures. Outside the thermal boundary, a cloud electron population does not exist, and the electrons are almost isothermal along the magnetic field lines.
Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5
Chen, R. Y.; Gu, G. D.; Zhang, S. J.; ...
2015-08-05
Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe 5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. Additionally, an extremely sharp peak showsmore » up in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.« less
NASA Astrophysics Data System (ADS)
Das, A. K.; Bhowmik, R. N.; Meikap, A. K.
2018-05-01
We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.
NASA Astrophysics Data System (ADS)
Sasaki, Tetsuo; Sakamoto, Tomoaki; Otsuka, Makoto
2018-05-01
Middle molecular weight (MMW) pharmaceuticals (MW 400 4000) are attracting attention for their possible use in new medications. Sharp absorption peaks were observed in MMW pharmaceuticals at low temperatures by measuring with a high-resolution terahertz (THz) spectrometer. As examples, high-resolution THz spectra for amoxicillin trihydrate, atorvastatin calcium trihydrate, probucol, and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) were obtained at 10 K. Typically observed as peaks with full width at half-height (FWHM) values as low as 5.639 GHz at 0.96492 THz in amoxicillin trihydrate and 8.857 GHz at 1.07974 THz for probucol, many sharp peaks of MMW pharmaceuticals could be observed. Such narrow absorption peaks enable evaluation of the crystal quality of MMW pharmaceuticals and afford sensitive detection of impurities.
A comprehensive numerical analysis of background phase correction with V-SHARP.
Özbay, Pinar Senay; Deistung, Andreas; Feng, Xiang; Nanz, Daniel; Reichenbach, Jürgen Rainer; Schweser, Ferdinand
2017-04-01
Sophisticated harmonic artifact reduction for phase data (SHARP) is a method to remove background field contributions in MRI phase images, which is an essential processing step for quantitative susceptibility mapping (QSM). To perform SHARP, a spherical kernel radius and a regularization parameter need to be defined. In this study, we carried out an extensive analysis of the effect of these two parameters on the corrected phase images and on the reconstructed susceptibility maps. As a result of the dependence of the parameters on acquisition and processing characteristics, we propose a new SHARP scheme with generalized parameters. The new SHARP scheme uses a high-pass filtering approach to define the regularization parameter. We employed the variable-kernel SHARP (V-SHARP) approach, using different maximum radii (R m ) between 1 and 15 mm and varying regularization parameters (f) in a numerical brain model. The local root-mean-square error (RMSE) between the ground-truth, background-corrected field map and the results from SHARP decreased towards the center of the brain. RMSE of susceptibility maps calculated with a spatial domain algorithm was smallest for R m between 6 and 10 mm and f between 0 and 0.01 mm -1 , and for maps calculated with a Fourier domain algorithm for R m between 10 and 15 mm and f between 0 and 0.0091 mm -1 . We demonstrated and confirmed the new parameter scheme in vivo. The novel regularization scheme allows the use of the same regularization parameter irrespective of other imaging parameters, such as image resolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui
2018-03-01
Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.
Quartz Crystal Temperature Sensor for MAS NMR
NASA Astrophysics Data System (ADS)
Simon, Gerald
1997-10-01
Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.
NASA Astrophysics Data System (ADS)
Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.
2017-06-01
Temperature-dependent reflectivity measurements in the frequency range 75-8000 cm-1 were performed on BaFe2(As0.77P0.23)2 single crystals under pressure up to ˜5 GPa . The obtained optical conductivity spectra have been analyzed to extract the electron-boson spectral density α2F (Ω ) . A sharp resonance peak was observed in α2F (Ω ) upon the superconducting transition, persisting throughout the applied pressure range. The energy and temperature dependences of this peak are consistent with the superconducting gap opening. Furthermore, several similarities with other experimental probes such as inelastic neutron scattering (INS) [D. S. Inosov et al., Nat. Lett. 6, 178 (2010), 10.1038/nphys1483] give evidence for the coupling to a bosonic mode, possibly due to spin fluctuations. Moreover, electronic correlations have been calculated via spectral weight analysis, which revealed that the system stays in the strongly correlated regime throughout the applied pressure range. However, a comparison to the parent compound showed that the electronic correlations are slightly decreased with P doping. The investigation of the phase diagram obtained by our optical study under pressure also revealed the coexistence of the spin-density wave and the superconducting regions, where the coexistence region shifts to the lower pressure range with increasing P content. Moreover, the optimum pressure range, where the highest superconducting transition temperature has been obtained, shows a nonlinear decrease with increasing P content.
Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading
NASA Astrophysics Data System (ADS)
Settgast, C.; Abendroth, M.; Kuna, M.
2016-11-01
Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset
2017-06-21
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo
Tukker, John J; Klausberger, Thomas; Somogyi, Peter
2015-01-01
Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313
Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa
2016-02-01
Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
Tailoring the Two Dimensional Electron Gas at Polar ABO3/SrTiO3 Interfaces for Oxide Electronics.
Li, Changjian; Liu, Zhiqi; Lü, Weiming; Wang, Xiao Renshaw; Annadi, Anil; Huang, Zhen; Zeng, Shengwei; Ariando; Venkatesan, T
2015-08-26
The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were investigated. A robust 4 unit cell (uc) critical thickness for metal insulator transition was observed for crystalline polar layer/STO interface while the critical thickness for amorphous ones was strongly dependent on the B site atom and its oxygen affinity. For the crystalline interfaces, a sharp transition to the metallic state (i.e. polarization catastrophe induced 2D electron gas only) occurs at a growth temperature of 515 °C which corresponds to a critical relative crystallinity of ~70 ± 10% of the LaAlO3 overlayer. This temperature is generally lower than the metal silicide formation temperature and thus offers a route to integrate oxide heterojunction based devices on silicon.
Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe
NASA Technical Reports Server (NTRS)
Wang, Ling Jun; Su, Ching-Hua; Lehoczky, S. L.
1999-01-01
ZnSe and ZnSeTe single crystals were grown by physical vapor transport (PVT) technique horizontally and vertically. The grown ZnSe and ZnSeTe single crystals were characterized by low temperature photoluminescence at 5 to 10 K using the 3.4 eV emission of an argon laser. The intensity of the sharp near band edge defect lines at 2.799, 2.783 eV and the intrinsic free exciton line at 2.802 eV were mapped on various crystal surfaces with different orientations to the gravitational field. The results show the effects of gravity vector orientation on the defect segregation. Comparison of the photoluminescence spectra of the ZeSe crystal before and after annealing in the Zn vapor shows that the 2.783 eV line of ZnSe crystal is related to the zinc vacancy. The photoluminescence spectra of the ternary ZnSeTe crystal were characterized by a single broad band from 2.2 to 2.4 eV, with a Full Width at Half Maximum (FWHM) of about 100 meV. The temperature dependence of the peak position and intensity were determined from 7 to 150 K.
NASA Astrophysics Data System (ADS)
Davis, Paul M.
2017-05-01
Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to three orders of magnitude higher than those associated with earthquakes located where TH ≤ 0.55. We conclude that the brittle-ductile transition corresponds to the transition from long-range (regional) to short-range (localized on asperities) stress correlation.
Analysis of regulatory mechanisms of an insulin-inducible SHARP-2 gene by (S)-Equol.
Haneishi, Ayumi; Takagi, Katsuhiro; Asano, Kosuke; Yamamoto, Taichi; Tanaka, Takashi; Nakamura, Soichiro; Noguchi, Tamio; Yamada, Kazuya
2012-09-01
Small compounds that activate the insulin-dependent signaling pathway have potential therapeutic applications in controlling type 2 diabetes mellitus. The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor that decreases expression of the phosphoenolpyruvate carboxykinase gene, a gluconeogenic enzyme gene. In this study, we screened for soybean isoflavones that can induce the rat SHARP-2 gene expression and analyzed their mechanism(s). Genistein and (S)-Equol, a metabolite of daidzein, induced rat SHARP-2 gene expression in H4IIE rat hepatoma cells. The (S)-Equol induction was mediated by both the phosphoinositide 3-kinase- and protein kinase C (PKC)-pathways. When a dominant negative form of atypical PKC lambda (aPKCλ) was expressed, the induction of SHARP-2 mRNA level by (S)-Equol was inhibited. In addition, Western blot analyses showed that (S)-Equol rapidly activated both aPKCλ and classical PKC alpha. Furthermore, the (S)-Equol induction was inhibited by treatment with a RNA polymerase inhibitor or a protein synthesis inhibitor. Finally, a reporter gene assay revealed that the transcriptional stimulation by (S)-Equol was mediated by nucleotide sequences located between -4687 and -4133 of the rat SHARP-2 gene. Thus, we conclude that (S)-Equol is an useful dietary supplement to control type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Francesca, D., E-mail: diego.di.francesca@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, I-90123 Palermo; Girard, S.
2014-11-03
We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The resultsmore » show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.« less
NASA Astrophysics Data System (ADS)
Basak, Anup; Levitas, Valery I.
2018-05-01
The size effect and the effects of a finite-width surface on barrierless transformations between the solid (S), surface melt (SM), and melt (M) from a spherical nanovoid are studied using a phase field approach. Melting (SM → M and S → M) from the nanovoid occurs at temperatures which are significantly greater than the solid-melt equilibrium temperature θe but well below the critical temperature for solid instability. The relationships between the SM and M temperatures and the ratio of the void surface width and width of the solid-melt interface, Δ ¯ , are found for the nanovoids of different sizes. Below a critical ratio Δ¯ * , the melting occurs via SM and the melting temperature slightly reduces with an increase in Δ ¯ . Both S → SM and SM → M transformations have a jump-like character (excluding the case with the sharp void surface), causing small temperature hysteresis. However, the solid melts without SM for Δ ¯>Δ¯ * , and the melting temperature significantly increases with increasing Δ ¯ . The results for a nanovoid are compared with the melting/solidification of a nanoparticle, for which the melting temperatures, in contrast, are much lower than θe. A linear dependency of the melting temperatures with the inverse of the void radius is shown. The present study shows an unexplored way to control the melting from nanovoids by controlling the void size and the width and energy of the surface.
Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness
Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing
2014-01-01
We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
Hippocampal ripples down-regulate synapses.
Norimoto, Hiroaki; Makino, Kenichi; Gao, Mengxuan; Shikano, Yu; Okamoto, Kazuki; Ishikawa, Tomoe; Sasaki, Takuya; Hioki, Hiroyuki; Fujisawa, Shigeyoshi; Ikegaya, Yuji
2018-03-30
The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N -methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Quench degradation limit of multifilamentary AgBi 2Sr 2CaCu 2O x round wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Liyang; Li, Pei; Shen, Tengming
Understanding safe operating limits of composite superconducting wires is important for the design of superconducting magnets. Here we report measurements of quench-induced critical current density Jc degradation in commercial Ag/Bi 2Sr 2CaCu 2O x (Bi-2212) round wires using heater-induced quenches at 4.2 K in self magnetic field that reveal a general degradation behavior. J c degradation strongly depends on the local hot spot temperature T max, and is nearly independent of operating current, the temperature gradient along the conductor dT max/dx, and the temperature rising rate dT max/dt. Both J c and n value (where n is an index ofmore » the sharpness of the superconductor-to-normal transition) exhibit small but irreversible degradation when T max exceeds 400-450 K, and large degradation occurs when Tmax exceeds 550 K. This behavior was consistently found for a series of Bi-2212 wires with widely variable wire architectures and porosity levels in the Bi-2212 filaments, including a wire processed using a standard partial melt processing and in which Bi-2212 filaments are porous, an overpressure processed wire in which Bi-2212 filaments are nearly porosity-free and that has a J c(4.2 K, self field) exceeding 8000 A/mm 2, and a wire that has nearly no filament to filament bridges after reaction. Microstructural observations of degraded wires reveal cracks in the Bi-2212 filaments perpendicular to the wire axis, indicating that the quench-induced I c degradation is primarily driven by strain. These results further suggest that the quench degradation temperature limit depends on the strain state of Bi-2212 filaments and this dependence shall be carefully considered when engineering a high-field Bi-2212 magnet.« less
Quench degradation limit of multifilamentary AgBi 2Sr 2CaCu 2O x round wires
Ye, Liyang; Li, Pei; Shen, Tengming; ...
2016-02-02
Understanding safe operating limits of composite superconducting wires is important for the design of superconducting magnets. Here we report measurements of quench-induced critical current density Jc degradation in commercial Ag/Bi 2Sr 2CaCu 2O x (Bi-2212) round wires using heater-induced quenches at 4.2 K in self magnetic field that reveal a general degradation behavior. J c degradation strongly depends on the local hot spot temperature T max, and is nearly independent of operating current, the temperature gradient along the conductor dT max/dx, and the temperature rising rate dT max/dt. Both J c and n value (where n is an index ofmore » the sharpness of the superconductor-to-normal transition) exhibit small but irreversible degradation when T max exceeds 400-450 K, and large degradation occurs when Tmax exceeds 550 K. This behavior was consistently found for a series of Bi-2212 wires with widely variable wire architectures and porosity levels in the Bi-2212 filaments, including a wire processed using a standard partial melt processing and in which Bi-2212 filaments are porous, an overpressure processed wire in which Bi-2212 filaments are nearly porosity-free and that has a J c(4.2 K, self field) exceeding 8000 A/mm 2, and a wire that has nearly no filament to filament bridges after reaction. Microstructural observations of degraded wires reveal cracks in the Bi-2212 filaments perpendicular to the wire axis, indicating that the quench-induced I c degradation is primarily driven by strain. These results further suggest that the quench degradation temperature limit depends on the strain state of Bi-2212 filaments and this dependence shall be carefully considered when engineering a high-field Bi-2212 magnet.« less
NASA Astrophysics Data System (ADS)
Kemper, J. B.; Vafek, O.; Betts, J. B.; Balakirev, F. F.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Boebinger, G. S.
2016-01-01
More than a quarter century after the discovery of the high-temperature superconductor (HTS) YBa2Cu3O6+δ (YBCO; ref. ), studies continue to uncover complexity in its phase diagram. In addition to HTS and the pseudogap, there is growing evidence for multiple phases with boundaries which are functions of temperature (T), doping (p) and magnetic field. Here we report the low-temperature electronic specific heat (Celec) of YBa2Cu3O6.43 and YBa2Cu3O6.47 (p = 0.076 and 0.084) up to a magnetic field (H) of 34.5 T, a poorly understood region of the underdoped H-T-p phase space. We observe two regimes in the low-temperature limit: below a characteristic magnetic field H' ~ 12-15 T, Celec/T obeys an expected H1/2 behaviour; however, near H' there is a sharp inflection followed by a linear-in-H behaviour. H' rests deep within the superconducting phase and, thus, the linear-in-H behaviour is observed in the zero-resistance regime. In the limit of zero temperature, Celec/T is proportional to the zero-energy electronic density of states. At one of our dopings, the inflection is sharp only at lowest temperatures, and we thus conclude that this inflection is evidence of a magnetic-field-driven quantum phase transition.
Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi
2015-08-26
Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.
Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16
NASA Astrophysics Data System (ADS)
Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.
2007-12-01
We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Robert A.; Smith, R. Scott; Kay, Bruce D.
2013-03-14
In this (Paper II) and the preceding companion paper (Paper I) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In Paper I, we focused on the low coverage (pressure) regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage (pressure) regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Papermore » I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that abrupt desorption bursts are due to pressure induced structural failure of the ASW overlyaer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores and connected pathways formed during ASW deposition. The extent of desorption and the lineshape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of the ASW is used vary the porosity of overlayer and confirm that the low temperature desorption pathway is due to porosity that is inherent in the ASW overlayer during deposition.« less
Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses
NASA Astrophysics Data System (ADS)
Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish
2015-10-01
Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as composition independent dynamical process at several frequencies.
Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.
Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline
2008-03-01
The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.
Dietrich, Scott; Mayer, William; Byrnes, Sean; ...
2015-02-20
The effects of microwave radiation on transport properties of atomically thin La 2-xSr xCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (8–15 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency ν cut ≈ 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above ν cut. Thus, high-frequency radiation ismore » much less effective in inducing vortex-antivortex dissociation in the oscillating superconducting condensate.« less
Switching from visibility to invisibility via Fano resonances: theory and experiment.
Rybin, Mikhail V; Filonov, Dmitry S; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F
2015-03-05
Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking.
Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment
Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.
2015-01-01
Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324
Medium range order and structural relaxation in As–Se network glasses through FSDP analysis
Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...
2015-01-13
We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less
Frequency dependent ac transport of films of close-packed carbon nanotube arrays
NASA Astrophysics Data System (ADS)
Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.
2018-03-01
We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.
Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films
Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan
2014-01-01
Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056
Five different types of spontaneous emission simultaneously observed in Tm 2+ doped CsCaBr 3
NASA Astrophysics Data System (ADS)
Grimm, Judith; Güdel, Hans U.
2005-03-01
CsCaBr 3 doped with 1% Tm 2+ exhibits a rich emission spectrum at 10 K. Five emission bands are identified and characterised: a sharp and long-lived 4f-4f emission at 8796 cm -1. Broad 5d-4f emission bands from the lowest energy (5d) 1(4f) 12 configurations to the groundstate at 13 640 cm -1 ('spin-allowed') and 12 240 cm -1 ('spin-forbidden'). Two broad emission bands from a higher-energy f-d state, one centered at 19 115 cm -1 to the 2F 7/2 groundstate and the other one at 10 400 cm -1 to the first excited 2F 5/2 state. The transitions are identified and the competition between radiative and nonradiative processes characterised from lifetime and temperature dependent measurements.
NASA Astrophysics Data System (ADS)
Nigodjuk, V. E.; Sulinov, A. V.
2018-01-01
The article presents the results of an experimental study of the hydraulic characteristics of capillary elements of the injector head of jet engines in isothermal fluid flow and the proposed method of their calculation. The main geometric dimensions of the capillaries in the experiment were changed in the following range: Inner diameter from 0.16 to 0.36 mm, length from 4.3 to 158 mm and relative length from 25 to 614 and the inlet edge of the capillaries: sharp or smooth the leading edge. As the working fluid during the tests were distilled water, acetone and ethyl alcohol. Based on the results of a study of the dependences for calculation of ultimate losses in laminar and turbulent flow regimes in capillary tubes with smooth and sharp edges input. The influence of surface tension forces on loss of input on a sharp cutting edge. Experimentally confirmed the possibility of calculating the linear coefficient of hydraulic resistance of capillary tubes with a diameter of 0.16-0.36 mm in isothermal stable during the known dependencies that are valid for hydrodynamically smooth round tube.
Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan
2012-01-01
Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.
Morphology-based differences in the thermal response of freshwater phytoplankton.
Segura, Angel M; Sarthou, Florencia; Kruk, Carla
2018-05-01
The thermal response of maximum growth rate in morphology-based functional groups (MBFG) of freshwater phytoplankton is analysed. Contrasting an exponential Boltzmann-Arrhenius with a unimodal model, three main features were evaluated: (i) the activation energy of the rise ( E r ), (ii) the presence of a break in the thermal response and (iii) the activation energy of the fall ( E f ). The whole dataset ( N = 563) showed an exponential increase ( E r ∼ 0.5), a break around 24°C and no temperature dependence after the breakpoint ( E f = 0). Contrasting thermal responses among MBFG were found. All groups showed positive activation energy ( E r > 0), four showed no evidence of decline in growth rate (temperature range = 0-35°C) and two presented a breakpoint followed by a sharp decrease in growth rate. Our results evidenced systematic differences between MBFG in the thermal response and a coherent response significantly related to morphological traits other than size (i.e. within MBFG). These results provide relevant information for water quality modelling and climate change predictions. © 2018 The Author(s).
Pyroelectricity of silicon-doped hafnium oxide thin films
NASA Astrophysics Data System (ADS)
Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.
2018-04-01
Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.
Han, Jae-Hee; Paulus, Geraldine L C; Maruyama, Ryuichiro; Heller, Daniel A; Kim, Woo-Jae; Barone, Paul W; Lee, Chang Young; Choi, Jong Hyun; Ham, Moon-Ho; Song, Changsik; Fantini, C; Strano, Michael S
2010-10-01
There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core-shell structures with radial gradients in the optical bandgap. We find an unusually sharp, reversible decay in photoemission that occurs as such filaments are cycled from ambient temperature to only 357 K, attributed to the strongly temperature-dependent second-order Auger process. Core-shell structures consisting of annular shells of mostly (6,5) SWNTs (E(g)=1.21 eV) and cores with bandgaps smaller than those of the shell (E(g)=1.17 eV (7,5)-0.98 eV (8,7)) demonstrate the concentration concept: broadband absorption in the ultraviolet-near-infrared wavelength regime provides quasi-singular photoemission at the (8,7) SWNTs. This approach demonstrates the potential of specifically designed collections of nanotubes to manipulate and concentrate excitons in unique ways.
Heat transfer rate within non-spherical thick grains
NASA Astrophysics Data System (ADS)
Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan
2017-06-01
The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.
NASA Astrophysics Data System (ADS)
Alnot, M.; Ehrhardt, J. J.
1993-05-01
Adsorption of platinum atoms on Pt(110)(1×2) at low temperature has been studied by LEED, photoemission of adsorbed xenon (PAX) and Δφ measurements. Deposition of half a monolayer of platinum at 150 K produces a sharp (1×1) LEED pattern. A possible structural disorder of the as-grown surface is discussed. The (1×1) → (1×2) reconstruction is observed after annealing at a temperature slightly higher than 300 K.
The Path of Carbon in Photosynthesis XII. Some Temperature Effects
DOE R&D Accomplishments Database
Ouellet, C.
1951-06-25
The photosynthetic assimilation of radioactive carbon dioxide for two-minute periods by Scenedesmus has bee studied at temperatures ranging from 25? to 44? C. All labeled intermediates cease to be formed at about 45? C. With rising temperature, the radioactivity reaching the sugar phosphate reservoirs decreases regularly while there is a sharp maximum in sucrose at 37? C. and a less pronounced one in malic and aspartic acids about 40? C. A tentative interpretation of these effects is offered.
... Astigmatism (uh-STIG-muh-tiz-um) occurs when light is bent differently depending on where it strikes ... of your eye. It helps your eye focus light so things look sharp and clear. D Diabetes ( ...
Sarkisian, B A; Azarov, P A
2014-01-01
The objective of the present work was to study the morphological features of skin wounds inflicted by joinery hand saws designed for longitudinal, transverse, and mixed sawing. A total of 60 injuries to the thigh skin inflicted by the recurring and reciprocating saw movements were simulated. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. The analysis of the morphological features of the wounds revealed differences in their length and depth, shape of edge cuts and defects, and the relief of the walls depending on the sawtooth sharpness and the mode of sawing. It is concluded that morphological features of the wounds may be used to determine the type of the saw, the sharpness of its teeth, the direction and frequency of its movements.
Huang, W.; Zheng, Lingyun; Zhan, X.
2002-01-01
Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.
Focusing optical waves with a rotationally symmetric sharp-edge aperture
NASA Astrophysics Data System (ADS)
Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang
2018-04-01
While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.
NASA Astrophysics Data System (ADS)
Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina
2016-08-01
This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600-800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm-1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the dominance of cavities to grains of similar size, and develops in a similar manner at higher temperatures.
