Occurrence of Greater Sage-Grouse X Sharp-tailed Grouse hybrids in Alberta
Aldridge, Cameron L.; Oyler-McCance, S.J.; Brigham, R.M.
2001-01-01
Two distinct grouse were regularly observed at two Greater Sage-Grouse (Centrocercus urophasianus) leks in both 1999 and 2000 in southeastern Alberta. Physically and behaviorally, the birds exhibited characteristics of both Greater Sage-Grouse and Sharp-tailed Grouse (Tympanuchus phasianellus), suggesting they were hybrids. DNA analyses of blood and feather samples indicated that both birds were males with Greater Sage-Grouse mothers and thus, fathers that were likely Sharp-tailed Grouse.
Survival of translocated sharp-tailed grouse: Temporal threshold and age effects
Mathews, Steven; Coates, Peter S.; Delehanty, David J.
2016-01-01
Context: The Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus) is a subspecies of conservation concern in the western United States, currently occupying ≤10% of its historic range. Land and management agencies are employing translocation techniques to restore Columbian sharp-tailed grouse (CSTG) populations. However, establishing self-sustaining populations by translocating grouse often is unsuccessful, owing, in part, to low survivorship of translocated grouse following release.Aims: We measured and modelled patterns of CSTG mortality for 150 days following translocation into historic range, to better understand patterns and causes of success or failure in conservation efforts to re-establish grouse populations.Methods: We conducted two independent multi-year translocations and evaluated individual and temporal factors associated with CSTG survival up to 150 days following their release. Both translocations were reintroduction attempts in Nevada, USA, to establish viable populations of CSTG into their historic range.Key results: We observed a clear temporal threshold in survival probability, with CSTG mortality substantially higher during the first 50 days following release than during the subsequent 100 days. Additionally, translocated yearling grouse exhibited higher overall survival (0.669 ± 0.062) than did adults (0.420 ± 0.052) across the 150-day period and higher survival than adults both before and after the 50-day temporal threshold.Conclusions: Translocated CSTG are especially vulnerable to mortality for 50 days following release, whereas translocated yearling grouse are more resistant to mortality than are adult grouse. On the basis of the likelihood of survival, yearling CSTG are better candidates for population restoration through translocation than are adult grouse.Implications: Management actions that ameliorate mortality factors for 50 days following translocation and translocations that employ yearling grouse will increase the likelihood of population establishment.
Hybridization between Dusky Grouse and Sharp-tailed Grouse
O'Donnell, Ryan P.
2015-01-01
Cache County, Utah, 7 April 2013: rare hybrid combination of grouse noted. Hybridization between Dusky Grouse (Dendragapus obscurus) and Sharp-tailed Grouse (Tympanuchus phasianellus) has been rarely documented in the wild. The only published record was of one collected from Osoyoos, British Columbia, in 1906 (Brooks 1907, Lincoln 1950). There is also one record of this hybrid in captivity (McCarthy 2006)...Although hybridization within genera is more common than between genera, it is perhaps not all too remarkable that these species would hybridize, given that Dendragapus and Tympanuchus are each other’s closest relatives (Drovetski 2002). The ranges of these two species overlap over a broad area ranging roughly from parts of northern Utah and Colorado to Yukon and the Northwest Territories. Given the close relatedness and extent of overlap of their ranges, it is perhaps surprising that there have not been more reports of this hybrid combination in the over-100 years since Brooks (1907) first described one. The species may be segregated by habitat use, as Sharp-tailed prefer open grassland sites for lekking and shrub areas for nesting, and Dusky are often found in more densely forested conifer stands—although Dusky often use more open habitats in the spring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cope, Michael G.
1992-07-01
Distribution, habitat use and survival of transplanted Columbian sharp-tailed grouse in the Tobacco Plains, Montana were studied from April, 1990 to August, 1991. For transplant purposes, 12 grouse (5 female and 7 male) were trapped on dancing grounds near Douglas Lake, British Columbia, Canada during spring, 1990. In April, 1991, trapping of 4 female and 2 male grouse for transplant occurred on the Sand Creek Wildlife Management Area in southeast Idaho while 3 additional males were transplanted from Douglas Lake. Minimum annual survival of transplanted grouse in the Tobacco Plains is relatively high (47%). High survival is possibly due tomore » 2 factors: (1) topography and habitat characteristics that discourage dispersal and (2) the presence of limited but relatively good habitat. Two of 18 radio-equipped grouse dispersed out of the study area, while 2 others survived in the area for over 590 days. A negative correlation in distances moved between consecutive relocations and length of survival was seen in radio-equipped grouse in this study. Data collected during this study showed the importance of habitat associated with the Dancing Prairie Preserve. Three of 5 females transplanted in 1990 attempted to nest after being released. Nesting and brood rearing sites were characterized by dense grass cover with an average effective height {ge}20 cm. Shrub cover was associated only with brood rearing sites. Overall habitat use by transplanted Columbian Sharp-tailed grouse showed an apparent avoidance of agricultural land and use of other habitat types in proportion to their availability.« less
Sharp-Tailed Grouse Nest Survival and Nest Predator Habitat Use in North Dakota's Bakken Oil Field.
Burr, Paul C; Robinson, Aaron C; Larsen, Randy T; Newman, Robert A; Ellis-Felege, Susan N
2017-01-01
Recent advancements in extraction technologies have resulted in rapid increases of gas and oil development across the United States and specifically in western North Dakota. This expansion of energy development has unknown influences on local wildlife populations and the ecological interactions within and among species. Our objectives for this study were to evaluate nest success and nest predator dynamics of sharp-tailed grouse (Tympanuchus phasianellus) in two study sites that represented areas of high and low energy development intensities in North Dakota. During the summers of 2012 and 2013, we monitored 163 grouse nests using radio telemetry. Of these, 90 nests also were monitored using miniature cameras to accurately determine nest fates and identify nest predators. We simultaneously conducted predator surveys using camera scent stations and occupancy modeling to estimate nest predator occurrence at each site. American badgers (Taxidea taxus) and striped skunks (Mephitis mephitis) were the primary nest predators, accounting for 56.7% of all video recorded nest depredations. Nests in our high intensity gas and oil area were 1.95 times more likely to succeed compared to our minimal intensity area. Camera monitored nests were 2.03 times more likely to succeed than non-camera monitored nests. Occupancy of mammalian nest predators was 6.9 times more likely in our study area of minimal gas and oil intensity compared to the high intensity area. Although only a correlative study, our results suggest energy development may alter the predator community, thereby increasing nest success for sharp-tailed grouse in areas of intense development, while adjacent areas may have increased predator occurrence and reduced nest success. Our study illustrates the potential influences of energy development on the nest predator-prey dynamics of sharp-tailed grouse in western North Dakota and the complexity of evaluating such impacts on wildlife.
Selection of nesting habitat by sharp-tailed grouse in the Nebraska sandhills
Prose, Bart L.; Cade, Brian S.; Hein, Dale
2002-01-01
We evaluated nesting habitat selection (disproportionate use compared to availability) by plains sharp-tailed grouse (Tympanuchus phasianellus jamesi) on rangelands grazed by cattle (Bos taurus) relative to height, density, and heterogeneity of residual herbaceous vegetation remaining from previous growing seasons. Residual cover is critical for nesting sharp-tailed grouse and can be lacking on grazed rangelands. Aerial photography and a geographic information system were used to analyze residual cover height classes and several measures of residual cover heterogeneity in nest (n = 38) and random (n = 38) plots. Height classes corresponded to visual obstruction readings (VORs), the height to which total visual obstruction by vegetation occurs. Analyses were conducted for five spatial scales ranging from 1 to 16 ha to test for scale effects on nesting habitat selection. Sharp-tailed grouse selected nesting habitat with more area in tall (greater than or equal to 4 cm VOR) residual cover than at random sites at all scales, less area in short residual cover (less than 2 cm VOR) at the I-ha scale, and less area in short and medium (2 to 3.9 cm YOR) residual cover at the 2- through 16-ha scales. Selection of shrub habitat containing patches of shrubs was evident only at the 16-ha scale. Patches of tall residual cover were larger in nest plots than in random plots at the 8- and 16-ha scales, and patches of short cover were smaller in nest plots at the I-ha scale. Two scales of pattern defined by mean patch size were detected for overall residual cover, but did not relate to nesting habitat selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Richard
2004-01-01
Columbian Sharp-Tailed Grouse (Tympanuchus phasianellus columbianus) (CSTG) are an important traditional and cultural species to the Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STOI), and other Tribes in the Region. They were once the most abundant upland bird in the Region. Currently, the largest remaining population in Washington State occurs on the CCT Reservation in Okanogan County. Increasing agricultural practices and other land uses has contributed to the decline of sharp-tail habitat and populations putting this species at risk. The decline of this species is not new (Yokum, 1952, Buss and Dziedzic, 1955, Zeigler, 1979, Meints 1991, and Crawfordmore » and Snyder 1994). The Tribes (CCT and STOI) are determined to protect, enhance and restore habitat for this species continued existence. When Grand Coulee and Chief Joseph Hydro-projects were constructed, inundated habitat used by this species was lost forever adding to overall decline. To compensate and prevent further habitat loss, the CCT proposed a project with Bonneville Power Administration (BPA) funding to address this species and their habitat requirements. The projects main focus is to address habitat utilized by the current CSTG population and determine ways to protect, restore, and enhance habitats for the conservation of this species over time. The project went through the NPPC Review Process and was funded through FY03 by BPA. This report addresses part of the current CCT effort to address the conservation of this species on the Colville Reservation.« less
2007-08-01
tridecemlineatus), fox squirrel (Sciurus niger), deer mouse (Peromyscus maniculatus), and prairie vole (Microtus ochragaster). Common lagomorphs...Proposed Action or Alternatives 1 or 2. Several mature ponderosa pine and eight Siberian elm trees are located on the eastern and western portion of...swift fox, Preble’s meadow jumping mouse , bald eagle, ferruginous hawk, plains sharp-tailed grouse, northern leopard frog, Ute ladies’-tresses orchid
West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs permore » acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.« less
Scotch Creek Wildlife Area 2007-2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jim
The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 onmore » Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.« less
Present and future thermal environments available to Sharp-tailed Grouse in an intact grassland.
Raynor, Edward J; Powell, Larkin A; Schacht, Walter H
2018-01-01
Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting period. We measured site-specific iButton temperatures (TiB) and vegetation characteristics at nest sites, nearby random sites, and landscape sites to assess thermal patterns at scales relevant to nesting birds. We asked if microhabitat vegetation characteristics at nest sites matched the characteristics that directed macrohabitat nest-site selection. Grouse selected sites sheltered by dense vegetation for nesting that moderated TiB on average up to 2.7°C more than available landscape sites. Successful nests were positioned in a way that reduced exposure to thermal extremes by as much as 4°C relative to failed nests with an overall mean daytime difference (±SE) of 0.4 ±0.03°C. We found that macrohabitat nest-site selection was guided by dense vegetation cover and minimal bare ground as also seen at the microhabitat scale. Global climate projections for 2080 suggest that TiB at nest sites may approach temperatures currently avoided on the landscape, emphasizing a need for future conservation plans that acknowledge fine-scale thermal space in climate change scenarios. These data show that features of grassland landscapes can buffer organisms from unfavorable microclimatic conditions and highlight how thermal heterogeneity at the individual-level can drive decisions guiding nest site selection.
Present and future thermal environments available to Sharp-tailed Grouse in an intact grassland
Powell, Larkin A.; Schacht, Walter H.
2018-01-01
Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting period. We measured site-specific iButton temperatures (TiB) and vegetation characteristics at nest sites, nearby random sites, and landscape sites to assess thermal patterns at scales relevant to nesting birds. We asked if microhabitat vegetation characteristics at nest sites matched the characteristics that directed macrohabitat nest-site selection. Grouse selected sites sheltered by dense vegetation for nesting that moderated TiB on average up to 2.7°C more than available landscape sites. Successful nests were positioned in a way that reduced exposure to thermal extremes by as much as 4°C relative to failed nests with an overall mean daytime difference (±SE) of 0.4 ±0.03°C. We found that macrohabitat nest-site selection was guided by dense vegetation cover and minimal bare ground as also seen at the microhabitat scale. Global climate projections for 2080 suggest that TiB at nest sites may approach temperatures currently avoided on the landscape, emphasizing a need for future conservation plans that acknowledge fine-scale thermal space in climate change scenarios. These data show that features of grassland landscapes can buffer organisms from unfavorable microclimatic conditions and highlight how thermal heterogeneity at the individual-level can drive decisions guiding nest site selection. PMID:29415080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
1997-01-01
This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mulemore » deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.« less
Coates, Peter S.; Halstead, Brian J.; Blomberg, Erik J.; Brussee, Brianne; Howe, Kristy B.; Wiechman, Lief; Tebbenkamp, Joel; Reese, Kerry P.; Gardner, Scott C.; Casazza, Michael L.
2014-01-01
Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) are endemic to sagebrush (Artemisia spp.) ecosystems throughout Western North America. Populations of sage-grouse have declined in distribution and abundance across the range of the species (Schroeder and others, 2004; Knick and Connelly, 2011), largely as a result of human disruption of sagebrush communities (Knick and Connelly, 2011). The Bi-State Distinct Population Segment (DPS) represents sage-grouse populations that are geographically isolated and genetically distinct (Benedict and others, 2003; Oyler-McCance and others, 2005) and that are present at the extreme southwestern distribution of the sage-grouse range (Schroeder and others, 2004), straddling the border of California and Nevada. Subpopulations of sage-grouse in the DPS may be at increased risk of extirpation because of a substantial loss of sagebrush habitat and lack of connectivity (Oyler-McCance and others, 2005). Sage-grouse in the Bi-State DPS represent small, localized breeding populations distributed across 18,325 km2. The U.S. Fish and Wildlife Service currently (2014) is evaluating the Bi-State DPS as threatened or endangered under the Endangered Species Act of 1973, independent of other sage-grouse populations. This DPS was designated as a higher priority for listing than sage-grouse in other parts of the species’ range (U.S. Department of the Interior, 2010). Range-wide population analyses for sage-grouse have included portions of the Bi-State DPS (Sage and Columbian Sharp-tailed Grouse Technical Committee 2008; Garton and others, 2011). Although these analyses are informative, the underlying data only represent a portion of the DPS and are comprised of lek count observations only. A thorough examination of population dynamics and persistence that includes multiple subpopulations and represents the majority of the DPS is largely lacking. Furthermore, fundamental information on population growth rate (i.e., finite rate of change, λ) and specific demographic parameters that explain sources of variation in λ within different subpopulations would be valuable for making conservation and management decisions for this DPS. During 2003–12, agencies and universities collaborated to conduct extensive monitoring of sage-grouse populations within the Bi-State DPS. Data regarding lek attendance, movement, and survival of sage-grouse across multiple life stages were documented. Specifically, sage-grouse from nearly all subpopulations were marked and tracked across multiple seasons using radio-telemetry techniques. A hierarchical integrated population modeling (IPM) approach was used to derive demographic parameters for the Bi-State DPS using the large amount of data collected over a 10-year period. This modeling approach allows integration of multiple data sources to inform population growth rates and population vital rates for the Bi-State DPS overall, as well as for individual subpopulations. These models are more informative than other models because they integrate inputs of demographic data (for example, survival and fecundity rates) and survey data (for example, lek observations). The findings here will help characterize population growth rates within the Bi-State DPS.
Efficacy of CPTH-treated egg baits for removing ravens
Coates, Peter S.; Spencer, Jack O.; Delehanty, David J.
2007-01-01
Human-altered landscapes have provided resource subsidies for common ravens (Corvus corax) resulting in a substantial increase in raven abundance and distribution throughout the United States and Canada in the past 25 years. Ravens are effective predators of eggs and young of ground-nesting birds. During 2002–2005, we tested whether chicken egg baits treated with CPTH (3-chloro-p-toluidine hydrochloride) could be used to manage raven numbers in an area where raven depredation was impacting sharp-tailed grouse (Tympanuchus phasianellus columbianus) and greater sage-grouse (Centrocercus urophasianus) populations in Nevada. We performed multiple raven surveys at a treatment site and 3 control sites and used videography to identify predators and estimate egg bait consumption. We detected reductions in raven abundances over time at the treatment site during all years of this study and did not detect reductions in raven abundances at control sites. Videographic observations of egg consumption indicated that the standard 1:2 ratio (1 raven removed/2 eggs consumed) substantially overestimated raven take because nontarget species (rodents) consumed some egg baits. The technique described here likely will be effective at reducing raven densities where this is the intended management action.
Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew
2000-05-01
A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribesmore » have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types evaluated for this study were grasslands, shrub-steppe, rock, conifer forest and woodland, and riparian. These same cover types were evaluated for other Hellsgate Project acquisitions within the same geographic area. Mule deer habitat on the Sand Hills unit rated good overall for winter food and cover in the shrub-steppe and conifer woodland cover types. Sharp-tailed grouse habitat on the former Hinman property and special management area rated good for nesting and brood rearing in the grassland cover type. Mink habitat on the Friedlander parcel rated poor due to lack of food and cover in and along the riparian cover type. The Downy woodpecker rated poor for food and cover on the Friedlander parcel in the conifer forest cover type. This species also rated poor on the conifer woodland habitat on the Hinman parcel. Yellow warbler habitat on the Agency Butte Special Management area rated very poor due to lack of shrubs for cover and reproduction around the scattered semi/permanent ponds that occur on the area. Bobcat habitat on this same area rated poor due to lack of cover and food. Fragmentation of existing quality habitat is also a problem for both these species. This report is an analysis of baseline habitat conditions on mitigation and managed lands, and provides estimated habitat units for mitigation crediting purposes. In addition, this information will be used to manage these lands for the benefit of wildlife.« less
Greater sage-grouse nest predators in the Virginia Mountains of northwestern Nevada
Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.
2013-01-01
Greater sage-grouse Centrocercus urophasianus, hereafter sage-grouse, populations have declined across their range due to the loss, degradation, and fragmentation of habitat. Habitat alterations can lead not only to vegetative changes but also to shifts in animal behavior and predator composition that may influence population vital rates, such as nest success. For example, common ravens Corvus corax are sage-grouse nest predators, and common raven abundance is positively associated with human-caused habitat alterations. Because nest success is a central component to sage-grouse population persistence, research that identifies factors influencing nest success will better inform conservation efforts. We used videography to unequivocally identify sage-grouse nest predators within the Virginia Mountains of northwestern Nevada, USA, from 2009 to 2011 and used maximum likelihood to calculate daily probability of nest survival. In the Virginia Mountains, fires, energy exploration, and other anthropogenic activities have altered historic sage-grouse habitat. We monitored 71 sage-grouse nests during the study, placing video cameras at 39 nests. Cumulative nest survival for all nests was 22.4% (95% CI, 13.0–33.4%), a survival rate that was significantly lower than other published results for sage-grouse in the Great Basin. Depredation was the primary cause for nest failure in our study (82.5%), and common ravens were the most frequent sage-grouse nest predator, accounting for 46.7% of nest depredations. We also successfully documented a suite of mammalian and reptilian species depredating sage-grouse nests, including some predators never previously confirmed in the literature to be sage-grouse nest predators (i.e., bobcats Lynx rufus and long-tailed weasels Mephitis frenata). Within the high elevation, disturbed habitat of the Virginia Mountains, low sage-grouse nest success may be limiting sage-grouse population growth. These results suggest that management actions that restore habitat in the Virginia Mountains and decrease anthropogenic subsidies of ravens will benefit sage-grouse.
1989-02-01
were found infested on at least one occasion including: 3/13 Red-beaked Hornbills (Tockus erythrorhynchus), 3/6 Long-Tailed Glossy Starlings...Onea capensis Chestnut-bellied Sand-grouse 5 3 2 10 Pterocles exustus Abyssinian Roller 6 1 7 Coracias abyssinica Red-beaked Hornbill 1 3 1 1 2 3 2 13
West Foster Creek Expansion Project 2007 HEP Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus),more » western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.« less
1980-03-01
1980 Prepared by Archeologist Environmental Planning Section ABERT ARWEDSKY Archeologist Environmental Planning Section It ABSTRACT In accordance with...terrestrial species presently found in eastern Kentucky include cottontail rabbit, gray squirrel , raccoon, oppossum, skunk, muskrat, red fox, grey fox, quail...and ruffed grouse. Less abundant species include fox squirrel , white-tailed deer, mink, mourning dove, wild turkey, ducks and geese (Casey 1965
1989-09-01
Gorman, owners of the Sage Motel in Gettysburg, who made our stay a pleasant one; to Rick Moore, Oahe Project Manager, and Erik Stasch, Oahe Project...tailed grouse, prairie chickens and migratory waterfowl. Climate The climate in the study area today is typical of the continental type; large...localities C/AS = Cairn associated with artifact scatter 213 12. REFERENCES CITED Ahler, S.A. 1971 Projectile Point Form and Function at Rodgers
Department of Energy Programmatic Environmental Impact Statement (PEIS) scoping session
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
The purpose of this programmatic environmental impact statement (PEIS) scoping meeting was: to present the ground water program so as to build some familiarity and understanding about the issue involved; and to get the Durango community`s input. This report contains the presentations made by the project manager for the uranium mill tailings program, site manager for the Durango UMTRA site, manager of ground water hydrology, and includes comments made by local residents.
Wildlife mitigation and monitoring report Gunnison, Colorado, site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapramore » americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. El13-39-000, QF11-32-001, QF11-33-001] Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for... Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park II, LLC filed a...
Comparison of Two Vegetation Height Methods for Assessing Greater Sage-Grouse Seasonal Habitat
USDA-ARS?s Scientific Manuscript database
The 2015 Sage-Grouse Habitat Assessment Framework (HAF) was developed to evaluate habitat quality for sage-grouse (Centrocercus spp.), with the greater sage-grouse (C. urophasianus) as the primary focus of HAF evaluations and basis of the indicators in the HAF. Site-scale assessments of sage-grouse ...
Confidence Hills -- The First Mount Sharp Drilling Site
2014-11-04
This image shows the first holes drilled by NASA Mars rover Curiosity at Mount Sharp. The loose material near the drill holes is drill tailings and an accumulation of dust that slid down the rock during drilling.
Lindstrom, A.; Gill, Robert E.; Jamieson, S.E.; McCaffery, B.; Wennerberg, Liv; Wikelski, M.; Klaassen, M.
2011-01-01
Making a detour can be advantageous to a migrating bird if fuel-deposition rates at stopover sites along the detour are considerably higher than at stopover sites along a more direct route. One example of an extensive migratory detour is that of the Sharp-tailed Sandpiper (Calidris acuminata), of which large numbers of juveniles are found during fall migration in western Alaska. These birds take a detour of 1500-3400 km from the most direct route between their natal range in northeastern Siberia and nonbreeding areas in Australia. We studied the autumnal fueling rates and fuel loads of 357 Sharp-tailed Sandpipers captured in western Alaska. In early September the birds increased in mass at a rate of only 0.5% of lean body mass day?1. Later in September, the rate of mass increase was about 6% of lean body mass day?1, among the highest values found among similar-sized shorebirds around the world. Some individuals more than doubled their body mass because of fuel deposition, allowing nonstop flight of between 7100 and 9800 km, presumably including a trans-oceanic flight to the southern hemisphere. Our observations indicated that predator attacks were rare in our study area, adding another potential benefit of the detour. We conclude that the most likely reason for the Alaskan detour is that it allows juvenile Sharp-tailed Sandpipers to put on large fuel stores at exceptionally high rates. Copyright ?? The Cooper Ornithological Society 2011.
Sage-grouse habitat restoration symposium
Nancy L. Shaw; Mike Pellant; Stephen B. Monsen
2005-01-01
Sage-grouse (greater sage-grouse [Centrocercus urophasianus] and Gunnison sage-grouse [C. minimus]) were once abundant over a range that approximated that of sagebrush (Artemisia spp.) in 16 Western States and three Canadian Provinces (Aldrich 1963; Connelly and others 2000; Johnsgard 1973). Although their...
Multiscale habitat selection by Ruffed Grouse at low population densities
Zimmerman, G.S.; Gutierrez, R.J.; Thogmartin, W.E.; Banerjee, S.
2009-01-01
Theory suggests habitats should be chosen according to their relative evolutionary benefits and costs. It has been hypothesized that aspen (Populus spp.) forests provide optimal habitat for Ruffed Grouse (Bonasa umbellus). We used the low phase of a grouse population's cycle to assess the prediction that grouse should occupy aspen and avoid other forest types at low population density because of the presumptive fitness benefits of aspen. On the basis of our observations, we predict how the Ruffed Grouse population will increase in different forest types during the next cycle. In conifer (Pinus spp., Abies balsamea, Picea spp.)-dominated and mixed aspen-conifer landscapes, grouse densities were highest where forest types were evenly distributed. Within these landscapes, male Ruffed Grouse selected young aspen stands that were large and round or square. Although Ruffed Grouse selected young aspen stands strongly, contrary to prediction, they also used other forest types even when young aspen stands remained unoccupied. The relative densities of Ruffed Grouse in aspen and conifer forests indicated that the aspen forest's carrying capacities for grouse was higher than the conifer forest's at least during the low and declining phases of the grouse's cycle. On the basis of our observations, we predict that Ruffed Grouse populations in aspen-dominated landscapes will have higher population densities and fluctuate more than will populations in conifer-dominated landscapes. We suggest that studies of avian habitat selection would benefit from knowledge about the relative densities among habitats at differing population sizes because this information could provide insight into the role of habitat in regulating populations and clarify inferences from studies about habitat quality for birds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Zimmerman, Shawna; Timmer, Jennifer M.; Aldridge, Cameron L.; Oyler-McCance, Sara J.; Braun, Clait E.; Young, Jessica R.
2017-01-01
Sage grouse are a group of chicken-sized birds with a unique breeding behavior and dependence on sagebrush shrubs (genus Artemisia) for food and shelter throughout their life cycle. In the last century, human population expansion throughout western North America has reduced the amount of sagebrush and degraded and fragmented the remaining areas. Vanishing sagebrush has resulted in sage grouse (genus Centrocercus) population declines and elevated conservation concern. Western Colorado is home to both species of sage grouse: greater sage grouse (Centrocercus urophasianus) and Gunnison sage grouse (Centrocercus minimus). Populations in the state, and throughout their range, have declined sufficiently to warrant consideration for federal protection for both species under the Endangered Species Act.
Observations of territorial breeding common ravens caching eggs of greater sage-grouse
Howe, Kristy B.; Coates, Peter S.
2015-01-01
Previous investigations using continuous video monitoring of greater sage-grouse Centrocercus urophasianus nests have unambiguously identified common ravens Corvus corax as an important egg predator within the western United States. The quantity of greater sage-grouse eggs an individual common raven consumes during the nesting period and the extent to which common ravens actively hunt greater sage-grouse nests are largely unknown. However, some evidence suggests that territorial breeding common ravens, rather than nonbreeding transients, are most likely responsible for nest depredations. We describe greater sage-grouse egg depredation observations obtained opportunistically from three common raven nests located in Idaho and Nevada where depredated greater sage-grouse eggs were found at or in the immediate vicinity of the nest site, including the caching of eggs in nearby rock crevices. We opportunistically monitored these nests by counting and removing depredated eggs and shell fragments from the nest sites during each visit to determine the extent to which the common raven pairs preyed on greater sage-grouse eggs. To our knowledge, our observations represent the first evidence that breeding, territorial pairs of common ravens cache greater sage-grouse eggs and are capable of depredating multiple greater sage-grouse nests.