Kang, Wen-Bin; He, Chuan; Liu, Zhen-Xing; Wang, Jun; Wang, Wei
2018-05-16
Previous studies based on bioinformatics showed that there is a sharp distinction of structural features and residue composition between the intrinsically disordered proteins and the folded proteins. What induces such a composition-related structural transition? How do various kinds of interactions work in such processes? In this work, we investigate these problems based on a survey on peptides randomly composed of charged residues (including glutamic acids and lysines) and the residues with different hydrophobicity, such as alanines, glycines, or phenylalanines. Based on simulations using all-atom model and replica-exchange Monte Carlo method, a coil-globule transition is observed for each peptide. The corresponding transition temperature is found to be dependent on the contents of the hydrophobic and charged residues. For several cases, when the mean hydrophobicity is larger than a certain threshold, the transition temperature is higher than the room temperature, and vise versa. These thresholds of hydrophobicity and net charge are quantitatively consistent with the border line observed from the study of bioinformatics. These results outline the basic physical reasons for the compositional distinction between the intrinsically disordered proteins and the folded proteins. Furthermore, the contributions of various interactions to the structural variation of peptides are analyzed based on the contact statistics and the charge-pattern dependence of the gyration radii of the peptides. Our observations imply that the hydrophobicity contributes essentially to such composition-related transitions. Thus, we achieve a better understanding on composition-structure relation of the natural proteins and the underlying physics.
Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P
2007-10-24
We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.
Resonant magneto-optic Kerr effect in the magnetic topological insulator Cr:(Sb x,Bi 1–x) 2Te 3
Patankar, Shreyas; Hinton, J. P.; Griesmar, Joel; ...
2015-12-31
Here, we report measurements of the polar Kerr effect, proportional to the out-of-plane component of the magnetization, in thin films of the magnetically doped topological insulator (Cr 0.12Bi 0.26Sb 0.62) 2Te 3. Measurements of the complex Kerr angle ΘK were performed as a function of photon energy in the range 0.8eV < ℏω < 3.0eV. We observed a peak in the real part of Θ K(ω) and zero crossing in the imaginary part that we attribute to a resonant interaction with a spin-orbit avoided crossing located ≈ 1.6 eV above the Fermi energy. The resonant enhancement allows measurement of themore » temperature and magnetic field dependence of Θ K in the ultrathin film limit, d ≥ 2 quintuple layers (QL). We find a sharp transition to zero remanent magnetization at 6 K for d < 8 QL, consistent with theories of the dependence of impurity spin interactions on film thickness and their location relative to topological insulator surfaces.« less
Partial substitution effects on the physical properties of Ba0.67Nd0.22Ti(1-x)SnxO3
NASA Astrophysics Data System (ADS)
Brahem, R.; Rahmouni, H.; Farhat, N.; Costa, L. C.; Khirouni, K.
2015-12-01
Perovskite-ceramics Ba0.67Nd0.22Ti(1-x)SnxO3 (BNTSnx) with 0≤ x≤ 0.10 are synthesized by the conventional solid-state reaction. The diffraction peaks are sharp, indicating well crystallized phases. Ritveld analyses of XRD data show that the samples display a clean single phase without traces of secondary phases. The Scanning electron microscopy micrographs show that more dense structure is formed when increasing tin content and all samples show a similar grain habit with a parallelepipedic structure. The analysis of the dielectric properties permits to suggest the presence of diffuse phase transition in the system. The temperature dependence of the permittivity is well described by the modified Curie-Weiss law. Also, a metal-semiconductor transition is observed at around T_{MS}=220 K and 145 K, respectively for x = 0 and 0.05. For x = 0.1, only a semiconductor behavior is observed and T_{MS} is lower than 80 K. In addition, the frequency dependence of conductance is found to obey to the Jonscher universal power law.
Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump-Terahertz Probe Spectroscopy.
Kar, Srabani; Nguyen, Van Luan; Mohapatra, Dipti R; Lee, Young Hee; Sood, A K
2018-02-27
Photoinduced terahertz conductivity Δσ(ω) of Bernal stacked bilayer graphene (BLG) with different dopings is measured by time-resolved optical pump terahertz probe spectroscopy. The real part of photoconductivity Δσ(ω) (Δσ Re (ω)) is positive throughout the spectral range 0.5-2.5 THz in low-doped BLG. This is in sharp contrast to Δσ(ω) for high-doped bilayer graphene where Δσ Re (ω) is negative at low frequency and positive on the high frequency side. We use Boltzmann transport theory to understand quantitatively the frequency dependence of Δσ(ω), demanding the energy dependence of different scattering rates such as short-range impurity scattering, Coulomb scattering, carrier-acoustic phonon scattering, and substrate surface optical phonon scattering. We find that the short-range disorder scattering dominates over other processes. The calculated photoconductivity captures very well the experimental conductivity spectra as a function of lattice temperature varying from 300 to 4 K, without any empirical fitting procedures adopted so far in the literature. This helps us to understand the intraband conductivity of photoexcited hot carriers in 2D materials.
Kinetics of nucleation and crystallization in poly(e-caprolactone) (PCL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, Evgeny; Schmelzer, Jurn; Wunderlich, Bernhard
2011-01-01
The recently developed differential fast scanning calorimetry (DFSC) is used for a new look at the crystal growth of poly(3-caprolactone) (PCL) from 185 K, below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity using heating rates from 50 to 50,000 K/s. The crystal nucleation and crystallization halftimes were determined simultaneously. The obtained halftimes cover a range from 3 102 s (nucleation at 215 K) to 3 109 s (crystallization at 185 K). After attempting to analyze the experiments with the classicalmore » nucleation and growth model, developed for systems consisting of small molecules, a new methodology is described which addresses the specific problems of crystallization of flexible linear macromolecules. The key problems which are attempted to be resolved concern the differences between the structures of the various entities identified and their specific role in the mechanism of growth. The structures range from configurations having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms in the temperature range from the glass transition to equilibrium melting for increasingly perfect and larger crystals. The mechanisms and kinetics of growth involve also a detailed understanding of the interaction with the surrounding rigid-amorphous fraction (RAF) in dependence of crystal size and perfection.« less
NASA Astrophysics Data System (ADS)
Yang, Yantao; Verzicco, Roberto; Lohse, Detlef
2016-11-01
In the upper layers of the tropical and subtropical ocean, step-like mean profiles for both temperature and salinity are often observed, a phenomenon referred to as thermohaline staircase. It consists of alternatively stacked mixing layers, and finger layers with sharp gradients in both mean temperature and salinity. It is believed that thermohaline staircases are caused by double diffusive convection (DDC), i.e. the convection flow with fluid density affected by two different scalars. Here we conducted direct numerical simulations of DDC bounded by two parallel plates and aimed to realise the multi-layer state similar to the oceanic thermohaline staircase. We applied an unstable salinity difference and a stable temperature difference across the two plates. We gradually increased the salinity Rayleigh number RaS , i.e. the strength of salinity difference, and fixed the relative strength of temperature difference. When RaS is high enough the flow undergoes a transition from a single finger layer to a triple layer state, where one mixing layer emerges between two finger layers. Such triple layer state is stable up to the turbulent diffusive time scale. The finger-layer height is larger for higher RaS . The dependences of the scalar fluxes on RaS were also investigated. Supported by Dutch FOM Foundation and NWO rpogramme MCEC; Computing resources from SURFSara and PRACE project 2015133124.
Cell dialysis by sharp electrodes can cause nonphysiological changes in neuron properties
Hooper, Scott L.; Guschlbauer, Christoph; Schmidt, Joachim; Büschges, Ansgar
2015-01-01
We recorded from lobster and leech neurons with two sharp electrodes filled with solutions often used with these preparations (lobster: 0.6 M K2SO4 or 2.5 M KAc; leech: 4 M KAc), with solutions approximately matching neuron cytoplasm ion concentrations, and with 6.5 M KAc (lobster, leech) and 0.6 M KAc (lobster). We measured membrane potential, input resistance, and transient and sustained depolarization-activated outward current amplitudes in leech and these neuron properties and hyperpolarization-activated current time constant in lobster, every 10 min for 60 min after electrode penetration. Neuron properties varied with electrode fill. For fills with molarities ≥2.5 M, neuron properties also varied strongly with time after electrode penetration. Depending on the property being examined, these variations could be large. In leech, cell size also increased with noncytoplasmic fills. The changes in neuron properties could be due to the ions being injected from the electrodes during current injection. We tested this possibility in lobster with the 2.5 M KAc electrode fill by making measurements only 10 and 60 min after penetration. Neuron properties still changed, although the changes were less extreme. Making measurements every 2 min showed that the time-dependent variations in neuron properties occurred in concert with each other. Neuron property changes with high molarity electrode-fill solutions were great enough to decrease neuron firing strongly. An experiment with 14C-glucose electrode fill confirmed earlier work showing substantial leak from sharp electrodes. Sharp electrode work should thus be performed with cytoplasm-matched electrode fills. PMID:26063785
Cell dialysis by sharp electrodes can cause nonphysiological changes in neuron properties.
Hooper, Scott L; Thuma, Jeffrey B; Guschlbauer, Christoph; Schmidt, Joachim; Büschges, Ansgar
2015-08-01
We recorded from lobster and leech neurons with two sharp electrodes filled with solutions often used with these preparations (lobster: 0.6 M K2SO4 or 2.5 M KAc; leech: 4 M KAc), with solutions approximately matching neuron cytoplasm ion concentrations, and with 6.5 M KAc (lobster, leech) and 0.6 M KAc (lobster). We measured membrane potential, input resistance, and transient and sustained depolarization-activated outward current amplitudes in leech and these neuron properties and hyperpolarization-activated current time constant in lobster, every 10 min for 60 min after electrode penetration. Neuron properties varied with electrode fill. For fills with molarities ≥2.5 M, neuron properties also varied strongly with time after electrode penetration. Depending on the property being examined, these variations could be large. In leech, cell size also increased with noncytoplasmic fills. The changes in neuron properties could be due to the ions being injected from the electrodes during current injection. We tested this possibility in lobster with the 2.5 M KAc electrode fill by making measurements only 10 and 60 min after penetration. Neuron properties still changed, although the changes were less extreme. Making measurements every 2 min showed that the time-dependent variations in neuron properties occurred in concert with each other. Neuron property changes with high molarity electrode-fill solutions were great enough to decrease neuron firing strongly. An experiment with (14)C-glucose electrode fill confirmed earlier work showing substantial leak from sharp electrodes. Sharp electrode work should thus be performed with cytoplasm-matched electrode fills. Copyright © 2015 the American Physiological Society.
Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K
2015-06-14
This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.
Nanoclusters as a new family of high temperature superconductors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Halder, Avik; Kresin, Vitaly V.
2017-03-01
Electrons in metal clusters organize into quantum shells, akin to atomic shells in the periodic table. Such nanoparticles are referred to as "superatoms". The electronic shell levels are highly degenerate giving rise to sharp peaks in the density of states, which can enable exceptionally strong electron pairing in certain clusters containing tens to hundreds of atoms. A spectroscopic investigation of size - resolved aluminum nanoclusters has revealed a sharp rise in the density of states near the Fermi level as the temperature decreases towards 100 K. The effect is especially prominent in the closed-shell "magic" cluster Al66 [1, 2]. The characteristics of this behavior are fully consistent with a pairing transition, implying a high temperature superconducting state with Tc < 100K. This value exceeds that of bulk aluminum by two orders of magnitude. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks. ---------- 1. Halder, A., Liang, A., Kresin, V. V. A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T 100K. Nano Lett 15, 1410 - 1413 (2015) 2. Halder, A., Kresin, V. V. A transition in the density of states of metal "superatom" nanoclusters and evidence for superconducting pairing at T 100K. Phys. Rev. B 92, 214506 (2015).
NASA Astrophysics Data System (ADS)
McAfee, S. A.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.
2016-12-01
Approximately 40 million people depend on the Colorado River, and that number is likely to grow in the future, making the River's response to projected increases in temperature and possible changes in precipitation a critical societal issue. By far the most common way of approaching the problem is synthesize results obtained by forcing a hydrological model with a set of downscaled future climate scenarios. One weakness with this type of analysis is that full hydrologic model simulations can be computationally demanding, and so the number of potential climate futures is generally somewhat limited. Here we sidestep that issue by using a very large set of synthetic climate futures to drive a simple statistical model of water year flow at Lees Ferry. 62,500 climate series, comprising 500 iterations of 125 unique combinations of summer temperature changes ranging from 0 to +4°C and summer and winter precipitation changes ranging from -20 to +20% were input into the flow model. Without substantial temperature increases, significant increases in the occurrence of very low flows (<75%) were unlikely, even with sharp decreases in temperature. Conversely, increases in precipitation, could buffer the effect of summer temperature increases up to about 3°C on mean water year flows. While very simple models like this one are inappropriate for some questions, they do provide an effective way of prioritizing and framing more complex investigations, and facilitate conversations with stakeholders about research directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, P. T., E-mail: t.pham@hzdr.de; Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main; Postulka, L.
2016-10-14
Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperaturemore » and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.« less
Kumar, D; Galivarapu, J K; Banerjee, A; Nemkovski, K S; Su, Y; Rath, Chandana
2016-04-29
Multiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as a paramagnetic to collinear and non-collinear ferrimagnetic state at the Curie temperature (TC) and spiral ordering temperature (TS) respectively and finally to a lock-in-transition temperature (Tl). In this paper, the rich sequence of magnetic transitions in CoCr2O4 after mixing the octahedral site with 10% of iron are investigated by varying the size of the particle from 10 to 50 nm. With the increasing size, while the TC increases from 110 to 119 K which is higher than the TC (95 K) of pure CoCr2O4, the TS remains unaffected. In addition, a compensation of magnetization at 34 K and a lock-in transition at 10 K are also monitored in 50 nm particles. Further, we have examined the magnetic-ordering temperatures through neutron scattering using a polarized neutron beam along three orthogonal directions after separating the magnetic scattering from nuclear-coherent and spin-incoherent contributions. While a sharp long-range ferrimagnetic ordering down to 110 K and a short-range spiral ordering down to 50 K are obtained in 50 nm particles, in 10 nm particles, the para to ferrimagnetic transition is found to be continuous and spiral ordering is diffused in nature. Frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Neel-Arrhenius, Vogel-Fulcher and power law, while ruling out the canonical spin-glass, cluster-glass and interacting superparamagnetism, reveal that both particles show spin-glass behavior with a higher relaxation time in 10 nm particles than in 50 nm. The smaller spin flip time in 50 nm particles confirms that spin dynamics does not slow down on approaching the glass transition temperature (Tg).
Solar Array at Very High Temperatures: Ground Tests
NASA Technical Reports Server (NTRS)
Vayner, Boris
2016-01-01
Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 V) or to operate at higher voltages with encapsulated of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between coverglass and conductive spacecraft body in a kilovolt range. In such a case, weakly conductive layer over coverglass (ITO) is one of possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of -150 C +110 C. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to Sun. Conductive layer over coverglass causes sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating material (RTV), radiative heating of coupon in vacuum chamber becomes practically impossible above 150 C, conductivities of glass and adhesive go up with temperature that decrease array efficiency, and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 200 C. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over ITO layer.
Chen, Shu; Li, Ying; Guo, Chen; Wang, Jing; Ma, Junhe; Liang, Xiangfeng; Yang, Liang-Rong; Liu, Hui-Zhou
2007-12-04
In this study, temperature-responsive magnetite/polymer nanoparticles were developed from iron oxide nanoparticles and poly(ethyleneimine)-modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has an approximately 20 nm magnetite core and an approximately 40 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (51.34 emu/g) at room temperature. The most attractive feature of the nanoparticles is their temperature-responsive volume-transition property. DLS results indicated that their average hydrodynamic diameter underwent a sharp decrease from 45 to 25 nm while evaluating the temperature from 20 to 35 degrees C. The temperature-dependent evolution of the C-O stretching band in the FTIR spectra of the aqueous nanoparticles solution revealed that thermo-induced self-assembly of the immobilized block copolymers occurred on the magnetite solid surfaces, which is accompanied by a conformational change from a fully extended state to a highly coiled state of the copolymer. Consequently, the copolymer shell could act as a temperature-controlled "gate" for the transit of guest substance. The uptake and release of both hydrophobic and hydrophilic model drugs were well controlled by switching the transient opening and closing of the polymer shell at different temperatures. A sustained release of about 3 days was achieved in simulated human body conditions. In primary mouse experiments, drug-entrapped magnetic nanoparticles showed good biocompatibility and effective therapy for spinal cord damage. Such intelligent magnetic nanoparticles are attractive candidates for widespread biomedical applications, particularly in controlled drug-targeting delivery.
Shock implosion of a small homogeneous pellet
NASA Astrophysics Data System (ADS)
Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos
1985-10-01
A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.
Large polarization-dependent exciton optical Stark effect in lead iodide perovskites
Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.
2016-01-01
A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007
Thickness-dependent metal-to-insulator transition in epitaxial VO2 films
NASA Astrophysics Data System (ADS)
Zhi, Bowen; Gao, Guanyin; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Jin, Shaowei; Wu, Wenbin
2014-12-01
The metal-to-insulator transition (MIT) of VO2 films with a thickness of 3-100 nm on TiO2(001) substrates has been investigated. When varying the film thickness from 10 to 100 nm, the MIT temperature was first kept at 290 K in the range of 10-14 nm, and then increased with thickness increasing due to the strain relaxation. The origin of the suppressed transition in VO2 films thinner than 6 nm was also investigated. When prolonging the in situ annealing time, the sharpness, amplitude and width of the transition for 4 nm thick films were all increased, suggesting improved crystallinity rather than Ti diffusion from the substrates. In addition, the MIT was suppressed when the VO2 films were covered by a TiO2 layer, indicating that the interface effect via the confinement of the dimerization of the V atoms should be the main reason.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut
Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less
Large polarization-dependent exciton optical Stark effect in lead iodide perovskites
Yang, Ye; Yang, Mengjin; Zhu, Kai; ...
2016-08-31
A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less
Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Hao, H.; Liu, H. X.; Cao, M. H.; Min, X. M.; Ouyang, S. X.
2006-10-01
The temperature-dependent Raman spectra of Mg- and La-doped SrBi4Ti4O15 (SBT) were studied in the range 40 590 °C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm-1 modes related to the rotating and tilting of the TiO6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm-1 peaks.
Volume dependence of baryon number cumulants and their ratios
Almási, Gábor A.; Pisarski, Robert D.; Skokov, Vladimir V.
2017-03-17
Here, we explore the influence of finite-volume effects on cumulants of baryon/quark number fluctuations in a nonperturbative chiral model. In order to account for soft modes, we use the functional renormalization group in a finite volume, using a smooth regulator function in momentum space. We compare the results for a smooth regulator with those for a sharp (or Litim) regulator, and show that in a finite volume, the latter produces spurious artifacts. In a finite volume there are only apparent critical points, about which we compute the ratio of the fourth- to the second-order cumulant of quark number fluctuations. Finally,more » when the volume is sufficiently small the system has two apparent critical points; as the system size decreases, the location of the apparent critical point can move to higher temperature and lower chemical potential.« less
NASA Astrophysics Data System (ADS)
Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong
2018-04-01
Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.
Malleable Curie Temperatures of Natural Titanomagnetites: Occurrences, Modes, and Mechanisms
NASA Astrophysics Data System (ADS)
Jackson, Mike; Bowles, Julie
2018-02-01
Intermediate-composition titanomagnetites have Curie temperatures (Tc) that depend not only on composition but also on thermal history, with increases of 100°C or more in Tc produced by moderate-temperature (300-400°C) annealing in the laboratory or in slow natural cooling and comparable decreases produced by more rapid cooling ("quenching") from higher temperatures. New samples spanning a range of titanomagnetite compositions exhibit reversible changes in Tc comparable to those previously documented for pyroclastic samples from Mt. St. Helens and Novarupta. Additional high- and low-temperature measurements help to shed light on the nanoscale mechanisms responsible for the observed changes in Tc. High-T hysteresis measurements exhibit a peak in high-field slope khf(T) at the Curie temperature, and the peak magnitude decreases as Tc increases with annealing. Sharp changes in low-T magnetic behavior are also strongly affected by prior annealing or quenching, suggesting that these treatments affect the intrasite cation distributions. We have examined the effects of oxidation state and nonstoichiometry on the magnitude of Tc changes produced by quenching/annealing in different atmospheres. Treatments in air generally cause large changes (ΔTc > 100°). In an inert atmosphere, the changes are similar in many samples but strongly diminished in others. When the samples are embedded in a reducing material, ΔTc becomes insignificant. These results strongly suggest that cation vacancies play an essential role in the cation rearrangements responsible for the observed changes in Tc. Some form of octahedral-site chemical clustering or short-range ordering appears to be the best way to explain the large observed changes in Tc.
NASA Astrophysics Data System (ADS)
Bernard, C.; Toussaint, D.
2018-04-01
We study the effects of failure to equilibrate the squared topological charge Q2 on lattice calculations of pseudoscalar masses and decay constants. The analysis is based on chiral perturbation theory calculations of the dependence of these quantities on the QCD vacuum angle θ . For the light-light partially quenched case, we rederive the known chiral perturbation theory results of Aoki and Fukaya, but using the nonperturbatively valid chiral theory worked out by Golterman, Sharpe and Singleton, and by Sharpe and Shoresh. We then extend these calculations to heavy-light mesons. Results when staggered taste violations are important are also presented. The derived Q2 dependence is compared to that of simulations using the MILC Collaboration's ensembles of lattices with four flavors of dynamical highly improved staggered quarks. We find agreement, albeit with large statistical errors. These results can be used to correct for the leading effects of unequilibrated Q2, or to make estimates of the systematic error coming from the failure to equilibrate Q2. In an appendix, we show that the partially quenched chiral theory may be extended beyond a lower bound on valence masses discovered by Sharpe and Shoresh. Subtleties occurring when a sea-quark mass vanishes are discussed in another appendix.
When to Call Your Pediatrician
... an ear Severe sore throat or problems swallowing Sharp or persistent pains in the abdomen or stomach Pain that gets worse or does not go away after several hours A rectal temperature of 100.4°F (38°C) or higher in a baby younger than 2 ...
TEA: A Code Calculating Thermochemical Equilibrium Abundances
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
Atomic and electronic structures of an extremely fragile liquid.
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-12-18
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.
Atomic and electronic structures of an extremely fragile liquid
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-01-01
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Dosso, S. E.; Higgins, J. A.
2014-12-01
There are sharp rises in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary that are generally thought to be associated with Himalayan uplift and associated climatic changes and continental weathering variability. In modeling such data the norm is to hold the chemical fluxes associated with off-axis hydrothermal circulation through the oceanic crust constant while varying the river fluxes (and/or isotopic ratios). There is, however, no a priori reason to assume the chemical fluxes (or isotopic compositions) associated with off-axis hydrothermal systems should stay constant. Instead, changing environmental conditions (e.g. seawater composition and bottom water temperature) will lead to changes in these fluxes. An alternative model to explain the sharp rise in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary is cooling of the deep ocean. Decreased reaction rates in the oceanic crust, due to decreasing temperature, can be shown to lead to a decrease in the flux of unradiogenic Sr into the ocean. The magnitude matches, within uncertainty, that required to explain the increase in seawater Sr-isotopic composition [Coogan and Dosso, in review]. The story for Li is more uncertain. Two factors may lead to smaller effective fractionation factors between seawater and the (large) Li sink in the oceanic crust when bottom water is warmer: (i) higher temperature will decrease the isotopic fractionation factor; (ii) the more extensive fluid-rock reaction in the ocean crust when bottom water is warmer will make Li uptake by the oceanic crust more efficient. All other things being equal this will lead to a lower Li content of seawater. In turn, a lower Li content in seawater will mean that for a given Li-uptake rate by the crust the effective fractionation factor is smaller, due to Rayleigh distillation of Li-isotopes during fluid-rock reaction in the oceanic crust. In combination these factors predict a significant (many per mil), but poorly constrained, increase in the Li-isotopic composition of the ocean due to cooling bottom water. Models of many geochemical species, including carbon [Coogan and Gillis, 2013], should include environmentally dependent fluxes from off-axis hydrothermal systems.
Lagrangian statistics of mesoscale turbulence in a natural environment: The Agulhas return current.
Carbone, Francesco; Gencarelli, Christian N; Hedgecock, Ian M
2016-12-01
The properties of mesoscale geophysical turbulence in an oceanic environment have been investigated through the Lagrangian statistics of sea surface temperature measured by a drifting buoy within the Agulhas return current, where strong temperature mixing produces locally sharp temperature gradients. By disentangling the large-scale forcing which affects the small-scale statistics, we found that the statistical properties of intermittency are identical to those obtained from the multifractal prediction in the Lagrangian frame for the velocity trajectory. The results suggest a possible universality of turbulence scaling.
Quasiparticle Coherence, Collective Modes, and Competing Order in Cuprate Superconductors
NASA Astrophysics Data System (ADS)
Hinton, James Patrick
In recent years, the study of cuprate superconductors has been dominated by the investigation of normal state properties. Of particular interest is the nature of interactions between superconductivity and other incipient orders which emerge above the superconducting transition temperature, Tc. The discovery of charge density wave (CDW) correlations in YBa2Cu3O6+x (YBCO) and HgBa2CuO 4+d (Hg-1201) has established that some form of charge order is ubiquitous in the cuprates. In this work, we explore the non-equilibrium dynamics of systems which sit near the boundary between superconductivity and competing orders. Ultrafast pump-probe spectroscopy is ideally suited to the study of competing order. Exciting the sample with an optical pulse perturbs the system from equilibrium, altering the balance between the co-existing orders. The return to equilibrium is then monitored by a time-delayed probe pulse, revealing multiple decay processes as well as collective excitations. We first apply this technique to Hg-1201, conducting a detailed study of the phase diagram. At temperatures near Tc, the pump pulse induces a non-equilibrium quasiparticle population. At Tc we observe a doping-dependent peak in the relaxation time of these quasiparticles which we associate with a divergence in the coherence time of the fluctuating CDW. Using heterodyne probing in the transient grating geometry, we are able to disentangle the transient reflectivity components associated with superconductivity and the pseudogap, domonstrating competition across the phase diagram. We also discuss the observation of a sharp transition in the nature of the pseudogap signal at ˜ 11% doping. In YBCO, we explore the temperature and doping dependence of coherent oscillations excited by the pump pulse. We associate these oscillations with the excitation of the CDW amplitude mode, and model their temperature dependence within the framework of a Landau model of competing orders. We conclude with an investigation of pseudogap dynamics in the electron doped compound Nd2-xCexCuO4+d as a function of temperature and doping. Near optimal doping, we observe the impulsive excitation of a critically damped mode, with time-temperature scaling consistent with quantum-critical fluctuations. This mode competes with superconductivity in a dynamical fashion, such that the suppression of this mode below T c can be lifted via photo-evaporation of the superconducting condensate.
Space charge limited current emission for a sharp tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg
In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2more » (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R.
2016-07-15
The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu,more » FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.« less
SHARP pre-release v1.0 - Current Status and Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.; Rahaman, Ronald O.
The NEAMS Reactor Product Line effort aims to develop an integrated multiphysics simulation capability for the design and analysis of future generations of nuclear power plants. The Reactor Product Line code suite’s multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. In this report, building on a several previous report issued in September 2014, we describe our continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics modeling codes to perform coupled analysis of a representativemore » fast sodium-cooled reactor core in preparation for a unified release of the toolkit. The work reported in the current document covers the software engineering aspects of managing the entire stack of components in the SHARP toolkit and the continuous integration efforts ongoing to prepare a release candidate for interested reactor analysis users. Here we report on the continued integration effort of PROTEUS/Nek5000 and Diablo into the NEAMS framework and the software processes that enable users to utilize the capabilities without losing scientific productivity. Due to the complexity of the individual modules and their necessary/optional dependency library chain, we focus on the configuration and build aspects for the SHARP toolkit, which includes capability to autodownload dependencies and configure/install with optimal flags in an architecture-aware fashion. Such complexity is untenable without strong software engineering processes such as source management, source control, change reviews, unit tests, integration tests and continuous test suites. Details on these processes are provided in the report as a building step for a SHARP user guide that will accompany the first release, expected by Mar 2016.« less
Gypsum and hydrohalite dynamics in sea ice brines
NASA Astrophysics Data System (ADS)
Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary
2017-09-01
Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its experimental solubility in this system. Incorporation of hydrohalite solubility into a 1D thermodynamic model of the growth of first-year Arctic sea ice showed its precipitation to initiate once the incoming shortwave radiation dropped to 0 W m-2, and that it can reach concentrations of 9.9 g kg-1 within the upper and coldest layers of the ice pack. This suggests a limited effect of hydrohalite on the albedo of sea ice. The insights provided by the solubility measurements into the behaviour of gypsum and hydrohalite in the ice-brine system cannot be gleaned from field investigations at present.
Directional Bleb Formation in Spherical Cells under Temperature Gradient
Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi
2015-01-01
Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871
On Pokrovskii's anisotropic gap equations in superconductivity theory
NASA Astrophysics Data System (ADS)
Yang, Yisong
2003-11-01
An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.
Biodiversity response to natural gradients of multiple stressors on continental margins
Sperling, Erik A.; Frieder, Christina A.; Levin, Lisa A.
2016-01-01
Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5–0.15 ml l−1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds. PMID:27122565
Self-assembly of single "square" quantum rings in gold-free GaAs nanowires.
Zha, Guowei; Shang, Xiangjun; Su, Dan; Yu, Ying; Wei, Bin; Wang, Li; Li, Mifeng; Wang, Lijuan; Xu, Jianxing; Ni, Haiqiao; Ji, Yuan; Sun, Baoquan; Niu, Zhichuan
2014-03-21
Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time. By tuning the deposition temperature, As overpressure and amount of gallium-droplets, we were able to control the density and morphology of the structure, yielding novel single quantum dots, QR, coupled QRs, and nano-antidots. A proposed model based on a strain-driven, transport-dependent nucleation of gallium droplets at high temperature accounts for the formation mechanism of these structures. We achieved a single-QR-in-NW structure, of which the optical properties were analyzed using micro-photoluminescence at 10 K and a spatially resolved cathodoluminescence technique at 77 K. The spectra show sharp discrete peaks; of these peaks, the narrowest linewidth (separation) was 578 μeV (1-3 meV), reflecting the quantized nature of the ring-type electronic states.
Histopathology of fish. V. Gill disease
1957-01-01
Possibly no single disease accounts for greater annual mortality than gill disease. Apparently endemic in many hatcheries, the disease is characterized by periodic sharp upsurges which are sometimes correlated with rising water temperatures, excessive foreign matter in the water (Wales and Evins 1937), or borderline nutritional conditions.
ERIC Educational Resources Information Center
Boulding, Kenneth E.
The international system exhibits very sharp phase boundaries, the most striking of which is the boundary between war and peace. A phase boundary for water would be the difference between water and ice, influenced by pressure and temperature. Similarly the phase boundary between war and peace is influenced by national strength and stress. Although…
Park, Hyoung Keun; Bae, Sang Rak; Kim, Satbyul E; Choi, Woo Suk; Paick, Sung Hyun; Ho, Kim; Kim, Hyeong Gon; Lho, Yong Soo
2015-02-01
The aim of this study was to evaluate the effect of seasonal variation and climate parameters on urinary tract stone attack and investigate whether stone attack is increased sharply at a specific point. Nationwide data of total urinary tract stone attack numbers per month between January 2006 and December 2010 were obtained from the Korean Health Insurance Review and Assessment Service. The effects of climatic factors on monthly urinary stone attack were assessed using auto-regressive integrated moving average (ARIMA) regression method. A total of 1,702,913 stone attack cases were identified. Mean monthly and monthly average daily urinary stone attack cases were 28,382 ± 2,760 and 933 ± 85, respectively. The stone attack showed seasonal trends of sharp incline in June, a peak plateau from July to September, and a sharp decline after September. The correlation analysis showed that ambient temperature (r = 0.557, p < 0.001) and relative humidity (r = 0.513, p < 0.001) were significantly associated with urinary stone attack cases. However, after adjustment for trends and seasonality, ambient temperature was the only climate factor associated with the stone attack cases in ARIMA regression test (p = 0.04). Threshold temperature was estimated as 18.4 °C. Risk of urinary stone attack significantly increases 1.71% (1.02-2.41 %, 95% confidence intervals) with a 1 °C increase of ambient temperature above the threshold point. In conclusion, monthly urinary stone attack cases were changed according to seasonal variation. Among the climates variables, only temperature had consistent association with stone attack and when the temperature is over 18.4 °C, urinary stone attack would be increased sharply.
Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel
NASA Astrophysics Data System (ADS)
Swanson, Erick O.
It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.
Diekmann, S; Lilley, D M
1987-01-01
We have made an analysis of the gel electrophoretic properties of a pseudo-cruciform fragment, a linear DNA molecule containing a stable cruciform. The migration of this construct was analysed in polyacrylamide gels at a various temperatures in the range 5 degrees to 55 degrees C, and in the presence of NaCl, MgCl2 or ethidium bromide. The magnitude of the anomalous migration (retardation) was almost temperature independent up to 40 degrees C, but decreased strongly beyond this point, extrapolating to normal migration at 70 degrees C. Addition of salts reduced the anomaly. This took the form of a continuous reduction in anomalous migration with the addition of NaCl up to 60 mM, while with MgCl2 there was a sharp reduction in the anomaly to a constant value which is reached by 10 mM. Under these conditions, moreover, the migration of the fragment became almost temperature-independent over the entire range. These results have been interpreted to reflect the influence of ion binding at the four-way junction on the relative disposition of the cruciform arms. The detailed electrophoretic properties of the pseudo-cruciform are in marked contrast to those of sequence-directed curved DNA fragments. In particular, the response to the addition of 1 microgram/ml ethidium bromide offers a convenient method for distinguishing between anomalous retardation arising from curvature (greatly reduced anomaly) or a cruciform junction (enhanced anomaly). Images PMID:3039465
Giant electrocaloric effect in a cracked ferroelectrics
NASA Astrophysics Data System (ADS)
Huang, Cheng; Yang, Hai-Bing; Gao, Cun-Fa
2018-04-01
The electrocaloric effect (ECE) is the temperature change in a material induced by electrical field variation under adiabatic condition. Considering an external electric load applied on a cracked ferroelectric solid, a non-uniform electric field would be induced at the crack tip, and thus, incompatible strain field and local stress concentration would be generated around it. Furthermore, the enormous strain energy and the electrostatic energy would affect the polarization switching of the ferroelectric solid, important for the electrocaloric response. In this paper, the large negative and positive ECEs in a ferroelectric sheet with a conducting crack are investigated by the phase field method with the consideration of time-dependent Ginzburg-Landau equation. The numerical calculations indicated that the polarization field generates a sharp rise during the domain transition from polydomain to monodomain under a certain electric load. Large negative ECEs, about -10.21 K and -7.55 K, are obtained at 135 °C and 85 °C, respectively. The domain transition temperature is much lower than the Curie temperature, which enlarges the existence scope of the large ECE in ferroelectrics. The results also imply that the domain transition from a multi-domain state to a single domain takes place with the minimization of total free energy, which involves the courses of the electric field, stress field, temperature, and polarization interaction. Therefore, the non-uniform distributions of the stress-electric fields induced by the crack play an important role in ECE.
NASA Astrophysics Data System (ADS)
Peyton, David; Kinoshita, Hiroyuki; Lo, G. Q.; Kwong, Dim-Lee
1991-04-01
Rapid Thermal Processing (RTP) is becoming a popular approach for future ULSI manufacturing due to its unique low thermal budget and process flexibility. Furthermore when RTP is combined with Chemical Vapor Deposition (CVD) the so-called RTP-CVD technology it can be used to deposit ultrathin films with extremely sharp interfaces and excellent material qualities. One major consequence of this type of processing however is the need for extremely tight control of wafer temperature both to obtain reproducible results for process control and to minimize slip and warpage arising from nonuniformities in temperature. Specifically temperature measurement systems suitable for RiP must have both high precision--within 1-2 degrees--and a short response time--to output an accurate reading on the order of milliseconds for closedloop control. Any such in-situ measurement technique must be non-contact since thermocouples cannot meet the response time requirements and have problems with conductive heat flow in the wafer. To date optical pyrometry has been the most widely used technique for RiP systems although a number of other techniques are being considered and researched. This article examines several such techniques from a systems perspective: optical pyrometry both conventional and a new approach using ellipsometric techniques for concurrent emissivity measurement Raman scattering infrared laser thermometry optical diffraction thermometry and photoacoustic thermometry. Each approach is evaluated in terms of its actual or estimated manufacturing cost remote sensing capability precision repeatability dependence on processing history range
Electronic properties with and without electron-phonon coupling
NASA Astrophysics Data System (ADS)
Allen, Philip
To decent approximation, electronic properties P of solids have a temperature dependence of the type ΔP(T) = Σ (dP/dωi) [ni(T) +1/2], where ωi is the frequency of the ith vibrational normal mode, and ni is the Bose-Einstein equilibrium occupation of the mode. The coupling constant (dP/dωi) comes from electron-phonon interactions. At T =0, the ``1/2'' gives the zero-point electron-phonon renormalization of the property P, and at T>ΘD, the total shift ΔP becomes linear in T, extrapolating toward ΔP =0 at T =0. This form of T-dependence arises from the adiabatic or Born-Oppenheimer approximation, where electrons essentially ``don't notice'' the time-dependence of thermal lattice fluctuations. In other words, the leading order theory for P is ΔP(T) = Σ (d2P/duiduj)
O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.
Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N
2017-10-05
Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.
Proximity effects in cold gases of multiply charged atoms (Review)
NASA Astrophysics Data System (ADS)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving Eproxi. Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2l with a probability that depends, among other factors, on the properties of Eproxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive Eproxi > 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density nd ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Masaki, E-mail: mook@clg.niigata-u.ac.jp
Purpose: In lung cancer computed tomography (CT) screening, the performance of a computer-aided detection (CAD) system depends on the selection of the image reconstruction kernel. To reduce this dependence on reconstruction kernels, the authors propose a novel application of an image filtering method previously proposed by their group. Methods: The proposed filtering process uses the ratio of modulation transfer functions (MTFs) of two reconstruction kernels as a filtering function in the spatial-frequency domain. This method is referred to as MTF{sub ratio} filtering. Test image data were obtained from CT screening scans of 67 subjects who each had one nodule. Imagesmore » were reconstructed using two kernels: f{sub STD} (for standard lung imaging) and f{sub SHARP} (for sharp edge-enhancement lung imaging). The MTF{sub ratio} filtering was implemented using the MTFs measured for those kernels and was applied to the reconstructed f{sub SHARP} images to obtain images that were similar to the f{sub STD} images. A mean filter and a median filter were applied (separately) for comparison. All reconstructed and filtered images were processed using their prototype CAD system. Results: The MTF{sub ratio} filtered images showed excellent agreement with the f{sub STD} images. The standard deviation for the difference between these images was very small, ∼6.0 Hounsfield units (HU). However, the mean and median filtered images showed larger differences of ∼48.1 and ∼57.9 HU from the f{sub STD} images, respectively. The free-response receiver operating characteristic (FROC) curve for the f{sub SHARP} images indicated poorer performance compared with the FROC curve for the f{sub STD} images. The FROC curve for the MTF{sub ratio} filtered images was equivalent to the curve for the f{sub STD} images. However, this similarity was not achieved by using the mean filter or median filter. Conclusions: The accuracy of MTF{sub ratio} image filtering was verified and the method was demonstrated to be effective for reducing the kernel dependence of CAD performance.« less
Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity
2016-01-01
Hippocampal–cortical interaction during sleep promotes transformation of memory for long-term storage in the cortex. In particular, hippocampal sharp-wave ripple-associated neural activation is important for this transformation during slow-wave sleep. The anterior cingulate cortex (ACC) has been shown to be crucial for expression and likely storage of long-term memory. However, little is known about how ACC activity is influenced by hippocampal ripple activity during sleep. We report here about coordinated interactions between hippocampal ripple activity and ACC neural firings. By recording from the ACC and hippocampal CA1 simultaneously in mice, we found that almost all ACC neurons showed increased activity before hippocampal ripple activity; moreover, a subpopulation (17%) displayed a further activation immediately after ripple activity. This postripple activation of ACC neurons correlated positively with ripple amplitude, and the same neurons were excited upon electrical stimulation of the CA1. Interestingly, the preripple activation of ACC neurons was present during the sleep state, but not during the awake state. These results suggest intimate interactions between hippocampal sharp-wave ripples and ACC neurons in a state-dependent manner. Importantly, sharp-wave ripples and associated activation appear to regulate activity of a small population of ACC neurons, a process that may play a critical role in memory consolidation. SIGNIFICANCE STATEMENT The hippocampus communicates with the cortex for memory transformation. Memories of previous experiences become less dependent on the hippocampus and increasingly dependent on cortical areas, such as the anterior cingulate cortex (ACC). However, little evidence is available to directly support this hippocampus-to-cortex information transduction hypothesis of memory consolidation. Here we show that a subpopulation of ACC neurons becomes active just after hippocampal ripple activity, and that electrical stimulation of the hippocampus excites the same ACC neurons. In addition, the majority of ACC neurons are activated just before ripple activity during the sleep state, but not during the awake state. These results provide evidence supporting the hypothesis of hippocampus-to-cortex information flow for memory consolidation as well as reciprocal interaction between the hippocampus and the cortex. PMID:27733616
NASA Astrophysics Data System (ADS)
Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.
2017-12-01
The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.
NASA Astrophysics Data System (ADS)
Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, A.
2016-10-01
Ultraviolet (UV) MSM photodetectors (PD) based on AlGaN alloys find many applications, including flame sensing. In this work we investigate the dependence of AlGaN based photodetectors grown by MBE on the kinetics of growth. MSM photodetectors were fabricated in the interdigitated configuration with Ni/Au contacts having 400 μm finger length and 10 μm finger spacing. Bulk Al0.4Ga0.6N films were grown on to sapphire substrates using an AlN buffer layer. A series of PDs were developed using the Al0.4Ga0.6N films grown under different group III/V flux ratios ranging from stoichiometric conditions to much higher than unity. Upon testing, it was observed that the otherwise identical photodetectors show significant decrease in dark current as AlGaN deposition conditions change from stoichiometric to excess group III, due to reduction of unintentional incorporation of oxygen-related point defects. In addition, the intensity and spectral dependence of the photocurrent also change, showing an extended low energy tail for the former and a sharp and prominent excitonic peak for the latter. The optical transmission measurements indicate a variation in Urbach energy with deposition conditions of the AlGaN films, although they have the same absorption edge. While all samples show a single red-shifted photoluminescence peak at room temperature, upon cooling, multiple higher energy peaks appear in the photoluminescence (PL) spectra, indicating that the alloys contain complex compositional inhomogeneities. Two types of alloy fluctuations, determined by the growth conditions, have been identified that modulate the optoelectronic properties of AlGaN by changing the spatial localization of excitons, thereby altering their stability. We identified that growth under stoichiometric conditions leads to compositional inhomogeneities that play a detrimental role in the operation of MSM photodetectors, which reduces the sharpness of the sensitivity edge, while growth under excess metal conditions enhances it.
Two-dimensional analysis of coupled heat and moisture transport in masonry structures
NASA Astrophysics Data System (ADS)
Krejčí, Tomáš
2016-06-01
Reconstruction and maintenance of historical buildings and bridges require good knowledge of temperature and moisture distribution. Sharp changes in the temperature and moisture can lead to damage. This paper describes analysis of coupled heat and moisture transfer in masonry based on two-level approach. Macro-scale level describes the whole structure while meso-scale level takes into account detailed composition of the masonry. The two-level approach is very computationally demanding and it was implemented in parallel. The two-level approach was used in analysis of temperature and moisture distribution in Charles bridge in Prague, Czech Republic.
Correlation between temperature variations of static and dynamic properties in glass-forming liquids
Voylov, D. N.; Griffin, P. J.; Mercado, B.; ...
2016-12-29
In this detailed analysis of the static structure factor S(Q) in several glass-forming liquids we show that the temperature variations of the width of the main diffraction peak Q(T ) correlate with the fragility of these liquids. Our observation suggests a direct connection between rather subtle structural changes and sharp slowing down of structural relaxation in glass-forming liquids. We also show that this observation can be rationalized using the Adam-Gibbs approach, through a connection between temperature variations of structural correlation length, lc 2 /Q, and the size of cooperatively rearranging regions.
Intrinsic Tunneling in Phase Separated Manganites
NASA Astrophysics Data System (ADS)
Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.
2009-02-01
We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.
Metal-Insulator Transition in W-doped VO2 Nanowires
NASA Astrophysics Data System (ADS)
Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao
2010-03-01
We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.
TIME-DEPENDENT, COMPOSITIONALLY DRIVEN CONVECTION IN THE OCEANS OF ACCRETING NEUTRON STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Zach; Cumming, Andrew, E-mail: zmedin@lanl.gov, E-mail: cumming@physics.mcgill.ca
2015-03-20
We discuss the effect of convection driven by chemical separation at the ocean-crust boundary of accreting neutron stars. We extend the steady-state results of Medin and Cumming to transient accretors, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layersmore » hot. We find that this leads to a sharp drop in surface emission at around a week followed by a gradual recovery as cooling becomes dominated by the crust. Such a dip should be observable in the light curves of these neutron star transients, if enough data is taken at a few days to a month after the end of accretion. If such a dip is definitively observed, it will provide strong constraints on the chemical composition of the ocean and outer crust.« less
High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals
Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...
2016-01-01
Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less
Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent.
Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A; Banu, Naheed
2015-01-01
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voylov, D. N.; Griffin, P. J.; Mercado, B.
In this detailed analysis of the static structure factor S(Q) in several glass-forming liquids we show that the temperature variations of the width of the main diffraction peak Q(T ) correlate with the fragility of these liquids. Our observation suggests a direct connection between rather subtle structural changes and sharp slowing down of structural relaxation in glass-forming liquids. We also show that this observation can be rationalized using the Adam-Gibbs approach, through a connection between temperature variations of structural correlation length, lc 2 /Q, and the size of cooperatively rearranging regions.
Experimental evidence for flux-lattice melting. [in high-Tc superconductors
NASA Technical Reports Server (NTRS)
Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.
1991-01-01
A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.
Orographic Flow over an Active Volcano
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.