Oyler-McCance, Sara J.; Cornman, Robert S.; Jones, Kenneth L.; Fike, Jennifer
2015-01-01
Sage-grouse are iconic, declining inhabitants of sagebrush habitats in western North America, and their management depends on an understanding of genetic variation across the landscape. Two distinct species of sage-grouse have been recognized, Greater (Centrocercus urophasianus) and Gunnison sage-grouse (C. minimus), based on morphology, behavior, and variation at neutral genetic markers. A parapatric group of Greater Sage-Grouse along the border of California and Nevada ("Bi-State") is also genetically distinct at the same neutral genetic markers, yet not different in behavior or morphology. Because delineating taxonomic boundaries and defining conservation units is often difficult in recently diverged taxa and can be further complicated by highly skewed mating systems, we took advantage of new genomic methods that improve our ability to characterize genetic variation at a much finer resolution. We identified thousands of single-nucleotide polymorphisms (SNPs) among Gunnison, Greater, and Bi-State sage-grouse and used them to comprehensively examine levels of genetic diversity and differentiation among these groups. The pairwise multilocus fixation index (FST) was high (0.49) between Gunnison and Greater sage-grouse, and both principal coordinates analysis and model-based clustering grouped samples unequivocally by species. Standing genetic variation was lower within the Gunnison Sage-Grouse. The Bi-State population was also significantly differentiated from Greater Sage-Grouse, albeit more weakly (FST = 0.09), and genetic clustering results were consistent with reduced gene flow with Greater Sage-Grouse. No comparable genetic divisions were found within the Greater Sage-Grouse sample, which spanned the southern half of the range. Thus, we provide much stronger genetic evidence supporting the recognition of Gunnison Sage-Grouse as a distinct species with low genetic diversity. Further, our work confirms that the Bi-State population is differentiated from other Greater Sage-Grouse. The level of differentiation is much less than the divergence between Greater and Gunnison sage-grouse, supporting the idea that the Bi-State represents a unique population within the Greater Sage-Grouse. New genomic methods like the restriction-site-associated DNA (RAD-tag) method used here illustrate how increasing the number of markers and coverage of the genome can better characterize patterns of genetic variation, particularly among recently diverged taxa, providing vital information for conservation and management.
Fike, Jennifer A.; Oyler-McCance, Sara J.; Zimmerman, Shawna J; Castoe, Todd A.
2015-01-01
Gunnison Sage-grouse are an obligate sagebrush species that has experienced significant population declines and has been proposed for listing under the U.S. Endangered Species Act. In order to examine levels of connectivity among Gunnison Sage-grouse leks, we identified 13 novel microsatellite loci though next-generation shotgun sequencing, and tested them on the closely related Greater Sage-grouse. The number of alleles per locus ranged from 2 to 12. No loci were found to be linked, although 2 loci revealed significant departures from Hardy–Weinberg equilibrium or evidence of null alleles. While these microsatellites were designed for Gunnison Sage-grouse, they also work well for Greater Sage-grouse and could be used for numerous genetic questions including landscape and population genetics.
Chehalis River Floodplain Land Cover Mapping between Aberdeen and Montesano, Washington,
1980-01-01
Lutra canadensis), mink (Mustela vison), coyote (Canis latrans), raccoon (Procyon lotor), long-tailed weasel (Mustela freneta ,7opossun ( Didelphis ... marsupialis ), black-tailed deer (Odocoileus hemionus columbianus), mallards, American widgeons, green-winged teals, song sparrows, sharp-shinned hawks, and
Ruffed grouse population dynamics in the central and southern Appalachians
John M. Giuliano Tirpak; C. Allan Miller; Thomas J. Allen; Steve Bittner; David A. Buehler; John W. Edwards; Craig A. Harper; William K. Igo; Gary W. Norman; M. Seamster; Dean F. Stauffer
2006-01-01
Ruffed grouse (Bonasa urnbellus; hereafter grouse) populations in the central and southern Appalachians are in decline. However, limited information on the dynamics of these populations prevents the development of effective management strategies to reverse these trends. We used radiotelemetry data collected on grouse to parameterize 6 models of...
Seasonal habitat requirements for sage-grouse: spring, summer, fall, and winter
Clait E. Braun; John W. Connelly; Michael A. Schroeder
2005-01-01
Sage-grouse (Centrocercus minimus, C. urophasianus) are dependent upon live sagebrush (Artemisia spp.) for all life processes across their entire range. This paper describes habitats used by sage-grouse as documented in the scientific literature. The leaves of sagebrush are eaten by sage-grouse throughout the...
Ecology of Greater Sage-Grouse in the Bi-State Planning Area Final Report, September 2007
Casazza, Michael L.; Overton, Cory T.; Farinha, Melissa A.; Torregrosa, Alicia; Fleskes, Joseph P.; Miller, Michael R.; Sedinger, James S.; Kolada, Eric J.
2009-01-01
Conservation efforts for greater sage-grouse (Centrocercus urophasianus), hereafter sage-grouse, are underway across the range of this species. Over 70 local working groups have been established and are implementing on-the-ground sage-grouse oriented conservation projects. Early on in this process, the California Department of Fish and Game (CDFG) recognized the need to join in these efforts and received funding from the U.S. Fish and Wildlife Service (USFWS) under the Candidate Species Conservation Program to help develop a species conservation plan for sage-grouse in the Mono County area. This conservation plan covers portions of Alpine, Mono, and Inyo counties in California and Douglas, Esmeralda, Lyon, and Mineral counties in Nevada. A concurrent effort underway through the Nevada Governor's Sage-grouse Conservation Team established Local Area Working Groups across Nevada and eastern California. The Mono County populations of sage-grouse were encompassed by the Bi-State Local Planning Area, which was comprised of six population management units (PMUs). The state agencies from California (CDFG) and Nevada (Nevada Department of Wildlife; NDOW) responsible for the management of sage-grouse agreed to utilize the process that had begun with the Nevada Governor's Team in order to develop local plans for conservation planning and implementation. Resources from the USFWS were applied to several objectives in support of the development of the Bi-State Local Area Sage-grouse Conservation Plan through a grant to the U.S. Geological Survey (USGS). Objectives included: (1) participate in the development of the Bi-State Conservation Plan, (2) compile and synthesize existing sage-grouse data, (3) document seasonal movements of sage-grouse, (4) identify habitats critical to sage-grouse, (5) determine survival rates and identify causal factors of mortality, (6) determine nest success and brood success of sage-grouse, and (7) identify sage-grouse lek sites. Progress reports completed in 2004 and 2005 addressed each of the specific objectives and this final report focuses on the biological information gathered in support of local conservation efforts. Participation in the development of the Bi-State Local Area Conservation Plan was accomplished on multiple scales. Beginning in the fall of 2002, USGS personnel began participating in meetings of local stakeholders involved in the development of a sage-grouse conservation plan for the Bi-State planning area. This included attendance at numerous local PMU group meetings and field trips as well as participating on the technical advisory committee (TAC) for the Bi-State group. Whenever appropriate, ongoing results and findings regarding sage-grouse ecology in the local area were incorporated into these working group meetings. In addition, the USGS partnered with CDFG to help reorganize one of the local PMU groups (South Mono) and edited that portion of the Bi-State plan. The USGS also worked closely with CDFG to draft a description of the state of knowledge for sage-grouse genetic information for inclusion in the Bi-State Conservation Plan. The first edition of the Bi-State Conservation Plan for Greater Sage-Grouse was completed in June 2004 (Bi-State Sage-grouse Conservation Team 2004). This report is organized primarily by PMU to facilitate the incorporation of these research findings into the individual PMU plans that compose the Bi-State plan. Information presented in this report was derived from over 7,000 radio-telemetry locations obtained on 145 individual sage-grouse during a three year period (2003-2005). In addition, we collected detailed vegetation measurements at over 590 habitat sampling plots within the study area including canopy cover, shrubs, forbs, and grasses diversity. Vegetation data collection focused on sage-grouse nests, and brood-use areas. Additionally we collected data at random sites to examine sage-grouse habitat relationships within the study area. The majori
Nesting success and resource selection of Greater Sage-Grouse [chapter 8
Nicholas W. Kaczor; Kent C. Jensen; Robert W. Klaver; Mark A. Rumble; Katie M. Herman-Brunson; Christopher C. Swanson
2011-01-01
Declines of Greater Sage-Grouse (Centrocercus urophasianus) in South Dakota are a concern because further population declines may lead to isolation from populations in Wyoming and Montana. Furthermore, little information exists about reproductive ecology and resource selection of sage grouse on the eastern edge of their distribution. We investigated Greater Sage-Grouse...
Factors associated with variation in home-range size of Appilachian Ruffed Grouse (Bonasa Umbellus)
Darroch M. Whitaker; Dean F. Stauffer; Gary W. Norman; Patrick K. Devers; John Edwards; William M. Giuliano; Craig Harper; William Igo; Harry Spiker; Brian Tefft
2007-01-01
From 1996 to 2001, researchers at 10 Appalachian study sites collected radio tracking data sufficient to delineate 1,054 seasonal home ranges of Ruffed Grouse (Banasa umbellus; hereafter "grouse"). Using information-theoretic model selection and paired comparison of home ranges from individual grouse, we evaluated individual, local, and...
Resource selection during brood-rearing by Greater Sage-Grouse [chapter 12
Nicholas W. Kaczor; Katie M. Herman-Brunson; Kent C. Jensen; Mark A. Rumble; Robert W. Klaver; Christopher C. Swanson
2011-01-01
Understanding population dynamics and resource selection is crucial in developing wildlife resource management plans for sensitive species such as Greater Sage-Grouse (Centrocercus urophasianus). Little is known about sage grouse habitats on the eastern edge of their range. We investigated resource selection of Greater Sage-Grouse during brood- rearing in North and...
Lek ecology of male greater sage-grouse in Carbon County, Wyoming
Aleshia Lynn Fremgen
2014-01-01
Greater sage-grouse (Centrocercus urophasianus, hereafter "sage-grouse") have experienced range-wide population declines for several decades, and as a result they were considered warranted for listing under the Endangered Species Act in 2010. Therefore, wildlife managers need to understand how sage-grouse breeding behavior influences long-term reproductive...
Dusek, Robert J.; Hagen, Christian A.; Franson, J. Christian; Budeau, David A.; Hofmeister, Erik K.
2014-01-01
Greater sage-grouse (Centrocercus urophasianus; sage-grouse) are highly susceptible to infection with West Nile virus (WNV), with substantial mortality reported in wild populations and in experimentally infected birds. Although sage-grouse are hunted throughout much of their range, they have also recently been considered for protection under the Endangered Species Act. We used blood samples collected on filter-paper strips during the 2006–2010 Oregon, USA, annual sage-grouse hunt to survey for specific WNV-neutralizing antibodies that indicate a previous infection with WNV. During this period, hunters submitted 1,880 blood samples from sage-grouse they harvested. Samples obtained were proportional for all 12 Oregon sage-grouse hunting units. Laboratory testing of 1,839 samples by the WNV epitope-blocking enzyme-linked immunosorbent assay (bELISA) followed by plaque reduction neutralization test on bELISA-positive samples yielded 19 (1%) and 1 (0.05%) positive samples, respectively. These data provided early baseline information for future comparisons regarding the prevalence of WNV-specific neutralizing antibodies in sage-grouse in Oregon. This methodology may provide other states where sage-grouse (or other species) populations are hunted and where WNV constitutes a species conservation concern with a viable option to track the relative prevalence of the virus in populations.
Chambers, Jeanne C.; Beck, Jeffrey L.; Campbell, Steve; Carlson, John; Christiansen, Thomas J.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Griffin, Kathleen A.; Havlina, Douglas W.; Mayer, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Manning, Mary E.; Mealor, Brian A.; McCarthy, Clinton; Perea, Marco A.; Pyke, David A.
2016-01-01
This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses and (2) distribution and relative abundance of sage-grouse populations to address persistent ecosystem threats, such as invasive annual grasses and wildfire, and land use and development threats, such as oil and gas development and cropland conversion, to develop effective management strategies. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with modeled sage-grouse breeding habitat probabilities to help decisionmakers assess risks and determine appropriate management strategies at both landscape and site scales. Areas for targeted management are assessed by overlaying matrix components with Greater sage-grouse Priority Areas for Conservation and Gunnison sage-grouse critical habitat and linkages, breeding bird concentration areas, and specific habitat threats. Decision tools are discussed for determining the suitability of target areas for management and the most appropriate management actions. A similar approach was developed for the Great Basin that was incorporated into the Federal land use plan amendments and served as the basis of a Bureau of Land Management Fire and Invasives Assessment Tool, which was used to prioritize sage-grouse habitat for targeted management activities.
An intertebrate ecosystem engineer likely covered under the umbrella of sage-grouse conservation
Carlisle, Jason D.; Stewart, David R.; Chalfoun, Anna D.
2017-01-01
Conservation practitioners often rely on areas designed to protect species of greatest conservation priority to also conserve co-occurring species (i.e., the umbrella species concept). The extent to which vertebrate species may serve as suitable umbrellas for invertebrate species, however, has rarely been explored. Sage-grouse (Centrocercus spp.) have high conservation priority throughout much of the rangelands of western North America and are considered an umbrella species through which the conservation of entire rangeland ecosystems can be accomplished. Harvester ants are ecosystem engineers and play important roles in the maintenance and function of rangeland ecosystems. We compared indices of the abundance of western harvester ants (Pogonomyrmex occidentalis) and Greater Sage-Grouse (Centrocercus urophasianus) at 72 sites in central Wyoming, USA, in 2012. The abundance of harvester ant mounds was best predicted by a regression model that included a combination of local habitat characteristics and the abundance of sage-grouse. When controlling for habitat-related factors, areas with higher abundances of sage-grouse pellets (an index of sage-grouse abundance and/or habitat use) had higher abundances of ant mounds than areas with lower abundances of sage-grouse pellets. The causal mechanism underlying this positive relationship between sage-grouse and ant mound abundance at the fine scale could be indirect (e.g., both species prefer similar environmental conditions) or direct (e.g., sage-grouse prefer areas with a high abundance of ant mounds because ants are an important prey item during certain life stages). We observed no relationship between a broad-scale index of breeding sage-grouse density and the abundance of ant mounds. We suspect that consideration of the nonbreeding habitat of sage-grouse and finer-scale measures of sagegrouse abundance are critical to the utility of sage-grouse as an umbrella species for the conservation of harvester ants and their important role in rangeland ecosystems.
Sagebrush Flat Wildlife Area 2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Dan
The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north/south line from Bridgeport in the north to the Douglas/Grant county line in the south, 60 miles away. The wildlife area was established to conserve and enhance shrubsteppe habitat for the benefit shrubsteppe obligate and dependent wildlife species. In particular, the Sagebrush Flat Wildlife Area is managed to promote themore » recovery of three state-listed species: Columbian sharp-tailed grouse (threatened), greater sage grouse (threatened) and the pygmy rabbit (endangered). The US Fish and Wildlife Service also list the pygmy rabbit as endangered. Wildlife area staff seeded 250 acres of old agricultural fields located on the Sagebrush Flat, Dormaier and Chester Butte units. This has been a three project to reestablish high quality shrubsteppe habitat on fields that had either been abandoned (Dormaier) or were dominated by non-native grasses. A mix of 17 native grasses and forbs, most of which were locally collected and grown, was used. First year maintenance included spot spraying Dalmatian toadflax on all sites and mowing annual weeds to reduce competition. Photo points were established and will be integral to long term monitoring and evaluation. Additional monitoring and evaluation will come from existing vegetation transects. This year weed control efforts included spot treatment of noxious weeds, particularly Dalmatian toadflax, in previously restored fields on the Bridgeport Unit (150 acres). Spot treatment also took place within fields scheduled for restoration (40 acres) and in areas where toadflax infestations are small and relatively easily contained. Where toadflax is so widespread that chemical treatment would be impractical, we use the bioagent Mecinus janthinus, available through Professor Gary Piper of Washington State University. This year we released 4,000 M. janthinus on the Bridgeport Unit at 6 separate locations. Since 2002 we have released approximately 14,400 of these insects, 80% of these on the Bridgeport Unit. Additional weed control activities included mowing and spot spraying more than 32 miles of roads, cutting and removal of annual weeds within fenced deer exclosures. We upgraded the solar powered irrigation system that supplies water to a stand of water birch trees planted in 2002. Wildlife area staff designed and built a new solar array and installed a higher capacity pump. The increased capacity will ensure that these trees receive adequate water through the hot summer months and allow us to create at least one additional stand. This project is an important part in our effort to expand the available winter habitat for sharp-tailed grouse on the Bridgeport Unit. Maintenance of fences, parking areas and roads continued during throughout the year. Two parking areas, at Chester Butte and Bridgeport, were graded and additional gravel added. Roads on the Bridgeport Unit were graded and repaired following spring runoff. Trespass and dumping issues have increased in recent years on the Bridgeport Unit. To address these problems we constructed four steel gates at access points on this unit. Each gate is tubular steel attached to 8-inch diameter steel posts, 10 feet long that are cemented into the ground. Two gates allow access to BPA substation facilities and power-line right-of ways so placement, construction and locking issues had to be coordinated with BPA's Real Estate staff in Spokane. Environmental Compliance Documentation issues were addressed again this year. This process has the potential to cause delays the completion of projects within the fiscal year. With this in mind and an eye toward the future, we requested that several projects planned for the coming years be surveyed this year. Beginning in August of 2007, area staff worked with BPA staff to identify work elements that had the potential to disturb cultural resources. Subsequently, in April of 2008, BPA staff archaeologists surveyed numerous sites and several miles of fence line. Final clearance to proceed was granted in August of 2008. This year we submitted and were awarded a grant from the state Recreation and Conservation Office. This grant will provide funding to restore native shrubsteppe habitat on 335 acres of old CRP fields located on the Bridgeport Unit. These fields were planted to non-native grasses in 1988 and currently have marginal habitat values for shrubsteppe obligate and dependent wildlife. Assuming that the state legislature allocates the funds, which, given the state's financial condition is not a sure thing, work on this project can begin late in the summer of 2009.« less
Occupancy modeling of ruffed grouse in the Black Hills National Forest
Christopher P. Hansen; Joshua J. Millspaugh; Mark A. Rumble
2011-01-01
Ruffed grouse (Bonasa umbellus) are a popular game bird and the management indicator species for quaking aspen (Populus tremuloides) in the Black Hills National Forest (BHNF), which requires development of a robust monitoring protocol to evaluate trends in ruffed grouse populations. We used roadside drumming surveys in spring 2007 and 2008 to estimate ruffed grouse...
NASA Astrophysics Data System (ADS)
Gamo, R. Scott; Beck, Jeffrey L.
2017-02-01
Greater sage-grouse ( Centrocercus urophasianus) populations have declined across their range due to human-assisted factors driving large-scale habitat change. In response, the state of Wyoming implemented the Sage-grouse Executive Order protection policy in 2008 as a voluntary regulatory mechanism to minimize anthropogenic disturbance within defined sage-grouse core population areas. Our objectives were to evaluate areas designated as Sage-grouse Executive Order Core Areas on: (1) oil and gas well pad development, and (2) peak male lek attendance in core and non-core sage-grouse populations. We conducted our evaluations at statewide and Western Association of Fish and Wildlife Agencies management zone (MZ I and MZ II) scales. We used Analysis of Covariance modeling to evaluate change in well pad development from 1986-2014 and peak male lek attendance from 958 leks with consistent lek counts within increasing (1996-2006) and decreasing (2006-2013) timeframes for Core and non-core sage-grouse populations. Oil and gas well pad development was restricted in Core Areas. Trends in peak male sage-grouse lek attendance were greater in Core Areas compared to non-core areas at the statewide scale and in MZ II, but not in MZ I, during population increase. Trends in peak male lek attendance did not differ statistically between Core and non-core population areas statewide, in MZ I, or MZ II during population decrease. Our results provide support for the effectiveness of Core Areas in maintaining sage-grouse populations in Wyoming, but also indicate the need for increased conservation actions to improve sage-grouse population response in MZ.
Gamo, R Scott; Beck, Jeffrey L
2017-02-01
Greater sage-grouse (Centrocercus urophasianus) populations have declined across their range due to human-assisted factors driving large-scale habitat change. In response, the state of Wyoming implemented the Sage-grouse Executive Order protection policy in 2008 as a voluntary regulatory mechanism to minimize anthropogenic disturbance within defined sage-grouse core population areas. Our objectives were to evaluate areas designated as Sage-grouse Executive Order Core Areas on: (1) oil and gas well pad development, and (2) peak male lek attendance in core and non-core sage-grouse populations. We conducted our evaluations at statewide and Western Association of Fish and Wildlife Agencies management zone (MZ I and MZ II) scales. We used Analysis of Covariance modeling to evaluate change in well pad development from 1986-2014 and peak male lek attendance from 958 leks with consistent lek counts within increasing (1996-2006) and decreasing (2006-2013) timeframes for Core and non-core sage-grouse populations. Oil and gas well pad development was restricted in Core Areas. Trends in peak male sage-grouse lek attendance were greater in Core Areas compared to non-core areas at the statewide scale and in MZ II, but not in MZ I, during population increase. Trends in peak male lek attendance did not differ statistically between Core and non-core population areas statewide, in MZ I, or MZ II during population decrease. Our results provide support for the effectiveness of Core Areas in maintaining sage-grouse populations in Wyoming, but also indicate the need for increased conservation actions to improve sage-grouse population response in MZ I.
2011-01-01
Greater sage-grouse (Centrocercus urophasianus) have been declining both spatially and numerically throughout their range because of anthropogenic disturbance and loss and fragmentation of sagebrush (Artemisia spp.) habitats. Understanding how sage-grouse respond to these habitat alterations and disturbances, particularly the types of disturbances and extent at which they respond, is critical to designing management actions and prioritizing areas of conservation. To address these needs, we developed statistical models of the relationships between occurrence and abundance of greater sage-grouse and multi-scaled measures of vegetation, abiotic, and disturbance in the Wyoming Basins Ecoregional Assessment (WBEA) area. Sage-grouse occurrence was strongly related to the amount of sagebrush within 1 km for both roost site and general use locations. Roost sites were identified by presence of sage-grouse fecal pellet groups whereas general use locations had single pellets. Proximity to anthropogenic disturbance including energy development, power lines, and major roads was negatively associated with sage-grouse occurrence. Models of sage-grouse occurrence correctly predicted active lek locations with >75% accuracy. Our spatially explicit models identified areas of high occurrence probability in the WBEA area that can be used to delineate areas for conservation and refine existing conservation plans. These models can also facilitate identification of pathways and corridors important for maintenance of sage-grouse population connectivity.
Greater sage-grouse of Grand Teton National Park: where do they roam?
Chong, G.W.; Wetzel, W.C.; Holloran, M.J.
2011-01-01
Greater sage-grouse (Centrocercus urophasianus) population declines may be caused by range-wide degradation of sagebrush (woody Artemisia spp.) steppe ecosystems. Understanding how greater sage-grouse use the landscape is essential for successful management. We assessed greater sage-grouse habitat selection on a landscape level in Jackson Hole, Wyoming. We used a Geographic Information System (GIS) and radio-collared sage-grouse to compare habitat used and the total available landscape. Greater sage-grouse selected mountain big sagebrush (A. tridentata var. vaseyana) communities or mixed mountain big sagebrush–antelope bitterbrush (Purshia tridentata) communities and avoided low-sagebrush (A. arbuscula) dwarf shrubland. In spring and summer, sage-grouse primarily used sagebrush-dominated habitats on the valley floor and did not concentrate in mesic areas later in the summer as is typical of the species. The diversity of habitats used in winter exceeds that reported in the literature. In winter, Jackson Hole greater sage-grouse moved to hills, where they used various communities in proportion to their availability, including tall deciduous shrublands, cottonwood (Populus angustifolia) stands, exposed hillsides, and aspen (P. tremuloides) stands. Because seasonal habitat selection is not necessarily consistent across populations residing in different landscapes, habitat management should be specific to each population and landscape. This sage-grouse population provides an example that may offer insight into other species with seasonal habitat needs.
Using DNA from hairs left at depredated greater sage-grouse nests to detect mammalian nest predators
Christopher P. Kirol; Kristine L. Pilgrim; Andrew L. Sutphin; Thomas L. Maechtle
2018-01-01
Despite a multitude of studies on sage-grouse (Centrocercus spp.), there is still sparse information on the predator communities that influence sage-grouse productivity and how these predator communities may change when sagebrush habitats are altered by human activities. As a proof-of-concept, we used mammalian hairs collected at depredated greater sage-grouse (C....
J.L. Isabelle; Frank R. Thompson; W.D. Dijak
2016-01-01
Ruffed grouse Bonasa umbellus (hereafter, grouse) are early-successional forest habitat (ESFH) specialists that prefer regenerating deciduous forests < 25 years-of-age for cover. Despite being historically present through-out much of Missouri, USA, grouse numbers declined rapidly during the early 1900s due to habitat loss and over-harvest....
Coates, Peter S.; Lockyer, Zachary B.; Farinha, Melissa A.; Sweeney, Joelle M.; Johnson, Valerie M.; Meshriy, Matthew G.; Espinosa, Shawn P.; Delehanty, David J.; Casazza, Michael L.
2011-01-01
Relationships between habitat selection and population vital rates of greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse), recently designated as a candidate species under the Endangered Species Act, within the Great Basin are not well-understood. The growing development of renewable energy infrastructure within areas inhabited by sage-grouse is thought to influence predator and vegetation communities. For example, common ravens (Corvus corax), a synanthropic sage-grouse nest predator, are increasing range-wide and select transmission lines and other tall structures for nesting and perching. In the Virginia Mountains of northwestern Nevada, we collected preliminary information of space-use, habitat selection, and population vital rates during the nesting and brood-rearing period over two years on 56 sage-grouse. Additionally, videography at nest sites (n = 22) was used to identify sage-grouse nest predators. The study area is a potential site for renewable energy developments (i.e., wind and solar), and we plan to continue monitoring this population using a before-after-control-impact study design. The results reported here are preliminary and further data are required before conclusions can be drawn from this population of sage-grouse.
Predators of Greater Sage-Grouse nests identified by video monitoring
Coates, P.S.; Connelly, J.W.; Delehanty, D.J.
2008-01-01
Nest predation is the primary cause of nest failure for Greater Sage-Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage-Grouse nests (camera, N = 55; no camera, N = 32) in northeastern Nevada and south-central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage-Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage-Grouse nest failure in the face of land-use changes in the Intermountain West. ?? 2008 Association of Field Ornithologists.
Handel, Colleen M.; Gill, Robert E.
2010-01-01
The sharp-tailed sandpiper (Calidris acuminata) is a long-distance migrant that travels each year from breeding grounds in the Russian Arctic to nonbreeding areas in Australasia. Most adults migrate rapidly from breeding grounds along a largely inland route through Asia. Here we report on the highly unusual migratory strategy of this species in which some juveniles, but virtually no adults, take a pronounced detour to western Alaska before proceeding on southward migration. We analyzed data from our own studies in this region and published and unpublished observations and specimen records of sharp-tailed sandpipers from the entire Pacific Basin. Each autumn, sharp-tailed sandpipers began arriving on coastal graminoid meadows and intertidal habitats throughout western Alaska during the last half of August and the last sandpipers departed from southwestern Alaska during October and November. Body mass of birds banded or collected across multiple years and sites in western Alaska (n = 330) increased by an average of 0.57 ± 0.06 g per day between mid-August and late October. Records suggest a small, regular movement of juveniles (and a very few adults) along the Asiatic coast, but we estimate from surveys that a few tens of thousands of juveniles stage in western Alaska each autumn. The distribution of sight and specimen records from the Pacific Basin during autumn suggests strongly age-segregated migration routes, with the principal migration of juveniles crossing central and western Oceania in a possible nonstop trans-Pacific flight from Alaska. This is only the second well-documented case of differential migration among birds that involves different routes for adults and juveniles, and it raises intriguing questions about how and why this system has evolved.