Phase transition in lithium ammonium sulphate doped with cesium metal ions
NASA Astrophysics Data System (ADS)
Gaafar, M.; Kassem, M. E.; Kandil, S. H.
2000-07-01
Effects of doped cesium (C s+) metal ions (with different molar ratios n) on the phase transition of lithium ammonium sulphate LiNH 4SO 4 system have been studied by measuring the specific heat Cp( T) of the doped systems in the temperature range from 400 to 480 K. The study shows a peculiar phase transition of the pure system ( n=0) characterized by double distinct peaks, changed to a single sharp and narrow one as a result of the doping process. The measurements exhibit different effects of enhanced molar ratios of dopants on the phase transition behaviour of this system. At low dopant content ( n≤3%), the excess specific heat (Δ Cp) max at the transition temperature T1 decreases till a minimum value at n=0.8%, then it increases gradually. In this case, Δ Cp( T) behaviour is varied quantitatively and not modified. Enhanced dopant content ( n>3%) has a pronounced effect on the critical behaviour, which is significantly changed and considerably modified relative to the pure system. In addition, broadening of the critical temperature region, and decrease of (Δ Cp) max associated with changes of the Landau expansion coefficients are obtained and discussed. The study deals with the contribution of the thermally excited dipoles to the specific heat in the ferroelectric region and shows that their energy depends on doping.
Kurosawa, Masaru; Itoh, Tetsuji; Kodera, Yoh; Matsushima, Ayako; Hiroto, Misao; Nishimura, Hiroyuki; Inada, Yuji
2002-01-01
Hemin (Fe(3+)) was adsorbed onto synthetic smectite (clay mineral) intercalated with a quaternary alkenylammonium compound, dioleyldimethylammonium chloride (DOA), to form a hemin-smectite-DOA conjugate. The hemin-smectite-DOA conjugate was soluble in organic solvents such as benzene and toluene to form a transparent colloidal solution with a light yellow color. Its absorption spectrum in benzene showed two bands, 600 and 568 nm, in the visible region and a sharp Soret band at 400 nm with the molar extinction coefficient of 7.5 x 10(4) M(-1) cm(-1). The formation of the conjugate of smectite and DOA was confirmed by X-ray diffraction analysis: the basal spacing, d(001), of hemin-smectite-DOA conjugate was 19 A which is an expansion of the interlayer space by 5 A based upon the basal spacing of smectite of 14 A. Hemin-smectite-DOA conjugate catalyzed the peroxidase-like reaction in organic solvents using benzoyl peroxide as the hydrogen acceptor and leucocrystal violet as the hydrogen donor. The temperature-dependent peroxidase-like activity of the conjugate was compared with peroxidase activity of horseradish peroxidase. The hemin-smectite-DOA conjugate exhibited higher activity as the temperature was increased from 30 to 70 degrees C, while horseradish peroxidase activity was reduced as the temperature was increased.
Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films
NASA Astrophysics Data System (ADS)
Liu, X. H.; Liu, W.; Zhang, Z. D.
2017-09-01
We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature (TV), of high-quality epitaxial Fe3O4 thin films grown on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We observed rapid change of magnetization, coercivity, and remanence ratio at TV, which are consistent with the behaviors of resistivity versus temperature [ρ (T )] curves for the different thin films. In particular, we found quite different magnetic behaviors for the thin films on MgO from those on MAO and STO, in which the domain size and the strain state play very important roles. The coercivity is mainly determined by the domain size but the demagnetization process is mainly dependent on the strain state. Furthermore, we observed a reversal of remanence ratio at TV with thickness for the thin films grown on MgO: from a rapid enhancement for 40-nm- to a sharp drop for 200-nm-thick film, and the critical thickness is about 80 nm. Finally, we found an obvious hysteretic loop of coercivity (or remanence ratio) with temperature around TV, corresponding to the hysteretic loop of the ρ (T ) curve, in Fe3O4 thin film grown on MgO.
NASA Astrophysics Data System (ADS)
Rostamnejadi, Ali; Daneshvar, Meysam
2018-03-01
In this paper, we have studied the effects of structural parameters and temperature on the emissivity of a square array of cylindrical nano/microcavities on tungsten slab by finite difference time domain method. It has been shown that the physical nature of the emissivity enhancement depends on the structural parameters of the nano/microcavities. In the case of narrow and shallow nanocavities with radius r ≤ 150 nm and depth d ≤ 150 nm; the emissivity has the same behavior as that of flat tungsten. Thermally excited surface plasmon polaritons cause a sharp peak in the emissivity of nanocavities with 150 ≤ d ≤ 250 nm and 150 ≤ r ≤ 350 nm at wavelength in the order of periodicity, λ a. In the case of wide and deep microcavities with r ≥ 350 nm and d ≥ 250 nm; there are anomalous peaks in the emissivity which are well matched with the modified resonant wavelengths of a microcavity. At wavelengths shorter than periodicity, the Bragg diffraction from the surface of periodic microcavities reduces the emissivity. The obtained results show that to have a favorable selective thermal emitter from 2D W nano/microcavities with emission efficiency more than 90%, the periodicity should be as small as possible, the cavity depth should be large enough and its radius should be selected according to the working temperature.
REACTIONS OF BERYLLIUM IN OXIDIZING ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, P.E.; Boes, D.J.
1964-05-01
To evaluate the potential health hazard of beryllium under certain circumstances, a study was made of the interaction of metallic beryllium with oxidizing environments. This study consisted of two parts. Beryllium was subjected to the action of hydrocarbon/hydrogen/oxygen flames at temperatures below and above the melting point. A determination was made of the amount of contamination by the oxide of the downstream flue gases. The experiments indicated that the oxidation rates and the contamination are relatively low below the melting point of beryllium (1283 deg C). Above this temperature, however, it was found that the molten metal burned rapidly whenmore » unprotected by an oxide layer. This caused a sharp increase in both rate of oxidation and in downstream contamination. The behavior of beryllium when surrounded by water substance was investigated. The experimental work was divided into two phases involving reaction in liquid water and in steam. In general, it was found that the oxide layer formed was at first tightly adherent and later became thick and porous. The time between these two conditions depended on temperature, decreasing sharply as the melting point was approached. Upon melting, the oxide layer tended to act as a crucible containing the liquid metal. Under suitable conditions, the liquid would break out of its cage and oxidize very rapidly. When this occurred, the surrounding steam was slightly contaminated with the oxide. (auth)« less
Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network
NASA Astrophysics Data System (ADS)
Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.
2017-02-01
Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.
Hsu, Chun-Chun; Lin, Ruei-Lung; Lin, You Shuei; Lee, Lu-Yuan
2013-09-01
This study was carried out to determine the effect of allergic inflammation on the airway response to increasing airway temperature. Our results showed the following: 1) In Brown-Norway rats actively sensitized by ovalbumin (Ova), isocapnic hyperventilation with humidified warm air (HWA) for 2 min raised tracheal temperature (Ttr) from 33.4 ± 0.6°C to 40.6 ± 0.1°C, which induced an immediate and sustained (>10 min) increase in total pulmonary resistance (Rl) from 0.128 ± 0.004 to 0.212 ± 0.013 cmH2O·ml(-1)·s (n = 6, P < 0.01). In sharp contrast, the HWA challenge caused the same increase in Ttr but did not generate any increase in Rl in control rats. 2) The increase in Rl in sensitized rats was reproducible when the same HWA challenge was repeated 60-90 min later. 3) This bronchoconstrictive effect was temperature dependent: a slightly smaller increase in peak Ttr (39.6 ± 0.2°C) generated a significant but smaller increase in Rl in sensitized rats. 4) The HWA-induced bronchoconstriction was not generated by the humidity delivered by the HWA challenge alone, because the same water content delivered by saline aerosol at room temperature had no effect. 5) The HWA-evoked increase in Rl in sensitized rats was not blocked by atropine but was completely prevented by pretreatment either with a combination of neurokinin (NK)-1 and NK-2 antagonists or with formoterol, a β2 agonist, before the HWA challenge. This study showed that increasing airway temperature evoked a pronounced and reversible increase in airway resistance in sensitized rats and that tachykinins released from the vagal bronchopulmonary C-fiber endings were primarily responsible.
Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.
Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg
2017-05-02
We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.
The split in the ancient cold front in the Perseus cluster
NASA Astrophysics Data System (ADS)
Walker, Stephen A.; ZuHone, John; Fabian, Andy; Sanders, Jeremy
2018-04-01
Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around 5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.
Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper
NASA Astrophysics Data System (ADS)
Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.
2018-04-01
AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.
Remote Raman Spectroscopy of Minerals at Elevated Temperature Relevant to Venus Exploration
NASA Technical Reports Server (NTRS)
Sharma, Shiv K.; Misra, Anupam K.; Singh, Upendra N.
2008-01-01
We have used a remote time-resolved telescopic Raman system equipped with 532 nm pulsed laser excitation and a gated intensified CCD (ICCD) detector for measuring Raman spectra of a number of minerals at high temperature to 970 K. Remote Raman measurements were made with samples at 9-meter in side a high-temperature furnace by gating the ICCD detector with 2 micro-sec gate to minimize interference from blackbody emission from mineral surfaces at high temperature as well as interference from ambient light. A comparison of Raman spectra of gypsum (CaSO4.2H2O), dolomite (CaMg(CO3)2), and olivine (Mg2Fe2-xSiO4), as a function of temperature shows that the Raman lines remains sharp and well defined even in the high-temperature spectra. In the case of gypsum, Raman spectral fingerprints of CaSO4.H2O at 518 K were observed due to dehydration of gypsum. In the case of dolomite, partial mineral dissociation was observed at 973 K at ambient pressure indicating that some of the dolomite might survive on Venus surface that is at approximately 750 K and 92 atmospheric pressure. Time-resolved Raman spectra of low clino-enstatite (MgSiO3) measured at 75 mm from the sample in side the high-temperature furnace also show that the Raman lines remains sharp and well defined in the high temperature spectra. These high-temperature remote Raman spectra of minerals show that time-resolved Raman spectroscopy can be used as a potential tool for exploring Venus surface mineralogy at shorter (75 mm) and long (9 m) distances from the samples both during daytime and nighttime. The remote Raman system could also be used for measuring profiles of molecular species in the dense Venus atmosphere during descent as well as on the surface.
Epiphytic lichenosynusia under conditions of chemical pollution: Dose-effect dependencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailova, I.N.; Vorobeichik, E.L.
1995-11-01
The dose-effect dependencies, which characterize response of the epiphytic lichenosynusia of southern taiga in the Middle Urals to pollution by discharges of a copper-smelting plant, are substantially non-linear and, in most cases, have an S-shaped form. A transition from background to impact state is very sharp and begins when the background level of pollution is exceeded by 1.5 - 2.3 times.
Organic geochemistry of core samples from an ultradeep hot well (300°C, 7 km)
Price, Leigh C.
1982-01-01
Concepts prevelant among petroleum organic geochemists concerning the thermal fate of hydrocarbons, with subsequent graphite formation, and greenschist metamorphism, are in sharp contradiction to these data. Conventional concepts of the distribution of heavy hydrocarbons with increasing temperature and depth apparently require further review and revision.
NASA Astrophysics Data System (ADS)
Vasilevskiy, D.; Keshavarz, M. K.; Simard, J.-M.; Masut, R. A.; Turenne, S.; Snyder, G. J.
2018-06-01
Some materials such as Cu2-xSe, Cu1.97Ag0.03Se, and SnSe have attracted attention by demonstrating a significant enhancement of their thermoelectric performance, which is associated with a phase transition. This phenomenon, observed in a limited temperature ( T) interval, results in sharp changes of the Seebeck coefficient ( S), the electrical resistivity ( ρ), and the thermal conductivity ( κ), which may render the correct evaluation of the dimensionless figure of merit (ZT) difficult. We report the thermoelectric properties of a polycrystalline Cu2-xSe sample which is known to undergo a phase transition near 410 K, containing a mixture of α- and β-phases at room temperature, as determined by x-ray diffraction measurements. We have used a Harman-based setup (TEMTE Inc.), which assures the direct measurement of ZT at all temperatures, including the phase transition region. This approach ensures that κ( T) is determined under steady-state conditions at any given temperature, including points arbitrarily close to the transition temperature which cannot be guaranteed by previously used techniques such as laser flash. We have observed a sharp maximum for κ( T) near 410 K, similar to the reported specific heat variation, with a ZT peak value of 0.2 at 400 K. The expected gain in ZT related to the phase transition is reduced because the increase in S is counterbalanced by the increase in κ( T). Thus, our detailed assessment of the temperature variation of the individual thermoelectric properties accurately evaluates the performance enhancement associated to a structural phase transition and helps to elucidate this complex phenomenon.
Primordial power spectrum features and consequences
NASA Astrophysics Data System (ADS)
Goswami, G.
2014-03-01
The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we have attempted to calculate quantum radiative corrections to the Fourier transform of the 2-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we have considered the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes through a dip in power at a certain scale. The mode functions of the field (whose power spectrum is to be evaluated) are chosen such that they undergo the kind of dynamics that leads to a sharp dip in the tree level power spectrum. Next, we have considered the situation in which this field has quartic self interactions, and found one loop correction in a suitably chosen renormalization scheme. Thus, we have attempted to answer the following key question in the context of this toy model (which is as important in the realistic case): In the chosen renormalization scheme, can quantum radiative corrections be enhanced relative to tree-level power spectrum at scales, at which sharp dips appear in the tree-level spectrum?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr; Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr
2016-05-21
This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, threemore » distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.« less
Solar Array at Very High Temperatures: Ground Tests
NASA Technical Reports Server (NTRS)
Vayner, Boris
2016-01-01
Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees Centigrade. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over the indium tin oxide (ITO) layer.
NASA Astrophysics Data System (ADS)
Vo, Truong Quoc; Barisik, Murat; Kim, BoHung
2016-05-01
This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M.; Zhao, W.; Tanioka, K.
Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less
The XMM-Newton View of Stellar Coronae: High-Resolution X-Ray Spectroscopy of Capella
NASA Technical Reports Server (NTRS)
Audard, M.; Behar, E.; Guedel, M.; Raassen, A. J. J.; Porquet, D.; Mewe, R.; Foley, C. A.; Bromage, G. E.
2000-01-01
We present the high-resolution RGS spectrum of the bright stellar binary Capella observed by the XMM-Newton satellite. A multi-thermal approach has been applied to fit the data and derive elemental abundances. The differential emission measure distribution is reconstructed using a Chebychev polynomial fit. The DEM shape is found to display a sharp peak around 7 MK, consistent with previous EUVE and ASCA results. A small but significant amount of emission measure is required around 1.8 MK in order to explain the O VII He-like triplet and the C VI Ly(alpha) line. Using the sensitivity to temperature of dielectronic recombination lines from O VI around 22 A, we confirm that the cool plasma temperature needs to be higher than 1.2 MK. In the approximation of a cool plasma described by one temperature, we used line ratios from the forbidden, intercombination, and resonance lines of the O VII triplet and derived an average density for the cool coronal plasma at the low density limit. A tentative study of line ratios from the M XI triplet gives an average temperature close to the sharp peak in emission measure and an average density of the order of 10(exp 12)cu cm, three orders of magnitude higher than for O VII. Implications for the coronal physics of Capella are discussed. We complement this paper with a discussion of the importance of the atomic code uncertainties on the spectral fitting procedure.
Holography for Heavy Ions Collisions at LHC and NICA
NASA Astrophysics Data System (ADS)
Aref'eva, Irina
2017-12-01
This is a contribution for the Proceedings of 5th International Conference on New Frontiers in Physics (ICNFP 2016), held at Crete, 6-14 July 2016. Our goal is to obtain phenomenologically reliable insights for the physics of the quark-gluon plasma (QGP) from the holography. I briefly review how in the holographical setup one can describe the QGP formation in heavy ion collisions and how to get quantitatively the main characteristics of the QGP formation - the total multiplicity and the thermalization time. To fit the experimental form of dependence of total multiplicity on energy, obtained at LHC, we have to deal with a special anisotropic holographic model, related with the Lifshitz-type background. Our conjecture is that this Lifshitz-type background with non-zero chemical potential can be used to describe future data expected from NICA. In particular, we present the results of calculations the holographic confinement/deconfinement phase transition in the (µ, T) (chemical potential, temperature) plane in this anizotropic background and show the dependence of the transition line on the orientation of the quark pair. This dependence leads to a non-sharp character of physical confinement/deconfinement phase in the (µ, T)-plane. We use the bottom-up soft wall approach incorporating quark confinement deforming factor and vector field providing the non-zero chemical potential. In this model we also estimate the holographic photon production.
A reversible transition in liquid Bi under pressure.
Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y
2018-01-21
The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.
Negative to positive magnetoresistance and magnetocaloric effect in Pr 0.6Er 0.4Al 2
Pathak, Arjun K.; Gschneidner, Jr., K. A.; Pecharsky, V. K.
2014-10-13
We report on the magnetic, magnetocaloric and magnetotransport properties of Pr 0.6Er 0.4Al 2. The title compound exhibits a large positive magnetoresistance (MR) for H ≥ 40 kOe and a small but non negligible negative MR for H ≤ 30 kOe. The maximum positive MR reaches 13% at H = 80 kOe. The magnetic entropy and adiabatic temperature changes as functions of temperature each show two anomalies: a broad dome-like maximum below 20 K and a relatively sharp peak at higher temperature. As a result, observed behaviors are unique among other binary and mixed lanthanide compounds.
Universal aspects of adhesion and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Smith, John R.; Ferrante, John
1990-01-01
Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.
The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...
Detection of blunt, sharp force and gunshot lesions on burnt remains: a cautionary note.
Poppa, Pasquale; Porta, Davide; Gibelli, Daniele; Mazzucchi, Alessandra; Brandone, Alberto; Grandi, Marco; Cattaneo, Cristina
2011-09-01
The study of skin and bone lesions may give information concerning type and manner of production, but in burnt material modification of tissues by the high temperatures may considerably change the morphological characteristics of the lesions. This study aims at pointing out the effects of burning head of pigs with several types of lesions (blunt trauma, sharp force, and gunshot lesions) on soft tissues and bones, both from a morphological and chemical point of view. Results show that the charring process does not completely destroy signs of lesions on bones, which can often be recovered by cleaning bone surface from charred soft-tissue residues. Furthermore, neutron activation analysis test proved that antimony may be detectable also on gunshot entry wounds at the final stages of charring process.
Plasma etching of superconducting Niobium tips for scanning tunneling microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roychowdhury, A.; Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742; Dana, R.
We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100),more » and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.« less
Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers
NASA Astrophysics Data System (ADS)
Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu
2018-05-01
We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.
Liu, Xiao; Wei, Weiqi; Wu, Shubin; Lei, Ming; Liu, Ying
2018-06-01
In this study, a novel and facile approach of conversion monosaccharides (glucose and xylose) to oligosaccharides (Cello-oligosaccharides and Xylo-oligosaccharides) was demonstrated. The approach did not introduce any chemical reagent and the preparation process could be environmentally friendly. Identification and quantification by ion chromatography (IC) and high performance liquid chromatography (HPLC) showed that the yields of COS and XOS reached to 44.62% (38 s) and 47.09% (30 s) respectively at 500 °C reaction temperature coupled with sharp-quenching method. Structural characterization indicated that such oligosaccharides showed a degree of polymerization (DP) with 2-6, and the units mainly linked by β-(1 → 4)-glycosidic bond. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.
2012-01-01
The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal variations, we find that between about 40 and 65 km, the ozone amounts and temperatures are mostly negatively correlated or neutral, while below approx. 40 km they are mostly positively correlated or neutral. The correlations are less systematic and less robust than for correlations of the mean. At altitudes above approx.65 km, the correlations are more complex, and depend on the tidal temperature variations. For the diurnal case, consideration needs to be given to transport by thermal tides and to the efficacy of response times of ozone concentrations and temperature to each other.
Synthesis of ZnSnO{sub 3} nanostructure by sol gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Para, Touseef Ahmad; Reshi, Hilal Ahmad; Shelke, Vilas, E-mail: drshelke@gmail.com
2016-05-23
Zinc Stannate (ZST) with composition ZnSnO{sub 3} is known for high electron mobility, optical, piezoelectric and charge storage properties. ZST crystalizes in different lattice structures, which allows a wide range of tunablity. We demonstrate successful synthesis of ZnSnO{sub 3} nanomaterial by sol-gel method. ZnSnO{sub 3} nanomaterials were calcined and sintered at different temperatures. Powder X-ray diffraction confirmed the single phase of the nanomaterial with rhombohedral R-3 space group. The Rietveld refinement of diffraction pattern yielded lattice parameter values a=5.26Å, c=14.09Å. Raman spectroscopy revealed higher activity towards higher wavenumbers. Raman shift around 530cm{sup −1} was found to be highly structure dependent,more » most probably due to anharmonic atomic vibrations in ZnO{sub 6}/SnO{sub 6} octahedra around center of mass. Sharp Peak around 650cm{sup −1} is characteristic of ZnSnO{sub 3} molecule.« less
Luminescence and electrification in a flow of dielectric liquids through narrow channels
NASA Astrophysics Data System (ADS)
Margulis, M. A.; Pil'Gunov, V. N.
2009-08-01
Blue-violet luminescence was observed in a mineral oil, which appeared under hydrodynamic cavitation conditions in a channel orifice 1 mm in diameter in a transparent throttling device at inlet pressures higher than 2 MPa. The appearance of electric pulses when a dielectric liquid flew through a thin channel orifice was observed much earlier than luminescence arose. A device for continuously scanning electric potential along a flow without disturbing it was developed. According to the oscillograms obtained, the electric signal was high-frequency, could not be synchronized, and its separate peaks reached 1000 mV. Light emission flux decreased as the temperature of the liquid increased to 30-35°C and inlet pressure grew. The appearance of luminescence and its intensity depended on the sharpness of the entrance edge of the throttle. Studies of hydrodynamic luminescence revealed hysteresis of light emission. A mechanism of localized light emission based on an important role played by electrokinetic phenomena was suggested.
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Garcia, Lucia; Lawes, Gavin; Nadgorny, Boris
2014-03-01
We have investigated the large dielectric enhancement at the percolation threshold by introducing metallic RuO2 grains into a matrix of CaCu3Ti4O12 (CCTO). The intrinsic response of the pure CCTO samples prepared by solid state and sol-gel processes results in a dielectric constant on the order of 104 and 103 respectively with low loss. Scanning electron microscopy and energy dispersive x-ray spectroscopy indicate that a difference in the thickness of the copper oxide enriched grain boundary is the main reason for the different dielectric properties between these two samples. Introducing RuO2 metallic fillers in these CCTO samples yields a sharp increase of the dielectric constant at percolation threshold fc, by a factor of 6 and 3 respectively. The temperature dependence of the dielectric constant shows that the dipolar relaxation plays an important role in enhancing dielectric constant in composite systems.
Superconductivity in the Narrow Gap Semiconductor RbBi 11/3Te 6
Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; ...
2016-10-16
Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less
Driven Phases of Quantum Matter
NASA Astrophysics Data System (ADS)
Khemani, Vedika; von Keyserlingk, Curt; Lazarides, Achilleas; Moessner, Roderich; Sondhi, Shivaji
Clean and interacting periodically driven quantum systems are believed to exhibit a single, trivial ``infinite-temperature'' Floquet-ergodic phase. By contrast, I will show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases with spontaneously broken symmetries delineated by sharp transitions. Some of these are analogs of equilibrium states, while others are genuinely new to the Floquet setting. I will show that a subset of these novel phases are absolutely stableto all weak local deformations of the underlying Floquet drives, and spontaneously break Hamiltonian dependent emergent symmetries. Strikingly, they simultaneously also break the underlying time-translation symmetry of the Floquet drive and the order parameter exhibits oscillations at multiples of the fundamental period. This ``time-crystallinity'' goes hand in hand with spatial symmetry breaking and, altogether, these phases exhibit a novel form of simultaneous long-range order in space and time. I will describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.
Semiconducting molecular crystals: Bulk in-gap states modified by structural and chemical defects
NASA Astrophysics Data System (ADS)
Haas, S.; Krellner, C.; Goldmann, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B.
2007-03-01
Charge transport in organic molecular crystals is strongly influenced by the density of localized in-gap states (traps). Thus, a profound knowledge of the defect states' origin is essential. Temperature-dependent space-charge limited current (TD-SCLC) spectroscopy was used as a powerful tool to quantitatively study the density of states (DOS) in high-quality rubrene and pentacene single crystals. In particular, changes of the DOS due to intentionally induced chemical and structural defects were monitored. For instance, the controlled exposure of pentacene and rubrene to x-ray radiation results in a broad over-all increase of the DOS. Namely, the ionizing radiation induces a variety of both chemical and structural defects. On the other hand, exposure of rubrene to UV-excited oxygen is reflected in a sharp peak in the DOS, whereas in a similar experiment with pentacene oxygen acts as a dopant, and possible defects are metastable on the time-scale of the measurement, thus leaving the extracted DOS virtually unchanged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Wei; Li Dan; Reznik, Alla
2005-09-15
An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less
Injury to plants from rapidly dropping temperature in Washington and northern Idaho
R. Daubenmire
1957-01-01
In nearly 70 years of recorded weather history, Washington and northern Idaho have on three occasions experienced exceptionally sharp freezes in late autumn or early winter that caused considerable damage to plants. A brief review of these events is warranted since the records are consistent enough to permit the drawing of significant conclusions.
Stages in water loss in fruit and vegetables
NASA Astrophysics Data System (ADS)
de Ita, A. Antonio; Flores, Georgina
2017-01-01
We analyzes the different stages in the dehydration of fruits and vegetables. It was found to vary from a lettuce: as a sharp drop at low temperature, (arround 150 °C) to five stages in total, with a loss almost continuous to about 300 ° C, such as grapefruit, papaya and fig. The first section in your paper.
Results of the Mariner 6 and 7 Mars occultation experiments
NASA Technical Reports Server (NTRS)
Hogan, J. S.; Stewart, R. W.; Rasool, S. I.; Russell, L. H.
1972-01-01
Final profiles of temperature, pressure, and electron density on Mars were obtained for the Mariner 6 and 7 entry and exit cases, and results are presented for both the lower atmosphere and ionosphere. The results of an analysis of the systematic and formal errors introduced at each stage of the data-reduction process are also included. At all four occulation points, the lapse rate of temperature was subdadiabatic up to altitudes in excess of 20 km. A pronounced temperature inversion was present above the surface at the Mariner 6 exit point. All four profiles exhibit a sharp, superadiabatic drop in temperature at high altitudes, with temperatures falling below the frost point of CO2. These results give a strong indication of frozen CO2 in the middle atmosphere of Mars.
Long-term stability of Cu surface nanotips
NASA Astrophysics Data System (ADS)
Jansson, V.; Baibuz, E.; Djurabekova, F.
2016-07-01
Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the < 110> crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 {{μ }}{{s}} at room temperature. Moreover, the nanotips built up along the < 110> crystallographic directions were found to be significantly more stable than those oriented in the < 100> or < 111> crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
NASA Astrophysics Data System (ADS)
Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther
2017-06-01
This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hong, Daesun; Kim, Hyungsu; Kim, Byungsoo; Chang, Wenji V.
2016-11-01
This study demonstrates the unique capability of a shear rotational rheometer for studying the thermally induced crystallization (TIC) of uncrosslinked and unfilled cis-1,4-polyisoprene rubber (IR). At temperatures below -15°C, a crystallization phenomenon (TIC) occurred in a quasi-unstrained IR specimen. Such a distinguished phenomenon was determined from the steady and sharp changes of both tanδ and the modulus. The changing ratio of those parameters with time characterizes the crystallization rate, on which the effects of the compressive force magnitude, testing repeat, and temperature are studied. The crystallization rate was shown to depend less on the magnitude of normal force, but depended largely on the specimen's previous testing history. A specimen not fully recovered from the previous crystallized memory showed a faster rate than before. More cooling to -25°C increased the crystallization rate, but the slow crystallization helped increase the final crystallinity. The crystallization rate was further interpreted by the Avrami equation to propose the crystal structure, whose morphological feature was shown in agreement with the reported TEM and X-ray results. However, our study found a thermo-mechanically aged specimen showed a very different rheological behavior at the late stage of crystallization suggesting the crystalline metamorphosis. But this unexpected behavior turned out to be unrecoverable indicating a property failure due to material aging more plausibly. All these findings were successfully monitored by the rheometer. It is expected the well-organized rheometric measurements can sufficiently supplement some instrumental limitations of the traditional crystallization monitoring analyzers on soft materials.
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Singh, J.; Wolfe, D. E.
2004-01-01
Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.
NASA Astrophysics Data System (ADS)
Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.
2017-08-01
The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.
SHARK: Flight Results of an UHTC-Based Nose Related to USV Hot Structures
NASA Astrophysics Data System (ADS)
Gardi, R.; Del Vecchio, A.; Russo, G.; Marino, G.
2011-05-01
In the frame of USV program, CIRA is developing different projects aimed to develop new technologies for the future hypersonic vehicles. One of these technological projects is Sharp Hot Structures (SHS) and it is aimed to the realization of innovative thermo- structures, based on innovative material solution, able to sustain the heat loads generated during the hypersonic flight. Because the slender configuration of the USV program vehicles, SHS is focused on sharp geometries, like sharp leading edges and sharp nose cones. CIRA, for many years, is investigating the effectiveness of ultra high temperature ceramic materials (UHTC) by means of numerical simulations, ground testing in plasma torch and in SCIROCCO, the 70MW plasma wind tunnel (PWT) facility at CIRA. More recently CIRA is moving the experimentation in real flight environment, boarding UHTC components on the re-entering space capsules EXPERT and SHARK. The former is a European experimental test bed boarding a couple of UHTC fins, already qualified and integrated on the vehicle. SHARK is a 20kg capsule launched on March the 26th 2010 from Kiruna with the European sounding rocker Maxus-8. During the ascent parabola, the capsule was released and successfully executed its 15 minutes ballistic flight and then re-entered in the atmosphere from a 700km altitude. The capsule has been recovered on July the 1st and all data have been acquired. All the instrumentation worked nicely and the data acquisition continued even after the landing, confirming the robustness of the design.
NASA Technical Reports Server (NTRS)
Vroman, G. A.
1975-01-01
The capability of shallow-notched, round-bar, tensile specimens for screening critical environments as they affect the material fracture properties of the space shuttle main engine was tested and analyzed. Specimens containing a 0.050-inch-deep circumferential sharp notch were cyclically loaded in a 5000-psi hydrogen environment at temperatures of +70 and -15 F. Replication of test results and a marked change in cyclic life because of temperature variation demonstrated the validity of the specimen type to be utilized for screening tests.
Effect of processing parameters on the characteristics of high-Tc superconductor YBa2Cu3Oy
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1988-01-01
SEM, thermogravimetric analysis, powder X-ray diffraction,and measurements of electrical resistivity and magnetic susceptibility, are presently used to characterize the influence of sintering temperature, sintering and annealing atmospheres, and quench-rate on the properties of the YBa2Cu3Oy superconducting oxide. It is established that annealing in oxygen, together with slow cooling rates, are required for preparation of high-Tc superconductors with sharp transitions; rapid quenching from high temperature does not yield good superconductors, due to low oxygen content.
Turbulent boundary-layer velocity profiles on a nonadiabatic at Mach number 6.5
NASA Technical Reports Server (NTRS)
Keener, E. R.; Hopkins, E. J.
1972-01-01
Velocity profiles were obtained from pitot-pressure and total-temperature measurements within a turbulent boundary layer on a large sharp-edged flat plate. Momentum-thickness Reynolds number ranged from 2590 to 8860 and wall-to-adiabatic-wall temperature ratios ranged from 0.3 to 0.5. Measurements were made both with and without boundary layer trips. Five methods are evaluated for correlating the measured velocity profiles with the incompressible law-of-the-wall and the velocity defect law. The mixing-length generalization of Van Driest gives the best correlation.
High resolution study of magnetic ordering at absolute zero.
Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G
2004-05-07
High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.
The dissociation of liquid silica at high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, D; Boehly, T; Eggert, J
2005-11-17
Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m andmore » 24-600 W/m.K respectively.« less
Temperature based Restricted Boltzmann Machines
NASA Astrophysics Data System (ADS)
Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping
2016-01-01
Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.
Atomistic minimal model for estimating profile of electrodeposited nanopatterns
NASA Astrophysics Data System (ADS)
Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali
2018-06-01
We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.
The Woodstock of Physics: The Hyped Future Then (1987)...The Actual Situation Now (2017)
NASA Astrophysics Data System (ADS)
Grant, Paul
In late January, 1986, Georg Bednorz stayed after work at the IBM Zurich Research Laboratory to measure the temperature dependence of the conductivity of a copper oxide perovskite whose preparation had recently been published by the CNRS group at the University of Caen. He had recognized that the Caen material composition matched that of the ``Jahn-Teller-Bipolaron'' high-temperature superconductivity pairing model speculated previously by his IBM mentor, Alex Mueller. One of his samples revealed trace superconductivity near 20-25 K, a stupendous result at the time1. In the late fall of 1986, Paul Chu and his collaborators at U. Huston and Alabama detected a sharp transition at 91 K in the same perovskite family. Subsequently, confirmation pandemonium ensued throughout the planet, resulting in the gathering termed ``The Woodstock of Physics'' convened at the New York Hilton the second week of March, 1987. Would HTSC thus embody the long sought ``energy deliverance of mankind?'' Not yet, despite obtaining materials reaching ambient pressure Tc's of 135 K, and after many successful demonstrations of power applications2 of these discoveries worldwide over the last three decades. Why not3 and when will its promise be fulfilled? That's the subject of this presentation.
NASA Astrophysics Data System (ADS)
Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.
2017-07-01
We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.
Structures and properties of alumina-based ceramic for reconstructive oncology
NASA Astrophysics Data System (ADS)
Grigoriev, M. V.; Kulkov, S. N.
2016-08-01
The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.
NASA Astrophysics Data System (ADS)
Sui, Mao; Li, Ming-Yu; Pandey, Puran; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon
2018-03-01
Owing to their tunable properties, Ag nanostructures have been widely adapted in various applications and the morphological control can determine their performance and effectiveness. In this work, we demonstrate the morphological and optical evolution of Ag nanostructures on GaN (0001) by the systematic control of deposition amount at two distinctive annealing temperatures. Based on the Volmer-Weber and coalescence growth models, the nanostructure growth commenced by the thermal solid-state-dewetting evolve in terms of size, density and configuration. At 450 °C, the round-dome shaped Ag nanoparticles (regime I), irregular Ag nano-mounds (regime II) and void-layer structures (regime III) are observed along with the gradually increased deposition amount. As a sharp distinction, the solid state dewetting process occur more radically at 700 °C and also, the Ag sublimation and the effect on the nanostructure formation are observed in a clear regime shift scaled by the deposition amount. Meanwhile, a strong dependency of reflectance spectra evolution on the Ag nanostructure morphology is witnessed for both sets. In particular, Ag dipolar resonance peaks are significantly red-shifted from VIS to NIR regions along with the nanostructure evolution. The reflectance, PL and Raman intensity variation are also observed and discussed based on the evolution of Ag nanostructures.
Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study
NASA Astrophysics Data System (ADS)
Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.
57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.
Causes of model dry and warm bias over central U.S. and impact on climate projections.
Lin, Yanluan; Dong, Wenhao; Zhang, Minghua; Xie, Yuanyu; Xue, Wei; Huang, Jianbin; Luo, Yong
2017-10-12
Climate models show a conspicuous summer warm and dry bias over the central United States. Using results from 19 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the precipitation deficit leading the warm bias over this region. The precipitation deficit is associated with the widespread failure of models in capturing strong rainfall events in summer over the central U.S. A robust linear relationship between the projected warming and the present-day warm bias enables us to empirically correct future temperature projections. By the end of the 21st century under the RCP8.5 scenario, the corrections substantially narrow the intermodel spread of the projections and reduce the projected temperature by 2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after this correction the projected precipitation is nearly neutral for all scenarios.Climate models repeatedly show a warm and dry bias over the central United States, but the origin of this bias remains unclear. Here the authors associate this bias to precipitation deficits in models and after applying a correction, projected precipitation in this region shows no significant changes.
Parametric study on the characteristics of a SDBD actuator with a serrated electrode
NASA Astrophysics Data System (ADS)
Gao, Guoqiang; Peng, Kaisheng; Dong, Lei; Wei, Wenfu; Wu, Guangning
2017-06-01
Active flow control based on surface dielectric barrier discharge (SDBD) has become a focus of research in recent years, due to its unique advantages and diverse potential applications. Compared with the conventional SDBD with straight electrodes, the serrated electrode-based SDBD has a great advantage due to its 3D flow topology. It is believed that the boundary layer separation of moving objects can be controlled more effectively with this new type of SDBD. In SDBD with a serrated electrode, the R (tip sharpness) and N (tip number per unit length) have a great influence on the discharge and induced airflow characteristics. In this paper, a parametric study of the characteristics of SDBD with a serrated electrode has been conducted with different ranges of R and N. Aspects of the power consumption, the steady medium temperature distribution, and the maximum induced airflow velocity have been investigated. The results indicate that there is a critical value of R and N where the maximum power consumption and induced airflow velocity are achieved. The uniformity of the steady temperature distribution of the medium surface is found to be more dependent on N. We found that the accelerating effects of the induced airflow can be evaluated with the Schlieren technique, which agree well with the results from the pitot tube.
Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles
NASA Astrophysics Data System (ADS)
Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.
2017-02-01
Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.
Magnetocaloric Effect in Layered Organic Conductor λ-(BETS)2FeCl4
NASA Astrophysics Data System (ADS)
Sugiura, Shiori; Shimada, Kazuo; Tajima, Naoya; Nishio, Yutaka; Terashima, Taichi; Isono, Takayuki; Kato, Reizo; Zhou, Biao; Uji, Shinya
2018-04-01
Magnetocaloric effect (MCE) and magnetic torque measurements have been carried out in the π-d system λ-(BETS)2FeCl4 [BETS = bis(ethylenedithio)tetraselenafulvalene], which shows an antiferromagnetic insulating (AFI) phase below ˜8.5 K. In the magnetic torque curve, a sharp structure at ˜1.2 T and a step at ˜10 T are observed at low temperatures, which are caused by the spin-flop (SF) transition and the transition from the AFI to paramagnetic metallic (PM) phase, respectively. The MCE, directly related to the magnetic entropy, shows a small sharp peak at the SF transition and a sharp dip at the AFI-PM transition. The overall feature above 3 K is qualitatively interpreted by a simple picture: antiferromagnetic (AF) π spins and paramagnetic 3d spins at the Fe sites. However, a broad dip in the MCE is additionally found at ˜5 T below ˜3 K, which is not explained by the above picture. The results are compared with those of κ-(BETS)2FeBr4, which shows an AF order of the 3d spins at the Fe sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Boos, R.
Our investigations of magneto-transport properties of La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} manganite thin films of reduced dimensions revealed dramatic changes in R(θ), the dependence of resistivity on the angle between the magnetic field direction and the current direction, and consequently in the anisotropic magneto-resistance. A regular oscillatory sin{sup 2}θ form of R(θ) is replaced by a very sharp rectangular-shaped ones when the dimensions of the system become comparable to the size of the intrinsic electronic domains. We discuss possible mechanisms that could be responsible for these changes.
Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Fuchuan; Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130; Peng, Bo
2014-09-08
We report Fano-like asymmetric resonances modulated by optical gain in a whispering-gallery-mode resonator fabricated from erbium-doped silica. A time-dependent gain profile leads to dynamically varying sharp asymmetric resonances with features similar to Fano resonances. Depending on the scan speed of the frequency of the probe laser and the pump-probe power ratio, transmission spectra of the active microcavity exhibit a resonance dip, a resonance peak, or a Fano-like resonance.
Evidence of strong ocean heating during glacial periods
NASA Astrophysics Data System (ADS)
Zimov, S. A.; Zimov, N.
2013-12-01
Numerous hypotheses have addressed glacial-interglacial climatic dynamics, but none of them explain the sharp 25C temperature increase in Greenland in the last deglaciation (Cuffey et al. 1995; Dahl-Jensen et al. 1998). These robust data were obtained through analyzing the temperature profile in the Greenland ice sheet where cold from the last glaciation is preserved in the depth of the glacial sheet. We suggest that during glaciations the ocean accumulated energy: interior ocean water heated up to ~20-30C and during deglaciation this energy is released. In the analogy with reconstructing the ice sheet temperature profiles, the most reliable proof of ocean interior warming during the last glaciation is the heat flux profiles in the bottom sediments. In the final reports based on temperature measurements conducted during the DSDP (Deep Sea Drilling Project) it is stated that heat flux in the bottom sediments doesn't vary with depth and consequently there were no substantial temperature changes in the ocean interior during the last glacial cycle, and heat flux on the surface of the ocean bottom is the geothermal heat flux (Erickson et al., 1975, Hyndman et al., 1987). However, we have critically investigated data in all initial reports of all deep sea drilling projects and have noticed that all temperature data show that heat flow decreases strongly with depth (a minimum of 40 mW/m2), i.e. most of the heat flux detected on the surface of the ocean floor is not the geothermal heat flux but remaining heat that bottom sediments release. Sharp shifts in heat flow are seen within boreholes at depths crossing gas hydrate bottom. All this means that during the last glacial period interior water temperature was on 25-30C degrees warmer. Conversely, in isolated seas heat flow in the sediments shows little change with depth.
Morphology dependent near-field response in atomistic plasmonic nanocavities.
Chen, Xing; Jensen, Lasse
2018-06-21
In this work we examine how the atomistic morphologies of plasmonic dimers control the near-field response by using an atomistic electrodynamics model. At large separations, the field enhancement in the junction follows a simple inverse power law as a function of the gap separation, which agrees with classical antenna theory. However, when the separations are smaller than 0.8 nm, the so-called quantum size regime, the field enhancement is screened and thus deviates from the simple power law. Our results show that the threshold distance for the deviation depends on the specific morphology of the junction. The near field in the junction can be localized to an area of less than 1 nm2 in the presence of an atomically sharp tip, but the separation distances leading to a large confinement of near field depend strongly on the specific atomistic configuration. More importantly, the highly confined fields lead to large field gradients particularly in a tip-to-surface junction, which indicates that such a plasmonic structure favors observing strong field gradient effects in near-field spectroscopy. We find that for atomically sharp tips the field gradient becomes significant and depends strongly on the local morphology of a tip. We expect our findings to be crucial for understanding the origin of high-resolution near-field spectroscopy and for manipulating optical cavities through atomic structures in the strongly coupled plasmonic systems.
Kobayashi, Riki; Yoshizawa, Hideki; Matsuda, Masaaki; ...
2015-05-25
In this paper, the Nd-moment order in the layered nickelate Nd 2-xSr xNiO 4 (x = 0.7) has been investigated by performing a neutron diffraction experiment using a single crystal sample. First, the checkerboard (CB)-type charge order was confirmed by observing the temperature dependence of the nuclear superlattice peak at Q=(5,0,0) between 1.9 and 300 K, which indicates that the transition temperature of the CB-type charge order is above 300 K. Magnetic superlattice peaks with the propagation vector k=(1-ε,0,1) appear below 67 K, and the value of ε was determined to be 0.455 in good agreement with previous studies. Themore » intensity of the magnetic superlattice peaks appearing below 67 K shows a sharp increase below ≈20 K. This behavior indicates that the Nd moments freeze under the influence of the Ni ordering. The CB-type antiferromagnetic (AFM) Ni order in the NiO 2 layers is stacked antiferromagnetically in the c-axis direction, while the Nd moments in the Nd/SrO 2 layers are coupled antiferromagnetically with the Ni moments. Finally, the Nd moments are parallel to the c-axis, while the Ni moments are canted towards the c-axis direction from the basal ab-plane at low temperatures where the Nd moments are well ordered.« less
Tsiliyannis, Christos Aristeides
2013-09-01
Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.
Precise Stabilization of the Optical Frequency of WGMRs
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir
2009-01-01
Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).
Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)
NASA Astrophysics Data System (ADS)
Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.
2018-04-01
We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.
NASA Astrophysics Data System (ADS)
Wang, Zhengliang; Yang, Zhiyu; Tan, Huiying; Brik, Mikhail G.; Zhou, Qiang; Chen, Guo; Liang, Hongbin
2017-10-01
Red-emitting phosphor plays a critical role in improving performance of the phosphor-converted white light-emitting diodes (pc-WLEDs). Herein, a red-emitting phosphor, Rb2TiF6:Mn4+, was synthesized via the ion exchange method under mild condition. The crystal structure and morphology were characterized by the powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The Rietveld refinements of Rb2TiF6:Mn4+ indicate that this sample is of single phase with hexagonal crystal structure. The as-prepared Rb2TiF6:Mn4+ has sharp red emissions with broad excitation band at ∼460 nm. The luminescent behavior of Mn4+ was discussed in detail. The temperature-dependent emission spectra of Rb2TiF6:Mn4+ indicate that this phosphor shares high thermal quenching resistance and excellent color stability. A series of WLEDs with tunable color rendering index and color temperature were fabricated by combining commercial Y3Al5O12:Ce3+ and Rb2TiF6:Mn4+ on blue GaN-LED chips. With the addition of Rb2TiF6:Mn4+, WLED with wide gamut was obtained with low color temperature (3123 K), high color rendering index (91.5) and high luminous efficacy (187.9 lm/W). These findings show this phosphor could be a promising commercial red phosphor in wide color-gamut WLEDs.
NASA Astrophysics Data System (ADS)
Jyothi, I.; Reddy, V. Rajagopal
2010-10-01
A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 10 18 cm -3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I- V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10 -6 Ω cm 2 after annealing at 900 °C for 1 min in a N 2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.
NASA Astrophysics Data System (ADS)
Kekalo, I. B.; Mogil'nikov, P. S.
2016-06-01
In this paper, we have studied the effects of the thermomagnetic treatment in a transverse magnetic field (TMaT⊥) on the permeability of the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 with such a low saturation magnetostriction ( λ s 10-7) that, in the ribbons of this alloy rolled into a toroid, a sharp longitudinal magnetic texture is observed ( K sq > 0.90). It has been revealed that the permeability μ4 ( H = 4 mOe, f = 1 kHz) as a function of the annealing temperature or time of holding at a temperature is described by a curve with a maximum. This maximum is observed at a coefficient of the squareness of the hysteresis loop K sq,m in the range of 0.2 ≤ K sq,m ≤ 0.4. The regimes of the TMaT have been determined that provide optimum values of the permeability μ4 (15000) without a loss of the ductile state of the ribbons of this alloy. Based on the example of an iron-based alloy of composition Fe57Co31Si2.9B9.1 with λs = 35 × 10-6, it has been shown that the formation of the hysteretic magnetic properties upon the TMaT⊥ depends substantially on the magnitude of the magnetostriction and the Curie temperature of the amorphous alloys.