Chambers, Jeanne C.; Pyke, David A.; Maestas, Jeremy D.; Boyd, Chad S.; Campbell, Steve; Espinosa, Shawn; Havlina, Doug; Mayer, Kenneth F.; Wuenschel, Amarina
2014-01-01
This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2) distribution, relative abundance, and persistence of sage-grouse populations to develop management strategies at both landscape and site scales. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with sage-grouse habitat requirements for landscape cover of sagebrush to help decision makers assess risks and determine appropriate management strategies at landscape scales. Focal areas for management are assessed by overlaying matrix components with sage-grouse Priority Areas for Conservation (PACs), breeding bird densities, and specific habitat threats. Decision tools are discussed for determining the suitability of focal areas for treatment and the most appropriate management treatments.
Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest
Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly
2014-01-01
Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...
Spatial heterogeneity in response of male greater sage-grouse lek attendance to energy development.
Gregory, Andrew J; Beck, Jeffrey L
2014-01-01
Landscape modification due to rapidly expanding energy development, in particular oil and gas, in the westernUSA, have prompted concerns over how such developments may impact wildlife. One species of conservation concern across much of the Intermountain West is the greater sage-grouse (Centrocercusurophasianus). Sage-grouse have been petitioned for listing under provisions of the Endangered Species Act 7 times and the state of Wyoming alone represents 64% of the extant sage-grouse population in the eastern portion of their range. Consequently, the relationship between sage-grouse populations and oil and gas development in Wyoming is an important component to managing the long-term viability of this species. We used 814 leks from the Wyoming Game and Fish Department's lek survey database and well pad data from the Wyoming Oil and Gas Conservation Commission to evaluate changes in sage-grouse lek counts as a function of oil and gas development since 1991.From 1991-2011 we found that oil and gas well-pad density increased 3.6-fold across the state and was associated with a 24% decline in the number of male sage-grouse. Using a spatial and temporally structured analysis via Geographically Weighted Regression, we found a 1-to-4 year time lag between development density and lek decline. Sage-grouse also responded to development densities at multiple spatial neighborhoods surrounding leks, including broad scales of 10 km. However, sage-grouse lek counts do not always decline as a result of oil and gas development. We found similar development densities resulting in different sage-grouse lek count responses, suggesting that development density alone is insufficient to predict the impacts that oil and gas development have on sage-grouse. Finally, our analysis suggests a maximum development density of 1 well-pad within 2 km of leks to avoid measurable impacts within 1 year, and <6 well-pads within 10 km of leks to avoid delayed impacts.
Jeanne C. Chambers; Jeffrey L. Beck; Steve Campbell; John Carlson; Thomas J. Christiansen; Karen J. Clause; Jonathan B. Dinkins; Kevin E. Doherty; Kathleen A. Griffin; Douglas W. Havlina; Kenneth F. Henke; Jacob D. Hennig; Laurie L. Kurth; Jeremy D. Maestas; Mary Manning; Kenneth E. Mayer; Brian A. Mealor; Clinton McCarthy; Marco A. Perea; David A. Pyke
2016-01-01
This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses...
Jennifer Sorensen Forbey; Gail L. Patricelli; Donna M. Delparte; Alan H. Krakauer; Peter J. Olsoy; Marcella R. Fremgen; Jordan D. Nobler; Lucas P. Spaete; Lisa A. Shipley; Janet L. Rachlow; Amy K. Dirksen; Anna Perry; Bryce A. Richardson; Nancy F. Glenn
2017-01-01
An increasing number of threats, both natural (e.g. fires, drought) and anthropogenic (e.g. agriculture, infrastructure development), are likely to affect both availability and quality of plants that grouse rely on for cover and food. As such, there is an increasing need to monitor plants and their use by grouse over space and time to better predict how changes in...
Sage-grouse habitat selection during winter in Alberta
Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.
2010-01-01
Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.
Mikami, Suzuka; Kanaba, Teppei; Ito, Yutaka; Mishima, Masaki
2013-10-01
The transcriptional corepressor SMRT/HDAC1-associated repressor protein (SHARP) recruits histone deacetylases. Human SHARP protein is thought to function in processes involving steroid hormone responses and the Notch signaling pathway. SHARP consists of RNA recognition motifs (RRMs) in the N-terminal region and the spen paralog and ortholog C-terminal (SPOC) domain in the C-terminal region. It is known that the SPOC domain binds the LSD motif in the C-terminal tail of corepressors silencing mediator for retinoid and thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR). We are interested in delineating the mechanism by which the SPOC domain recognizes the LSD motif of the C-terminal tail of SMRT/NcoR. To this end, we are investigating the tertiary structure of the SPOC/SMRT peptide using NMR. Herein, we report on the (1)H, (13)C and (15)N resonance assignments of the SPOC domain in complex with a SMRT peptide, which contributes towards a structural understanding of the SPOC/SMRT peptide and its molecular recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.S.; Colestock, P.
1989-05-01
The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy.more » It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs.« less
Molecular insights into the biology of Greater Sage-Grouse
Oyler-McCance, Sara J.; Quinn, Thomas W.
2011-01-01
Recent research on Greater Sage-Grouse (Centrocercus urophasianus) genetics has revealed some important findings. First, multiple paternity in broods is more prevalent than previously thought, and leks do not comprise kin groups. Second, the Greater Sage-Grouse is genetically distinct from the congeneric Gunnison sage-grouse (C. minimus). Third, the Lyon-Mono population in the Mono Basin, spanning the border between Nevada and California, has unique genetic characteristics. Fourth, the previous delineation of western (C. u. phaios) and eastern Greater Sage-Grouse (C. u. urophasianus) is not supported genetically. Fifth, two isolated populations in Washington show indications that genetic diversity has been lost due to population declines and isolation. This chapter examines the use of molecular genetics to understand the biology of Greater Sage-Grouse for the conservation and management of this species and put it into the context of avian ecology based on selected molecular studies.
Problems with studying wolf predation on small prey in summer via global positioning system collars
Palacios, Vicente; Mech, L. David
2010-01-01
We attempted to study predation on various-sized prey by a male and female wolf (Canis lupus) with global positioning system (GPS) collars programmed to acquire locations every 10 min in the Superior National Forest of Minnesota. During May to August 2007, we investigated 147 clusters of locations (31% of the total) and found evidence of predation on a white-tailed deer (Odocoileus virginianus) fawn and yearling, a beaver (Castor canadensis), ruffed grouse (Bonasa umbellus), and fisher (Martes pennanti) and scavenging on a road-killed deer and other carrion. However, we missed finding many prey items and discuss the problems associated with trying to conduct such a study.
Problems with studying wolf predation on small prey in summer via global positioning system collars
Palacios, V.; Mech, L.D.
2011-01-01
We attempted to study predation on various-sized prey by a male and female wolf (Canis lupus) with global positioning system (GPS) collars programmed to acquire locations every 10 min in the Superior National Forest of Minnesota. During May to August 2007, we investigated 147 clusters of locations (31% of the total) and found evidence of predation on a white-tailed deer (Odocoileus virginianus) fawn and yearling, a beaver (Castor canadensis), ruffed grouse (Bonasa umbellus), and fisher (Martes pennanti) and scavenging on a road-killed deer and other carrion. However, we missed finding many prey items and discuss the problems associated with trying to conduct such a study. ?? 2010 US Government.
Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates
Rowland, M.M.; Wisdom, M.J.; Suring, L.H.; Meinke, C.W.
2006-01-01
Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella species. This shortcut approach assumes that managing habitats to conserve sage-grouse will simultaneously benefit other species of conservation concern. The efficacy of using sage-grouse as an umbrella species for conservation management, however, has not been fully evaluated. We tested that concept by comparing: (1) commonality in land-cover associations, and (2) spatial overlap in habitats between sage-grouse and 39 other sagebrush-associated vertebrate species of conservation concern in the Great Basin ecoregion. Overlap in species' land-cover associations with those of sage-grouse, based on the ?? (phi) correlation coefficient, was substantially greater for sagebrush obligates (x??=0.40) than non-obligates (x??=0.21). Spatial overlap between habitats of target species and those associated with sage-grouse was low (mean ?? = 0.23), but somewhat greater for habitats at high risk of displacement by cheatgrass (mean ?? = 0.33). Based on our criteria, management of sage-grouse habitats likely would offer relatively high conservation coverage for sagebrush obligates such as pygmy rabbit (mean ?? = 0.84), but far less for other species we addressed, such as lark sparrow (mean ?? = 0.09), largely due to lack of commonality in land-cover affinity and geographic ranges of these species and sage-grouse.
Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?
Smith, Kurt T; Beck, Jeffrey L; Pratt, Aaron C
2016-10-01
Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse (Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.
Assessing greater sage-grouse breeding habitat with aerial and ground imagery
USDA-ARS?s Scientific Manuscript database
Anthropogenic disturbances, wildfires, and weedy-plant invasions have destroyed and fragmented sagebrush (Artemisia L. spp.) habitats. Sagebrush-dependent species like greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) are vulnerable to these changes, emphasizing the importance ...
Spence, Emma Suzuki; Beck, Jeffrey L; Gregory, Andrew J
2017-01-01
Greater sage-grouse (Centrocercus urophasianus) occupy sagebrush (Artemisia spp.) habitats in 11 western states and 2 Canadian provinces. In September 2015, the U.S. Fish and Wildlife Service announced the listing status for sage-grouse had changed from warranted but precluded to not warranted. The primary reason cited for this change of status was that the enactment of new regulatory mechanisms was sufficient to protect sage-grouse populations. One such plan is the 2008, Wyoming Sage Grouse Executive Order (SGEO), enacted by Governor Freudenthal. The SGEO identifies "Core Areas" that are to be protected by keeping them relatively free from further energy development and limiting other forms of anthropogenic disturbances near active sage-grouse leks. Using the Wyoming Game and Fish Department's sage-grouse lek count database and the Wyoming Oil and Gas Conservation Commission database of oil and gas well locations, we investigated the effectiveness of Wyoming's Core Areas, specifically: 1) how well Core Areas encompass the distribution of sage-grouse in Wyoming, 2) whether Core Area leks have a reduced probability of lek collapse, and 3) what, if any, edge effects intensification of oil and gas development adjacent to Core Areas may be having on Core Area populations. Core Areas contained 77% of male sage-grouse attending leks and 64% of active leks. Using Bayesian binomial probability analysis, we found an average 10.9% probability of lek collapse in Core Areas and an average 20.4% probability of lek collapse outside Core Areas. Using linear regression, we found development density outside Core Areas was related to the probability of lek collapse inside Core Areas. Specifically, probability of collapse among leks >4.83 km from inside Core Area boundaries was significantly related to well density within 1.61 km (1-mi) and 4.83 km (3-mi) outside of Core Area boundaries. Collectively, these data suggest that the Wyoming Core Area Strategy has benefited sage-grouse and sage-grouse habitat conservation; however, additional guidelines limiting development densities adjacent to Core Areas may be necessary to effectively protect Core Area populations.
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
Greater sage-grouse as an umbrella species for shrubland passerine birds: a multiscale assessment
Hanser, Steven E.; Knick, Steven T.; Knick, Steven T.; Connelly, John W.
2011-01-01
Working groups and government agen-cies are planning and conducting land actions in sagebrush (Artemisia spp.) habitats to benefit Greater Sage-Grouse (Centrocercus urophasianus) populations. Managers have adopted an umbrella concept, creating habitat characteristics specific to sage-grouse requirements, in the belief that other wildlife species dependent on sagebrush will benefit. We tested the efficacy of this approach by first identifying the primary environmental gradients underlying sagebrush steppe bird com-munities (including Greater Sage-Grouse). We integrated field sampling for birds and vegetation with geographic information system (GIS) data to characterize 305 sites sampled throughout the current range of Greater Sage-Grouse in the Intermountain West, United States. The primary environmental axis defining the bird community represented a gradient from local-scale Wyoming/basin big sagebrush (A. t. ssp. wyomingensis/A. t. ssp. tridentata), and bare ground cover to local and regional grassland cover; the second axis repre-sented a transition from low-elevation Wyoming/basin big sagebrush and bare ground to mountain big sagebrush (A. t. ssp. vaseyana) and habitat edge. We identified the relative overlap of sage-grouse with 13 species of passerine birds along the multiscale gradients and estimated the width of the umbrella when applying management guidelines specific to sage-grouse. Passerine birds associated with sagebrush steppe habitats had high levels of overlap with Greater Sage-Grouse along the multiscale environmental gradients. However, the overlap of the umbrella was prima-rily a function of the broad range of sagebrush habitats used by sage-grouse. Management that focuses on creating a narrow set of plot-scale con-ditions will likely be less effective than restoration efforts that recognize landscape scale heterogene-ity and multiscale organization of habitats. These multiscale efforts may improve some sage-grouse habitats and strengthen the management umb-rella for shrub steppe passerine birds.
Knick, Steven T; Hanser, Steven E; Preston, Kristine L
2013-06-01
Greater sage-grouse Centrocercus urophasianus (Bonaparte) currently occupy approximately half of their historical distribution across western North America. Sage-grouse are a candidate for endangered species listing due to habitat and population fragmentation coupled with inadequate regulation to control development in critical areas. Conservation planning would benefit from accurate maps delineating required habitats and movement corridors. However, developing a species distribution model that incorporates the diversity of habitats used by sage-grouse across their widespread distribution has statistical and logistical challenges. We first identified the ecological minimums limiting sage-grouse, mapped similarity to the multivariate set of minimums, and delineated connectivity across a 920,000 km(2) region. We partitioned a Mahalanobis D (2) model of habitat use into k separate additive components each representing independent combinations of species-habitat relationships to identify the ecological minimums required by sage-grouse. We constructed the model from abiotic, land cover, and anthropogenic variables measured at leks (breeding) and surrounding areas within 5 km. We evaluated model partitions using a random subset of leks and historic locations and selected D (2) (k = 10) for mapping a habitat similarity index (HSI). Finally, we delineated connectivity by converting the mapped HSI to a resistance surface. Sage-grouse required sagebrush-dominated landscapes containing minimal levels of human land use. Sage-grouse used relatively arid regions characterized by shallow slopes, even terrain, and low amounts of forest, grassland, and agriculture in the surrounding landscape. Most populations were interconnected although several outlying populations were isolated because of distance or lack of habitat corridors for exchange. Land management agencies currently are revising land-use plans and designating critical habitat to conserve sage-grouse and avoid endangered species listing. Our results identifying attributes important for delineating habitats or modeling connectivity will facilitate conservation and management of landscapes important for supporting current and future sage-grouse populations.
Knick, Steven T.; Hanser, Steven E.; Preston, Kristine L.
2013-01-01
Greater sage-grouse Centrocercus urophasianus (Bonaparte) currently occupy approximately half of their historical distribution across western North America. Sage-grouse are a candidate for endangered species listing due to habitat and population fragmentation coupled with inadequate regulation to control development in critical areas. Conservation planning would benefit from accurate maps delineating required habitats and movement corridors. However, developing a species distribution model that incorporates the diversity of habitats used by sage-grouse across their widespread distribution has statistical and logistical challenges. We first identified the ecological minimums limiting sage-grouse, mapped similarity to the multivariate set of minimums, and delineated connectivity across a 920,000 km2 region. We partitioned a Mahalanobis D2 model of habitat use into k separate additive components each representing independent combinations of species–habitat relationships to identify the ecological minimums required by sage-grouse. We constructed the model from abiotic, land cover, and anthropogenic variables measured at leks (breeding) and surrounding areas within 5 km. We evaluated model partitions using a random subset of leks and historic locations and selected D2 (k = 10) for mapping a habitat similarity index (HSI). Finally, we delineated connectivity by converting the mapped HSI to a resistance surface. Sage-grouse required sagebrush-dominated landscapes containing minimal levels of human land use. Sage-grouse used relatively arid regions characterized by shallow slopes, even terrain, and low amounts of forest, grassland, and agriculture in the surrounding landscape. Most populations were interconnected although several outlying populations were isolated because of distance or lack of habitat corridors for exchange. Land management agencies currently are revising land-use plans and designating critical habitat to conserve sage-grouse and avoid endangered species listing. Our results identifying attributes important for delineating habitats or modeling connectivity will facilitate conservation and management of landscapes important for supporting current and future sage-grouse populations.
Young, Jessica R.; Hupp, Jerry W.; Bradbury, Jack W.; Braun, Clait E.
1994-01-01
Sage grouse, Centrocercus urophasianus, in an isolated montane basin near Gunnison, Colorado differ in several morphological and behavioural traits from conspecifics studied in other areas of the species' range. Both sexes in Gunnison are smaller than sage grouse elsewhere, and males possess differences in feather morphology as well. The mating behaviour of male sage grouse in three populations was examined to determine whether male strut displays of Gunnison sage grouse were behaviourally distinct. Behavioural analyses revealed Gunnison males perform strut displays at a slower rate than males in the two other sage grouse populations sampled. In addition, Gunnison males' strut displays contain unique visual and acoustical aspects. The most distinguishing attributes of Gunnison sage grouse were male secondary sexual characteristics including traits that correlate with mating success in other populations. Thus, phenotypic differences observed in the Gunnison population represent a divergence in expression of traits that are likely to be influenced by sexual selection. Recent models of speciation suggest that species characterized by intense sexual selection, such as those with lek mating systems, have the potential for rapid inter-populational divergence in male traits and female preferences leading to speciation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... recommendations by the Idaho Governor's Sage-Grouse Conservation Task Force, and BLM's sage-grouse conservation... the Threats of Fire and Exotic Annual Plants to Greater Sage-Grouse and its Habitat will be provided...
Ecology of greater sage-grouse in the Dakotas
Christopher C. Swanson
2009-01-01
Greater sage-grouse (Centrocercus urophasianus) populations and the sagebrush (Artemisia spp.) communities that they rely on have dramatically declined from historic levels. Moreover, information regarding sage-grouse annual life-history requirements at the eastern-most extension of sagebrush steppe communities is lacking....
Steven E. Hanser; Cameron L. Aldridge; Matthias Leu; Mary M. Rowland; Scott E. Nielsen; Steven T. Knick
2011-01-01
Greater sage-grouse (Centrocercus urophasianus) have been declining both spatially and numerically throughout their range because of anthropogenic disturbance and loss and fragmentation of sagebrush (Artemisia spp.) habitats. Understanding how sage-grouse respond to these habitat alterations and disturbances, particularly the...
Sage-grouse habitat restoration symposium proceedings
Nancy L. Shaw; Mike Pellant; Stephen B. Monsen
2005-01-01
Declines in habitat of greater sage-grouse and Gunnison sage-grouse across the western United States are related to degradation, loss, and fragmentation of sagebrush ecosystems resulting from development of agricultural lands, grazing practices, changes in wildfire regimes, increased spread of invasive species, gas and oil development, and other human impacts. These...
Nutrient content of some winter grouse foods
Treichler, R.R.; Stow, R.W.; Nelson, A.L.
1946-01-01
Seventeen preferred grouse foods were collected during the late winter and analyzed for nutrient content. The results include moisture, crude protein, ether extract, crude fiber, nitrogenfree extract, ash, calcium, phosphorus, and gross energy content expressed both on moisture free and fresh bases.....The preferred winter foods of grouse are characterized by a high content of dry substance and of nitrogen-free extract......On the basis of nutrient content, the foods examined are well qualified as sources of energy and other essential nutrients required for maintenance of grouse during the winter season.
Knick, Steven T.; Gondhaleker, Carmen
2014-01-01
Greater sage-grouse (Centrocercus urophasiunus, hereafter sage-grouse) are broadly distributed, occupy a diversity of sagebrush habitats, and face multiple threats. As a result of these threats, sage-grouse populations are declining and are now absent from almost one-half of their estimated range prior to Euro-American settlement. The risks to sage-grouse are significant enough to merit candidate status for this species for listing under the U.S. Endangered Species Act (Federal Register Notice, March 5, 2010). According to this decision by the U.S. Fish and Wildlife Service in 2010, population and habitat fragmentation coupled with lack of regulatory mechanisms warranted listing, although implementation of actions has been precluded by other priorities. Candidate status for listing under the Endangered Species Act and possible regulatory action in the near future provide strong motivation to better understand the dynamics of sage-grouse populations and their habitat requirements. The general approach currently taken by managers focuses on maintaining or enhancing sage-grouse populations across their distribution in regions containing the highest densities of breeding birds and their important seasonal habitats, also known as priority areas for conservation (PACs). The rationale behind this approach is that it permits limited resources to be applied in regions that have the greatest potential to benefit the largest proportion of sage-grouse. Development and other forms of land use can then proceed under standard regulations in areas outside PACs. Implementation of this approach requires detailed information about habitat, connections among sage-grouse populations, and approaches to restore and maintain sagebrush. These are important topics of study by the U.S. Geological Survey (USGS) and its research partners.
USDA-ARS?s Scientific Manuscript database
The Greater Sage-grouse (Centrocercus urophasianus; hereafter Sage-grouse), a candidate species for listing under the Endangered Species Act, has experienced population declines across its range in the sagebrush (Artemisia spp.) steppe ecosystems of western North America. One factor contributing to...
USDA-ARS?s Scientific Manuscript database
The greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse), a candidate species for listing under the Endangered Species Act, has experienced population declines across its range in the sagebrush (Artemisia spp.) steppe ecosystems of western North America. One factor contributing to...
Occupancy modeling of ruffed grouse in the Black Hills National Forest
Christopher Paul Hansen
2009-01-01
Ruffed grouse (Bonasa umbellus) are important game birds and the management indicator species for quaking aspen (Populus tremuloides) in the Black Hills National Forest (BHNF). As a result, a robust monitoring protocol which reflects the status, trends, and habitat associations of ruffed grouse in the BHNF is necessary. To evaluate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... comment on expanded sage- grouse restrictions in the Proposed RMP/Final EIS. To resolve the issues raised in these protests, the Approved RMP adopts the sage- grouse restrictions originally presented in the..., Rock Springs, Newcastle, and Rawlins RMPs. These RMP amendments will revise sage-grouse and sagebrush...
Patch occupancy and dispersal of spruce grouse on the edge of its range in Maine
Whitcomb, S.A.; Servello, F.A.; O'Connell, A.F.
1996-01-01
We surveyed 18 habitat patches (black spruce (Picea marinana) - tamarack (Larix larcina) wetlands) for spruce grouse (Dendragapus canadensis canadensis) on Mount Desert Island, Maine, during April-May in 1992 and 1993 to determine patch occupancy relative to patch area. We also equipped nine juvenile grouse with radio transmitters to determine movement and habitat use outside of patches during autumn dispersal. The 2 large patches (77 and 269 ha), 5 of 6 medium-sized (11-26 ha) patches, and 1 of 10 small (4-8 ha) patches were occupied. Spruce grouse occupied smaller habitat patches than previously reported, and occupied patches were closer (P < 0.05) to the nearest occupied patch (x = 1.2 km) than were unoccupied patches (x = 2.5 km). Eight of nine juvenile grouse left their natal habitat patch during autumn dispersal, and net dispersal distance (x = 2.3 km) was greater than that reported for grouse in areas with more contiguous habitat. Dispersing juveniles used all major forest types and 33 % of relocations were in deciduous forest. Thus, deciduous forest was not an absolute dispersal barrier.
U.S. Geological Survey sage-grouse and sagebrush ecosystem research annual report for 2017
Hanser, Steven E.
2017-09-08
The sagebrush (Artemisia spp.) ecosystem extends across a large portion of the Western United States, and the greater sage-grouse (Centrocercus urophasianus) is one of the iconic species of this ecosystem. Greater sage-grouse populations occur in 11 States and are dependent on relatively large expanses of sagebrush-dominated habitat. Sage-grouse populations have been experiencing long-term declines owing to multiple stressors, including interactions among fire, exotic plant invasions, and human land uses, which have resulted in significant loss, fragmentation, and degradation of landscapes once dominated by sagebrush. In addition to the sage-grouse, over 350 species of plants and animals are dependent on the sagebrush ecosystem.Increasing knowledge about how these species and the sagebrush ecosystem respond to these stressors and to management actions can inform and improve strategies to maintain existing areas of intact sagebrush and restore degraded landscapes. The U.S. Geological Survey (USGS) has a broad research program focused on providing the science needed to inform these strate-gies and to help land and resource managers at the Federal, State, Tribal, and local levels as they work towards sustainable sage-grouse populations and restored landscapes for the broad range of uses critical to stakeholders in the Western United States.USGS science has provided a foundation for major land and resource management decisions including those that precluded the need to list the greater sage-grouse under the Endangered Species Act. The USGS is continuing to build on that foundation to inform science-based decisions to help support local economies and the continued conservation, management, and restoration of the sagebrush ecosystem.This report contains descriptions of USGS sage-grouse and sagebrush ecosystem research projects that are ongoing or were active during 2017 and is organized into five thematic areas: Fire, Invasive Species, Restoration, Sagebrush and Sage-Grouse, and Climate and Weather.
Doherty, Kevin E.; Evans, Jeffrey S.; Coates, Peter S.; Juliusson, Lara; Fedy, Bradley C.
2016-01-01
We developed rangewide population and habitat models for Greater Sage-Grouse (Centrocercus urophasianus) that account for regional variation in habitat selection and relative densities of birds for use in conservation planning and risk assessments. We developed a probabilistic model of occupied breeding habitat by statistically linking habitat characteristics within 4 miles of an occupied lek using a nonlinear machine learning technique (Random Forests). Habitat characteristics used were quantified in GIS and represent standard abiotic and biotic variables related to sage-grouse biology. Statistical model fit was high (mean correctly classified = 82.0%, range = 75.4–88.0%) as were cross-validation statistics (mean = 80.9%, range = 75.1–85.8%). We also developed a spatially explicit model to quantify the relative density of breeding birds across each Greater Sage-Grouse management zone. The models demonstrate distinct clustering of relative abundance of sage-grouse populations across all management zones. On average, approximately half of the breeding population is predicted to be within 10% of the occupied range. We also found that 80% of sage-grouse populations were contained in 25–34% of the occupied range within each management zone. Our rangewide population and habitat models account for regional variation in habitat selection and the relative densities of birds, and thus, they can serve as a consistent and common currency to assess how sage-grouse habitat and populations overlap with conservation actions or threats over the entire sage-grouse range. We also quantified differences in functional habitat responses and disturbance thresholds across the Western Association of Fish and Wildlife Agencies (WAFWA) management zones using statistical relationships identified during habitat modeling. Even for a species as specialized as Greater Sage-Grouse, our results show that ecological context matters in both the strength of habitat selection (i.e., functional response curves) and response to disturbance.
Better living through conifer removal: A demographic analysis of sage-grouse vital rates.
Severson, John P; Hagen, Christian A; Tack, Jason D; Maestas, Jeremy D; Naugle, David E; Forbes, James T; Reese, Kerry P
2017-01-01
Sagebrush (Artemisia spp.) obligate wildlife species such as the imperiled greater sage-grouse (Centrocercus urophasianus) face numerous threats including altered ecosystem processes that have led to conifer expansion into shrub-steppe. Conifer removal is accelerating despite a lack of empirical evidence on grouse population response. Using a before-after-control-impact design at the landscape scale, we evaluated effects of conifer removal on two important demographic parameters, annual survival of females and nest survival, by monitoring 219 female sage-grouse and 225 nests in the northern Great Basin from 2010 to 2014. Estimates from the best treatment models showed positive trends in the treatment area relative to the control area resulting in an increase of 6.6% annual female survival and 18.8% nest survival relative to the control area by 2014. Using stochastic simulations of our estimates and published demographics, we estimated a 25% increase in the population growth rate in the treatment area relative to the control area. This is the first study to link sage-grouse demographics with conifer removal and supports recommendations to actively manage conifer expansion for sage-grouse conservation. Sage-grouse have become a primary catalyst for conservation funding to address conifer expansion in the West, and these findings have important implications for other ecosystem services being generated on the wings of species conservation.
Knick, Steven T.; Schueck, Linda
2002-01-01
The Snake River Field Station of the Forest and Rangeland Ecosystem Science Center has developed and now maintains a database of the spatial information needed to address management of sage grouse and sagebrush steppe habitats in the western United States. The SAGEMAP project identifies and collects infor-mation for the region encompassing the historical extent of sage grouse distribution. State and federal agencies, the primary entities responsible for managing sage grouse and their habitats, need the information to develop an objective assessment of the current status of sage grouse populations and their habitats, or to provide responses and recommendations for recovery if sage grouse are listed as a Threatened or Endangered Species. The spatial data on the SAGEMAP website (http://SAGEMAP.wr.usgs.gov) are an important component in documenting current habitat and other environmental conditions. In addition, the data can be used to identify areas that have undergone significant changes in land cover and to determine underlying causes. As such, the database permits an analysis for large-scale and range-wide factors that may be causing declines of sage grouse populations. The spatial data contained on this site also will be a critical component guiding the decision processes for restoration of habitats in the Great Basin. Therefore, development of this database and the capability to disseminate the information carries multiple benefits for land and wildlife management.
Microhabitat selection of brood-rearing sites by greater sage-grouse in Carbon County, Wyoming
Leslie A. Schreiber; Christopher P. Hansen; Mark A. Rumble; Joshua J. Millspaugh; R. Scott Gamo; Jon W. Kehmeier; Nate Wojcik
2015-01-01
Declines in Greater Sage-Grouse (Centrocercus urophasianus, hereafter sage-grouse) populations could be attributed to low chick survival, which may be influenced by the availability of food and cover at sites used by females rearing broods. Habitat attributes important to broods may vary regionally; thus, it is necessary to understand factors affecting...
Greater sage-grouse winter habitat use on the eastern edge of their range
Christopher C. Swanson; Mark A. Rumble; Nicholas W. Kaczor; Robert W. Klaver; Katie M. Herman-Brunson; Jonathan A. Jenks; Kent C. Jensen
2013-01-01
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this...
Greater sage-grouse apparent nest productivity and chick survival in Carbon County, Wyoming
Leslie A. Schreiber; Christopher P. Hansen; Mark A. Rumble; Joshua J. Millspaugh; Frank R. Thompson; R. Scott Gamo; Jon W. Kehmeier; Nate Wojik
2016-01-01
Greater sage-grouse Centrocercus urophasianus populations across North America have been declining due to degradation and fragmentation of sagebrush habitat. As part of a study quantifying greater sage-grouse demographics prior to construction of a wind energy facility, we estimated apparent net nest productivity and survival rate of chicks associated with...
Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.
2015-09-10
Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic periods of high precipitation. Based on 30-year projections of burn and recovery rates, our population model predicted steady and substantial long-term declines in population size across the Great Basin. Further, example management scenarios that may help offset adverse wildfire effects are provided by models of varying levels of fire suppression and post-wildfire restoration that focus on areas especially important to sage-grouse populations. These models illustrate how sage-grouse population persistence likely will be compromised as sagebrush ecosystems and sage-grouse habitat are degraded by wildfire, especially in a warmer and drier climate, and by invasion of annual grasses that can increase wildfire frequency and size in the Great Basin.
Stanley, Thomas R.; Aldridge, Cameron L.; Joanne Saher,; Theresa Childers,
2015-01-01
The Gunnison Sage-Grouse (Centrocercus minimus) is a species of conservation concern and is a candidate for listing under the U.S. Endangered Species Act because of substantial declines in populations from historic levels. It is thought that loss, fragmentation, and deterioration of sagebrush (Artemisia spp.) habitat have contributed to the decline and isolation of this species into seven geographically distinct subpopulations. Nest survival is known to be a primary driver of demography of Greater Sage-Grouse (C. urophasianus), but no unbiased estimates of daily nest survival rates (hereafter nest survival) exist for Gunnison Sage-Grouse or published studies identifying factors that influence nest survival. We estimated nest survival of Gunnison Sage-Grouse for the western portion of Colorado's Gunnison Basin subpopulation, and assessed the effects and relative importance of local- and landscape-scale habitat characteristics on nest survival. Our top performing model was one that allowed variation in nest survival among areas, suggesting a larger landscape-area effect. Overall nest success during a 38-day nesting period (egg-laying plus incubation) was 50% (daily survival rate; SE = 0.982 [0.003]), which is higher than previous estimates for Gunnison Sage-Grouse and generally higher than published for the closely related Greater Sage-Grouse. We did not find strong evidence that local-scale habitat variables were better predictors of nest survival than landscape-scale predictors, nor did we find strong evidence that any of the habitat variables we measured were good predictors of nest survival. Nest success of Gunnison Sage-Grouse in the western portion of the Gunnison Basin was higher than previously believed.
Apa, Anthony D; Wiechman, Lief A
2015-01-01
Gunnison sage-grouse (Centrocercus minimus) are distributed across southwestern Colorado and southeastern Utah, United States. Their distribution has decreased over the past century and the species has been listed as threatened by the U.S. Fish and Wildlife Service. Reduced genetic diversity, small population size, and isolation may affect Gunnison sage-grouse population persistence. Population augmentation can be used to counteract or mitigate these issues, but traditional translocation efforts have yielded mixed, and mostly unsuccessful, results. Captive-rearing is a viable, although much debated, conservation approach to bolster wild conservation-reliant species. Although there have been captive-rearing efforts with greater sage-grouse (C. urophasianus), to date, no information exists about captive-rearing methods for Gunnison sage-grouse. Therefore, we investigated techniques for egg collection, artificial incubation, hatch, and captive-rearing of chicks, juveniles, subadults, and adults for Gunnison sage-grouse. In 2009 we established a captive flock that produced viable eggs. From 2009-2011, we collected and artificially incubated 206 Gunnison sage-grouse eggs from 23 wild and 14 captive females. Our hatchability was 90%. Wild-produced eggs were heavier than captive-produced eggs and lost mass similarly during incubation. We produced 148 chicks in captivity and fed them a variety of food sources (e.g. invertebrates to commercial chow). Bacterial infections were the primary cause of chick mortality, but we successfully reduced the overall mortality rate during the course of our study. Conservationists and managers should consider the utility in developing a captive-rearing program or creating a captive population as part of a proactive conservation effort for the conservation-reliant Gunnison sage-grouse. © 2015 Wiley Periodicals, Inc.
Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.
2015-01-01
Identifying links between micro-habitat selection and wildlife reproduction is imperative to population persistence and recovery. This information is particularly important for landscape species such as greater sage-grouse (Centrocercus urophasianus; sage-grouse). Although this species has been widely studied, because environmental factors can affect sage-grouse populations, local and regional studies are crucial for developing viable conservation strategies. We studied the habitat-use patterns of 71 radio-marked sage-grouse inhabiting an area affected by wildfire in the Virginia Mountains of northwestern Nevada during 2009–2011 to determine the effect of micro-habitat attributes on reproductive success. We measured standard vegetation parameters at nest and random sites using a multi-scale approach (range = 0.01–15,527 ha). We used an information-theoretic modeling approach to identify environmental factors influencing nest-site selection and survival, and determine whether nest survival was a function of resource selection. Sage-grouse selected micro-sites with greater shrub canopy cover and less cheatgrass (Bromus tectorum) cover than random sites. Total shrub canopy, including sagebrush (Artemisia spp.) and other shrub species, at small spatial scales (0.8 ha and 3.1 ha) was the single contributing selection factor to higher nest survival. These results indicate that reducing the risk of wildfire to maintain important sagebrush habitats could be emphasized in sage-grouse conservation strategies in Nevada. Managers may seek to mitigate the influx of annual grass invasion by preserving large intact sagebrush-dominated stands with a mixture of other shrub species. For this area of Nevada, the results suggest that ≥40% total shrub canopy cover in sage-grouse nesting areas could yield improved reproductive success.
Kirol, Christopher P; Sutphin, Andrew L; Bond, Laura; Fuller, Mark R; Maechtle, Thomas L
Sagebrush ( Artemisia spp.) habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species-including the greater sage-grouse ( Centrocercus urophasianus ; sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5 km 2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.
Coates, Peter S.; Brussee, Brianne E.; Howe, Kristy; Gustafson, K. Ben; Casazza, Michael L.; Delehanty, David J.
2016-01-01
Common raven (Corvus corax; hereafter, raven) population abundance in the sagebrush steppe of the American West has increased threefold during the previous four decades, largely as a result of unintended resource subsidies from human land-use practices. This is concerning because ravens frequently depredate nests of species of conservation concern, such as greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse). Grazing by livestock in sagebrush ecosystems is common practice on most public lands, but associations between livestock and ravens are poorly understood. The primary objective of this study was to identify the effects of livestock on raven occurrence while accounting for landscape characteristics within human-altered sagebrush steppe habitat, particularly in areas occupied by breeding sage-grouse. Using data from southeastern Idaho collected during spring and summer across 3 yr, we modeled raven occurrence as a function of the presence of livestock while accounting for multiple landscape covariates, including land cover features, topographical features, and proximity to sage-grouse lek sites (breeding grounds), as well as site-level anthropogenic features. While accounting for landscape characteristics, we found that the odds of raven occurrence increased 45.8% in areas where livestock were present. In addition, ravens selected areas near sage-grouse leks, with the odds of occurrence decreasing 8.9% for every 1-km distance, increase away from the lek. We did not find an association between livestock use and distance to lek. We also found that ravens selected sites with relatively lower elevation containing increased amounts of cropland, wet meadow, and urbanization. Limiting raven access to key anthropogenic subsidies and spatially segregating livestock from sage-grouse breeding areas would likely reduce exposure of predatory ravens to sage-grouse nests and chicks.
Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura; Fuller, Mark R.; Maechtle, Thomas L.
2015-01-01
Sagebrush (Artemisia spp.) habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species—including the greater sage-grouse (Centrocercus urophasianus; sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5 km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success. PMID:26366042
Sage-Grouse on the edge: understanding and managing western landscapes for their survival
Noreen Parks; Michael J. Wisdom
2012-01-01
Populations of greater sage-grouse have declined dramatically across their North American range for many decades in response to harmful effects of a plethora of human activities and land uses, prompting legal actions to protect the species under the Endangered Species Act (ESA). To evaluate the impacts of land-uses and habitat changes on sage-grouse, Michael Wisdom, a...
Deborah M. Finch; Douglas A. Boyce; Jeanne C. Chambers; Chris J. Colt; Kas Dumroese; Stanley G. Kitchen; Clinton McCarthy; Susan E. Meyer; Bryce A. Richardson; Mary M. Rowland; Mark A. Rumble; Michael K. Schwartz; Monica S. Tomosy; Michael J. Wisdom
2016-01-01
Sagebrush ecosystems are among the largest and most threatened ecosystems in North America. Greater sage-grouse has served as the bellwether for species conservation in these ecosystems and has been considered for listing under the Endangered Species Act eight times. In September 2015, the decision was made not to list greater sage-grouse, but to reevaluate its status...
1990-06-01
mourning dove (Zenaida macroura), American woodcock (Scolopax minor) , northein bobwhite Colijius virgililanus) , and ruffed grouse (Bonasca umbelus...Continued). Auditory survey methods Call counts Avian population indexes Mourning dove survey Avian survey and sampling Ruf fed grouse survey Bobwhite...ENGINEERS WILDLIFE RESOURCES MANAGEMENT MANUAL CONCEPT .... ............. .. 3 RUFFED GROUSE SURVEYS ... ....... 9 MOURNING DOVE SURVEYS
Benjamin C. Jones; Craig A. Harper
2007-01-01
Ruffed grouse (Bonasa umbellus L.) habitat use was studied in the mountains of western North Carolina. In 1997, 9 stands on the study site were harvested via alternative regeneration methods, including shelterwood, irregular shelterwood, and group selection. From 1999â2004, 276 grouse were radio tagged and monitored, resulting in over 7,000 location...
A method for trapping prairie grouse hens on display grounds
John E. Toepfer; Jay A. Newell; John Monarch
1988-01-01
This paper describes a method for trapping prairie grouse hens on display grounds. The basic principle of the trap is a drift fence which funnels visiting hens into traps. The trap has been used successfully in at least 6 states and 2 provinces and on 4 species of prairie grouse. This method is less expensive and less disruptive than rocket or cannon nets.
Conserving migratory mule deer through the umbrella of sage-grouse
Copeland, H. E.; Sawyer, H.; Monteith, K. L.; Naugle, D.E.; Pocewicz, Amy; Graf, N.; Kauffman, Matthew J.
2014-01-01
Conserving migratory ungulates in increasingly human-dominated landscapes presents a difficult challenge to land managers and conservation practitioners. Nevertheless, ungulates may receive ancillary benefits from conservation actions designed to protect species of greater conservation priority where their ranges are sympatric. Greater Sage-Grouse (Centrocerus urophasianus), for example, have been proposed as an umbrella species for other sagebrush (Artemesia spp.)-dependent fauna. We examined a landscape where conservation efforts for sage-grouse overlap spatially with mule deer (Odocoileus hemionus) to determine whether sage-grouse conservation measures also might protect important mule deer migration routes and seasonal ranges. We conducted a spatial analysis to determine what proportion of migration routes, stopover areas, and winter ranges used by mule deer were located in areas managed for sage-grouse conservation. Conservation measures overlapped with 66–70% of migration corridors, 74–75% of stopovers, and 52–91% of wintering areas for two mule deer populations in the upper Green River Basin of Wyoming. Of those proportions, conservation actions targeted towards sage-grouse accounted for approximately half of the overlap in corridors and stopover areas, and nearly all overlap on winter ranges, indicating that sage-grouse conservation efforts represent an important step in conserving migratory mule deer. Conservation of migratory species presents unique challenges because although overlap with conserved lands may be high, connectivity of the entire route must be maintained as barriers to movement anywhere within the migration corridor could render it unviable. Where mule deer habitats overlap with sage-grouse core areas, our results indicate that increased protection is afforded to winter ranges and migration routes within the umbrella of sage-grouse conservation, but this protection is contingent on concentrated developments within core areas not intersecting with high-priority stopovers or corridors, and that the policy in turn does not encourage development on deer ranges outside of core areas. With the goal of protecting entire migration routes, our analysis highlights areas of potential conservation focus for mule deer, which are characterized by high exposure to residential development and use by a large proportion of migrating deer.
Casazza, Michael L.; Coates, Peter S.
2013-01-01
The development of anthropogenic structures, especially those related to energy resources, in sagebrush ecosystems is an important concern among developers, conservationists, and land managers in relation to greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) populations. Sage-grouse are dependent on sagebrush ecosystems to meet their seasonal life-phase requirements, and research indicates that anthropogenic structures can adversely affect sage-grouse populations. Land management agencies have attempted to reduce the negative effects of anthropogenic development by assigning surface use (SU) designations, such as no surface occupancy, to areas around leks (breeding grounds). However, rationale for the size of these areas is often challenged. To help inform this issue, we used a spatial analysis of sage-grouse utilization distributions (UDs) to quantify seasonal (spring, summer and fall, winter) sage-grouse space use in relation to leks. We sampled UDs from 193 sage-grouse (11,878 telemetry locations) across 4 subpopulations within the Bi-State Distinct Population Segment (DPS, bordering California and Nevada) during 2003–2009. We quantified the volume of each UD (vUD) within a range of areas that varied in size and were centered on leks, up to a distance of 30 km from leks. We also quantified the percentage of nests within those areas. We then estimated the diminishing gains of vUD as area increased and produced continuous response curves that allow for flexibility in land management decisions. We found nearly 90% of the total vUD (all seasons combined) was contained within 5 km of leks, and we identified variation in vUD for a given distance related to season and migratory status. Five kilometers also represented the 95th percentile of the distribution of nesting distances. Because diminishing gains of vUD was not substantial until distances exceeded 8 km, managers should consider the theoretical optimal distances for SU designation between 5.0 km and 7.5 km, depending on migratory status. Although these results represent space use for sage-grouse within the Bi-State DPS, our results likely have broad relevance to other areas with similar landscape characteristics and patterns of space use.
Greater sage-grouse science (2015–17)—Synthesis and potential management implications
Hanser, Steven E.; Deibert, Patricia A.; Tull, John C.; Carr, Natasha B.; Aldridge, Cameron L.; Bargsten, Travis D.; Christiansen, Thomas J.; Coates, Peter S.; Crist, Michele R.; Doherty, Kevin E.; Ellsworth, Ethan A.; Foster, Lee J.; Herren, Vicki A.; Miller, Kevin H.; Moser, Ann; Naeve, Robin M.; Prentice, Karen L.; Remington, Thomas E.; Ricca, Mark A.; Shinneman, Douglas J.; Truex, Richard L.; Wiechman , Lief A.; Wilson, Dereck C.; Bowen, Zachary H.
2018-02-15
Executive SummaryThe greater sage-grouse (Centrocercus urophasianus; hereafter called “sage-grouse”), a species that requires sagebrush (Artemisia spp.), has experienced range-wide declines in its distribution and abundance. These declines have prompted substantial research and management investments to improve the understanding of sage-grouse and its habitats and reverse declines in distribution and population numbers.Over the past two decades, the U.S. Fish and Wildlife Service (USFWS) has responded to eight petitions to list the sage-grouse under the Endangered Species Act of 1973, with the completion of the most recent listing determination in September 2015. At that time, the USFWS determined that the sage-grouse did not warrant a listing, primarily because of the large scale science-based conservation and planning efforts completed or started by Federal, State, local agencies, private landowners, and other entities across the range. The planning efforts culminated in the development of the 2015 Bureau of Land Management (BLM) and U.S. Forest Service Land Use Plan Amendments, which provided regulatory certainty and commitment from Federal land-management agencies to limit, mitigate, and track anthropogenic disturbance and implement other sage-grouse conservation measures.After these policy decisions, the scientific community has continued to refine and expand the knowledge available to inform implementation of management actions, increase the efficiency and effectiveness of those actions, and continue developing an overall understanding of sage-grouse populations, habitat requirements, and their response to human activity and other habitat changes. The development of science has been driven by multiple prioritization documents including the “Greater Sage-Grouse National Research Strategy” (Hanser and Manier, 2013) and, most recently, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan” (Integrated Rangeland Fire Management Strategy Actionable Science Plan Team, 2016).In October 2017, after a review of the 2015 Federal plans relative to State sage-grouse plans, in accordance with Secretarial Order 3353, the BLM issued a notice of intent to consider whether to amend some, all, or none of the 2015 land use plans. At that time, the BLM requested the U.S. Geological Survey (USGS) to inform this effort through the development of an annotated bibliography of sage-grouse science published since January 2015 and a report that synthesized and outlined the potential management implications of this new science. Development of the annotated bibliography resulted in the identification and summarization of 169 peer-reviewed scientific publications and reports. The USGS then convened an interagency team (hereafter referred to as the “team”) to develop this report that focuses on the primary topics of importance to the ongoing management of sage-grouse and their habitats.The team developed this report in a three-step process. First, the team identified six primary topic areas for discussion based on the members’ collective knowledge regarding sage-grouse, their habitats, and threats to either or both. Second, the team reviewed all the material in the “Annotated Bibliography of Scientific Research on Greater Sage-Grouse Published since January 2015” to identify the science that addressed the topics. Third, team members discussed the science related to each topic, evaluated the consistency of the science with existing knowledge before 2015, and summarized the potential management implications of this science. The six primary topics identified by the team were:Multiscale habitat suitability and mapping toolsDiscrete anthropogenic activitiesDiffuse activitiesFire and invasive speciesRestoration effectivenessPopulation estimation and genetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen
This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing windmore » energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for forming any conclusions regarding potential impacts of wind energy development on sage-grouse. Although the data collected during the initial phases of this study indicate that greater sage-grouse may continue to use habitats near wind-energy facilities, research conducted on greater sage-grouse response to oil and gas development has found population declines may not occur until 2-10 years after development. Therefore, long-term data from several geographic areas within the range of the sage-grouse will likely be required to adequately assess impacts of wind-energy development on greater sage-grouse.« less
Wegge, Per; Rolstad, Jørund
2017-11-15
Global warming is predicted to adversely affect the reproduction of birds, especially in northern latitudes. A recent study in Finland inferred that declining populations of black grouse, Tetrao tetrix , could be attributed to advancement of the time of mating and chicks hatching too early-supporting the mismatch hypothesis. Here, we examine the breeding success of sympatric capercaillie, T. urogallus, and black grouse over a 38-year period in southeast Norway. Breeding season temperatures increased, being most pronounced in April. Although the onset of spring advanced nearly three weeks, the peak of mating advanced only 4-5 days. In contrast to the result of the Finnish study, breeding success increased markedly in both species (capercaillie: 62%, black grouse: 38%). Both brood frequency and brood size increased during the study period, but significantly so only for brood frequency in capercaillie. Whereas the frequency of capercaillie broods was positively affected by rising temperatures, especially during the pre-hatching period, this was not the case in black grouse. Brood size, on the other hand, increased with increasing post-hatching temperatures in both species. Contrary to the prediction that global warming will adversely affect reproduction in boreal forest grouse, our study shows that breeding success was enhanced in warmer springs. © 2017 The Authors.
Effects of environmental factors on incubation patterns of Greater Sage-Grouse
Coates, Peter S.; Delehanty, David J.
2008-01-01
Birds in which only one sex incubates the eggs are often faced with a direct conflict between foraging to meet metabolic needs and incubation. Knowledge of environmental and ecological factors that shape life-history strategies of incubation is limited. We used continuous videography to make precise measurements of female Greater Sage-Grouse (Centrocercus urophasianus) incubation constancy (percentage of time spent at the nest in a 24-hour period) and recess duration. We used an information-theoretic approach to evaluate incubation patterns in relation to grouse age, timing of incubation, raven abundance, microhabitat, weather, and food availability. Overall, sage-grouse females showed an incubation constancy of 96% and a distinctive bimodal distribution of brief incubation recesses that peaked at sunset and 30 min prior to sunrise. Grouse typically returned to their nests during low light conditions. Incubation constancy of yearlings was lower than that of adults, particularly in the later stages of incubation. Yearlings spent more time away from nests later in the morning and earlier in the evening compared to adults. Video images revealed that nearly all predation events by Common Ravens (Corvus corax), the most frequently recorded predator at sage-grouse nests, took place during mornings and evenings after sunrise and before sunset, respectively. These were the times of the day when sage-grouse typically returned from incubation recesses. Recess duration was negatively related to raven abundance. We found evidence that incubation constancy increased with greater visual obstruction, usually from vegetation, of nests. An understanding of how incubation patterns relate to environmental factors will help managers make decisions aimed at increasing productivity through successful incubation.
Falcon versus grouse: flight adaptations of a predator and its prey
Pennycuick, C.J.; Fuller, M.R.; Oar, J.J.; Kirkpatrick, S.J.
1994-01-01
Several falcons were trained to fly along a 500 m course to a lure. The air speeds of the more consistent performers averaged about 1.5 times their calculated minimum power speeds, and occasionally reached 2.1 times the minimum power speed. Wing beat frequencies of all the falcons were above those estimated from earlier field observations, and the same was true of wild Sage Grouse Centrocercus urophasianus, a regular falconer's quarry in the study area. Measurements of grouse killed by falcons showed that their wings were short, with broad slotted tips, whereas the falcons' wings were longer in relation to their body mass, and tapered. The short wings of grouse result in fast flight, high power requirements, and reduced capacity for aerobic flight. Calculations indicated that the grouse should fly faster than the falcons, and had the large amount of flight muscle needed to do so, but that the falcons would be capable of prolonged aerobic flight, whereas the grouse probably would not. We surmise that Sage Grouse cannot fly continuously without incurring an oxygen debt, and are therefore not long-distance migrants, although this limitation is partly due to their large size, and would not apply to smaller galliform birds such as ptarmigan Lagopus spp. The wing action seen in video recordings of the falcons was not consistent with the maintenance of constant circulation. We call it 'chase mode' because it appears to be associated with a high level of muscular exertion, without special regard to fuel economy. It shows features in common with the 'bounding' flight of passerines.
Jankowski, M.D.; Russell, Robin E.; Franson, J. Christian; Dusek, Robert J.; Hines, M.K.; Gregg, M.; Hofmeister, Erik K.
2014-01-01
The sagebrush biome in the western United States is home to the imperiled greater sage-grouse (Centrocercus urophasianus) and encompasses rangelands used for cattle production. Cattle grazing activities have been implicated in the range-wide decline of the sage-grouse, but no studies have investigated the relationship between the physiological condition of sage-grouse and the presence of grazing cattle. We sampled 329 sage-grouse across four sites (two grazed and two ungrazed) encompassing 13 600 km2 during the spring and late summer–early autumn of 2005 to evaluate whether demographic factors, breeding status, plasma protein levels, and residence in a cattle-grazed habitat were associated with the stress hormone corticosterone. Corticosterone was measured in feces as immunoreactive corticosterone metabolites (ICM). Males captured during the lekking season exhibited higher ICM levels than all others. Prenesting female sage-grouse captured in a grazed site had higher ICM levels than those in ungrazed sites and prenesting female plasma protein levels were negatively correlated with ICM concentrations. With the use of a small-scale spatial model, we identified a positive correlation between cattle pat count and sage-grouse ICM levels. Our model indicated that ICM levels increased by 2.60 ng · g-1 dry feces for every increase in the number of cow pats found in the vicinity. Management practices will benefit from future research regarding the consistency and mechanism(s) responsible for this association and, importantly, how ICM levels and demographic rates are related in this species of conservation concern.
Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura S.; Fuller, Mark R.; Maechtle, Thomas L.
2015-01-01
Sagebrush Artemisia spp. habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species — including the greater sage-grouse Centrocercus urophasianus (sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA, and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5-km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.
Dinkins, Jonathan B; Smith, Kurt T; Beck, Jeffrey L; Kirol, Christopher P; Pratt, Aaron C; Conover, Michael R
2016-01-01
The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m), while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas.
Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J
2016-02-01
Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and application s. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.
Jeanne C. Chambers; David A. Pyke; Jeremy D. Maestas; Mike Pellant; Chad S. Boyd; Steven B. Campbell; Shawn Espinosa; Douglas W. Havlina; Kenneth E. Mayer; Amarina Wuenschel
2014-01-01
This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2...
Jennifer Forbey; Gail Patricelli; Donna Delparte; Alan Krakauer; Peter Olsoy; Marcella Fremgen; Jordan Nobler; Nancy Glenn; Lucas Spaete; Bryce Richardson; Lisa Shipley; Jessica Mitchell
2016-01-01
We held a workshop related to the use of emerging technology to understand the ecology of grouse on 03 September 2015 from 08:00 to 17:30 at the Reykjavik Family Park and Zoo, Reykjavik, Iceland as part of the 13th International Grouse Symposium. Our overall objective was to translate technological advances in remote sensing, rapid biochemical assays, and robotics to...
Brooks, Matthew L.; Matchett, John R.; Shinneman, Douglas J.; Coates, Peter S.