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary
2006-01-01
This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.
Limnological and fishery studies on Lake Sharpe, a main-stem Missouri River reservoir
June, Fred C.; Beckman, L.G.; Elrod, J.H.; O'Bryan, G.K.; Vogel, D.A.
1987-01-01
Lake Sharpe, the most recent of six main-stem Missouri River reservoirs to be impounded, began to fill in November 1963 and became fully operational in July 1966. At full pool it is 137 km long, and has a surface area of 22,600 ha and a volume of 2.34 km". It is operated as a flow-through power generation system that reregulates discharges from upstream Lake Oahe. Major changes in the water-management regimen during 1966-75 were increased summer discharges beginning in 1969 and increased peaking operations beginning in 1973. Lake Sharpe had a relatively short aging process because it filled rapidly, the water level remained relatively stable, and the waterexchange rate was high. Consequently, most physical, chemical, and biological characteristics were remarkably uniform during 1966–75. The temperature regimen was largely governed by inflow from Lake Oahe. Although the water mass warmed during summer, thermal stratification was generally transient, limited to the lower reservoir, and more common during periods of relatively low discharge rates in 1966–68 than in later years. Variation in turbidity was striking; the midsection of the reservoir was generally most turbid. Chemical ion composition of the water tended to be uniform; observed differences were localized and associated with tributary inflows. Phytoplankton abundance reached its highest levels during 1970–75. Composition of the zooplankton community changed during 1966–75; the abundance of cyclopoid copepods decreased and that of calanoid copepods and cladocerans increased. Total abundance varied during the 10-year period, but without apparent trend. Variation in abundance appeared to be associated with discharge rate, water temperature, and turbidity. The benthic community in 1967-68 consisted mostly of chironomid larvae, which were uniformly distributed over the length of the reservoir.
Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea
NASA Technical Reports Server (NTRS)
Niiler, Pearn P.
2002-01-01
The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.
Variability of dayside electron temperature at Venus
NASA Technical Reports Server (NTRS)
Mahajan, K. K.; Ghosh, S.; Paul, R.; Hoegy, W. R.
1994-01-01
Langmuir probe measurements on Pioneer Venus Orbiter show that electron temperature (Te) profiles exhibit two distinct regions. The lower, but more extended region is in the main ionosphere where Te increases slowly with altitude. The other, less extended region is in the ionopause, where Te rise sharply with altitude. If horizontal magnetic fields and flux ropes in the ionosphere inhibit vertical thermal conductivity sufficiently, then the observed Te profile could be explained with EUV as the major heat source (Cravens et al., 1980). The rise in Te in the ionopause region has generally been attributed to solar wind heating (Brace and Kliore, 1991). We suggest that this sharp rise in Te is due primarily to the steep fall in electron density, Ne. If the heating rate is essentially unchanged and heat conduction is not of primary importance, then a steep rise in Te will maintain a constant electron cooling rate for a steeply falling Ne. We have observed large orbit to orbit variations in Te in the ionopause region which are found to be inversely related to changes in Ne. Variations in solar wind dynamic pressure do not seem to have a direct effect on Te, rather the effect is indirect coming through the sharp decrease in Ne.
Matrix isolation of fullerene-derived CO 2 at ambient temperature
NASA Astrophysics Data System (ADS)
Taylor, Roger; Pénicaud, Alain; Tower, Nicole J.
1998-10-01
Heating fullerene oxides, e.g. C 120O, C 70O, C 60O and C 60O 2, in a KBr matrix at 225°C under 0.2 mbar vacuum, produces a sharp IR band at 2330 cm -1 due to matrix-isolated CO 2. The band is also obtained by heating a KBr matrix of the insoluble deposits that fullerenes form on standing in air. The matrices are extremely stable and are unchanged even by prolonged heating at 225°C under vacuum. Heating a KBr matrix of the deposit from C 84 produces also a sharp stable band at 2035 cm -1 consistent with matrix-isolated C 3. Similar treatment of C 70F 38O produces matrices containing both CO 2 and CO, the latter being of lower stability.
Reversible photoinduced spectral change in Eu2O3 at room temperature
NASA Astrophysics Data System (ADS)
Mochizuki, Shosuke; Nakanishi, Tauto; Suzuki, Yuya; Ishi, Kimihiro
2001-12-01
When Eu2O3 powder compact and film are irradiated with ultraviolet (UV) laser light in a vacuum, their photoluminescence (PL) spectra change from a red sharp-line structure to a white broad band, which can be clearly seen with the naked eye. After removing the UV laser light, the white PL continues for more than several months at room temperature under room light, in spite of any changes of atmosphere. By irradiating with the same UV laser light at room temperature under O2 gas atmosphere, the original red PL state reappears. Such a reversible phenomenon may well yield materials for white-light-emitting devices and erasable optical storage.
Thornton, D D
1977-01-01
The sharpness and reproducibility of the gallium melting point were studied and the melting temperature of gallium in terms of IPTS-68 was determined. Small melting-point cells designed for use with thermistors are described. Nine gallium cells including three levels of purity were used in 68 separate determinations fo the melting point. The melting point of 99.99999% pure gallium in terms of IPTS-68 is found to be 29.771(4) +/- 0.001(4) degree C; the melting range is less than 0.0005 degree C and is reproducible to +/- 0.0004 degree C.
Assessment of the State of the Art of Ultra High Temperature Ceramics
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead
2009-01-01
Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.
MMS Observations of Protons and Heavy Ions Acceleration at Plasma Jet Fronts
NASA Astrophysics Data System (ADS)
Catapano, F.; Retino, A.; Zimbardo, G.; Cozzani, G.; Breuillard, H.; Le Contel, O.; Alexandrova, A.; Mirioni, L.; Cohen, I. J.; Turner, D. L.; Perri, S.; Greco, A.; Mauk, B.; Torbert, R. B.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Giles, B. L.; Fuselier, S. A.; Moore, T. E.; Burch, J.
2017-12-01
Plasma jet fronts in the Earth's magnetotail are kinetic-scale boundaries separating hot fast plasma jets, generally attributed to reconnection outflows, from colder ambient plasma. Jet fronts are typically associated with a sharp increase of the vertical component of the magnetic field Bz, an increase of the plasma temperature and a drop of plasma density. Spacecraft observations and numerical simulations indicate that jet fronts are sites of major ion acceleration. The exact acceleration mechanisms as well as the dependence of such mechanisms on ion composition are not fully understood, yet. Recent high-resolution measurements of ion distribution functions in the magnetotail allow for the first time to study the acceleration mechanisms in detail. Here, we show several examples of jet fronts and discuss ion acceleration therein. We show fronts that propagate in the mid-tail magnetotail both as isolated laminar boundaries and as multiple boundaries embedded in strong magnetic fluctuations and turbulence. We also show fronts in the near-Earth jet braking region, where they interact with the dipolar magnetic field and are significantly decelerated/diverted. Finally, we study the acceleration of different ion species (H+, He++, O+) at different types of fronts and we discuss possible different acceleration mechanisms and how they depend on the ion species.
NASA Astrophysics Data System (ADS)
Rozenberg, E.
2004-03-01
In recent papers Ye et al. (J. Magn. Magn. Mater. 248 (2002) 26) and Lakshmi et al. (J. Magn. Magn. Mater. 257 (2003) 195) reported the characteristic features of electrical resistivity ( ρ) versus temperature ( T) dependences of polycrystalline-doped manganites La 1- xAg xMnO 3 and La 0.67Ca 0.33Mn 1- xRu xO 3. Infact, two peaks on ρ( T) curve coexist: broad one at some Tmax below the Curie points ( TC) of these compounds and a sharp peak near TC. Authors interpreted such coexistence as an evidence of electronic/magnetic phase separation in the above-noted systems below its TC. It is shown in this comment that such an interpretation is obviously invalid for La 1- xAg xMnO 3 system and is very questionable for La 0.67Ca 0.33Mn 1- xRu xO 3. The simplest and natural reason for the appearance of considered features on ρ( T) dependences of polycrystalline manganites is the well-known grain-boundary effects.
Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent
Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A.; Banu, Naheed
2014-01-01
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology. PMID:25561893
Formation of temperature front in stably stratified turbulence
NASA Astrophysics Data System (ADS)
Kimura, Yoshifumi; Sullivan, Peter; Herring, Jackson
2016-11-01
An important feature of stably stratified turbulence is the significant influence of internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this paper, we investigate the genesis of temperature fronts-a crucial subject both practically and fundamentally-in stably stratified turbulence using Direct Numerical Simulations (DNS) of the Navier-Stokes equation under the Boussinesq approximation with 10243 grid points. Vertical profiles of temperature fluctuations show almost vertically periodic sawtooth wavy structures with negative and positive layers stacked together with clear boundaries implying a sharp temperature fronts. The sawtooth waves consist of gradual decreasing temperature fluctuations with rapid recovery to a positive value as the frontal boundary is crossed vertically. This asymmetry of gradients comes from the structure that warm temperature region lies on top of cool temperature region, and can be verified in the skewed probability density function (PDF) of vertical temperature gradient. We try to extract the flow structures and mechanism for the formation and maintenance of the strong temperature front numerically.
NASA Astrophysics Data System (ADS)
Hazra, Binoy Krishna; Kaul, S. N.; Srinath, S.; Raja, M. Manivel; Rawat, R.; Lakhani, Archana
2017-11-01
Electrical (longitudinal) resistivity ρx x, at H =0 and H =80 kOe, anomalous Hall resistivity ρxy A H, and magnetization M , have been measured at different temperatures in the range 5-300 K on the Co2FeSi (CFS) Heusler-alloy thin films, grown on Si(111) substrate, with thickness ranging from 12 to 100 nm. At fixed fields H =0 and H =80 kOe, ρx x(T ) goes through a minimum at T =Tmin (which depends on the film thickness) in all the CFS thin films. In sharp contrast, both the anomalous Hall coefficient RA and ρxy A H monotonously increase with temperature without exhibiting a minimum. Elaborate analyses of ρx x, RA, and ρxy A H establishes the following. (i) The enhanced electron-electron Coulomb interaction (EEI) quantum correction (QC) is solely responsible for the upturn in "zero-field" and "in-field" ρx x(T ) at T
Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1992-01-01
Previous numerical and experimental studies indicate that the high-temperature heat pipe startup process is characterized by a moving hot zone with relatively sharp fronts. Based on the above observation, a flat-front model for an approximate analytical solution is proposed. A closed-form solution related to the temperature distribution in the hot zone and the hot zone length as a function of time are obtained. The analytical results agree well with the corresponding experimental data, and provide a quick prediction method for the heat pipe startup performance. Finally, a heat pipe limitation related to the frozen startup process is identified, and an explicit criterion for the high-temperature heat pipe startup is derived. The frozen startup limit identified in this paper provides a fundamental guidance for high-temperature heat pipe design.
Markkanen, Pia; Galligan, Catherine; Laramie, Angela; Fisher, June; Sama, Susan; Quinn, Margaret
2015-04-11
Home healthcare is one of the fastest growing sectors in the United States. Percutaneous injuries from sharp medical devices (sharps) are a source of bloodborne pathogen infections among home healthcare workers and community members. Sharps use and disposal practices in the home are highly variable and there is no comprehensive analysis of the system of sharps procurement, use and disposal in home healthcare. This gap is a barrier to effective public health interventions. The objectives of this study were to i) identify the full range of pathways by which sharps enter and exit the home, stakeholders involved, and barriers for using sharps with injury prevention features; and ii) assess the leverage points for preventive interventions. This study employed qualitative research methods to develop two systems maps of the use of sharps and prevention of sharps injuries in home healthcare. Twenty-six in-depth interview sessions were conducted including home healthcare agency clinicians, public health practitioners, sharps device manufacturers, injury prevention advocates, pharmacists and others. Interview transcripts were audio-recorded and analyzed thematically using NVIVO qualitative research analysis software. Analysis of supporting archival material also was conducted. All findings guided development of the two maps. Sharps enter the home via multiple complex pathways involving home healthcare providers and home users. The providers reported using sharps with injury prevention features. However, home users' sharps seldom had injury prevention features and sharps were commonly re-used for convenience and cost-savings. Improperly discarded sharps present hazards to caregivers, waste handlers, and community members. The most effective intervention potential exists at the beginning of the sharps systems maps where interventions can eliminate or minimize sharps injuries, in particular with needleless treatment methods and sharps with injury prevention features. Manufacturers and insurance providers can improve safety with more affordable and accessible sharps with injury prevention features for home users. Sharps disposal campaigns, free-of-charge disposal containers, and convenient disposal options remain essential. Sharps injuries are preventable through public health actions that promote needleless treatment methods, sharps with injury prevention features, and safe disposal practices. Communication about hazards regarding sharps is needed for all home healthcare stakeholders.
Sensing the heat stress by Mammalian cells.
Cates, Jordan; Graham, Garrett C; Omattage, Natalie; Pavesich, Elizabeth; Setliff, Ian; Shaw, Jack; Smith, Caitlin Lee; Lipan, Ovidiu
2011-08-11
The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no recovery time in between shocks) depends on the order of the input shocks, that is the shocks do not commute; (ii) the responses may be classified as mild or severe, depending on the temperature level and the duration of the heat shock and (iii) the response is highly sensitive to small variations in temperature. We propose a mathematical model that maps temperature into the transient activity using experimental data that describes the time course of the response to input thermal stress. The model is built on thermotolerance without recovery time, sharp sensitivity to small variations in temperature and the existence of mild and severe classes of stress responses. The theoretical predictions are tested against experimental data using a series of double-shock inputs. The theoretical structure is represented by a sequence of three cascade processes that transform the input stress into the transient activity. The structure of the cascade is nonlinear-linear-nonlinear (NLN). The first nonlinear system (N) from the NLN structure represents the amplification of small changes in the environmental temperature; the linear system (L) represents the thermotolerance without recovery time, whereas the last system (N) represents the transition of the cell's response from a mild to a severe shock.
1979-12-28
Doppler sound made by a bubble passing through the inson- ified volume blood vessel resembles a very sharp truncated whistle , chirp or click depending...the Doppler ultrasound , suffered the "slings and arrows of outrageous criticism" to borrow and beat a phrase. It is not appropriate to go into this
Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K
2018-02-01
Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.
Universal potential-barrier penetration by initially confined wave packets
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2007-07-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
Wuellner, Melissa R.; Chipps, Steven R.; Willis, David W.; Adams, Wells E.
2010-01-01
Walleyes Sander vitreus are the most popular fish among South Dakota anglers, but smallmouth bass Micropterus dolomieu were introduced to provide new angling opportunities. Some walleye anglers have reported reductions in the quality of walleye fisheries since the introduction of smallmouth bass and attribute this to the consumption of young walleyes by smallmouth bass and competition for shared prey resources. We quantified the diets of walleyes and smallmouth bass in the lower reaches of Lake Sharpe (a Missouri River reservoir), calculated the diet overlap between the two predators, and determined whether they partitioned shared prey based on size. We also quantified walleye diets in the upper reach of the reservoir, which has a different prey base and allowed us to compare the growth rates of walleyes within Lake Sharpe. Age-0 gizzard shad Dorosoma cepedianum composed a substantial proportion of the diets of both predators, regardless of location, for most of the growing season; the patterns in shad vulnerability appeared to drive the observed patterns in diet overlap. Smallmouth bass appeared to consume a smaller size range of gizzard shad than did walleyes, which consumed a wide range. Smallmouth bass consumed Sander spp. in some months, but in very low quantities. Given that global climate change is expected to alter the population and community dynamics in Great Plains reservoirs, we also used a bioenergetics approach to predict the potential effects of limiting prey availability (specifically, the absence of gizzard shad and rainbow smelt Osmerus mordax) and increased water temperatures (as projected from global climate change models) on walleye and smallmouth bass growth. The models indicated that the absence of rainbow smelt from the diets of walleyes in upper Lake Sharpe would reduce growth but that the absence of gizzard shad would have a more marked negative effect on both predators at both locations. The models also indicated that higher water temperatures would have an even greater negative influence on walleye growth; however, smallmouth bass growth was predicted to increase with higher temperatures. Fisheries managers should consider strategies to enhance the prey base or mitigate the effects of increased water temperatures that may occur in the future as a result of global climate change. Such proactive actions may alleviate potential future competition between walleyes and smallmouth bass resulting from changes in the fish community.
Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Cheol; Douglas, Jack F.
2015-10-14
The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the descriptionmore » of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.« less
NASA Astrophysics Data System (ADS)
Tang, Ming; Rudnick, Roberta L.; McDonough, William F.; Bose, Maitrayee; Goreva, Yulia
2017-09-01
Micron- to submicron-scale observations of Li distribution and Li isotope composition profiles can be used to infer the mechanisms of Li diffusion in natural zircon. Extreme fractionation (20-30‰) within each single crystal studied here confirms that Li diffusion commonly occurs in zircon. Sharp Li concentration gradients frequently seen in zircons suggest that the effective diffusivity of Li is significantly slower than experimentally determined (Cherniak and Watson, 2010; Trail et al., 2016), otherwise the crystallization/metamorphic heating of these zircons would have to be unrealistically fast (years to tens of years). Charge coupling with REE and Y has been suggested as a mechanism that may considerably reduce Li diffusivity in zircon (Ushikubo et al., 2008; Bouvier et al., 2012). We show that Li diffused in the direction of decreasing Li/Y ratio and increasing Li concentration (uphill diffusion) in one of the zircons, demonstrating charge coupling with REE and Y. Quantitative modeling reveals that Li may diffuse in at least two modes in natural zircons: one being slow and possibly coupled with REE+Y, and the other one being fast and not coupled with REE+Y. The partitioning of Li between these two modes during its diffusion may depend on the pre-diffusion substitution mechanism of REE and Y in the zircon lattice. Based on our results, sharp Li concentration gradients are not indicative of limited diffusion, and can be preserved at temperatures >700 °C on geologic timescales. Finally, large δ7 Li variations observed in the Hadean Jack Hills zircons may record kinetic fractionation, rather than a record of ancient intense weathering in the granite source materials.
Synthesis and Photoluminescence Properties of BaWO4:RE3+ (RE = Eu or Sm) Phosphors
NASA Astrophysics Data System (ADS)
Cho, Shinho
2018-04-01
BaWO4:RE3+ (RE = Eu or Sm) phosphor powders were prepared with different doping concentrations of the activator ion by using the conventional solid-state reaction method. The dependences in the crystal structure, luminescence intensity, and morphology on the Eu3+ and the Sm3+ concentrations in BaWO4 were investigated using X-ray diffraction (XRD), photoluminescence spectrophotometry, and scanning electron microscopy (SEM), respectively. XRD analysis showed tetragonal BaWO4 structures for all the phosphors synthesized, regardless of the type and the doping concentration of the activator ion. SEM images indicated that as the concentration of activator ions was increased, the crystalline particles showed an increasing tendency to agglomerate irregularly. The room temperature excitation spectra of Eu3+- or Sm3+-doped BaWO4 phosphors consisted of a broad charge transfer band in the ultraviolet region and several sharp 4 f-4 f transitions. When Eu3+-doped BaWO4 phosphors were excited at 274 nm, the emission spectra exhibited sharp bands due to inner shell transitions occurring from the excited energy state 5 D 0 to the lower energy levels 7 F J ( J = 1, 2, 3, and 4). For Sm3+-doped BaWO4 phosphors, three intense emission peaks at 568, 603, and 649 nm and a very weak line at 712 nm were observed. The highest asymmetry ratio-the intensity ratio of the 4 G 5/2 → 6 H 9/2 electric dipole to the 4 G 5/2 → 6 H 5/2 magnetic dipole transitions-was obtained for 1 mol% doping of Sm3+, indicating that the Sm3+ ions occupied the non-inversion symmetry sites.
Onset of 2D magnetic reconnection in the solar photosphere, chromosphere, and corona
NASA Astrophysics Data System (ADS)
Snow, B.; Botha, G. J. J.; McLaughlin, J. A.; Hillier, A.
2018-01-01
Aims: We aim to investigate the onset of 2D time-dependent magnetic reconnection that is triggered using an external (non-local) velocity driver located away from, and perpendicular to, an equilibrium Harris current sheet. Previous studies have typically utilised an internal trigger to initiate reconnection, for example initial conditions centred on the current sheet. Here, an external driver allows for a more naturalistic trigger as well as the study of the earlier stages of the reconnection start-up process. Methods: Numerical simulations solving the compressible, resistive magnetohydrodynamic (MHD) equations were performed to investigate the reconnection onset within different atmospheric layers of the Sun, namely the corona, chromosphere and photosphere. Results: A reconnecting state is reached for all atmospheric heights considered, with the dominant physics being highly dependent on atmospheric conditions. The coronal case achieves a sharp rise in electric field (indicative of reconnection) for a range of velocity drivers. For the chromosphere, we find a larger velocity amplitude is required to trigger reconnection (compared to the corona). For the photospheric environment, the electric field is highly dependent on the inflow speed; a sharp increase in electric field is obtained only as the velocity entering the reconnection region approaches the Alfvén speed. Additionally, the role of ambipolar diffusion is investigated for the chromospheric case and we find that the ambipolar diffusion alters the structure of the current density in the inflow region. Conclusions: The rate at which flux enters the reconnection region is controlled by the inflow velocity. This determines all aspects of the reconnection start-up process, that is, the early onset of reconnection is dominated by the advection term in Ohm's law in all atmospheric layers. A lower plasma-β enhances reconnection and creates a large change in the electric field. A high plasma-β hinders the reconnection, yielding a sharp rise in the electric field only when the velocity flowing into the reconnection region approaches the local Alfvén speed.
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid specimens of the alloy Inconel 903 (iron based alloy) were exposed to four gaseous environments and high temperatures. Air, pure helium, pure hydrogen, and hydrogen and water vapor combined were the gaseous environments employed, and the temperature was 1400 F. Various mechanical property tests (low cycle fatigue, creep-rupture, tensile properties) were performed on the alloy. Results indicate that the hydrogen and water vapor environment cause a sharp reduction in the mechanical properties of the alloy. Photographs of the test equipment used and the microstructure of the tested alloy are included.