2015-09-10
The results indicate that fire threats are higher in the four western than in the three eastern management zones. Among the four western management zones, the Snake River Plain and the Columbia Basin ranked somewhat higher than the Southern Great Basin and Northern Great Basin in terms of fire effects on sage-grouse habitat. These results support the previous high ranking of fire as a threat to the greater sage-grouse in the western region. In contrast, considering the low rankings for fire threats in the eastern region, it may be useful to reconsider the relative importance of wildfire as a threat to greater sage-grouse in those three management zones.
Smith, Matthew M.; Van Hemert, Caroline R.; Merizon, Richard
2016-01-01
Projections related to future climate warming indicate the potential for an increase in the distribution and prevalence of blood parasites in northern regions. However, baseline data are lacking for resident avian host species in Alaska. Grouse and ptarmigan occupy a diverse range of habitat types throughout the northern hemisphere and are among the most well-known and important native game birds in North America. Information regarding the prevalence and diversity of haemosporidian parasites in tetraonid species is limited, with few recent studies and an almost complete lack of genetic data. To better understand the genetic diversity of haemosporidian parasites in Alaskan tetraonids and to determine current patterns of geographic range and host specificity, we used molecular methods to screen 459 tissue samples collected from grouse and ptarmigan species across multiple regions of Alaska for infection by Leucocytozoon, Haemoproteus, and Plasmodium blood parasites. Infections were detected in 342 individuals, with overall apparent prevalence of 53% for Leucocytozoon, 21% for Haemoproteus, and 9% for Plasmodium. Parasite prevalence varied by region, with different patterns observed between species groups (grouse versus ptarmigan). Leucocytozoon was more common in ptarmigan, whereas Haemoproteus was more common in grouse. We detected Plasmodium infections in grouse only. Analysis of haemosporidian mitochondrial DNA cytochrome b sequences revealed 23 unique parasite haplotypes, several of which were identical to lineages previously detected in other avian hosts. Phylogenetic analysis showed close relationships between haplotypes from our study and those identified in Alaskan waterfowl for Haemoproteus and Plasmodium parasites. In contrast, Leucocytozoon lineages were structured strongly by host family. Our results provide some of the first genetic data for haemosporidians in grouse and ptarmigan species, and provide an initial baseline on the prevalence and diversity of blood parasites in a group of northern host species.
Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen
2015-05-01
Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.
Phenology largely explains taller grass at successful nests in greater sage-grouse.
Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E
2018-01-01
Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.
Investigating impacts of oil and gas development on greater sage-grouse
Green, Adam; Aldridge, Cameron L.; O'Donnell, Michael
2017-01-01
The sagebrush (Artemisia spp.) ecosystem is one of the largest ecosystems in western North America providing habitat for species found nowhere else. Sagebrush habitats have experienced dramatic declines since the 1950s, mostly due to anthropogenic disturbances. The greater sage-grouse (Centrocercus urophasianus) is a sagebrush-obligate species that has experienced population declines over the last several decades, which are attributed to a variety of disturbances including the more recent threat of oil and gas development. We developed a hierarchical, Bayesian state-space model to investigate the impacts of 2 measures of oil and gas development, and environmental and habitat conditions, on sage-grouse populations in Wyoming, USA using male lek counts from 1984 to 2008. Lek attendance of male sage-grouse declined by approximately 2.5%/year and was negatively related to oil and gas well density. We found little support for the influence of sagebrush cover and precipitation on changes in lek counts. Our results support those of other studies reporting negative impacts of oil and gas development on sage-grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage-grouse, development may also negatively affect other sagebrush-obligate species, and active management of sagebrush habitats may be necessary to maintain some species.
A multilocus population genetic survey of the greater sage-grouse across their range.
Oyler-McCance, S J; Taylor, S E; Quinn, T W
2005-04-01
The distribution and abundance of the greater sage-grouse (Centrocercus urophasianus) have declined dramatically, and as a result the species has become the focus of conservation efforts. We conducted a range-wide genetic survey of the species which included 46 populations and over 1000 individuals using both mitochondrial sequence data and data from seven nuclear microsatellites. Nested clade and structure analyses revealed that, in general, the greater sage-grouse populations follow an isolation-by-distance model of restricted gene flow. This suggests that movements of the greater sage-grouse are typically among neighbouring populations and not across the species, range. This may have important implications if management is considering translocations as they should involve neighbouring rather than distant populations to preserve any effects of local adaptation. We identified two populations in Washington with low levels of genetic variation that reflect severe habitat loss and dramatic population decline. Managers of these populations may consider augmentation from geographically close populations. One population (Lyon/Mono) on the southwestern edge of the species' range appears to have been isolated from all other greater sage-grouse populations. This population is sufficiently genetically distinct that it warrants protection and management as a separate unit. The genetic data presented here, in conjunction with large-scale demographic and habitat data, will provide an integrated approach to conservation efforts for the greater sage-grouse.
Ecological study of ruffed grouse broods in Virginia
Stewart, R.E.
1956-01-01
The Ruffed Grouse (Bonasa umbellus), commonly called "pheasant" throughout the southern Appalachian region, is a popular game bird in the mountains of Virginia. Unfortunately, however, the grouse populations in this State have declined noticeably during the past fifty years. Because of this, special field studies were designed through the cooperation of the U. S. Fish and Wildlife Service and U. S. Forest Service, which would provide information that could be used in devising more efficient grouse management practices. As part of this program, I was assigned to investigate the ecology and habits of this species in the Shenandoah Mountains during the spring and summer of 1941. These studies were conducted within the George Washington National Forest in northwestern Augusta County, southwestern Rockingham County, and northeastern Highland County, Virginia.
Manier, D.J.; Wood, David J.A.; Bowen, Z.H.; Donovan, R.M.; Holloran, M.J.; Juliusson, L.M.; Mayne, K.S.; Oyler-McCance, S.J.; Quamen, F.R.; Saher, D.J.; Titolo, A.J.
2013-01-01
The Greater Sage-Grouse, has been observed, hunted, and counted for decades. The sagebrush biome, home to the Greater Sage-Grouse, includes sagebrush-steppe and Great Basin sagebrush communities, interspersed with grasslands, salt flats, badlands, mountain ranges, springs, intermittent creeks and washes, and major river systems, and is one of the most widespread and enigmatic components of Western U.S. landscapes. Over time, habitat conversion, degradation, and fragmentation have accumulated across the entire range such that local conditions as well as habitat distributions at local and regional scales are negatively affecting the long-term persistence of this species. Historic patterns of human use and settlement of the sagebrush ecosystem have contributed to the current condition and status of sage-grouse populations. The accumulation of habitat loss, persistent habitat degradation, and fragmentation by industry and urban infrastructure, as indicated by U.S. Fish and Wildlife Service (USFWS) findings, presents a significant challenge for conservation of this species and sustainable management of the sagebrush ecosystem. Because of the wide variations in natural and human history across these landscapes, no single prescription for management of sagebrush ecosystems (including sage-grouse habitats) will suffice to guide the collective efforts of public and private entities to conserve the species and its habitat. This report documents and summarizes several decades of work on sage-grouse populations, sagebrush as habitat, and sagebrush community and ecosystem functions based on the recent assessment and findings of the USFWS under consideration of the Endangered Species Act. As reflected here, some of these topics receive a greater depth of discussion because of the perceived importance of the issue for sagebrush ecosystems and sage-grouse populations. Drawing connections between the direct effects on sagebrush ecosystems and the effect of ecosystem condition on habitat condition, and finally the connection between habitat quality and sage-grouse population dynamics remains an important goal for science, management, and conservation. This effort is necessary, despite the perception that these complicated, indirect relations are difficult to characterize and manage, and the many advances in understanding and application developed toward this end have been documented here to help inform regional planning and policy decisions.
Beck, Jeffrey L.; Kirol, Christopher P.; Pratt, Aaron C.; Conover, Michael R.
2016-01-01
The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming’s Core Area Policy. Wyoming’s Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008–2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and <1.0 m), while selecting for less bare ground and rock. With the exception of more small gaps between shrubs, we did not find any differences in availability of these microhabitat characteristics between locations within and outside of Core Areas. In addition, we found little supporting evidence that sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4–45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming’s Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas. PMID:27002531
Monroe, Adrian P; Aldridge, Cameron L; Assal, Timothy J; Veblen, Kari E; Pyke, David A; Casazza, Michael L
2017-06-01
Human land use, such as livestock grazing, can have profound yet varied effects on wildlife interacting within common ecosystems, yet our understanding of land-use effects is often generalized from short-term, local studies that may not correspond with trends at broader scales. Here we used public land records to characterize livestock grazing across Wyoming, USA, and we used Greater Sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. With annual counts of male Sage-grouse from 743 leks (breeding display sites) during 2004-2014, we modeled population trends in response to grazing level (represented by a relative grazing index) and timing across a gradient in vegetation productivity as measured by the Normalized Vegetation Difference Index (NDVI). We found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods. We also found support for the hypothesis that effects of grazing management vary with local vegetation productivity. These results illustrate the importance of broad-scale analyses by revealing patterns in Sage-grouse population trends that may not be inferred from studies at finer scales, and could inform sustainable grazing management in these ecosystems. © 2017 by the Ecological Society of America.
Monroe, Adrian; Aldridge, Cameron L.; Assal, Timothy J.; Veblen, Kari E.; Pyke, David A.; Casazza, Michael L.
2017-01-01
Human land use, such as livestock grazing, can have profound yet varied effects on wildlife interacting within common ecosystems, yet our understanding of land-use effects is often generalized from short-term, local studies that may not correspond with trends at broader scales. Here we used public land records to characterize livestock grazing across Wyoming, USA, and we used Greater Sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. With annual counts of male Sage-grouse from 743 leks (breeding display sites) during 2004–2014, we modeled population trends in response to grazing level (represented by a relative grazing index) and timing across a gradient in vegetation productivity as measured by the Normalized Vegetation Difference Index (NDVI). We found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods. We also found support for the hypothesis that effects of grazing management vary with local vegetation productivity. These results illustrate the importance of broad-scale analyses by revealing patterns in Sage-grouse population trends that may not be inferred from studies at finer scales, and could inform sustainable grazing management in these ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, K.E.; Naugle, D.E.; Walker, B.L.
Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection basedmore » on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.« less
Coates, Peter S.; Brussee, Brianne E.; Ricca, Mark A.; Dudko, Jonathan E.; Prochazka, Brian G.; Espinosa, Shawn P.; Casazza, Michael L.; Delehanty, David J.
2017-08-10
Greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse") are highly dependent on sagebrush (Artemisia spp.) dominated vegetation communities for food and cover from predators. Although this species requires the presence of sagebrush shrubs in the overstory, it also inhabits a broad geographic distribution with significant gradients in precipitation and temperature that drive variation in sagebrush ecosystem structure and concomitant shrub understory conditions. Variability in understory conditions across the species’ range may be responsible for the sometimes contradictory findings in the scientific literature describing sage-grouse habitat use and selection during important life history stages, such as nesting. To help understand the importance of this variability and to help guide management actions, we evaluated the nesting and brood-rearing microhabitat factors that influence selection and survival patterns in the Great Basin using a large dataset of microhabitat characteristics from study areas spanning northern Nevada and a portion of northeastern California from 2009 to 2016. The spatial and temporal coverage of the dataset provided a powerful opportunity to evaluate microhabitat factors important to sage-grouse reproduction, while also considering habitat variation associated with different climatic conditions and areas affected by wildfire. The summary statistics for numerous microhabitat factors, and the strength of their association with sage-grouse habitat selection and survival, are provided in this report to support decisions by land managers, policy-makers, and others with the best-available science in a timely manner.
Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.
2016-01-01
Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species, and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.
NASA Astrophysics Data System (ADS)
Farzan, Shahla; Young, Derek J. N.; Dedrick, Allison G.; Hamilton, Matthew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel
2015-09-01
Western juniper ( Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse ( Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Farzan, Shahla; Young, Derek J.N.; Dedrick, Allison G.; Hamilton, Mattew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel
2015-01-01
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Farzan, Shahla; Young, Derek J N; Dedrick, Allison G; Hamilton, Matthew; Porse, Erik C; Coates, Peter S; Sampson, Gabriel
2015-09-01
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Benedict, N.G.; Oyler-McCance, S.J.; Taylor, S.E.; Braun, C.E.
2003-01-01
The status of Sage-grouse (Centrocercus urophasianus) is of increasing concern, as populations throughout its range have contracted as a result of habitat loss and degradation. Historically, Sage-grouse were classified into two subspecies: eastern(C. u. urophasianus) and western Sage-grouse (C. u. phaios) based on slight differences in coloration noted among eight individuals sampled from Washington, Oregon, and California. We sequenced a rapidly evolving portion of the mitochondrial control region in 332 birds from 16 populations. Although our sampling area covers the proposed boundary between the eastern and western subspecies, no genetic evidence to support the delineation of these subspecies was found. However, a population straddling southwestern Nevada and eastern California was found to contain an unusually high proportion of unique haplotypes, consistent with its genetic isolation from other Sage-grouse populations. Of additional interest was the lack of diversity in the two populations sampled from Washington, one of which contained only a single haplotype. We suggest that multiple lines of evidence are valuable for the formulation of conservation strategies and hence the southwestern Nevada/eastern California population merits further morphological, behavioral, and molecular investigation.
Copeland, Holly E; Pocewicz, Amy; Naugle, David E; Griffiths, Tim; Keinath, Doug; Evans, Jeffrey; Platt, James
2013-01-01
Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance "core" habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14-29% (95% CI: 4-46%). However, a conservation strategy that includes the "core area" policy and $250 million in targeted easements could reduce these losses to 9-15% (95% CI: 3-32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing.
Copeland, Holly E.; Pocewicz, Amy; Naugle, David E.; Griffiths, Tim; Keinath, Doug; Evans, Jeffrey; Platt, James
2013-01-01
Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance “core” habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14–29% (95% CI: 4–46%). However, a conservation strategy that includes the “core area” policy and $250 million in targeted easements could reduce these losses to 9–15% (95% CI: 3–32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing. PMID:23826250
77 FR 16257 - Notice of Public Meetings: Northeastern Great Basin Resource Advisory Council, Nevada
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... Plan, greater sage-grouse conservation, and recreation; July 19 and 20 (Ely)--field tour to Spring Valley Wind/ Falcon-Gonder/Online (SWIP) transmission lines and greater sage-grouse leks; September 20...
Proposed Synthetic Minor NSR Permit: Anadarko Uintah Midstream, LLC - Sage Grouse Compressor Station
Proposed synthetic minor NSR permit, public notice bulletin, and administrative permit docket for the Anadarko Uintah Midstream, LLC, Sage Grouse Compressor Station, located on Uintah and Ouray Indian Reservation in Utah.
Nemeth, Nicole M; Bosco-Lauth, Angela M; Williams, Lisa M; Bowen, Richard A; Brown, Justin D
2017-11-01
Ruffed grouse ( Bonasa umbellus) population numbers in Pennsylvania dramatically declined during the early 2000s and have subsequently remained depressed throughout much of the state. While this decline has been temporally associated with the presence of West Nile virus (WNV), lack of information on the WNV susceptibility of this popular game bird species has limited the ability to interpret the potential impacts of WNV. To address this knowledge gap, virologic, immunologic, pathologic, and clinical responses as well as protective effects of vaccination following experimental WNV inoculation in ruffed grouse were assessed. Four of 10 (40%) naive, WNV-inoculated grouse succumbed to infection within 8 days and had moderate mean peak viremia titers (10 7.0 plaque-forming units [PFU]/ml serum); severe necrotizing myocarditis with widespread, corresponding immunohistochemical labeling; and minimal encephalitis. Grouse that survived to the prescribed end point of 14 days postinoculation (6/10; 60%) had slightly lower mean peak viremia titers (10 6.8 PFU/ml serum), moderate myocardial lesions, and more widespread brain lesions with rare corresponding immunohistochemical labeling. Vaccinated, WNV-inoculated birds ( n = 5) had lower mean peak viremia titers (10 3.6 PFU/ml serum) and minimal lesions, and sham-inoculated, in-contact control birds ( n = 3) had no evidence of infection. All surviving, inoculated birds seroconverted, and WNV-specific antibodies were detectable in serum and Nobuto filter paper strip-eluted blood samples. These data suggest that WNV could serve as an additional population pressure on ruffed grouse in regions where transmission levels are high and WNV competent, ornithophilic vectors exist.
Evaluation of the genetic distinctiveness of Greater Sage-grouse in the Bi-State Planning Area
Oyler-McCance, Sara J.; Casazza, Michael L.
2011-01-01
The purpose of this study was to further characterize a distinct population of Greater Sage-grouse: the population located along the border between Nevada and California (Bi-State Planning Area) and centered around the Mono Basin. This population was previously determined to be genetically distinct from other Greater Sage-grouse populations across their range. Previous genetic work focused on characterizing genetic variation across the species' range and thereby used a coarse sampling approach for species characterization. The goal of this study was to investigate this population further by obtaining samples from breeding locations within the population and analyzing those samples with the same mitochondrial and microsatellite loci used in previous studies. Blood samples were collected in six locations within the Bi-State Planning Area. Genetic data from subpopulations were then compared with each other and also with two populations outside of the Bi-State Planning Area. Particular attention was paid to subpopulation boundaries and internal dynamics by drawing comparisons among particular regions within the Bi-State Planning Area and regions proximal to it. All newly sampled subpopulations contained mitochondrial haplotypes and allele frequencies that were consistent with the genetically unique Bi-State (Mono Basin) Greater Sage-grouse described previously. This reinforces the fact that this group of Greater Sage-grouse is genetically unique and warrants special attention. Maintaining the genetic integrity of this population could protect the evolutionary potential of this population of Greater Sage-grouse. Additionally, the White Mountains subpopulation was found to be significantly distinct from all other Bi-State subpopulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... squirrels, grouse, rabbit, pheasant, quail, woodchuck, crow, fox, raccoon, opossum, skunk, weasel, coyote.... Sport Fishing. [Reserved] Erie National Wildlife Refuge A. Migratory Game Bird Hunting. We allow hunting... hunting of grouse, squirrel, rabbit, woodchuck, pheasant, quail, raccoon, fox, coyote, skunk, and opossum...
Fedy, Bradley C.; Aldridge, Cameron L.; Doherty, Kevin E.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Swanson, Christopher C.; Walker, Brett L.
2012-01-01
Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE = 0.3 km; n = 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE = 0.5 km; n = 607 individuals). Average nest-to-winter movements were 14.4 km (SE = 0.6 km; n = 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was developed based on lek data, was generally better at capturing the nesting locations than summer or winter locations. However, across Wyoming the sage-grouse breeding core regions still contained a relatively high percentage of summer and winter locations and seem to be a reasonable surrogate for non-breeding habitat when no other information exists. We suggest that conservation efforts for greater sage-grouse implicitly incorporate seasonal habitat needs because of high variation in the amount of overlap among breeding core regions and non-breeding habitat.
Ricca, Mark A; Coates, Peter S; Gustafson, K Benjamin; Brussee, Brianne E; Chambers, Jeanne C; Espinosa, Shawn P; Gardner, Scott C; Lisius, Sherri; Ziegler, Pilar; Delehanty, David J; Casazza, Michael L
2018-06-01
Managers require quantitative yet tractable tools that identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin is compromised by strongly interacting stressors of conifer expansion, annual grass invasion, and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and may yield relatively little ecological benefit to sage-grouse if implemented without estimating how Sage-grouse may respond to treatments, or do not consider underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species. Here, we describe example applications of a spatially explicit conservation planning tool (CPT) to inform prioritization of: (1) removal of conifers (i.e., pinyon-juniper); and (2) wildfire restoration aimed at improving habitat conditions for the Bi-State Distinct Population Segment of Sage-grouse along the California-Nevada state line. The CPT measures ecological benefits to sage-grouse for a given management action through a composite index comprised of resource selection functions and estimates of abundance and space use. For pinyon-juniper removal, we simulated changes in land-cover composition following the removal of sparse trees with intact understories, and ranked treatments on the basis of changes in ecological benefits per dollar-unit of cost. For wildfire restoration, we formulated a conditional model to simulate scenarios for land cover changes (e.g., sagebrush to annual grass) given estimated fire severity and underlying ecosystem processes influencing resilience to disturbance and resistance to invasion by annual grasses. For both applications, we compared CPT rankings to land cover changes along with sagebrush resistance and resilience metrics. Model results demonstrated how the CPT can be an important step in identifying management projects that yield the highest quantifiable benefit to Sage-grouse while avoiding costly misallocation of resources, and highlight the importance of considering changes in sage-grouse ecological response and factors influencing sagebrush ecosystem resilience to disturbance and resistance to invasion. This unique framework can be adopted to help inform other management questions aimed at improving habitat for other species across sagebrush and other ecosystems. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Livestock grazing and sage-grouse habitat: impacts and opportunities
USDA-ARS?s Scientific Manuscript database
Sage-grouse obtain resources from sagebrush communities for breeding, summer, and winter life stages. Grazing changes the productivity, composition, and structure of herbaceous plants in sagebrush communities, thus directly influencing the productivity of nesting and early brood-rearing habitats. In...
Sage-grouse habitat assessment framework: multi-scale habitat assessment tool
USDA-ARS?s Scientific Manuscript database
This document provides policymakers, resource managers, and specialists with a comprehensive framework for assessing sage-grouse habitat in the sagebrush ecosystem. Four pillars form the foundation for the success of this approach: science, effective conservation policy, implementation, and adapti...
Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.
2015-09-08
The network of areas delineated in 11 Western States for prioritizing management of greater sage-grouse (Centrocercus urophasianus) represents a grand experiment in conservation biology and reserve design. We used centrality metrics from social network theory to gain insights into how this priority area network might function. The network was highly centralized. Twenty of 188 priority areas accounted for 80 percent of the total centrality scores. These priority areas, characterized by large size and a central location in the range-wide distribution, are strongholds for greater sage-grouse populations and also might function as sources. Mid-ranking priority areas may serve as stepping stones because of their location between large central and smaller peripheral priority areas. The current network design and conservation strategy has risks. The contribution of almost one-half (n = 93) of the priority areas combined for less than 1 percent of the cumulative centrality scores for the network. These priority areas individually are likely too small to support viable sage-grouse populations within their boundary. Without habitat corridors to connect small priority areas either to larger priority areas or as a clustered group within the network, their isolation could lead to loss of sage-grouse within these regions of the network.
Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Sanchez-Chopitea, Erika; Mauch, Kimberly; Niell, Lara; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.
2016-05-20
Successful adaptive management hinges largely upon integrating new and improved sources of information as they become available. As a timely example of this tenet, we updated a management decision support tool that was previously developed for greater sage-grouse (Centrocercus urophasianus, hereinafter referred to as “sage-grouse”) populations in Nevada and California. Specifically, recently developed spatially explicit habitat maps derived from empirical data played a key role in the conservation of this species facing listing under the Endangered Species Act. This report provides an updated process for mapping relative habitat suitability and management categories for sage-grouse in Nevada and northeastern California (Coates and others, 2014, 2016). These updates include: (1) adding radio and GPS telemetry locations from sage-grouse monitored at multiple sites during 2014 to the original location dataset beginning in 1998; (2) integrating output from high resolution maps (1–2 m2) of sagebrush and pinyon-juniper cover as covariates in resource selection models; (3) modifying the spatial extent of the analyses to match newly available vegetation layers; (4) explicit modeling of relative habitat suitability during three seasons (spring, summer, winter) that corresponded to critical life history periods for sage-grouse (breeding, brood-rearing, over-wintering); (5) accounting for differences in habitat availability between more mesic sagebrush steppe communities in the northern part of the study area and drier Great Basin sagebrush in more southerly regions by categorizing continuous region-wide surfaces of habitat suitability index (HSI) with independent locations falling within two hydrological zones; (6) integrating the three seasonal maps into a composite map of annual relative habitat suitability; (7) deriving updated land management categories based on previously determined cut-points for intersections of habitat suitability and an updated index of sage-grouse abundance and space-use (AUI); and (8) masking urban footprints and major roadways out of the final map products.Seasonal habitat maps were generated based on model-averaged resource selection functions (RSF) derived for 10 project areas (813 sage-grouse; 14,085 locations) during the spring season, 10 during the summer season (591 sage-grouse, 11,743 locations), and 7 during the winter season (288 sage-grouse, 4,862 locations). RSF surfaces were transformed to HSIs and averaged in a GIS framework for every pixel for each season. Validation analyses of categorized HSI surfaces using a suite of independent datasets resulted in an agreement of 93–97 percent for habitat versus non-habitat on an annual basis. Spring and summer maps validated similarly well at 94–97 percent, while winter maps validated slightly less accurately at 87–93 percent.We then provide an updated example of how space use models can be integrated with habitat models to help inform conservation planning. We used updated lek count data to calculate a composite abundance and space use index (AUI) that comprised the combination of probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek. The AUI was then classified into two categories of use (high and low-to-no) and intersected with the HSI categories to create potential management prioritization scenarios based on information about sage-grouse occupancy coupled with habitat suitability. Compared to Coates and others (2014, 2016), the amount of area classified as habitat across the region increased by 6.5 percent (approximately 1,700,000 acres). For management categories, core increased by 7.2 percent (approximately 865,000 acres), priority increased by 9.6 percent (approximately 855,000 acres), and general increased by 9.2 percent (approximately 768,000 acres), while non-habitat decreased (that is, classified non-habitat occurring outside of areas of concentrated use) by 11.9 percent (approximately 2,500,000 acres). Importantly, seasonal and annual maps represent habitat for all age and sex classes of sage-grouse (that is, sample sizes of marked grouse were insufficient to only construct models for reproductive females). This revised sage-grouse habitat mapping product helps improve adaptive application of conservation planning tools based on intersections of spatially explicit habitat suitability, abundance, and space use indices.
NASA Astrophysics Data System (ADS)
Christian Stanciu, A.; Russo, Raymond M.; Mocanu, Victor I.; Bremner, Paul M.; Hongsresawat, Sutatcha; Torpey, Megan E.; VanDecar, John C.; Foster, David A.; Hole, John A.
2016-07-01
We present new images of lithospheric structure obtained from P-to-S conversions defined by receiver functions at the 85 broadband seismic stations of the EarthScope IDaho-ORegon experiment. We resolve the crustal thickness beneath the Blue Mountains province and the former western margin of cratonic North America, the geometry of the western Idaho shear zone (WISZ), and the boundary between the Grouse Creek and Farmington provinces. We calculated P-to-S receiver functions using the iterative time domain deconvolution method, and we used the H-k grid search method and common conversion point stacking to image the lithospheric structure. Moho depths beneath the Blue Mountains terranes range from 24 to 34 km, whereas the crust is 32-40 km thick beneath the Idaho batholith and the regions of extended crust of east-central Idaho. The Blue Mountains group Olds Ferry terrane is characterized by the thinnest crust in the study area, 24 km thick. There is a clear break in the continuity of the Moho across the WISZ, with depths increasing from 28 km west of the shear zone to 36 km just east of its surface expression. The presence of a strong midcrustal converting interface at 18 km depth beneath the Idaho batholith extending 20 km east of the WISZ indicates tectonic wedging in this region. A north striking 7 km offset in Moho depth, thinning to the east, is present beneath the Lost River Range and Pahsimeroi Valley; we identify this sharp offset as the boundary that juxtaposes the Archean Grouse Creek block with the Paleoproterozoic Farmington zone.
Handel, C.M.; Gill, R.E.
2010-01-01
The sharp-tailed sandpiper (Calidris acuminata) is a long-distance migrant that travels each year from breeding grounds in the Russian Arctic to nonbreeding areas in Australasia. Most adults migrate rapidly from breeding grounds along a largely inland route through Asia. Here we report on the highly unusual migratory strategy of this species in which some juveniles, but virtually no adults, take a pronounced detour to western Alaska before proceeding on southward migration. We analyzed data from our own studies in this region and published and unpublished observations and specimen records of sharptailed sandpipers from the entire Pacific Basin. Each autumn, sharp-tailed sandpipers began arriving on coastal graminoid meadows and intertidal habitats throughout western Alaska during the last half of August and the last sandpipers departed from southwestern Alaska during October and November. Body mass of birds banded or collected across multiple years and sites in western Alaska (n = 330) increased by an average of 0.57 ?? 0.06 g per day between mid-August and late October. Records suggest a small, regular movement of juveniles (and a very few adults) along the Asiatic coast, but we estimate from surveys that a few tens of thousands of juveniles stage in western Alaska each autumn. The distribution of sight and specimen records from the Pacific Basin during autumn suggests strongly age-segregated migration routes, with the principal migration of juveniles crossing central and western Oceania in a possible nonstop trans-Pacific flight from Alaska. This is only the second well-documented case of differential migration among birds that involves different routes for adults and juveniles, and it raises intriguing questions about how and why this system has evolved. ?? The Arctic Institute of North America.
Fire Effects on Cover and Dietary Resources of Sage-grouse Habitat
USDA-ARS?s Scientific Manuscript database
Prescribed fire in big sagebrush (Artemisia tridentata Nutt.) steppe to enhance habitat characteristics for greater sage-grouse (Centrocercus urophasianus Bonaparte), a sagebrush obligate species, has been a subject of increased research emphasis and management concern. We evaluated early successio...
Greater Sage-Grouse National Research Strategy
Hanser, Steven E.; Manier, Daniel J.
2013-01-01
The condition of the sagebrush ecosystem has been declining in the Western United States, and greater sage-grouse (Centrocercus urophasianus), a sagebrush-obligate species, has experienced concurrent decreases in distribution and population numbers. This has prompted substantial research and management over the past two decades to improve the understanding of sage-grouse and its habitats and to address the observed decreases in distribution and population numbers. The amount of research and management has increased as the year 2015 approaches, which is when the U.S. Fish and Wildlife Service (FWS) is expected to make a final decision about whether or not to protect the species under the Endangered Species Act. In 2012, the Sage-Grouse Executive Oversight Committee (EOC) of the Western Association of Fish and Wildlife Agencies (WAFWA) requested that the U.S. Geological Survey (USGS) lead the development of a Greater Sage-Grouse National Research Strategy (hereafter Research Strategy). This request was motivated by a practical need to systematically connect existing research and conservation plans with persisting or emerging information needs. Managers and researchers also wanted to reduce redundancy and help focus limited funds on the highest priority research and management issues. The USGS undertook the development of this Research Strategy, which addresses information and science relating to the greater sage-grouse and its habitat across portions of 11 Western States. This Research Strategy provides an outline of important research topics to ensure that science information gaps are identified and documented in a comprehensive manner. Further, by identifying priority topics and critical information needed for planning, research, and resource management, it provides a structure to help coordinate members of an expansive research and management community in their efforts to conduct priority research.
The impacts of fire on sage-grouse habitat and diet resources
USDA-ARS?s Scientific Manuscript database
We evaluated six years of vegetation response following prescribed fire in Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis) steppe on vegetation cover, the productivity and nutritional quality of forbs preferred by greater sage-grouse (Centrocercus urophasianus), and the abundance of c...
Disease and infection in the Tetraonidae
Herman, C.M.
1963-01-01
Disease is one of many factors advanced to explain the fluctuations of grouse populations, but no profound study of natural disease losses in Tetraonidae exists. The literature contains frequent references to THE grouse disease, although many potential pathogens are listed in numerous surveys and limited investigations, and the relevant data indicate that no single etiologic agent is universally responsible for disease in grouse. Few experimental infections or related studies on parasite biology have been attempted. Well-trained personnel and specialized facilities are required for research and analysis (1) to develop new methods of interpretation to be used with existing census techniques, (2) to conduct intensive studies of ecological factors of host and habitat, and (3) to establish base lines for recognition of deviations from the norm. Disease in wildlife can be controlled only through management procedures based on information concerning the biology of pathogens, hosts, and environments. It cannot be studied as a separate entity if its impact on survival or population fluctuations of grouse is to be correctly assessed.
Adaptive Suction and Blowing for Twin-Tail Buffet Control
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Yang, Zhi
1999-01-01
Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.
Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.
2014-01-01
A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory conditions, but in most climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using past restoration methods. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats.
Multi-species benefits of the proposed North American sage-grouse management plan
Clait E. Braun
2005-01-01
The population size and distribution of the two species of sage-grouse (Greater – Centrocercus urophasianus and Gunnison – C. minimus) populations have become greatly reduced throughout western North America because of habitat changes. Threats are ongoing to the remaining sagebrush (Artemisia ...
Surficial weathering of iron sulfide mine tailings under semi-arid climate.
Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon
2014-09-15
Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg -1 , respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.
Surficial weathering of iron sulfide mine tailings under semi-arid climate
Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina; Chorover, Jon
2014-01-01
Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and 100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s. PMID:25197102
Surficial weathering of iron sulfide mine tailings under semi-arid climate
NASA Astrophysics Data System (ADS)
Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon
2014-09-01
Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with the lowest pH, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.
Sagebrush, greater sage-grouse, and the occurrence and importance of forbs
Pennington, Victoria E.; Schlaepfer, Daniel R.; Beck, Jeffrey L.; Bradford, John B.; Palmquist, Kyle A.; Lauenroth, William K.
2016-01-01
Big sagebrush (Artemisia tridentata Nutt.) ecosystems provide habitat for sagebrush-obligate wildlife species such as the Greater Sage-Grouse (Centrocercus urophasianus). The understory of big sagebrush plant communities is composed of grasses and forbs that are important sources of cover and food for wildlife. The grass component is well described in the literature, but the composition, abundance, and habitat role of forbs in these communities is largely unknown. Our objective was to synthesize information about forbs and their importance to Greater Sage-Grouse diets and habitats, how rangeland management practices affect forbs, and how forbs respond to changes in temperature and precipitation. We also sought to identify research gaps and needs concerning forbs in big sagebrush plant communities. We searched for relevant literature including journal articles and state and federal agency reports. Our results indicated that in the spring and summer, Greater Sage-Grouse diets consist of forbs (particularly species in the Asteraceae family), arthropods, and lesser amounts of sagebrush. The diets transition to sagebrush in fall and winter. Forbs provide cover for Greater Sage-Grouse individuals at their lekking, nesting, and brood-rearing sites, and the species has a positive relationship with arthropod presence. The effect of grazing on native forbs may be compounded by invasion of nonnative species and differs depending on grazing intensity. The effect of fire on forbs varies greatly and may depend on time elapsed since burning. In addition, chemical and mechanical treatments affect annual and perennial forbs differently. Temperature and precipitation influence forb phenology, biomass, and abundance differently among species. Our review identified several uncertainties and research needs about forbs in big sagebrush ecosystems. First, in many cases the literature about forbs is reported only at the genus or functional type level. Second, information about forb composition and abundance near lekking sites is limited, despite the fact that lekking sites are an important center of Greater Sage-Grouse activity. Third, there is little published literature on the relationship between forbs and precipitation and between forbs and temperature, thereby limiting our ability to understand potential responses of forbs to climate change. While there is wide agreement among Greater Sage-Grouse biologists that forbs are an important habitat component, our knowledge about the distribution and environmental responses of forb species in big sagebrush plant communities is limited. Our work for the first time synthesizes the current knowledge regarding forbs in sagebrush ecosystems and their importance for Greater Sage-Grouse and identifies additional research needs for effective conservation and management.
Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.
2014-01-01
Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use (high and low-to-no) and intersected with the HSI categories to create potential management prioritization scenarios based oninformation about sage-grouse occupancy coupled with habitat suitability. This provided an example of a conservation planning application that uses the intersection of the spatially-explicit HSI and empirically-based SUI to identify potential spatially explicit strategies for sage-grouse management. Importantly, the reported categories for the HSI and SUI can be reclassified relatively easily to employ alternative conservation thresholds that may be identified through decision-making processes with stake-holders, managers, and biologists. Moreover, the HSI/SUI interface map can be updated readily as new data become available.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Migratory Game Bird Hunting. We allow hunting of duck, goose, swan, and coot in designated areas of the... game from areas closed to hunting. B. Upland Game Hunting. We allow hunting of pheasant, sharp-tailed... pheasant hunts in accordance with State regulations. C. Big Game Hunting. [Reserved] D. Sport Fishing...
Reducing tick burdens on chicks by treating breeding female grouse with permethrin
USDA-ARS?s Scientific Manuscript database
Ticks are important arthropod vectors of diseases of human, livestock, and wildlife hosts. In the United Kingdom, the sheep tick (Ixodes ricinus) is increasingly recognized as a main limiting factor of red grouse (Lagopus lagopus) populations, a game bird of high economic value. We evaluated the e...
Sherel Goodrich
2005-01-01
This paper deals with diversity, classification, and capabilities of different sagebrush (Artemisia spp.) communities. Capabilities of sagebrush communities in terms of production, plant diversity, potential for ground cover and sage-grouse (Centrocercus urophasianus) habitat are discussed. Reaction to fire and relationships with...
Plant Guide: Tapertip hawksbeard (Crepis acuminata Nutt.)
Derek Tilley; Scott Jensen; Loren St. John
2012-01-01
Tapertip hawksbeard leaves are consumed by pre-laying sage grouse hens and make up a large portion of their diet (Barnett and Crawford, 1994). Sage grouse chicks also feed on tapertip hawksbeard leaves in addition to the insects attracted by the flowers (Drut and others, 1994; Klebenow and Gray, 1968).
The sage-grouse habitat mortgage: effective conifer management in space and time
USDA-ARS?s Scientific Manuscript database
Management of conservation-reliant species can be complicated by the need to manage ecosystem processes that operate at extended temporal horizons. One such process is the role of fire in regulating abundance of expanding conifers that disrupt sage-grouse habitat in the northern Great Basin of the ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... Northern California District manager, (530) 224-2160; or Joseph J. Fontana, BLM public affairs officer... as provided above. Dated: September 10, 2013. Joseph J. Fontana, Public Affairs Officer. [FR Doc... Public Meeting: Northeast California Resource Advisory Council Sage Grouse Conservation Subcommittee and...
Frank R. III Thompson; Daniel R. Dessecker
1997-01-01
Describes the history, ecology, and silviculture of central hardwood forests and the status and ecology of early-successional forest songbirds and ruffed grouse. Concludes with management guidelines for early-successional communities in central hardwood forests.
Ruffed grouse population ecology in the Appalachian Region
Patrick K. Devers; Dean F. Stauffer; Gary W. Norman; Dave E. Steffen; Darroch M. Whitaker; Jeffrey D. Sole; Tom J. Allen; Steve L. Bittner; David A. Buehler; John W. Edwards; Daniel E. Figert; Scott T. Friedhoff; William W. Giulliano; Craig A Harper; William K. Igo; Roy L. Kirkpatrick; Michael H. Seamster; Harry A. Jr. Spiker; Swannson; Brian C. Tefft
2008-01-01
The Appalachian Cooperative Grouse Research Project (ACGRP) was a multistate cooperative effort initiated in 1996 to investigate the apparent decline ofmffed gmuse (Bonnsllllmbellus) and iml)cove management through the central and southern Appalachian region (i.e., parts ()Ohio, Pennsylvania, Rhode Island, Kcnulcky. Vvest Virginia, Virginia, and North Carolina, USA)....
Impacts of fire on sage-grouse habitat and diet resources
USDA-ARS?s Scientific Manuscript database
Small (<40.5-ha) patch fires or mechanical manipulations to reduce big sagebrush (Artemisia tridentata) cover has been suggested as a management option to improve sage-grouse prenesting and brood rearing habitat and provide a diverse habitat mosaic. We evaluated the effects of prescribed fire and wi...
Stewart, R.E.
1944-01-01
The food habits of Blue Grouse vary from a simple winter diet that is made up predominantly of coniferous needles to a complex diet during the summer months, characterized by great variety of foods including green leaves, fruits and seeds, flowers, animal matter and coniferous needles. The spring and fall, which represent the transition periods between these two, are characterized by feeding habits that are generally intermediate. The diets of the two species of Blue Grouse, Dendrugapus obscurus and Dendragapus juliginosus, are quite similar as far as major types of food are concerned, but they differ considerably in the species that are taken. Such differences reflect differences in the vegetation within the ecologic and geographic ranges occupied by the two species.
Male greater sage-grouse movements among leks
Aleshia L. Fremgen; Christopher T. Rota; Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh
2017-01-01
Movements among leks by breeding birds (i.e., interlek movements) could affect the population's genetic flow, complicate use of lek counts as a population index, and indicate a change in breeding behavior following a disturbance. We used a Bayesian multi-state mark-recapture model to assess the daily probability of male greater sage-grouse (Centrocercus...
Kas Dumroese; Tara Luna; Jeremy Pinto; Thomas D. Landis
2016-01-01
Monarch butterflies (Danaus plexippus), other pollinators, and Greater Sage-Grouse (Centrocercus urophasianus) are currently the focus of increased conservation efforts. Federal attention on these fauna is encouraging land managers to develop conservation strategies, often without corresponding financial resources. This could foster a myopic approach when...
Landscape restoration for greater sage-grouse: implications for multiscale planning and monitoring
Michael J. Wisdom; Mary M. Rowland; Miles A. Hemstrom; Barbara C. Wales
2005-01-01
Habitats and populations of greater sage-grouse (Centrocercus urophasianus) have declined throughout western North America in response to a myriad of detrimental land uses. Successful restoration of this species' habitat, therefore, is of keen interest to Federal land agencies who oversee management of most remaining habitat. To illustrate the...
USDA Forest Service Sage-Grouse Conservation Science Strategy
Deborah Finch; Douglas Boyce; Jeanne Chambers; Chris Colt; Clint McCarthy; Stanley Kitchen; Bryce Richardson; Mary Rowland; Mark Rumble; Michael Schwartz; Monica Tomosy; Michael Wisdom
2015-01-01
Numerous federal and state agencies, research institutions and stakeholders have undertaken tremendous conservation and research efforts across 11 States in the western United States to reduce threats to Greater Sage-Grouse (Centrocercus urophasianus) and sagebrush (Artemisia spp) habitats. In 2010, the U.S. Fish and Wildlife Service (USFWS) determined that the Greater...
Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: sage grouse.
Mayo W. Call; Chris Maser
1985-01-01
Decreases in sage grouse followed the decrease in sagebrush. Other factors, such as unfavorable weather conditions at hatching time and increased predation, hunting, and disease have each been important at various times in localized areas but are probably not the most important factors in the overall downward trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozusko, Shana
The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR.more » The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of Engineers and the Washington Department of fish and Wildlife subsequently purchased numerous properties to mitigate for the identified Snake River losses. These projects, however, were not sufficient to mitigate for all the HU's lost. The Northwest Power Planning Council amended the remaining 26,774 HU's into their 1994-1995 Fish and Wildlife Program as being unmitigated (NPPC 2000), which allowed the Nez Perce Tribe to contract with BPA to provide HU's through the Precious Lands Project. The Precious Lands project contains a different composition of cover types than those assessed during the lower Snake loss assessment. For example, no mallard or Canada goose habitat exists on Precious Lands but the area does contain conifer forest, which was not present on the area inundated by dam construction. These cover type differences have resulted in a slightly different suite of species for the current HEP assessment. Target species for Precious Lands are downy woodpecker, yellow warbler, song sparrow, California Quail, mule deer, sharp-tailed grouse (brood rearing), west em meadowlark, beaver, and black-capped chickadee. This list is a reflection of the available cover types and the management objectives of the Nez Perce Tribe. For example, chukar was not used in the present assessment because it is an introduced Eurasian game bird that does not provide an accurate representation of the ecological health of the native grasslands it was supposed to represent. Initial model runs using the chukar confirmed this suspicion so the brood-rearing section of the sharp-tailed grouse model was used instead. Additionally, the beaver model was used in place of the river otter model because the otter model used in the loss assessment was not a published model, was overly simplistic, and did not provide an accurate assessment of riparian condition. The beaver model, however, provides a detailed evaluation of overstory class structure that the NPT felt was a good compliment to the yellow warbler and song sparrow models that evaluated understory shrub layers. Overall, such substitutions should result in a more accurate evaluation of the ecological conditions on Precious Lands, and provide better information for decision making. A baseline HEP analysis was initiated on the Precious Lands in 2000, and data collection continued throughout the 2001 and 2002 field seasons. In the future, HEP analysis will be used to evaluate habitat changes resulting from management activities. Repeat surveys will be useful in assessing long-term trends in plant community health, weed encroachment, wildlife limiting factors, habitat degradation, and establishing desired future condition guidelines for the management program.« less
Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi
1998-01-01
Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.
The historical distribution of Gunnison Sage-Grouse in Colorado
Braun, Clait E.; Oyler-McCance, Sara J.; Nehring, Jennifer A.; Commons, Michelle L.; Young, Jessica R.; Potter, Kim M.
2014-01-01
The historical distribution of Gunnison Sage-Grouse (Centrocercus minimus) in Colorado is described based on published literature, observations, museum specimens, and the known distribution of sagebrush (Artemisia spp.). Historically, Gunnison Sage-Grouse were widely but patchily distributed in up to 22 counties in south-central and southwestern Colorado. The historical distribution of this species was south of the Colorado-Eagle river drainages primarily west of the Continental Divide. Potential contact areas with Greater Sage-Grouse (C. urophasianus) were along the Colorado-Eagle river system in Mesa, Garfield, and Eagle counties, west of the Continental Divide. Gunnison Sage-Grouse historically occupied habitats that were naturally highly fragmented by forested mountains and plateaus/mesas, intermountain basins without robust species of sagebrush, and river systems. This species adapted to use areas with more deciduous shrubs (i.e., Quercus spp., Amelanchier spp., Prunus spp.) in conjunction with sagebrush. Most areas historically occupied were small, linear, and patchily distributed within the overall landscape matrix. The exception was the large intermountain basin in Gunnison, Hinsdale, and Saguache counties. The documented distribution east of the Continental Divide within the large expanse of the San Luis Valley (Alamosa, Conejos, Costilla, and Rio Grande counties) was minimal and mostly on the eastern, northern, and southern fringes. Many formerly occupied habitat patches were vacant by the mid 1940s with extirpations continuing to the late 1990s. Counties from which populations were recently extirpated include Archuleta and Pitkin (1960s), and Eagle, Garfield, Montezuma, and Ouray (1990s).
Rice, Mindy B; Rossi, Liza G; Apa, Anthony D
2016-01-01
Fragmentation of the sagebrush (Artemisia spp.) ecosystem has led to concern about a variety of sagebrush obligates including the greater sage-grouse (Centrocercus urophasianus). Given the increase of energy development within greater sage-grouse habitats, mapping seasonal habitats in pre-development populations is critical. The North Park population in Colorado is one of the largest and most stable in the state and provides a unique case study for investigating resource selection at a relatively low level of energy development compared to other populations both within and outside the state. We used locations from 117 radio-marked female greater sage-grouse in North Park, Colorado to develop seasonal resource selection models. We then added energy development variables to the base models at both a landscape and local scale to determine if energy variables improved the fit of the seasonal models. The base models for breeding and winter resource selection predicted greater use in large expanses of sagebrush whereas the base summer model predicted greater use along the edge of riparian areas. Energy development variables did not improve the winter or the summer models at either scale of analysis, but distance to oil/gas roads slightly improved model fit at both scales in the breeding season, albeit in opposite ways. At the landscape scale, greater sage-grouse were closer to oil/gas roads whereas they were further from oil/gas roads at the local scale during the breeding season. Although we found limited effects from low level energy development in the breeding season, the scale of analysis can influence the interpretation of effects. The lack of strong effects from energy development may be indicative that energy development at current levels are not impacting greater sage-grouse in North Park. Our baseline seasonal resource selection maps can be used for conservation to help identify ways of minimizing the effects of energy development.
Restoring forbs for sage grouse habitat: Fire, microsites, and establishment methods
Wirth, Troy A.; Pyke, David A.
2003-01-01
The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrusha??grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire-by-microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage grouse habitat in south central Oregon.
Blomberg, Erik J.; Gibson, Daniel; Sedinger, James S.; Casazza, Michael L.; Coates, Peter S.
2013-01-01
The mortality process is a key component of avian population dynamics, and understanding factors that affect mortality is central to grouse conservation. Populations of greater sage-grouse Centrocercus urophasianus have declined across their range in western North America. We studied cause-specific mortality of radio-marked sage-grouse in Eureka County, Nevada, USA, during two seasons, nesting (2008-2012) and fall (2008-2010), when survival was known to be lower compared to other times of the year. We used known-fate and cumulative incidence function models to estimate weekly survival rates and cumulative risk of cause-specific mortalities, respectively. These methods allowed us to account for temporal variation in sample size and staggered entry of marked individuals into the sample to obtain robust estimates of survival and cause-specific mortality. We monitored 376 individual sage-grouse during the course of our study, and investigated 87 deaths. Predation was the major source of mortality, and accounted for 90% of all mortalities during our study. During the nesting season (1 April - 31 May), the cumulative risk of predation by raptors (0.10; 95% CI: 0.05-0.16) and mammals (0.08; 95% CI: 0.03-013) was relatively equal. In the fall (15 August - 31 October), the cumulative risk of mammal predation was greater (M(mam) = 0.12; 95% CI: 0.04-0.19) than either predation by raptors (M(rap) = 0.05; 95% CI: 0.00-0.10) or hunting harvest (M(hunt) = 0.02; 95% CI: 0.0-0.06). During both seasons, we observed relatively few additional sources of mortality (e.g. collision) and observed no evidence of disease-related mortality (e.g. West Nile Virus). In general, we found little evidence for intraseasonal temporal variation in survival, suggesting that the nesting and fall seasons represent biologically meaningful time intervals with respect to sage-grouse survival.
Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.
2017-01-01
The delineation of priority areas in western North America for managing Greater Sage-Grouse (Centrocercus urophasianus) represents a broad-scale experiment in conservation biology. The strategy of limiting spatial disturbance and focusing conservation actions within delineated areas may benefit the greatest proportion of Greater Sage-Grouse. However, land use under normal restrictions outside priority areas potentially limits dispersal and gene flow, which can isolate priority areas and lead to spatially disjunct populations. We used graph theory, representing priority areas as spatially distributed nodes interconnected by movement corridors, to understand the capacity of priority areas to function as connected networks in the Bi-State, Central, and Washington regions of the Greater Sage-Grouse range. The Bi-State and Central networks were highly centralized; the dominant pathways and shortest linkages primarily connected a small number of large and centrally located priority areas. These priority areas are likely strongholds for Greater Sage-Grouse populations and might also function as refugia and sources. Priority areas in the Central network were more connected than those in the Bi-State and Washington networks. Almost 90% of the priority areas in the Central network had ≥2 pathways to other priority areas when movement through the landscape was set at an upper threshold (effective resistance, ER12). At a lower threshold (ER4), 83 of 123 priority areas in the Central network were clustered in 9 interconnected subgroups. The current conservation strategy has risks; 45 of 61 priority areas in the Bi-State network, 68 of 123 in the Central network, and all 4 priority areas in the Washington network had ≤1 connection to another priority area at the lower ER4threshold. Priority areas with few linkages also averaged greater environmental resistance to movement along connecting pathways. Without maintaining corridors to larger priority areas or a clustered group, isolation of small priority areas could lead to regional loss of Greater Sage-Grouse
Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.
2015-10-26
Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of restoration techniques for sage-grouse habitat restoration. We conclude with a description of the critical nature of monitoring for adaptive management of sagebrush steppe restoration at landscape- and project-specific levels.
Coates, Peter S.; Prochazka, Brian; Ricca, Mark; Gustafson, K. Ben; Ziegler, Pilar T.; Casazza, Michael L.
2017-01-01
In sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State DPS, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread.
Titan's ion exosphere observed from Voyager 1
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Sittler, E. C., Jr.; Ogilvie, K. W.; Scudder, J. D.; Lazarus, A. J.; Atreya, S. K.
1982-01-01
The plasma wake surrounding Titan in Saturn's rotating magnetosphere is characterized by a plasma which is denser and cooler than the surrounding subsonic magnetospheric plasma, and which is produced by the deflection of magnetospheric plasma around Titan and the addition of exospheric ions picked up by the rotating magnetosphere. A resemblance to the interaction between the solar wind and Venus is shown for the case of ion pickup in the ion exosphere outside Titan's magnetic tail and ion flow within the boundaries of the tail as Saturn's rotating magnetosphere interacts with Titan. The boundary of the tail is indicated by a sharp reduction in the flux of high-energy electrons, which are removed by inelastic scattering with the atmosphere and centrifugal drift produced when the electrons traverse the magnetic field draped around Saturn.
Range-wide patterns of greater sage-grouse persistence
Aldridge, Cameron L.; Nielsen, Scott E.; Beyer, Hawthorne L.; Boyce, Mark S.; Connelly, John W.; Knick, Steven T.; Schroeder, Michael A.
2008-01-01
Aim: Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location: Sagebrush biome of the western USA. Methods: Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results: Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions: Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human population growth and peripherality of populations. However, future range loss may relate less to historical mechanisms and more to recent changes in land use and habitat condition, including energy developments and invasions by non-native species such as cheatgrass (Bromus tectorum) and West Nile virus. In conjunction with local measures of population performance, landscape-scale predictions of future range loss may be useful for prioritizing management and protection. Our results suggest that initial conservation efforts should focus on maintaining large expanses of sagebrush habitat, enhancing quality of existing habitats, and increasing habitat connectivity.
Ruffed grouse selection of drumming sites in the Black Hills National Forest
Christopher P. Hansen; Mark A. Rumble; Joshua J. Millspaugh
2011-01-01
Ruffed grouse (Bonasa umbellus) are important game birds that depend on multiple forest age-classes of aspen (Populus spp.) for food and cover, which makes them an appropriate management indicator species for the condition of quaking aspen (Populus tremuloides) communities in the Black Hills National Forest of western South Dakota and northeastern Wyoming (BHNF)....
Male greater sage-grouse detectability on leks
Aleshia L. Fremgen; Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh
2016-01-01
It is unlikely all male sage-grouse are detected during lek counts, which could complicate the use of lek counts as an index to population abundance. Understanding factors that influence detection probabilities will allow managers to more accurately estimate the number of males present on leks. We fitted 410 males with global positioning system and very high...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... decision makers as to render them inadequate to ameliorate the threats to the Bi-State DPS''. The major... three records of decision. The development of this EIS will be coordinated across management units of..., but precluded'' Endangered Species Act (ESA) listing petition decision for the Greater Sage grouse Bi...
Todd B. Cross; David E. Naugle; John C. Carlson; Michael K. Schwartz
2017-01-01
Dispersal can strongly influence the demographic and evolutionary trajectory of populations. For many species, little is known about dispersal, despite its importance to conservation. The Greater Sage-Grouse (Centrocercus urophasianus) is a species of conservation concern that ranges across 11 western U.S. states and 2 Canadian provinces. To investigate dispersal...
USDA-ARS?s Scientific Manuscript database
Reoccurring infection of reticuloendotheliosis virus (REV), an avian oncogenic retrovirus, has been a major obstacle in attempts to breed and release an endangered grouse, the Attwater's prairie chicken (Tympanicus cupido attwateri). REV infection of these birds in breeding facilities was found to r...