Metal-insulator transition and superconductivity in the spinel-type Cu(Ir1-xRhx)2S4 system
NASA Astrophysics Data System (ADS)
Matsumoto, Nobuhiro; Endoh, Ryo; Nagata, Shoichi; Furubayashi, Takao; Matsumoto, Takehiko
1999-08-01
The normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 226 K with structural transformation, showing hysteresis on heating and cooling. It has been verified that d electrons of Ir atom on the octahedral B sites have a significant role for the M-I transition. On the other hand, CuRh2S4 is a superconductor with the transition temperature Tc=4.70 K, which is well understood on the basis of the BCS theory. It is important to investigate the effect on the M-I transition by substitution of Rh for Ir. We have systematically studied structural transformation and electrical and magnetic properties of Cu(Ir1-xRhx)2S4. The features of the M-I transition change with Rh concentration x. A phase diagram of temperature versus x will be proposed for the Cu(Ir1-xRhx)2S4 system. The sharp M-I transition temperature varies drastically from 226 to 93 K with x from 0.00 to 0.17 and disappears around x=0.20. In a region of 0.00<=x<=0.20, the magnetic susceptibility begins decreasing at a constant onset temperature 226 K on cooling process and shows rather broad temperature variation, even though the metallic state is kept in the resistivity. The sharp M-I transition can take place after the suppression of magnitude in the susceptibility has sufficiently developed far below 226 K. These experimental results are discussed with emphasis on the intrinsic difference between Cu(Ir1-xRhx)2S4 and CuIr2(S1-xSex)4 systems. Furthermore, we will mention the superconductivity for both systems of Cu(Ir1-xRhx)2S4 with high-Rh concentration region and Cu1-xNixRh2S4.
Apparatus Tests Thermocouples For Seebeck Inhomogeneity
NASA Technical Reports Server (NTRS)
Burkett, Cecil G., Jr.; Bauserman, Willard A., Jr.; West, James W.
1995-01-01
Automated apparatus reveals sources of error not revealed in calibration. Computer-controlled apparatus detects and measures Seebeck inhomogeneities in sheathed thermocouples. Measures thermocouple output voltage as function of position of probe along sharp gradient of temperature. Abnormal variations in voltage-versus-position data indicative of Seebeck inhomogeneities. Prototype for development of standard method and equipment for routine acceptance/rejection testing of sheathed thermocouples in industrial and research laboratories.
1984-05-03
interest. It demonstrates the possibility of developing vital varieties with a high degree of effectiveness of seed -farming selections according to the...the winter period in practically all zones of the republic there were sharp changes in temperature , which meant that plants either began to grow or...curtailed vegetation. Such overwintering had a negative effect on plants-they grew and developed slowly. However, as a result of the use of
TREATMENT OF DYSENTERY IN EXPERIMENTAL RADIATION SICKNESS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodskaya, E.A.; Emaikina, V.P.; Kostritsa, A.G.
1959-01-01
Experiments with 53 cats (one group exposed to 275 r and the other to 500 r and infected with the Flexner dysentery) showed that the exposure to 275 r did not change the general condition of the cats while the 800 r resulted in a sharp rise of temperature, dirrhea, heavy dystrophic-necrotic changes in the intestines, and peculiar mucous and submucous processes. (R.V.J.)
NASA Astrophysics Data System (ADS)
Kajikawa, Y.
2016-02-01
The experimental data on the temperature dependence of the four transport coefficients, i.e., the electrical conductivity (σ), Hall coefficient (RH), Seebeck coefficient (S), and Nernst coefficient (Q), of n-type Co0.999Ni0.001Sb3 reported by Sun et al. [Nat. Commun. 6, 7475 (2015)] have been analyzed in a multi-band model, especially focusing on the low temperature data. The multi-band model includes not only the lowest valley of the conduction band at the Γ point but also satellite valleys at the second minima together with an impurity band. The lowest valley at the Γ point is assumed to split into the c1 band and the spin-orbit split-off (so) band. For the analysis, the general expression of the Nernst coefficient in the multi-band model is derived. At such low temperatures that the other bands than the c1 and the impurity band can be neglected, this expression is shown to be approximated as the sum of three terms: the intrinsic terms due to the Nernst coefficients in the two bands themselves and a cross term proportional to the difference of Seebeck coefficients between the two bands. As a result of the analysis, it is proved that the anomalous positive peak of S(T) observed around T = 20 K as well as the sharp rise of the Hall mobility observed from 15 K to 40 K are due to the transition from hopping conduction in the impurity band to conduction in the c1 band. On the other hand, the pronounced peak of Q(T) observed slightly below 40 K is proved to be due to the cross term between the impurity band and the c1 band. In addition, a shoulder of Q(T) appeared around T = 80 K lends clear evidence of the existence of the so band, while the increase in both of σ(T) and | S ( T ) | above 150 K suggests the existence of the satellite valleys.
Modeling DNA bubble formation at the atomic scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beleva, V; Rasmussen, K. O.; Garcia, A. E.
We describe the fluctuations of double stranded DNA molecules using a minimalist Go model over a wide range of temperatures. Minimalist models allow us to describe, at the atomic level, the opening and formation of bubbles in DNA double helices. This model includes all the geometrical constraints in helix melting imposed by the 3D structure of the molecule. The DNA forms melted bubbles within double helices. These bubbles form and break as a function of time. The equilibrium average number of broken base pairs shows a sharp change as a function of T. We observe a temperature profile of sequencemore » dependent bubble formation similar to those measured by Zeng et al. Long nuclei acid molecules melt partially through the formations of bubbles. It is known that CG rich sequences melt at higher temperatures than AT rich sequences. The melting temperature, however, is not solely determined by the CG content, but by the sequence through base stacking and solvent interactions. Recently, models that incorporate the sequence and nonlinear dynamics of DNA double strands have shown that DNA exhibits a very rich dynamics. Recent extensions of the Bishop-Peyrard model show that fluctuations in the DNA structure lead to opening in localized regions, and that these regions in the DNA are associated with transcription initiation sites. 1D and 2D models of DNA may contain enough information about stacking and base pairing interactions, but lack the coupling between twisting, bending and base pair opening imposed by the double helical structure of DNA that all atom models easily describe. However, the complexity of the energy function used in all atom simulations (including solvent, ions, etc) does not allow for the description of DNA folding/unfolding events that occur in the microsecond time scale.« less
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily
2015-04-01
The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum amplitude at the maximum depth of the net (33cm). To create a stable temperature stratification of the wind, the air entering the flume was heated to 30-40 oC. The water temperature was maintained about 15 degrees. The air flow velocity in the flume corresponded to the 10-m wind speed from 10 to 35 m/s. Turbulent fluxes of heat and momentum and roughness parameters were retrieved from the velocity and temperature profiles measured at the distance 6.5 m from the inlet of the flume and subsequent data processing exploiting the self-similarity of the temperature and velocity profiles. In a result surface drag and heat exchange coefficients and roughness parameters were obtained. Wind wave spectra and integral parameters (significant wave height, mean square slope) were retrieved from measurements by 3-channel array wave gauge by coherent spectral data processing. To estimate the amount of spray in the air flow, a spray marker was introduced using the effect of a sharp decline in film anemometer readings in contact with a droplet. Dependences of the exchange coefficients on the wind speed, wave parameters and the spray marker were obtained. It is shown that the exchange coefficients increase with the wind speed and wave height. It was found, that the sharp increase of the drag and heat exchange coefficients at wind speeds exceeded 25 m/s was accompanied by the emergence and increasing concentration of the spray in the air flow over water. The correlation coefficient between the drag coefficient and the spray marker was about 0.9. Using high-speed video revealed the dominant mechanism for the generation of spray at strong winds. It is shown that it is associated with the development of a special type of instability of the air-water interface, which is known as "bag-breakup instability" in the theory of fragmentation of liquids. The hypothesis is suggested, that the observed increase of surface drag and heat exchange can be attributed to the development of this type of instability. This work was supported by the Russian Foundation of Basic Research (13-05-00865, 14-05-91767, 13-05-12093, 15-05-) and Alexander Kandaurov, Maxim Vdovin and Olga Ermakova acknowledge partial support from Russian Science Foundation (Agreement No. 14-17-00667).
Quantitative sensory testing of temperature, pain, and touch in adults with Down syndrome.
de Knegt, Nanda; Defrin, Ruth; Schuengel, Carlo; Lobbezoo, Frank; Evenhuis, Heleen; Scherder, Erik
2015-12-01
The spinothalamic pathway mediates sensations of temperature, pain, and touch. These functions seem impaired in children with Down syndrome (DS), but have not been extensively examined in adults. The objective of the present study was to compare the spinothalamic-mediated sensory functions between adults with DS and adults from the general population and to examine in the DS group the relationship between the sensory functions and level of intellectual functioning. Quantitative sensory testing (QST) was performed in 188 adults with DS (mean age 37.5 years) and 142 age-matched control participants (median age 40.5 years). Temperature, pain, and touch were evaluated with tests for cold-warm discrimination, sharp-dull discrimination (pinprick), and tactile threshold, respectively. Level of intellectual functioning was estimated with the Social Functioning Scale for Intellectual Disability (intellectual disability level) and the Wechsler Preschool and Primary Scale of Intelligence--Revised (intelligence level). Overall, the difference in spinothalamic-mediated sensory functions between the DS and control groups was not statistically significant. However, DS participants with a lower intelligence level had a statistically significant lower performance on the sharp-dull discrimination test than DS participants with higher intelligence level (adjusted p=.006) and control participants (adjusted p=.017). It was concluded that intellectual functioning level is an important factor to take into account for the assessment of spinothalamic-mediated sensory functioning in adults with DS: a lower level could coincide with impaired sensory functioning, but could also hamper QST assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian
2016-03-01
The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.
Hoffman, John M.; Ebara, Mitsuhiro; Lai, James J.; Hoffman, Allan S.; Folch, Albert
2011-01-01
We report a mechanistic study of how flow and recirculation in a microreactor can be used to optimize the capture and release of stimuli-responsive polymer-protein reagents on stimuli-responsive polymer-grafted channel surfaces. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to poly(dimethyl)siloxane (PDMS) channel walls, creating switchable surfaces where PNIPAAm-protein conjugates would adhere at temperatures above the lower critical solution temperature (LCST) and released below the LCST. A PNIPAAm-streptavidin conjugate that can capture biotinylated antibody-antigen targets was first characterized. The conjugate’s immobilization and release were limited by mass transport to and from the functionalized PNIPAAm surface. Transport and adsorption efficiencies were dependent on the aggregate size of the PNIPAAm-streptavidin conjugate above the LCST and also was dependent on whether the conjugates were heated in the presence of the stimuli-responsive surface or pre-aggregated and then flowed across the surface. As conjugate size increased, through the addition of non-conjugated PNIPAAm, recirculation and mixing were shown to markedly improve conjugate immobilization compared to diffusion alone. Under optimized conditions of flow and reagent concentrations, approximately 60% of a streptavidin conjugate bolus could be captured at the surface and subsequently successfully released. The kinetic release profile sharpness was also strongly improved with recirculation and helical mixing. Finally, the concentration of protein-polymer conjugates could be achieved by continuous conjugate flow into the heated recirculator, allowing nearly linear enrichment of the conjugate reagent from larger volumes. This capability was shown with anti-p24 HIV monoclonal antibody reagents that were enriched over 5-fold using this protocol. These studies provide insight into the mechanism of smart polymer-protein conjugate capture and release in grafted channels and show the potential of this purification and enrichment module for processing diagnostic samples. PMID:20882219
Mixed-mode singularity and temperature effects on dislocation nucleation in strained interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinhaeng; Gao, Yanfei
2011-01-01
Dislocations can be nucleated from sharp geometric features in strained interconnects due to thermal expansion coefficient mismatch, lattice mismatch, or stresses that arise during material processing. The asymptotic stress fields near the edge root can be described by mixed-mode singularities, which depend on the dihedral angle and material properties, and a transverse T-stress, which depends on how residual stress is realized in the interconnects. The critical condition for stress nucleation can be determined when an appropriate measure of the stress intensity factors (SIFs) reaches a critical value. Such a method, however, does not offer an explicit picture of the dislocationmore » nucleation process so that it has difficulties in studying complicated structures, mode mixity effects, and more importantly the temperature effects. Based on the Peierls concept, a dislocation can be described by a continuous slip field, and the dislocation nucleation condition corresponds when the total potential energy reaches a stationary state. Through implementing this ad hoc interface model into a finite element framework, it is found that dislocation nucleation becomes more difficult with the increase of mode mixity and T-stress, or the decrease of the width-to-height ratio of the surface pad, while the shape of the surface pad, being a square or a long line, plays a less important role. The Peierls dislocation model also allows us to determine the activation energy, which is the energy needed for the thermal activation of a dislocation when the applied load is lower than the athermal critical value. The calculated saddle point configuration compares favorably the molecular simulations in literature. Suggestions on making immortal strained interconnects are provided.« less
Addressing challenges of modulation transfer function measurement with fisheye lens cameras
NASA Astrophysics Data System (ADS)
Deegan, Brian M.; Denny, Patrick E.; Zlokolica, Vladimir; Dever, Barry; Russell, Laura
2015-03-01
Modulation transfer function (MTF) is a well defined and accepted method of measuring image sharpness. The slanted edge test, as defined in ISO12233 is a standard method of calculating MTF, and is widely used for lens alignment and auto-focus algorithm verification. However, there are a number of challenges which should be considered when measuring MTF in cameras with fisheye lenses. Due to trade-offs related Petzval curvature, planarity of the optical plane is difficult to achieve in fisheye lenses. It is therefore critical to have the ability to accurately measure sharpness throughout the entire image, particularly for lens alignment. One challenge for fisheye lenses is that, because of the radial distortion, the slanted edges will have different angles, depending on the location within the image and on the distortion profile of the lens. Previous work in the literature indicates that MTF measurements are robust for angles between 2 and 10 degrees. Outside of this range, MTF measurements become unreliable. Also, the slanted edge itself will be curved by the lens distortion, causing further measurement problems. This study summarises the difficulties in the use of MTF for sharpness measurement in fisheye lens cameras, and proposes mitigations and alternative methods.
Consistency relations for sharp features in the primordial spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
We study the generation of sharp features in the primordial spectra within the framework of effective field theory of inflation, wherein curvature perturbations are the consequence of the dynamics of a single scalar degree of freedom. We identify two sources in the generation of features: rapid variations of the sound speed c{sub s} (at which curvature fluctuations propagate) and rapid variations of the expansion rate H during inflation. With this in mind, we propose a non-trivial relation linking these two quantities that allows us to study the generation of sharp features in realistic scenarios where features are the result ofmore » the simultaneous occurrence of these two sources. This relation depends on a single parameter with a value determined by the particular model (and its numerical input) responsible for the rapidly varying background. As a consequence, we find a one-parameter consistency relation between the shape and size of features in the bispectrum and features in the power spectrum. To substantiate this result, we discuss several examples of models for which this one-parameter relation (between c{sub s} and H) holds, including models in which features in the spectra are both sudden and resonant.« less
Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.
Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A
2008-05-01
Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.
Ab-initio calculations on melting of thorium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.
2016-05-23
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less
Electronic Transport and Possible Superconductivity at Van Hove Singularities in Carbon Nanotubes.
Yang, Y; Fedorov, G; Shafranjuk, S E; Klapwijk, T M; Cooper, B K; Lewis, R M; Lobb, C J; Barbara, P
2015-12-09
Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
Surfactant-Mediated Growth of Ge/Si(001) Interface Studied by XPD
NASA Astrophysics Data System (ADS)
Gunnella, R.; Castrucci, P.; Pinto, N.; Cucculelli, P.; Davoli, I.; Sébilleau, D.; de Crescenzi, M.
The influence of Sb as a surfactant on the formation of Si/Ge interface is studied by means of XPD (X-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge and Si core levels. The technique employed is particularly suitable for checking the film tetragonal distortion, the growth morphology and the sharpness of the interface. We found a layer by layer growth mode for 3 ML of Ge on Si(001) and related values of strain of the film close to the value predicted by the elastic theory which enforces the use of such a surfactant to obtain high quality and sharp heterostructures. In addition, studying the influence of 3 ML of the Si cap layer on the 3 ML Ge, we obtain no indication of Ge segregation into the Si cap layer. Finally, evidences of quality degradation after high temperature (T > 600°C) annealing are shown.
NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Gupta, Anjan K.
2018-05-01
Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.
Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.;
2015-01-01
The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.
Novel EPR characterization of the antioxidant activity of tea leaves
NASA Astrophysics Data System (ADS)
Morsy, M. A.; Khaled, M. M.
2002-04-01
Electron paramagnetic resonance (EPR) spectroscopy is utilized to investigate several categories of green and black tea: Twining green tea (TGT), Chinese green tea (CGT), Red-labels black tea (RBT). Basically, two EPR signals from all the studied samples are observed: One of them is a very weak sharp EPR signal with Δ Hpp≅10 G and g-factor=2.00023 superimposed on the other broad signal with Δ Hpp≅550 G and g-factor=2.02489. The broad signal is a characteristic one of manganese(II) complex, while the sharp signal is related to a stable radical of aromatic origin exist in a powder condition. The feature of the manganese EPR signal is attributed to manganese(II) complex and reflected the molecular behavior of Mn(II) in the protein system of the natural leaves. The sharp signal, which is most probably due to a semiquinones radicals, is observed at room temperature and its intensity is remarkably affected by photo degradation of the studied samples. The intensity of manganese(II) EPR signal is found to be related to ageing and disintegration of the tea leaves. Moreover, direct relation between the relative intensity of the semiquinones radical signal and antioxidant activity of the studied samples was also correlated.
ERIC Educational Resources Information Center
Wing, Coady; Cook, Thomas D.
2013-01-01
The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…
The Effects of Learning English as a Second Language on the Acquisition of a New Phonemic Contrast.
ERIC Educational Resources Information Center
Streeter, Lynn A.; Landauer, Thomas K.
Very sharp discrimination functions for the timing of voice onset relative to stop release characterize perceptual boundaries between certain pairs of stop consonants for adult speakers of many languages. To explore how these discriminations depend on experience, their development was studied among Kikuyu children, whose native language contains…
NASA Astrophysics Data System (ADS)
Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen
2017-03-01
We present a workflow for efficient construction and calibration of large-scale groundwater models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first step, the AEM data are inverted to form a 3-D geophysical model. In the second step, the 3-D geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3-D hydraulic conductivity distribution. The geophysical models and the hydrological data are used to estimate spatially distributed petrophysical shape factors. The shape factors primarily work as translators between resistivity and hydraulic conductivity, but they can also compensate for structural defects in the geophysical model. The method is demonstrated for a synthetic case study with sharp transitions among various types of deposits. Besides demonstrating the methodology, we demonstrate the importance of using geophysical regularization constraints that conform well to the depositional environment. This is done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient support (sharp) constraints, where the use of sharp constraints conforms best to the environment. The dependency on AEM data quality is also tested by inverting the geophysical model using data corrupted with four different levels of background noise. Subsequently, the geophysical models are used to construct competing groundwater models for which the shape factors are calibrated. The performance of each groundwater model is tested with respect to four types of prediction that are beyond the calibration base: a pumping well's recharge area and groundwater age, respectively, are predicted by applying the same stress as for the hydrologic model calibration; and head and stream discharge are predicted for a different stress situation. As expected, in this case the predictive capability of a groundwater model is better when it is based on a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge area, head change, and stream discharge, while we find no improvement for prediction of groundwater age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for predictions of recharge area, head change, and stream discharge, while there appears to be no accuracy improvement for the prediction of groundwater age.
Wiegand, Jean-Paul L.; Gray, Daniel T.; Schimanski, Lesley A.; Lipa, Peter; Barnes, C. A.
2016-01-01
Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced “vocabulary” of available representational states. SIGNIFICANCE STATEMENT The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats to examine age-related changes in ripple architecture, ripple-triggered spike variance, and spike-phase coherence. We found that there are, indeed, significant changes in characteristics of ripples in older animals that could impact consolidation processes and memory stabilization in the aged brain. PMID:27194342
Analysis of sharpness increase by image noise
NASA Astrophysics Data System (ADS)
Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki
2009-02-01
Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.
The Kondo effect in ferromagnetic atomic contacts.
Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos
2009-04-30
Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.
NASA Astrophysics Data System (ADS)
Karimunnesa, Syeda; Ahmmad, Bashir; Basith, M. A.
2017-07-01
Sr-substituted perovskites, La1.8Sr0.2MMnO6 (M = Ni, Co), were synthesized using the solid-state reaction technique to present a systematic study on their morphological, structural and magnetic properties. The average grain size of the as-prepared La1.8Sr0.2NiMnO6 samples are in the range of 0.2-0.7 µm and those for La1.8Sr0.2CoMnO6 manganites are 0.1-2.8 μm, which is significantly less than that of unsubstituted La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) manganites. The XPS analysis enlightened about phase purity, binding energy and oxygen vacancy of La1.8Sr0.2MMnO6 manganites. The Sr-substituted LNMO has revealed a sharp ferromagnetic to paramagnetic phase transition at 160 ± 2 K, which is about 120 K less than that of parent LNMO. The Sr-substituted LCMO exhibited such a transition at 220 ± 2 K, which is 8 K less than that of parent LCMO. The temperature-dependent magnetization measurements suggest that the effect of Sr on the transition temperature in LNMO is more significant than that of LCMO.
Balancing act: Evidence for a strong subdominant d -wave pairing channel in Ba 0.6 K 0.4 Fe 2 As 2
Böhm, T.; Kemper, A. F.; Moritz, B.; ...
2014-12-18
We present detailed measurements of the temperature-dependent Raman spectra of optimally doped Ba 0.6K 0.4Fe 2As 2 and analyze the low-temperature spectra based on local-density-approximation band-structure calculations and the subsequent estimation of effective Raman vertices. Experimentally, a narrow, emergent mode appears in the B 1g (d x2-y2) Raman spectra only below T c, well into the superconducting state and at an energy below twice the energy gap on the electron Fermi-surface sheets. The Raman spectra can be reproduced quantitatively with estimates for the magnitude and momentum-space structure of an A 1g (s-wave) pairing gap on different Fermi-surface sheets, as wellmore » as the identification of the emergent sharp feature as a Bardasis-Schrieffer exciton. Formed as a Cooper-pair bound state in a subdominant d x2-y2 channel, the binding energy of the exciton relative to the gap edge shows that the coupling strength in the subdominant channel is as strong as 60% of that in the dominant s-wave channel. This result suggests that d x2-y2 may be the dominant pairing symmetry in Fe-based superconductors that lack central hole bands.« less
Fabrication of reproducible, integration-compatible hybrid molecular/si electronics.
Yu, Xi; Lovrinčić, Robert; Kraynis, Olga; Man, Gabriel; Ely, Tal; Zohar, Arava; Toledano, Tal; Cahen, David; Vilan, Ayelet
2014-12-29
Reproducible molecular junctions can be integrated within standard CMOS technology. Metal-molecule-semiconductor junctions are fabricated by direct Si-C binding of hexadecane or methyl-styrene onto oxide-free H-Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n-Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium-doped n-Si, the molecular tunneling barrier can be separated from the Si-Schottky one, which is a 0.47 eV, in agreement with the molecular-modified surface dipole and quite different from the bare Si-H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si-based molecular electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Clark, D. J.; Stoumpos, C. C.; Saouma, F. O.; Kanatzidis, M. G.; Jang, J. I.
2016-05-01
We report on highly polarization-selective three-photon absorption (3PA) in a Bridgman-grown single crystal of CsPbBr3 oriented along the (112) direction, which is an inorganic counterpart to emerging organic-inorganic hybrid halide perovskites for solar-cell and optoelectronic applications. The crystal exhibits strong photoluminescence (PL) at room temperature as a direct consequence of 3PA of fundamental radiation. Interestingly, 3PA disappears when the input polarization is parallel to the (-110 ) direction. This 3PA effect is strongest when orthogonal to (-110 ) and the corresponding 3PA coefficient was measured to be γ =0.14 ±0.03 cm3/GW2 under picosecond-pulse excitation at the fundamental wavelength of λ =1200 nm. The laser-induced damage threshold was also determined to be about 20 GW/cm2 at the same wavelength. Based on relative PL intensities upon λ tuning over the entire 3PA range (1100 -1700 nm), we determined the nonlinear optical dispersion of the 3PA coefficient for CsPbBr3, which is consistent with a theoretical prediction. Experimentally observed significant polarization dependence of γ was explained by relevant selection rules. The perovskite is potentially important for nonlinear optical applications owing to its highly efficient 3PA-induced PL response with a sharp on/off ratio by active polarization control.