Todd B. Cross; David E. Naugle; John C. Carlson; Michael K. Schwartz
2016-01-01
Understanding population structure is important for guiding ongoing conservation and restoration efforts. The greater sage-grouse (Centrocercus urophasianus) is a species of concern distributed across 1.2 million km2 of western North America. We genotyped 1499 greater sagegrouse from 297 leks across Montana, North Dakota and South Dakota using a 15 locus...
Habitat usage by prairie grouse on the Sheyenne National Grasslands
Llewellyn L. Manske; William T. Barker
1988-01-01
Prairie grouse habitat usage was observed for six years. Spring and summer habitat usage was primarily in the upland and midland grassland habitat types. Habitat usage shifted during the fall and winter to cropland and associated tree shelterbelts. The switchgrass plant community was the primary concealment cover for nesting and roosting. Cropland and associated tree...
Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates.
Mary M. Rowland; Michael J. Wisdom; Lowell Suring; Cara W. Meinke
2006-01-01
Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella...
Ionic Liquids with Symmetric Diether Tails: Bulk and Vacuum-Liquid Interfacial Structures.
Hettige, Jeevapani J; Amith, Weththasinghage D; Castner, Edward W; Margulis, Claudio J
2017-01-12
The behavior in the bulk and at interfaces of biphilic ionic liquids in which either the cation or anion possesses moderately long alkyl tails is to a significant degree well understood. Less clear is what happens when both the cation and anion possess tails that are not apolar, such as in the case of ether functionalities. The current article discusses the structural characteristics of C2OC2OC2-mim + /C2OC2OC2-OSO 3 - in the bulk and at the vacuum interface. We find that the vacuum interface affects only the nanometer length scale. This is in contrast to what we have recently found in ( J. Phys. Chem. Lett. , 2016 , 7 ( 19 ), 3785 - -3790 ) for isoelectronic C[8]-mim + /C[8]-OSO 3 - , where the interface effect is long ranged. Interestingly, ions with the diether tail functionality still favor the tail-outward orientation at the vacuum interface and the bulk phase preserves the alternation between charged networks and tails that is commonly observed for biphilic ionic liquids. However, such alternation is less well-defined and results in a significantly diminished first sharp diffraction peak in the bulk liquid structure function.
O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.
2015-01-01
We deliver all products described herein as online geographic information system data for visualization and downloading. We outline the data properties for each model and their data inputs, describe the process of selecting appropriate data products for multifarious applications, describe all data products and software, provide newly derived model composites, and discuss how land managers may use the models to inform future sage-grouse studies and potentially refine conservation efforts. The models, software tools, and associated opportunities for novel applications of these products should provide a suite of additional, but not exclusive, tools for assessing Wyoming Greater Sage-grouse habitats, which land managers, conservationists, and scientists can apply to myriad applications.
Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus
NASA Astrophysics Data System (ADS)
Mougeot, Francois
2008-02-01
Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.
Coates, Peter S; Ricca, Mark A; Prochazka, Brian G; Brooks, Matthew L; Doherty, Kevin E; Kroger, Travis; Blomberg, Erik J; Hagen, Christian A; Casazza, Michael L
2016-10-25
Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass-fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.
Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy
2016-01-01
Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.
Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.
2016-01-01
Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.
Impact of transient climate change upon Grouse population dynamics in the Italian Alps
NASA Astrophysics Data System (ADS)
Pirovano, Andrea; Bocchiola, Daniele
2010-05-01
Understanding the effect of short to medium term weather condition, and of transient global warming upon wildlife species life history is essential to predict the demographic consequences therein, and possibly develop adaptation strategies, especially in game species, where hunting mortality may play an important role in population dynamics. We carried out a preliminary investigation of observed impact of weather variables upon population dynamics indexes of three alpine Grouse species (i.e. Rock Ptarmigan, Lagopus Mutus, Black Grouse, Tetrao Tetrix, Rock Partridge, Alectoris Graeca), nested within central Italian Alps, based upon 15 years (1995-2009) of available censuses data, provided by the Sondrio Province authority. We used a set of climate variables already highlighted within recent literature for carrying considerable bearing on Grouse population dynamics, including e.g. temperature at hatching time and during winter, snow cover at nesting, and precipitation during nursing period. We then developed models of Grouses' population dynamics by explicitly driving population change according to their dependence upon the significant weather variables and population density and we evaluated objective indexes to assess the so obtained predictive power. Eventually, we develop projection of future local climate, based upon locally derived trends, and upon projections from GCMs (A2 IPCC storyline) already validated for the area, to project forward in time (until 2100 or so) the significant climatic variables, which we then use to force population dynamics models of the target species. The projected patterns obtained through this exercise are discussed and compared against those expected under stationary climate conditions at present, and preliminary conclusions are drawn.
Todd B. Cross; Michael K. Schwartz; David E. Naugle; Brad C. Fedy; Jeffrey R. Row; Sara J. Oyler-McCance
2018-01-01
Genetic networks can characterize complex genetic relationships among groups of individuals, which can be used to rank nodes most important to the overall connectivity of the system. Ranking allows scarce resources to be guided toward nodes integral to connectivity. The greater sage-grouse (Centrocercus urophasianus) is a species of conservation concern that breeds on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... higher priority listing activities. A listing priority of 5 is assigned to species with high magnitude... number for Gunnison sage-grouse as a 2. A listing priority number of 2 is assigned to species with high... that are rich in calcium, phosphorous, and protein to meet the nutritional needs of females during the...
Christopher P. Hansen; Mark A. Rumble; Joshua J. Millspaugh
2010-01-01
Monitoring ruffed grouse (Bonasa umbellus) in the Black Hills National Forest is a priority for forest managers due to the bird's status as the management indicator species for quaking aspen (Populus tremuloides) and its value to hunters and other recreational groups. We conducted drumming surveys, estimated occupancy, and assessed the influence of sampling and...
Jeffrey R. Row; Kevin E. Doherty; Todd B. Cross; Michael K. Schwartz; Sara Oyler-McCance; Dave E. Naugle; Steven T. Knick; Bradley C. Fedy
2018-01-01
Functional connectivity, quantified using landscape genetics, can inform conservation through the identification of factors linking genetic structure to landscape mechanisms. We used breeding habitat metrics, landscape attributes and indices of grouse abundance, to compare fit between structural connectivity and genetic differentiation within five longâestablished Sage...
David A. Pyke; Jeanne C. Chambers; Mike Pellant; Steven T. Knick; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver
2015-01-01
Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...
Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth
2014-01-01
A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...
Captive-breeding of captive and wild-reared Gunnison sage-grouse.
Apa, Anthony D; Wiechman, Lief A
2016-01-01
Gunnison sage-grouse (Centrocercus minimus) distribution in North America has decreased over historical accounts and has received federal protection under the Endangered Species Act. We investigated captive-breeding of a captive-flock of Gunnison sage-grouse created from individuals reared in captivity from wild-collected eggs we artificially incubated. We also introduced wild-reared individuals into captivity. Our captive-flock successfully bred and produced fertile eggs. We controlled the timing and duration of male-female breeding interactions and facilitated a semi-natural mating regime. Males established a strutting ground in captivity that females attended for mate selection. In 2010, we allowed females to establish eight nests, incubate, and hatch eggs. Females in captivity were more successful incubating nests than raising broods. Although there are many technical, financial, and logistic issues associated with captive-breeding, we recommend that federal biologists and managers work collaboratively with state wildlife agencies and consider developing a captive-flock as part of a comprehensive conservation strategy for a conservation-reliant species like the Gunnison sage-grouse. The progeny produced from a captive-rearing program could assist in the recovery if innovative approaches to translocation are part of a comprehensive proactive conservation program. © 2015 Wiley Periodicals, Inc.
Skoglund, Pontus; Höglund, Jacob
2010-04-23
Population variation in the degree of seasonal polymorphism is rare in birds, and the genetic basis of this phenomenon remains largely undescribed. Both sexes of Scandinavian and Scottish Willow grouse (Lagopus lagopus) display marked differences in their winter phenotypes, with Scottish grouse retaining a pigmented plumage year-round and Scandinavian Willow grouse molting to a white morph during winter. A widely studied pathway implicated in vertebrate pigmentation is the melanin system, for which functional variation has been characterised in many taxa. We sequenced coding regions from four genes involved in melanin pigmentation (DCT, MC1R, TYR and TYRP1), and an additional control involved in the melanocortin pathway (AGRP), to investigate the genetic basis of winter plumage in Lagopus. Despite the well documented role of the melanin system in animal coloration, we found no plumage-associated polymorphism or evidence for selection in a total of approximately 2.6 kb analysed sequence. Our results indicate that the genetic basis of alternating between pigmented and unpigmented seasonal phenotypes is more likely explained by regulatory changes controlling the expression of these or other loci in the physiological pathway leading to pigmentation.
Statistical properties of derivatives: A journey in term structures
NASA Astrophysics Data System (ADS)
Lautier, Delphine; Raynaud, Franck
2011-06-01
This article presents an empirical study of 13 derivative markets for commodities and financial assets. The study goes beyond statistical analysis by including the maturity as a variable for the daily returns of futures contracts from 1998 to 2010, and for delivery dates up to 120 months. We observe that the mean and variance of the commodities follow a scaling behavior in the maturity dimension with an exponent characteristic of the Samuelson effect. The comparison between the tails of the probability distribution according to the expiration dates shows that there is a segmentation in the fat tails exponent term structure above the Lévy stable region. Finally, we compute the average tail exponent for each maturity, and we observe two regimes of extreme events for derivative markets, reminiscent of a phase diagram with a sharp transition at the 18th delivery month.
Department of Energy PEIS scoping session
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badar, L
1992-12-10
This is the second programmatic environmental impact statement scoping session held in Durango, Colorado. The purpose was: to present the ground water program so as to build some familiarity and understanding about the issue involved; and to get Durango community's input. Scoping is the collection of information and getting everyone involved and really making a team out of coming up with a proposed action. This report contains the presentations made by the project manager for the Uranium Mill Tailings (UMTRA) program, site manager for the Durango UMTRA site, manager of ground water hydrology, and include comments made by local residents.
Disintegration of comet nuclei
NASA Astrophysics Data System (ADS)
Ksanfomality, Leonid V.
2012-02-01
The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.
Johnson, Jeffrey R.; Bell, James F.; Bender, Steve; ...
2016-07-01
Relative reflectace point spectra (400–840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2–8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. Here, we present the first detection on Mars of a ~433 nm absorption band consistent with small abundancesmore » of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. The disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the “Hematite Ridge” feature (3–5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400–840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey R.; Bell, James F.; Bender, Steve
Relative reflectace point spectra (400–840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2–8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. Here, we present the first detection on Mars of a ~433 nm absorption band consistent with small abundancesmore » of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. The disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the “Hematite Ridge” feature (3–5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400–840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex.« less
Katie M. Herman-Brunson; Kent C. Jensen; Nicholas W. Kaczor; Christopher C. Swanson; Mark A. Rumble; Robert W. Klaver
2009-01-01
Greater sage-grouse Centrocercus urophasianus populations in North Dakota declined approximately 67% between 1965 and 2003, and the species is listed as a Priority Level 1 Species of Special Concern by the North Dakota Game and Fish Department. The habitat and ecology of the species at the eastern edge of its historical range is largely unknown. We...
Kas Dumroese; Tara Luna; Bryce A. Richardson; Francis F. Kilkenny; Justin B. Runyon
2015-01-01
In the western US, Greater Sage-Grouse (Centrocercus urophasianus Bonaparte [Phasianidae]) have become an indicator species of the overall health of the sagebrush (Artemisia L. [Asteraceae]) dominated communities that support a rich diversity of flora and fauna. This species has an integral association with sagebrush, its understory forbs and grasses, and the...
David A. Pyke; Steven T. Knick; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver
2015-01-01
Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (...
Taylor, S.E.; Oyler-McCance, S.J.; Quinn, T.W.
2003-01-01
Primers for five polymorphic microsatellite loci were developed for Greater Sage-Grouse (Centrocercus urophasianus) using an enrichment/detection protocol. The high level of polymorphism (nine to 33 alleles) suggests that these loci will be applicable for investigating mating systems and paternity analysis as well as population genetics. Cross-species amplification was successful for each locus in at least two other galliform species.
Factors affecting unintentional harvesting selectivity in a monomorphic species.
Bunnefeld, Nils; Baines, David; Newborn, David; Milner-Gulland, E J
2009-03-01
1. Changes in the abundance of populations have always perplexed ecologists but long-term studies are revealing new insights into population dynamic processes. Long-term data are often derived from harvest records although many wild populations face high harvesting pressures leading to overharvesting and extinction. Additionally, harvest records used to describe population processes such as fluctuations in abundance and reproductive success often assume a random off-take. 2. Selective harvesting based on phenotypic characteristics occurs in many species (e.g. trophy hunting, fisheries) and has important implications for population dynamics, conservation and management. 3. In species with no marked morphological differences between the age and sex classes, such as the red grouse Lagopus lagopus scoticus during the shooting season, hunters cannot consciously select for a specific sex or age class during the shooting process but harvest records could still give a biased reflection of the population structure because of differences in behaviour between age and sex classes. 4. This study compared age and sex ratios in the bag with those in the population before shooting for red grouse at different points in the shooting season and different densities, which has rarely been tested before. 5. More young than old grouse were shot at large bag sizes and vice versa for small bag sizes than would be expected from the population composition before shooting. The susceptibility of old males to shooting compared to females increased with bag size and was high at the first time the area was shot but decreased with the number of times an area was harvested. 6. These findings stress that the assumption made in many studies that harvest records reflect the age and sex ratio of the population and therefore reflect productivity can be misleading. 7. In this paper, as in the literature, it is also shown that number of grouse shot reflects grouse density and therefore that hunting selectivity might influence population dynamics in a cyclic species. 8. The study is not only relevant for red grouse but applies to systems showing interactions between selective harvesting and wider ecological processes, such as age- and sex-related parasitism and territoriality, which may drive population fluctuations.
Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël
2011-04-01
Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a > 10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented.
Population genetics of Gunnison sage-grouse: Implications for management
Oyler-McCance, S.J.; St. John, J.; Taylor, S.E.; Apa, A.D.; Quinn, T.W.
2005-01-01
The newly described Gunnison sage-grouse (Centrocercus minimus) is a species of concern for management because of marked declines in distribution and abundance due to the loss and fragmentation of sagebrush habitat. This has caused remaining populations to be unusually small and isolated. We utilized mitochondrial DNA sequence data and data from 8 nuclear microsatellites to assess the extent of population subdivision among Gunnison sage-grouse populations in southwestern Colorado and southeastern Utah, USA. We found a high degree of population structure and low amounts of gene flow among all pairs of populations except the geographically adjacent Gunnison and Curecanti populations. Population structure for Gunnison sage-grouse was significantly higher than has been reported for greater sage-grouse (C. urophasianus). Further, we documented low levels of genetic diversity in some populations (particularly Dove Creek/Monticello and Piñon Mesa with an average of only 3.00 and 2.13 alleles per locus respectively) indicating that translocations from larger, more genetically diverse populations may be warranted. Bayesian analysis identified 3 potential migrants (involving San Miguel, Dove Creek/Monticello, Crawford, and Curecanti). Further, this analysis showed that 4 individuals from Cerro/Cimarron were more closely related to birds from San Miguel than to its geographically closer neighbors Gunnison and Curecanti. This suggests the Cerro/Cimarron area may act as a stepping stone for gene flow between San Miguel and Gunnison and that habitat restoration and protection in areas between these 2 basins should be a priority in an attempt to facilitate natural movement among these populations. Conservation plans should include monitoring and maintaining genetic diversity, preventing future habitat loss and fragmentation, enhancing existing habitat, and restoring converted sagebrush communities.
Interspecific nest parasitism by chukar on greater sage-grouse
Fearon, Michelle L.; Coates, Peter S.
2014-01-01
Nest parasitism occurs when a female bird lays eggs in the nest of another and the host incubates the eggs and may provide some form of parental care for the offspring (Lyon and Eadie 1991). Precocial birds (e.g., Galliformes and Anseriformes) are typically facultative nest parasites of both their own and other species (Lyon and Eadie 1991). This behavior increases a female’s reproductive success when she parasitizes other nests while simultaneously raising her own offspring. Both interspecific and conspecific nest parasitism have been well documented in several families of the order Galliformes, particularly the Phasianidae (Lyon and Eadie 1991, Geffen and Yom-Tov 2001, Krakauer and Kimball 2009). The Chukar (Alectoris chukar) has been widely introduced as a game bird to western North America from Eurasia and is now well established within the Great Basin from northeastern California east to Utah and north to Idaho and Oregon (Christensen 1996). Over much of this range the Chukar occurs with other phasianids, including the native Greater Sage-Grouse (Centrocercus urophasianus), within sagebrush (Artemisia spp.) steppe (Christensen 1996, Schroeder et al. 1999, Connelly et al. 2000). Chukar typically exploit a broader range of habitats than do sage-grouse, but both species use the same species of sagebrush and other shrubs for nesting cover (Christensen 1996, Schroeder et al. 1999). Chukar are known to parasitize nests of other individuals of their own species (Geffen and Yom-Tov 2001), but we are unaware of reported evidence that Chukar may parasitize nests of sage-grouse. Here we describe a case of a Chukar parasitizing a sage-grouse nest in the sagebrush steppe of western Nevada.
Gibson, Daniel; Blomberg, Erik J; Atamian, Michael T; Sedinger, James S
2017-01-01
Weather is a source of environmental variation that can affect population vital rates. However, the influence of weather on individual fitness is spatially heterogeneous and can be driven by other environmental factors, such as habitat composition. Therefore, individuals can experience reduced fitness (e.g., decreased reproductive success) during poor environmental conditions through poor decisions regarding habitat selection. This requires, however, that habitat selection is adaptive and that the organism can correctly interpret the environmental cues to modify habitat use. Greater Sage-Grouse (Centrocercus urophasianus) are an obligate of the sagebrush ecosystems of western North America, relying on sagebrush for food and cover. Greater Sage-Grouse chicks, however, require foods with high nutrient content (i.e., forbs and insects), the abundance of which is both temporally and spatially dynamic and related primarily to water availability. Our goal was to assess whether nest site selection and movements of broods by females reduced the negative effect of drought on offspring survival. As predicted, chick survival was negatively influenced by drought severity. We found that sage-grouse females generally preferred to nest and raise their young in locations where their chicks would experience higher survival. We also found that use of habitats positively associated with chick survival were also positively associated with drought severity, which suggests that females reduced drought impacts on their dependent young by selecting more favorable environments during drought years. Although our findings suggest that female nest site selection and brood movement rates can reduce the negative effects of drought on early offspring survival, the influence of severe drought conditions was not completely mitigated by female behavior, and that drought conditions should be considered a threat to Greater Sage-Grouse population persistence. © 2016 by the Ecological Society of America.
David A. Pyke; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Bruce A. Roundy; Eugene W. Schupp; Steven T. Knick; Mark Brunson; James D. McIver
2017-01-01
Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...
Davis, Amy J.; Hooten, Mevin B.; Phillips, Michael L.; Doherty, Paul F.
2014-01-01
Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large-scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short-term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage-grouse (Centrocercus minimus). The long-term population index data available for Gunnison sage-grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage-grouse to be variable and slightly declining over the past 16 years.
Fedy, B.C.; Doherty, K.E.
2011-01-01
Animal species across multiple taxa demonstrate multi-annual population cycles, which have long been of interest to ecologists. Correlated population cycles between species that do not share a predator-prey relationship are particularly intriguing and challenging to explain. We investigated annual population trends of greater sage-grouse (Centrocercus urophasianus) and cottontail rabbits (Sylvilagus sp.) across Wyoming to explore the possibility of correlations between unrelated species, over multiple cycles, very large spatial areas, and relatively southern latitudes in terms of cycling species. We analyzed sage-grouse lek counts and annual hunter harvest indices from 1982 to 2007. We show that greater sage-grouse, currently listed as warranted but precluded under the US Endangered Species Act, and cottontails have highly correlated cycles (r = 0. 77). We explore possible mechanistic hypotheses to explain the synchronous population cycles. Our research highlights the importance of control populations in both adaptive management and impact studies. Furthermore, we demonstrate the functional value of these indices (lek counts and hunter harvest) for tracking broad-scale fluctuations in the species. This level of highly correlated long-term cycling has not previously been documented between two non-related species, over a long time-series, very large spatial scale, and within more southern latitudes. ?? 2010 US Government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.; Mansker, W.L.; Hicks, R.
1983-04-01
G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site.more » This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain.« less
GrouseFlocks: steerable exploration of graph hierarchy space.
Archambault, Daniel; Munzner, Tamara; Auber, David
2008-01-01
Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.
Strand, Tanja; Westerdahl, Helena; Höglund, Jacob; V Alatalo, Rauno; Siitari, Heli
2007-09-01
We found that the Black grouse (Tetrao tetrix) possess low numbers of Mhc class II B (BLB) and Y (YLB) genes with variable diversity and expression. We have therefore shown, for the first time, that another bird species (in this case, a wild lek-breeding galliform) shares several features of the simple Mhc of the domestic chicken (Gallus gallus). The Black grouse BLB genes showed the same level of polymorphism that has been reported in chicken, and we also found indications of balancing selection in the peptide-binding regions. The YLB genes were less variable than the BLB genes, also in accordance with earlier studies in chicken, although their functional significance still remains obscure. We hypothesize that the YLB genes could have been under purifying selection, just as the mammal Mhc-E gene cluster.
A Serosurvey of Greater Sage-Grouse ( Centrocercus urophasianus ) in Nevada, USA.
Sinai, Nancy L; Coates, Peter S; Andrle, Katelyn M; Jefferis, Chad; Sentíes-Cué, C Gabriel; Pitesky, Maurice E
2017-01-01
To better understand the potential avian diseases in Greater Sage-grouse ( Centrocercus urophasianus ) in the Great Basin in Nevada, US, we collected 31 blood samples March-April 2014 and tested for antibodies to eight viruses and two bacteria. Specifically, sera were tested for antibodies to avian leukosis virus type A, B, and J (ALV-A, ALV-B, and ALV-J, respectively), infectious bursal disease virus, infectious bronchitis virus, reticuloendothelial virus, avian influenza virus (AIV), West Nile virus, Pasteurella multocida (PM), and Salmonella enterica serovar Pullorum. Serum antibodies against ALV-A and -B (1/31, 3%), ALV-J (5/31, 16%), PM (1/31, 3%), and AIV (2/31, 6%) were detected by enzyme-linked immunosorbent assay (ELISA). While ELISA tests used have only been validated in domestic poultry, the serologic data should be used as a potential indicator of the range of bacterial and viral infectious agents that can infect the Greater Sage-grouse.
A serosurvey of Greater Sage-grouse (Centrocercus urophasianus) in Nevada, USA
Sinai, Nancy L; Coates, Peter S.; Andrle, Katelyn M.; Jefferis, Chad; Sentíes–Cué, C. Gabriel; Pitesky, Maurice E.
2017-01-01
To better understand the potential avian diseases in Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin in Nevada, we collected 31 blood samples March–April 2014 and tested for antibodies to eight viruses and two bacteria. Specifically, sera were tested for antibodies to avian leukosis virus type A, B, and J (ALV-A, ALV-B, and ALV-J, respectively), infectious bursal disease virus, infectious bronchitis virus, reticuloendothelial virus, avian influenza virus (AIV), West Nile virus, Pasteurella multocida (PM), and Salmonella enterica serovar Pullorum. Serum antibodies against ALV-A and -B (1/31, 3%), ALV-J (5/31, 16%), PM (1/31, 3%), and AIV (2/31, 6%) were detected by enzyme-linked immunosorbent assay (ELISA). While ELISA tests used have only been validated in domestic poultry, the serologic data should be used as a potential indicator of the range of bacterial and viral infectious agents that can infect the Greater Sage-grouse.
Adam, Aileen; Webster, Lucy M I; Mullen, William; Keller, Lukas F; Johnson, Paul C D
2011-05-11
On red grouse estates in the UK the nematode parasite Trichostrongylus tenuis is often controlled by application of grit medicated with the anthelmintic fenbendazole (FBZ). To date, assessment of the efficacy has been inhibited by the inability to quantify uptake of FBZ by the birds. We have developed a simple and sensitive HPLC-MS-MS method for detecting and quantifying FBZ and its metabolites from a 300 mg sample of red grouse liver. This method could be used to improve the efficacy of medicated grit treatment by allowing the identification of conditions and application methods that optimize the uptake of FBZ. With the necessary modifications, our method will also be applicable to other wildlife species where self-medication is used for parasite control. Copyright © 2011 Elsevier B.V. All rights reserved.
Influence of changes in sagebrush on Gunnison sage grouse in Southwestern Colorado
Oyler-McCance, S.J.; Burnham, K.P.; Braun, C.E.
2001-01-01
The decline in abundance of the newly recognized Gunnison sage grouse (Centrocercus minimus) in southwestern Colorado is thought to be linked to loss and fragmentation of its habitat, sagebrush (Artemisia) vegetation. We documented changes in sagebrush-dominated areas between the 1950s and 1990s by comparing low level aerial photographs taken in these time periods. We documented a loss of 20% or 155,673 ha of sagebrush-dominated areas in southwestern Colorado between 1958 and 1993. The amount of sagebrush-dominated area was much higher and loss rates were much lower in the Gunnison Basin. We also found that 37% of plots sampled underwent substantial fragmentation of sagebrush vegetation. If current trends of habitat loss and fragmentation continue, Gunnison sage grouse (and perhaps other sagebrush-steppe obligates) may become extinct. Protecting the remaining habitat from further loss and fragmentation is paramount to the survival of this species.
Greater sage-grouse winter habitat use on the eastern edge of their range
Swanson, Christopher C.; Rumble, Mark A.; Grovenburg, Troy W.; Kaczor, Nicholas W.; Klaver, Robert W.; Herman-Brunson, Katie M.; Jenks, Jonathan A.; Jensen, Kent C.
2013-01-01
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P 2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height (wi = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The interaction between percent sagebrush canopy cover and sagebrush height (β = −0.01, SE ≤ 0.01; odds ratio = 0.987 [95% CI = 0.983–0.992]) also was significant. Management could focus on avoiding additional loss of sagebrush habitat, identifying areas of critical winter habitat, and implementing management actions based on causal mechanisms (e.g., soil moisture, precipitation) that affect sagebrush community structure in this region.
Coates, Peter S.; Andrle, Katie M.; Ziegler, Pilar T.; Casazza, Michael L.