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Froula, D. H.; Radha, P. B.; Michel, P. A.; Moody, J. D.; Masse, L.; Goyon, C.; Turnbull, D. P.; Barrios, M. A.; Bates, J. W.; Schmitt, A. J.
2016-10-01
The first experiments at the National Ignition Facility to probe laser-plasma interactions and the hot electron production at scale lengths relevant to direct-drive ignition are reported. The irradiation on one side of planar CH foils generated a plasma at the quarter-critical surface with predicted density scale lengths of Ln 600 μm, measured electron temperatures of Te 3.5 to 4.0 keV, and overlapped laser intensities of I 6 to 15 ×1014W/cm2. Optical emission from stimulated Raman scattering (SRS) and at ω/2 are correlated with the time-dependent hard x-ray signal. The fraction of laser energy converted to hot electrons increased from 0.5 % to 2.3 % as the laser intensity increased from 6 to 15 ×1014W/cm2, while the hot electron temperature was nearly constant around 40 to 50 keV. Only a sharp red-shifted feature is observed around ω/2, and both refracted and sidescattered SRS are detected, suggesting that multibeam SRS contributes to, and may even dominate, hot-electron production. These results imply a diminished presence of two-plasmon decay relative to SRS at these conditions, which has implications for hot-electron preheat mitigation strategies for direct-drive ignition. This work is supported by the DOE NNSA under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2009-03-01
Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.
NASA Astrophysics Data System (ADS)
Zhao, J.; Wijayaratne, K.; Butler, A.; Yang, J.; Malliakas, C. D.; Chung, D. Y.; Louca, D.; Kanatzidis, M. G.; van Wezel, J.; Chatterjee, U.
2017-09-01
We report an in-depth angle-resolved photoemission spectroscopy study on 2 H -TaS2 , a canonical incommensurate charge density wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, 2 H -TaSe2 and 2 H -NbSe2 , the energy gap (ΔCDW) of 2 H -TaS2 is localized along the K -centered Fermi surface barrels and is particle-hole asymmetric. The persistence of ΔCDW even at temperatures higher than the CDW transition temperature TCDW in 2 H -TaS2 , reflects the similar pseudogap behavior observed previously in 2 H -TaSe2 and 2 H -NbSe2 . However, in sharp contrast to 2 H -NbSe2 , where ΔCDW is nonzero only in the vicinity of a few "hot spots" on the inner K -centered Fermi surface barrels, ΔCDW in 2 H -TaS2 is nonzero along the entirety of both K -centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of ΔCDW between otherwise similar CDW compounds to the different orbital orientations of their electronic states that participate in the CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.
Impact of saturation on the polariton renormalization in III-nitride based planar microcavities
NASA Astrophysics Data System (ADS)
Rossbach, Georg; Levrat, Jacques; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas
2013-10-01
It has been widely observed that an increasing carrier density in a strongly coupled semiconductor microcavity (MC) alters the dispersion of cavity polaritons, below and above the condensation threshold. The interacting nature of cavity polaritons stems from their excitonic fraction being intrinsically subject to Coulomb interactions and the Pauli-blocking principle at high carrier densities. By means of injection-dependent photoluminescence studies performed nonresonantly on a GaN-based MC at various temperatures, it is shown that already below the condensation threshold saturation effects generally dominate over any energy variation in the excitonic resonance. This observation is in sharp contrast to the usually assumed picture in strongly coupled semiconductor MCs, where the impact of saturation is widely neglected. These experimental findings are confirmed by tracking the exciton emission properties of the bare MC active medium and those of a high-quality single GaN quantum well up to the Mott density. The systematic investigation of renormalization up to the polariton condensation threshold as a function of lattice temperature and exciton-cavity photon detuning is strongly hampered by photonic disorder. However, when overcoming the latter by averaging over a larger spot size, a behavior in agreement with a saturation-dominated polariton renormalization is revealed. Finally, a comparison with other inorganic material systems suggests that for correctly reproducing polariton renormalization, exciton saturation effects should be taken into account systematically.
NASA Astrophysics Data System (ADS)
Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.
2017-07-01
The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).
Seal Technology in Gas Turbine Engines
1978-08-01
ambient temperatures and 427*C (800*F). 3. Application as a part of the normal manufacturing sequence without subsequent finishing operations...of demonstrable hardnless with sharp, cutting edges. 4. The coating must be applied to a finish dimmsion without subsequent processing. 5. Application...The JC1-Iii 3.4 coating had a surface finish of 11 V metre (425 mioroinches). Both materials appeared to be adequately rough for the proposed
Infrared Sensor Readout Design
1975-11-01
Line Replaceable Unit LT Level Translator MRT Minimum Resolvable Temperature MTF Modulation Transfer Function PC Printed Circuit SCCCD Surface...reduced, not only will the aliased noise increase, but signal aliasing will also start to occur. Atlbe display level this means that sharp edges could...converted from a quantity ol charge to a voltage- level shift by the action ol the precharge pulse that presets the potential on the output diode node to
Handle, Philip H; Loerting, Thomas
2018-03-28
Since the first report of very-high density amorphous ice (VHDA) in 2001 [T. Loerting et al., Phys. Chem. Chem. Phys. 3, 5355-5357 (2001)], the status of VHDA as a distinct amorphous ice has been debated. We here study VHDA and its relation to expanded high density amorphous ice (eHDA) on the basis of isobaric heating experiments. VHDA was heated at 0.1 ≤ p ≤ 0.7 GPa, and eHDA was heated at 1.1 ≤ p ≤ 1.6 GPa to achieve interconversion. The behavior upon heating is monitored using in situ volumetry as well as ex situ X-ray diffraction and differential scanning calorimetry. We do not observe a sharp transition for any of the isobaric experiments. Instead, a continuous expansion (VHDA) or densification (eHDA) marks the interconversion. This suggests that a continuum of states exists between VHDA and HDA, at least in the temperature range studied here. This further suggests that VHDA is the most relaxed amorphous ice at high pressures and eHDA is the most relaxed amorphous ice at intermediate pressures. It remains unclear whether or not HDA and VHDA experience a sharp transition upon isothermal compression/decompression at low temperature.
NASA Astrophysics Data System (ADS)
Handle, Philip H.; Loerting, Thomas
2018-03-01
Since the first report of very-high density amorphous ice (VHDA) in 2001 [T. Loerting et al., Phys. Chem. Chem. Phys. 3, 5355-5357 (2001)], the status of VHDA as a distinct amorphous ice has been debated. We here study VHDA and its relation to expanded high density amorphous ice (eHDA) on the basis of isobaric heating experiments. VHDA was heated at 0.1 ≤ p ≤ 0.7 GPa, and eHDA was heated at 1.1 ≤ p ≤ 1.6 GPa to achieve interconversion. The behavior upon heating is monitored using in situ volumetry as well as ex situ X-ray diffraction and differential scanning calorimetry. We do not observe a sharp transition for any of the isobaric experiments. Instead, a continuous expansion (VHDA) or densification (eHDA) marks the interconversion. This suggests that a continuum of states exists between VHDA and HDA, at least in the temperature range studied here. This further suggests that VHDA is the most relaxed amorphous ice at high pressures and eHDA is the most relaxed amorphous ice at intermediate pressures. It remains unclear whether or not HDA and VHDA experience a sharp transition upon isothermal compression/decompression at low temperature.
Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica.
Modrzejewska-Sikorska, Anna; Konował, Emilia; Klapiszewski, Łukasz; Nowaczyk, Grzegorz; Jurga, Stefan; Jesionowski, Teofil; Milczarek, Grzegorz
2017-10-01
We report a novel room-temperature synthesis of selenium nanoparticles, which for the first time uses lignosulfonate as a stabilizer. Various lignosulfonates obtained both from hardwood and softwood were tested. Selenium oxide was used as the precursor of zero-valent selenium. Three different reducers were tested - sodium borohydride, hydrazine and ascorbic acid - and the latter proved most effective in terms of the particle size and stability of the final colloid. The lignosulfonate-stabilized selenium nanoparticles had a negative zeta potential, dependent on pH, which for some lignosulfonates reached -50mV, indicating the excellent stability of the colloid. When spherical silica particles were introduced to the synthesis mixture, selenium nanoparticles were deposited on their surface. Additionally, star-like structures consisting of sharp selenium needles with silica cores were observed. After drying, the selenium-functionalized silica had a grey metallic hue. The method reported here is simple and cost-effective, and can be used for the preparation of large quantities of selenium colloids or the surface modification of other materials with selenium. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanism of spin crossover in LaCoO3 resolved by shape magnetostriction in pulsed magnetic fields.
Rotter, M; Wang, Z-S; Boothroyd, A T; Prabhakaran, D; Tanaka, A; Doerr, M
2014-11-11
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ≈ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state.
Mechanism of spin crossover in LaCoO3 resolved by shape magnetostriction in pulsed magnetic fields
Rotter, M.; Wang, Z.-S.; Boothroyd, A. T.; Prabhakaran, D.; Tanaka, A.; Doerr, M.
2014-01-01
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ≈ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state. PMID:25384532
Mechanism of spin crossover in LaCoO3 resolved by shape magnetostriction in pulsed magnetic fields
NASA Astrophysics Data System (ADS)
Rotter, M.; Wang, Z.-S.; Boothroyd, A. T.; Prabhakaran, D.; Tanaka, A.; Doerr, M.
2014-11-01
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ~ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, Klaus J.
1993-01-01
The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2004-04-01
The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2011-01-01
Thermal protection materials and systems (TPS) are required to protect a vehicle returning from space or entering an atmosphere. The selection of the material depends on the heat flux, heat load, pressure, and shear and other mechanical loads imposed on the material, which are in turn determined by the vehicle configuration and size, location on the vehicle, speed, a trajectory, and the atmosphere. In all cases the goal is to use a material that is both reliable and efficient for the application. Reliable materials are well understood and have sufficient test data under the appropriate conditions to provide confidence in their performance. Efficiency relates to the behavior of a material under the specific conditions that it encounters TPS that performs very well at high heat fluxes may not be efficient at lower heat fluxes. Mass of the TPS is a critical element of efficiency. This talk will review the major classes of TPS, reusable or insulating materials and ablators. Ultra high temperature ceramics for sharp leading edges will also be reviewed. The talk will focus on the properties and behavior of these materials.
Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Tao; Kang, Wei; Wang, Jianxiang, E-mail: jxwang@pku.edu.cn
2015-01-21
We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence ofmore » the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.« less
The surface latent heat flux anomalies related to major earthquake
NASA Astrophysics Data System (ADS)
Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying
2011-12-01
SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.
Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe
Wang, Qisi; Shen, Yao; Pan, Bingying; ...
2015-12-07
In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less
Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qisi; Shen, Yao; Pan, Bingying
In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less
NASA Astrophysics Data System (ADS)
Mandal, S.; Kanathila, M. B.; Pynn, C. D.; Li, W.; Gao, J.; Margalith, T.; Laurent, M. A.; Chowdhury, S.
2018-06-01
We report on the first observation of avalanche electroluminescence resulting from band-to-band recombination (BTBR) of electron hole pairs at the breakdown limit of Gallium Nitride p-n diodes grown homo-epitaxially on single crystalline GaN substrates. The diodes demonstrated a near ideal breakdown electric field of 3 MV cm‑1 with electroluminescence (EL) demonstrating sharp peaks of emission energies near and at the band gap of GaN. The high critical electric field, near the material limit of GaN, was achieved by generating a smooth curved mesa edge with low plasma damage, using etch engineering without any use of field termination. The superior material quality was critical for such a near-ideal performance. An electric field of 3 MV cm‑1 recorded at the breakdown resulted in impact ionization, confirmed by a positive temperature dependence of the breakdown voltage. The spectral data provided evidence of BTBR of electron hole pairs that were generated by avalanche carrier multiplication in the depletion region.
Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
Zoppe, Justin O; Osterberg, Monika; Venditti, Richard A; Laine, Janne; Rojas, Orlando J
2011-07-11
The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of grafted CNCs in aqueous dispersions and as an ultrathin film was evaluated by using light scattering, viscosimetry, and colloidal probe microscopy (CPM). Light transmittance measurements showed temperature-dependent aggregation originating from the different graft densities and molecular weights. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength, as is the case for free poly(NiPAAm) in aqueous solution. Thermal responsive behavior of grafted CNCs in aqueous dispersions was observed by a sharp increase in dispersion viscosity as the temperature approached the LCST. CPM in liquid media for asymmetric systems consisting of ultrathin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on interaction and adhesive forces. The origin of such forces was found to be mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films were observed with the ionic strength of the aqueous solution. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as the main reasons for the less prominent polymer bridging between interacting surfaces.
Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction
NASA Astrophysics Data System (ADS)
Chamoli, Tanuj; Ajay
2018-05-01
The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK < superconducting transition temperature TC). Employing non-equilibrium Green's function approach within mean field approximation, we have obtained expressions for density of states (DOS) and analysed the same using numerical computation to underline the nature of DOS close to Fermi level in S-DQD-S junctions. On the basis of numerical computation, it is pointed out that indirect exchange interaction between impurities (QD) i.e. RKKY interaction suppresses the screening of magnetic QD due to Cooper pair electrons i.e. Kondo effect in the form of reduction in the magnitude of sharp DOS peak close to Fermi level which is in qualitative agreement with the experimental observations in such tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.
The Zodiacal Emission Spectrum as Determined by COBE and its Implications
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Dwek, Eli; Oliversen, R. (Technical Monitor)
2002-01-01
We combine observations from the DIRBE and FIRAS instruments on the COBE satellite to derive an annually-averaged spectrum of the zodiacal cloud in the 10 to 1000 micron wavelength region. The spectrum exhibits a break at approx. 150 microns which indicates a sharp break in the dust size distribution at a radius of about 30 microns The spectrum can be fit with a single blackbody with a lambda(exp -2) emissivity law beyond 150 microns and a temperature of 240 K. We also used a more realistic characterization of the cloud to fit the spectrum, including a distribution of dust temperatures, representing different dust compositions and distances from the sun, as well as a realistic representation of the spatial distribution of the dust. We show that amorphous carbon and silicate dust with respective temperatures of 280 and 274 K at 1 AU, and size distributions with a break at grain radii of 14 and 32 microns, can provide a good fit to the average zodiacal dust spectrum. The total mass of the zodiacal cloud is 2 to 11 Eg (Eg=10(exp 18) g), depending on the grain composition. The lifetime of the cloud, against particle loss by Poynting- Robertson drag and the effects of solar wind, is about 10(exp 5) yr. The required replenishment rate is approx. 10(exp 14) g/yr. If this is provided by asteroid belt alone, the asteroids lifetime would be approx. 3 x 10(exp 10) yr. But comets and Kuiper belt objects may also contribute to the zodiacal cloud.
An innovative molybdenum column liner for oxygen and hydrogen stable isotope analysis by pyrolysis.
Stuart-Williams, Hilary; Wong, S Chin; Farquhar, Graham D; Keitel, Claudia; Clayton, Stephen
2008-04-01
The most widely used method for pyrolysing samples for hydrogen or oxygen isotopic analysis involves heating them to greater than 1300 degrees C in a helium stream passed through a glassy carbon tube in an alumina casing. There are a number of difficulties with this. Glassy carbon tubes are expensive and interaction between the carbon tube and the outer casing produces unwanted carbon monoxide by reduction of the alumina at high temperatures. The latter effect is overwhelming if temperatures of 1400 degrees C or greater are used for pyrolysis. We experimented with lining alumina casings with pure molybdenum sheet. It is relatively cheap, conforms well to the interior of the reactor tube (to avoid carrier and sample bypassing of the carbon pack), resists high temperatures and neither oxidises excessively nor absorbs the gases. The main disadvantages are that silver sample cups must be used and that the molybdenum degrades over time by formation of the carbide. We can maintain sharp peaks, high precision and good accuracy over more than 700 solid samples for both hydrogen and oxygen. The reactors last longer for water injections. The molybdenum in the columns does not contribute greatly to memory effects. The precision of analysis is dependent on other factors as well as the pyrolysis column, but for oxygen we typically achieve approximately <0.2 per thousand (sucrose), <0.25 per thousand (water) and <0.25 per thousand (leaf), sometimes using only a linear correction of drift, after dividing the run into 1 to 3 segments.
Intermediate coupled superconductivity in yttrium intermetallics
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Ahmed, Gulzar; Sharma, Yamini
2017-09-01
Non-magnetic YIn3, LaIn3 and LuIn3 with a superconducting transition temperature Tc of 0.78, 0.71 and 0.24 K were investigated for superconductivity. Similarly, rare-earth compound LaSn3 has been reported to exhibit superconductivity around 6.25 K, whereas the non-magnetic YSn3 is a superconductor with Tc of 7 K. The substitution of 13th group In-atoms by 14th group Sn-atoms is seen to enhance Tc by nearly one order, although the lattice parameters increase by ∼1.0% in YSn3 compared to YIn3 compound. It is observed from the ground state properties that the slight difference in the energy band structures of YIn3, YIn2Sn and YSn3 gives rise to various complex Fermi surfaces which are multiply connected and exhibit vast differences. The Fermi level lies on a sharp peak in YSn3 which has a higher density of states N(EF), whereas Fermi level lies on the shoulder of a sharp peak in YIn3. The electron localization function (ELF) and difference charge density maps clearly illustrate the difference in the nature of bonding; the Ysbnd Sn bonds are clearly more ionic (due to larger bond length) than Ysbnd In bonds. These results are consistent with the Bader charges which show loss of charges from Y-atoms and a gain of charges by In/Sn atoms. The dynamical properties also clearly illustrate the difference in the nature of bonds in YX3 intermetallics. A softening of the lowermost acoustic modes is observed in YIn3, whereas all the modes in YSn3 are observed to have positive frequencies which imply its greater stability. Since λel-ph < 1, both YIn3 and YSn3 compounds exhibit type I superconductivity according to BCS theory. However, the smaller N(EF) obtained from the density of states (DOS); the electron-phonon coupling constant λel-ph obtained from the temperature dependent specific heat as well as the instability in phonon modes due to stronger Ysbnd In and Insbnd In bonds in YIn3 may be the cause of lower Tc and filamentary nature of superconductivity. Insertion of Sn-atom in the YIn3 lattice further consolidates the superconducting nature due to increase in N(EF) and γ (electronic component of specific heat), along with lowering of the frequency of imaginary modes from 5.6 THz to 1.5-0.6 THz. Thus Tc is directly related to the valence electron concentration and ternary YIn2Sn may exhibit intermediate superconducting transition temperature.
[The comparative characteristics of sawcuts across the femoral bone].
Sarkisian, B A; Azarov, P A
2014-01-01
The objective of the present work was to study the differences between the morphological features of the wounds in the long tubular bones inflicted by joinery hand saws designed for longitudinal and transverse, sawing. The experimental injuries to the femoral bones were inflicted by the recurring and reciprocating saw movements. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. A total of 40 experiments were carried out. It was shown that the sawcuts across the femoral bones and their edges have different size, shape, and morphological characteristics (defects, ledges, projections, bright spots) depending on the type of the saw, the sharpness of its teeth, and the mode of sawing. The results of the study may be used to improve diagnostics of injuries to the long tubular bones inflicted by different types of joinery saws.
Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature
NASA Astrophysics Data System (ADS)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Goncharov, Alexander F.
2016-09-01
The ability of Earth's mantle to conduct heat by radiation is determined by optical properties of mantle phases. Optical properties of mantle minerals at high pressure are accessible through diamond anvil cell experiments, but because of the intense thermal radiation at T > 1000 K such studies are limited to lower temperatures. Accordingly, radiative thermal conductivity at mantle conditions has been evaluated with the assumption of the temperature-independent optical properties. Particularly uncertain is the temperature-dependence of optical properties of lower mantle minerals across the spin transition, as the spin state itself is a strong function of temperature. Here we use laser-heated diamond anvil cells combined with a pulsed ultra-bright supercontinuum laser probe and a synchronized time-gated detector to examine optical properties of high and low spin ferrous iron at 45-73 GPa up to 1600 K in an octahedral crystallographic unit (FeO6), one of the most abundant building blocks in the mantle. Siderite (FeCO3) is used as a model for FeO6-octahedra as it contains no ferric iron and exhibits a sharp optically apparent pressure-induced spin transition at 44 GPa, simplifying data interpretation. We find that the optical absorbance of low spin FeO6 increases with temperature due to the partially lifted Laporte selection rule. The temperature-induced low-to-high spin transition, however, results in a dramatic drop in absorbance of the FeO6 unit in siderite. The absorption edge (Fe-O charge transfer) red-shifts (∼1 cm-1/K) with increasing temperature and at T > 1600 K and P > 70 GPa becomes the dominant absorption mechanism in the visible range, suggesting its superior role in reducing the ability of mantle minerals to conduct heat by radiation. This implies that the radiative thermal conductivity of analogous FeO6-bearing minerals such as ferropericlase, the second most abundant mineral in the Earth's lower mantle, is substantially reduced approaching the core-mantle boundary conditions.
Schönberger, Jan; Draguhn, Andreas; Both, Martin
2014-01-01
The mammalian hippocampus expresses highly organized patterns of neuronal activity which form a neuronal correlate of spatial memories. These memory-encoding neuronal ensembles form on top of different network oscillations which entrain neurons in a state- and experience-dependent manner. The mechanisms underlying activation, timing and selection of participating neurons are incompletely understood. Here we studied the synaptic mechanisms underlying one prominent network pattern called sharp wave-ripple complexes (SPW-R) which are involved in memory consolidation during sleep. We recorded SPW-R with extracellular electrodes along the different layers of area CA1 in mouse hippocampal slices. Contribution of glutamatergic excitation and GABAergic inhibition, respectively, was probed by local application of receptor antagonists into s. radiatum, pyramidale and oriens. Laminar profiles of field potentials show that GABAergic potentials contribute substantially to sharp waves and superimposed ripple oscillations in s. pyramidale. Inhibitory inputs to s. pyramidale and s. oriens are crucial for action potential timing by ripple oscillations, as revealed by multiunit-recordings in the pyramidal cell layer. Glutamatergic afferents, on the other hand, contribute to sharp waves in s. radiatum where they also evoke a fast oscillation at ~200 Hz. Surprisingly, field ripples in s. radiatum are slightly slower than ripples in s. pyramidale, resulting in a systematic shift between dendritic and somatic oscillations. This complex interplay between dendritic excitation and perisomatic inhibition may be responsible for the precise timing of discharge probability during the time course of SPW-R. Together, our data illustrate a complementary role of spatially confined excitatory and inhibitory transmission during highly ordered network patterns in the hippocampus.
Properties of Free-Machining Aluminum Alloys at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Faltus, Jiří; Karlík, Miroslav; Haušild, Petr
In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.