2016-09-29
The Bi-State distinct population segment (DPS) of greater sage-grouse (Centrocercus urophasianus) that occurs along the Nevada–California border was proposed for listing as threatened under the Endangered Species Act (ESA) by the U.S. Fish and Wildlife Service (FWS) in October 2013. However, in April 2015, the FWS determined that the Bi-State DPS no longer required protection under the ESA and withdrew the proposed rule to list the Bi-State DPS (U.S. Fish and Wildlife Service, 2015). The Bi-State DPS occupies portions of Alpine, Mono, and Inyo Counties in California, and Douglas, Esmeralda, Lyon, Carson City, and Mineral Counties in Nevada. Unique threats facing this population include geographic isolation, expansion of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma), anthropogenic activities, and recent changes in predator communities. Estimating population vital rates, identifying seasonal habitat, quantifying threats, and identifying movement patterns are important first steps in developing effective sage-grouse management and conservation plans. During 2011–15, we radio- and Global Positioning System (GPS)-marked (2012–14 only) 44, 47, 17, 9, and 3 sage-grouse, respectively, for a total of 120, in the Pine Nut Mountains Population Management Unit (PMU). No change in lek attendance was detected at Mill Canyon (maximum=18 males) between 2011 and 2012; however, 1 male was observed in 2014 and no males were observed in 2013 and 2015. Males were observed near Bald Mountain in 2013, making it the first year this lek was observed to be active during the study period. Males were observed at a new site in the Buckskin Range in 2014 during trapping efforts and again observed during surveys in 2015. Findings indicate that pinyon-juniper is avoided by sage-grouse during every life stage. Nesting females selected increased sagebrush cover, sagebrush height, and understory horizontal cover, and brood-rearing females selected similar areas, but also preferred increased perennial forb abundance. Using maximum likelihood estimation, nest survival for the Pine Nut Mountains PMU during 2011–14 was 23.8 percent (95-percent confidence interval [CI]=0.3–40.6 percent) and appeared lower in comparison to the average 42 percent nest success for sage-grouse range-wide. Brood survival for 50-day brood-rearing phase in the Pine Nut Mountains PMU during 2011–14 was 53.8 percent (95-percent CI=30.0–73.4 percent). Adult survival during 2011–15 was 67.4 percent (95-percent CI=56.1–76.5 percent). During 2011–14, 696 raptor/raven surveys were completed and results indicate a greater number of raven detections (n=464) in the Pine Nut Mountains PMU than at other study areas in Nevada. These data will be used to develop a predator index. We conducted a more minimal monitoring effort of sage-grouse populations during the 2015 field season, which included trapping efforts, general telemetry, brood monitoring, and GPS monitoring. Nest monitoring, microhabitat sampling, and raptor/raven surveys were not conducted in the 2015 season. Deployment of GPS transmitters has expanded our knowledge of movement corridors and fine-scale movement patterns by sage-grouse in the Pine Nut Mountains PMU. Movement corridors between seasonal habitats were identified with one sage-grouse traveling greater than 100 kilometers south to the Bodie Mountains in California for the winter season. The use of GPS technology to monitor movements in conjunction with intensive field efforts will be important in developing habitat models and maps for the Pine Nut Mountains PMU.
Effect of Dynamic Rolling Oscillations on Twin Tail Buffet Response
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.
1999-01-01
The effect of dynamic rolling oscillations of delta-wing/twin-tail configuration on twin-tail buffet response is investigated. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. The configuration model is statically pitched at 30 deg. angle of attack and then forced to oscillate in roll around the symmetry axis at a constant amplitude of 4 deg. and reduced frequency of pi and 2(pi). The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. This multidisciplinary problem is solved using three sets of equations on a dynamic multi-block grid structure. The first set is the unsteady, full Navier-Stokes equations, the second set is the aeroelastic equations for coupled bending and torsion vibrations of the tails, and the third set is the grid-displacement equations. The configuration is investigated for inboard position of the twin tails which corresponds to a separation distance between the twin tails of 33% wing span. The computed results are compared with the results of stationary configuration, which previously have been validated using experimental data. The results conclusively showed that the rolling oscillations of the configuration have led to higher loads, higher deflections, and higher excitation peaks than those of the stationary configuration. Moreover, increasing the reduced frequency has led to higher loads and excitation peaks and lower bending and torsion deflections and acceleration.
Harju, Seth M.; Olson, Chad V.; Dzialak, Matthew R.; Mudd, James P.; Winstead, Jeff B.
2013-01-01
Connectivity of animal populations is an increasingly prominent concern in fragmented landscapes, yet existing methodological and conceptual approaches implicitly assume the presence of, or need for, discrete corridors. We tested this assumption by developing a flexible conceptual approach that does not assume, but allows for, the presence of discrete movement corridors. We quantified functional connectivity habitat for greater sage-grouse (Centrocercus urophasianus) across a large landscape in central western North America. We assigned sample locations to a movement state (encamped, traveling and relocating), and used Global Positioning System (GPS) location data and conditional logistic regression to estimate state-specific resource selection functions. Patterns of resource selection during different movement states reflected selection for sagebrush and general avoidance of rough topography and anthropogenic features. Distinct connectivity corridors were not common in the 5,625 km2 study area. Rather, broad areas functioned as generally high or low quality connectivity habitat. A comprehensive map predicting the quality of connectivity habitat across the study area validated well based on a set of GPS locations from independent greater sage-grouse. The functional relationship between greater sage-grouse and the landscape did not always conform to the idea of a discrete corridor. A more flexible consideration of landscape connectivity may improve the efficacy of management actions by aligning those actions with the spatial patterns by which animals interact with the landscape. PMID:24349241
Harju, Seth M; Olson, Chad V; Dzialak, Matthew R; Mudd, James P; Winstead, Jeff B
2013-01-01
Connectivity of animal populations is an increasingly prominent concern in fragmented landscapes, yet existing methodological and conceptual approaches implicitly assume the presence of, or need for, discrete corridors. We tested this assumption by developing a flexible conceptual approach that does not assume, but allows for, the presence of discrete movement corridors. We quantified functional connectivity habitat for greater sage-grouse (Centrocercus urophasianus) across a large landscape in central western North America. We assigned sample locations to a movement state (encamped, traveling and relocating), and used Global Positioning System (GPS) location data and conditional logistic regression to estimate state-specific resource selection functions. Patterns of resource selection during different movement states reflected selection for sagebrush and general avoidance of rough topography and anthropogenic features. Distinct connectivity corridors were not common in the 5,625 km(2) study area. Rather, broad areas functioned as generally high or low quality connectivity habitat. A comprehensive map predicting the quality of connectivity habitat across the study area validated well based on a set of GPS locations from independent greater sage-grouse. The functional relationship between greater sage-grouse and the landscape did not always conform to the idea of a discrete corridor. A more flexible consideration of landscape connectivity may improve the efficacy of management actions by aligning those actions with the spatial patterns by which animals interact with the landscape.
Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse.
Kohl, Kevin D; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen
2016-07-01
One function of the gut microbiota gaining recent attention, especially in herbivorous mammals and insects, is the metabolism of plant secondary metabolites (PSMs). We investigated whether this function exists within the gut communities of a specialist avian herbivore. We sequenced the cecal metagenome of the Greater Sage-Grouse (Centrocercus urophasianus), which specializes on chemically defended sagebrush (Artemisia spp.). We predicted that the cecal metagenome of the sage-grouse would be enriched in genes associated with the metabolism of PSMs when compared to the metagenome of the domestic chicken. We found that representation of microbial genes associated with 'xenobiotic degradation and metabolism' was 3-fold higher in the sage-grouse cecal metagenomes when compared to that of the domestic chicken. Further, we identified a complete metabolic pathway for the degradation of phenol to pyruvate, which was not detected in the metagenomes of the domestic chicken, bovine rumen or 14 species of mammalian herbivores. Evidence of monoterpene degradation (a major class of PSMs in sagebrush) was less definitive, although we did detect genes for several enzymes associated with this process. Overall, our results suggest that the gut microbiota of specialist avian herbivores plays a similar role to the microbiota of mammalian and insect herbivores in degrading PSMs. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1996-10-01
This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonablemore » effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.« less
Greater sage-grouse population trends across Wyoming
Edmunds, David; Aldridge, Cameron L.; O'Donnell, Michael; Monroe, Adrian
2018-01-01
The scale at which analyses are performed can have an effect on model results and often one scale does not accurately describe the ecological phenomena of interest (e.g., population trends) for wide-ranging species: yet, most ecological studies are performed at a single, arbitrary scale. To best determine local and regional trends for greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, we modeled density-independent and -dependent population growth across multiple spatial scales relevant to management and conservation (Core Areas [habitat encompassing approximately 83% of the sage-grouse population on ∼24% of surface area in Wyoming], local Working Groups [7 regional areas for which groups of local experts are tasked with implementing Wyoming's statewide sage-grouse conservation plan at the local level], Core Area status (Core Area vs. Non-Core Area) by Working Groups, and Core Areas by Working Groups). Our goal was to determine the influence of fine-scale population trends (Core Areas) on larger-scale populations (Working Group Areas). We modeled the natural log of change in population size ( peak M lek counts) by time to calculate the finite rate of population growth (λ) for each population of interest from 1993 to 2015. We found that in general when Core Area status (Core Area vs. Non-Core Area) was investigated by Working Group Area, the 2 populations trended similarly and agreed with the overall trend of the Working Group Area. However, at the finer scale where Core Areas were analyzed separately, Core Areas within the same Working Group Area often trended differently and a few large Core Areas could influence the overall Working Group Area trend and mask trends occurring in smaller Core Areas. Relatively close fine-scale populations of sage-grouse can trend differently, indicating that large-scale trends may not accurately depict what is occurring across the landscape (e.g., local effects of gas and oil fields may be masked by increasing larger populations).
Aldridge, Cameron L.; Boyce, Mark S.
2007-01-01
Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel approach to habitat-based population viability modeling has merit for many species of concern. ?? 2007 by the Ecological Society of America.
Prochazka, Brian; Coates, Peter S.; Ricca, Mark; Casazza, Michael L.; Gustafson, K. Ben; Hull, Josh M.
2016-01-01
Fine-scale spatiotemporal studies can better identify relationships between individual survival and habitat fragmentation so that mechanistic interpretations can be made at the population level. Recent advances in Global Positioning System (GPS) technology and statistical models capable of deconstructing high-frequency location data have facilitated interpretation of animal movement within a behaviorally mechanistic framework. Habitat fragmentation due to singleleaf pinyon (Pinus monophylla; hereafter pinyon) and Utah juniper (Juniperus osteosperma; hereafter juniper) encroachment into sagebrush (Artemisia spp.) communities is a commonly implicated perturbation that can adversely influence greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) demographic rates. Using an extensive GPS data set (233 birds and 282,954 locations) across 12 study sites within the Great Basin, we conducted a behavioral change point analysis and subsequently constructed Brownian bridge movement models from each behaviorally homogenous section. We found a positive relationship between modeled movement rate and probability of encountering pinyon-juniper with significant variation among age classes. The probability of encountering pinyon-juniper among adults was two and three times greater than that of yearlings and juveniles, respectively. However, the movement rate in response to the probability of encountering pinyon-juniper trees was 1.5 times greater for juveniles. We then assessed the risk of mortality associated with an interaction between movement rate and the probability of encountering pinyon-juniper using shared frailty models. During pinyon-juniper encounters, on average, juvenile, yearling, and adult birds experienced a 10.4%, 0.2%, and 0.3% reduction in annual survival probabilities. Populations that used pinyon-juniper habitats with a frequency ≥ 3.8 times the overall mean experienced decreases in annual survival probabilities of 71.1%, 0.9%, and 0.9%. This analytical framework identifies a likely behavioral mechanism behind how pinyon-juniper encroachment decreases habitat suitability for sage-grouse, whereby encountering pinyon-juniper stimulates faster yet riskier movements that may make sage-grouse more vulnerable to visually acute predators.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.
Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah
Hood, J.W.; Price, Don
1970-01-01
This report is the seventh in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Grouse Creek valley, to provide an evaluation of the potential water-resource development of the valley, and to identify studies that would help provide a better understanding of the valley's water supply
Coates, Peter S.; Gustafson, K. Benjamin; Roth, Cali L.; Chenaille, Michael P.; Ricca, Mark A.; Mauch, Kimberly; Sanchez-Chopitea, Erika; Kroger, Travis J.; Perry, William M.; Casazza, Michael L.
2017-08-10
The distribution and abundance of pinyon (Pinus monophylla) and juniper (Juniperus osteosperma, J. occidentalis) trees (hereinafter, "pinyon-juniper") in sagebrush (Artemisia spp.) ecosystems of the Great Basin in the Western United States has increased substantially since the late 1800s. Distributional expansion and infill of pinyon-juniper into sagebrush ecosystems threatens the ecological function and economic viability of these ecosystems within the Great Basin, and is now a major contemporary challenge facing land and wildlife managers. Particularly, pinyon-juniper encroachment into intact sagebrush ecosystems has been identified as a primary threat facing populations of greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse"), which is a sagebrush obligate species. Even seemingly innocuous scatterings of isolated pinyon-juniper in an otherwise intact sagebrush landscape can negatively affect survival and reproduction of sage-grouse. Therefore, accurate and high-resolution maps of pinyon-juniper distribution and abundance (indexed by canopy cover) across broad geographic extents would help guide land management decisions that better target areas for pinyon-juniper removal projects (for example, fuel reduction, habitat improvement for sage-grouse, and other sagebrush species) and facilitate science that further quantifies ecological effects of pinyon-juniper encroachment on sage-grouse populations and sagebrush ecosystem processes. Hence, we mapped pinyon-juniper (referred to as conifers for actual mapping) at a 1 × 1-meter (m) high resolution across the entire range of previously mapped sage-grouse habitat in Nevada and northeastern California.We used digital orthophoto quad tiles from National Agriculture Imagery Program (2010, 2013) as base imagery, and then classified conifers using automated feature extraction methodology with the program Feature Analyst™. This method relies on machine learning algorithms that extract features from imagery based on their spectral and spatial signatures. We classified conifers in 6,230 tiles and then tested for errors of omission and commission using confusion matrices. Accuracy ranged from 79.1 to 96.8, with an overall accuracy of 84.3 percent across all mapped areas. An estimated accuracy coefficient (kappa) indicated substantial to nearly perfect agreement, which varied across mapped areas. For this mapping process across the entire mapping extent, four sets of products are available at https://doi.org/10.5066/F7348HVC, including (1) a shapefile representing accuracy results linked to mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 × 1 m resolution; (3) a 30 × 30 m resolution raster representing percentages of conifer canopy cover within each cell from 0 to 100; and (4) 1 × 1 m resolution canopy cover classification rasters derived from a 50-m-radius moving window analysis. The latter two products can be reclassified in a geographic information system (GIS) into user-specified bins to meet different objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the Western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration.
NASA Astrophysics Data System (ADS)
Allred, B. W.; Naugle, D.; Donnelly, P.; Tack, J.; Jones, M. O.
2016-12-01
In 2010, the USDA Natural Resources Conservation Service (NRCS) launched the Sage Grouse Initiative (SGI) to voluntarily reduce threats facing sage-grouse and rangelands on private lands. Over the past five years, SGI has matured into a primary catalyst for rangeland and wildlife conservation across the North American west, focusing on the shared vision of wildlife conservation through sustainable working landscapes and providing win-win solutions for producers, sage grouse, and 350 other sagebrush obligate species. SGI and its partners have invested a total of $750 million into rangeland and wildlife conservation. Moving forward, SGI continues to focus on rangeland conservation. Partnering with Google Earth Engine, SGI has developed outcome monitoring and conservation planning tools at continental scales. The SGI science team is currently developing assessment and monitoring algorithms of key conservation indicators. The SGI web application utilizes Google Earth Engine for user defined analysis and planning, putting the appropriate information directly into the hands of managers and conservationists.
Physical characteristics of cometary dust from dynamical studies - A review
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1980-01-01
Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.
Influences of environmental and anthropogenic features on greater sage-grouse populations, 1997-2007
Johnson, Douglas H.; Holloran, Matthew J.; Connelly, John W.; Hanser, Steven E.; Amundson, Courtney L.; Knick, Steven T.; Knick, Steven T.; Connelly, John W.
2011-01-01
The Greater Sage-Grouse (Centrocercus urophasianus), endemic to western North Amer-ica, is of great conservation interest. Its popula-tions are tracked by spring counts of males at lek sites. We explored the relations between trends of Greater Sage-Grouse lek counts from 1997 to 2007 and a variety of natural and anthropogenic fea-tures. We found that trends were correlated with several habitat features, but not always similarly throughout the range. Lek trends were positively associated with proportion of sagebrush (Artemisia spp.) cover, within 5 km and 18 km. Lek trends had negative associations with the coverage of agriculture and exotic plant species. Trends also tended to be lower for leks where a greater pro-portion of their surrounding landscape had been burned. Few leks were located within 5 km of developed land and trends were lower for those leks with more developed land within 5 km or 18 km. Lek trends were reduced where communi-cation towers were nearby, whereas no effect of power lines was detected. Active oil or natural gas wells and highways, but not secondary roads, were associated with lower trends. Effects of some anthropogenic features may have already been manifested before our study period and thus not have been detected in this analysis. Results of this range-wide analysis complement those from more intensive studies on smaller areas. Our findings are important for identifying features that could threaten Greater Sage-Grouse populations.
Oja, Ragne; Soe, Egle; Valdmann, Harri; Saarma, Urmas
2017-01-01
Capercaillie (Tetrao urogallus) and other grouse species represent conservation concerns across Europe due to their negative abundance trends. In addition to habitat deterioration, predation is considered a major factor contributing to population declines. While the role of generalist predators on grouse predation is relatively well known, the impact of the omnivorous wild boar has remained elusive. We hypothesize that wild boar is an important predator of ground-nesting birds, but has been neglected as a bird predator because traditional morphological methods underestimate the proportion of birds in wild boar diet. To distinguish between different mammalian predator species, as well as different grouse prey species, we developed a molecular method based on the analysis of mitochondrial DNA that allows accurate species identification. We collected 109 wild boar faeces at protected capercaillie leks and surrounding areas and analysed bird consumption using genetic methods and classical morphological examination. Genetic analysis revealed that the proportion of birds in wild boar faeces was significantly higher (17.3%; 4.5×) than indicated by morphological examination (3.8%). Moreover, the genetic method allowed considerably more precise taxonomic identification of consumed birds compared to morphological analysis. Our results demonstrate: (i) the value of using genetic approaches in faecal dietary analysis due to their higher sensitivity, and (ii) that wild boar is an important predator of ground-nesting birds, deserving serious consideration in conservation planning for capercaillie and other grouse.
NASA Astrophysics Data System (ADS)
Hess, Jennifer E.; Beck, Jeffrey L.
2014-04-01
Wyoming big sagebrush ( Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse ( Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990-1999 and sites burned or mowed during 2000-2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.
Copeland, Holly E.; Doherty, Kevin E.; Naugle, David E.; Pocewicz, Amy; Kiesecker, Joseph M.
2009-01-01
Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation. PMID:19826472
Hess, Jennifer E; Beck, Jeffrey L
2014-04-01
Wyoming big sagebrush (Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse (Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990-1999 and sites burned or mowed during 2000-2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.
Germaine, Stephen; Carter, Sarah; Ignizio, Drew A.; Freeman, Aaron T.
2017-01-01
More than 5957 km2 in southwestern Wyoming is currently covered by operational gas fields, and further development is projected through 2030. Gas fields fragment landscapes through conversion of native vegetation to roads, well pads, pipeline corridors, and other infrastructure elements. The sagebrush steppe landscape where most of this development is occurring harbors 24 sagebrush-associated species of greatest conservation need, but the effects of gas energy development on most of these species are unknown. Pygmy rabbits (Brachylagus idahoensis) are one such species. In 2011, we began collecting three years of survey data to examine the relationship between gas field development density and pygmy rabbit site occupancy patterns on four major Wyoming gas fields (Continental Divide–Creston–Blue Gap, Jonah, Moxa Arch, Pinedale Anticline Project Area). We surveyed 120 plots across four gas fields, with plots distributed across the density gradient of gas well pads on each field. In a 1 km radius around the center of each plot, we measured the area covered by each of 10 gas field infrastructure elements and by shrub cover using 2012 National Agriculture Imagery Program imagery. We then modeled the relationship between gas field elements, pygmy rabbit presence, and two indices of pygmy rabbit abundance. Gas field infrastructure elements—specifically buried utility corridors and a complex of gas well pads, adjacent disturbed areas, and well pad access roads—were negatively correlated with pygmy rabbit presence and abundance indices, with sharp declines apparent after approximately 2% of the area consisted of gas field infrastructure. We conclude that pygmy rabbits in southwestern Wyoming may be sensitive to gas field development at levels similar to those observed for greater sage-grouse, and may suffer local population declines at lower levels of development than are allowed in existing plans and policies designed to conserve greater sage-grouse by limiting the surface footprint of energy development. Buried utilities, gas well pads, areas adjacent to well pads, and well pad access roads had the strongest negative correlation with pygmy rabbit presence and abundance. Minimizing the surface footprint of these elements may reduce negative impacts of gas energy development on pygmy rabbits.
Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.
2014-01-01
Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred areas with higher precipitation in the summer and avoided rugged terrain in the winter. Selection for sagebrush cover varied regionally with stronger selection in the Northeast region, likely because of limited availability, whereas avoidance of paved roads was fairly consistent across regions. We chose resource selection function (RSF) thresholds for each model set (seasonal × regional combination) that delineated important seasonal habitats for sage-grouse. Each model set showed good validation and discriminatory capabilities within study-site boundaries. We applied the nesting-season models to a novel area not included in model development. The percentage of independent nest locations that fell directly within identified important habitat was not overly impressive in the novel area (49%); however, including a 500-m buffer around important habitat captured 98% of independent nest locations within the novel area. We also used leks and associated peak male counts as a proxy for nesting habitat outside of the study sites used to develop the models. A 1.5-km buffer around the important nesting habitat boundaries included 77% of males counted at leks in Wyoming outside of the study sites. Data were not available to quantitatively test the performance of the summer and winter models outside our study sites. The collection of models presented here represents large-scale resource-management planning tools that are a significant advancement to previous tools in terms of spatial and temporal resolution.
Piertney, Stuart B; Lambin, Xavier; Maccoll, Andrew D C; Lock, Kerry; Bacon, Philip J; Dallas, John F; Leckie, Fiona; Mougeot, Francois; Racey, Paul A; Redpath, Steve; Moss, Robert
2008-05-01
Populations of red grouse (Lagopus lagopus scoticus) undergo regular multiannual cycles in abundance. The 'kinship hypothesis' posits that such cycles are caused by changes in kin structure among territorial males producing delayed density-dependent changes in aggressiveness, which in turn influence recruitment and regulate density. The kinship hypothesis makes several specific predictions about the levels of kinship, aggressiveness and recruitment through a population cycle: (i) kin structure will build up during the increase phase of a cycle, but break down prior to peak density; (ii) kin structure influences aggressiveness, such that there will be a negative relationship between kinship and aggressiveness over the years; (iii) as aggressiveness regulates recruitment and density, there will be a negative relationship between aggressiveness in one year and both recruitment and density in the next; (iv) as kin structure influences recruitment via an affect on aggressiveness, there will be a positive relationship between kinship in one year and recruitment the next. Here we test these predictions through the course of an 8-year cycle in a natural population of red grouse in northeast Scotland, using microsatellite DNA markers to resolve changing patterns of kin structure, and supra-orbital comb height of grouse as an index of aggressiveness. Both kin structure and aggressiveness were dynamic through the course of the cycle, and changing patterns were entirely consistent with the expectations of the kinship hypothesis. Results are discussed in relation to potential drivers of population regulation and implications of dynamic kin structure for population genetics.
Investigation of Drag and Pressure Distribution of Windshields at High Speeds
1942-01-01
sharp nega~ive pressure .peaks.and by 10V positivs preqsuro gradisnts-o?er the tail. Of the windshields rppresonted In-figure 11, the -“ &&rne ~nea...extension of the field with Mach number. In the quantitative discus~.on of Interference, it Is convenient to consider the velocity-increment coeffl- , 19...Before the effect of Interference due to the wing and fuselage can be quantitatively estimated, the veloci- ty increments due to these bodies must be
Habitat Value of Man-Made Coastal Marshes in Florida
1991-09-01
extraneous material as possible, and preserved in plastic bags. All cores were taken directly over a culm of Spartina that had been clipped at ground...spoonbill Ajaia ajaja x Wood stork Mycteri.a .ne:-. ana X Mottled duck Anas tulvigula x Black rail Lateral/us jamaici-,A,. X Clapper rail Rat/us...erythrophthalmus X X LeConte’s or sharp-tailed sparrow Ammodramus spp. X X Seaside sparrow Ammodramus maritimus X X Red- winged blackbird Agelaius
Matsumoto, Takao; Ishikawa, Ryo; Tohei, Tetsuya; Kimura, Hideo; Yao, Qiwen; Zhao, Hongyang; Wang, Xiaolin; Chen, Dapeng; Cheng, Zhenxiang; Shibata, Naoya; Ikuhara, Yuichi
2013-10-09
A state-of-the-art spherical aberration-corrected STEM was fully utilized to directly visualize the multiferroic domain structure in a hexagonal YMnO3 single crystal at atomic scale. With the aid of multivariate statistical analysis (MSA), we obtained unbiased and quantitative maps of ferroelectric domain structures with atomic resolution. Such a statistical image analysis of the transition region between opposite polarizations has confirmed atomically sharp transitions of ferroelectric polarization both in antiparallel (uncharged) and tail-to-tail 180° (charged) domain boundaries. Through the analysis, a correlated subatomic image shift of Mn-O layers with that of Y layers, exhibiting a double-arc shape of reversed curvatures, have been elucidated. The amount of image shift in Mn-O layers along the c-axis is statistically significant as small as 0.016 nm, roughly one-third of the evident image shift of 0.048 nm in Y layers. Interestingly, a careful analysis has shown that such a subatomic image shift in Mn-O layers vanishes at the tail-to-tail 180° domain boundaries. Furthermore, taking advantage of the annular bright field (ABF) imaging technique combined with MSA, the tilting of MnO5 bipyramids, the very core mechanism of multiferroicity of the material, is evaluated.
Timing and nature of tertiary plutonism and extension in the Grouse Creek Mountains, Utah
Egger, A.E.; Dumitru, T.A.; Miller, E.L.; Savage, C.F.I.; Wooden, J.L.
2003-01-01
The Grouse Creek-Albion-Raft River metamorphic core complex in northwestern Utah and southern Idaho is characterized by several Tertiary plutons with a range of ages and crosscutting relations that help constrain the timing of extensional deformation. In the Grouse Creek Mountains, at least three distinct, superimposed, extension-related Tertiary deformational events are bracketed by intrusive rocks, followed by a fourth event: motion on range-bounding faults. The Emigrant Pass plutonic complex was emplaced at depths of less than 10 km into Permianage rocks. SHRIMP U-Pb zircon analysis indicates a three-stage intrusion of the complex at 41.3 ?? 0.3 Ma, 36.1 ?? 0.2 Ma, and 34.3 ?? 0.3 Ma. The two youngest phases represent distinctly younger intrusive event(s) than the oldest phase, separated by more than 5 m.y. The oldest phase cuts several metamorphosed and deformed younger-on-older faults, providing a pre-41 Ma age bracket for oldest extension-related deformation in the region. The youngest phase(s) are interpreted to have been intruded during delelopment of a map-scale. N-S-trending recumbent fold, the Bovine Mountain fold, formed during vertical shortening of roof rocks during intrusion. This second event folded older normal faults that are likely pre-41 Ma. Zircons from the youngest part of the pluton show inheritance from Archean basement (???2.5 Ga) and from its Proterozoic sedimentary cover (???1.65 Ga). The Red Butte pluton, emplaced at 15-20 km depth, intruded highly metamorphosed Archean orthogneiss at 25.3 ?? 0.5 Ma; cores of some zircons yield latest Archean ages of 2.55 Ga. The pluton is interpreted to have been intruded during a third deformational and metamorphic event that resulted in vertical flattening fabrics formed during NW to EW stretching, ultimately leading to thinning of cover and top-to-the west motion on the Ingham Pass fault. The Ingham Pass fault represents an important structure in the Grouse Creek Mountains, as it juxtaposes two parts of the crust that apparently resided as much as 10 km apart (in depth) at times as young as the Miocene. The varied structural, metamorphic, and intrusive relations obsreved in the Grouse Creek Mountains reflect their formation at different levels within the crust. Data from these various levels argue that plutonism has been a key mechanism far transferring heat into the middle and upper crust, and localizing strain during regional extension. Interestingly, events documented here correlate in a broad way with cooling events documented in the Raft River Mountains, although plutons are not exposed there. Major and trace element geochemistry imply a crustal component in all of the studied plutons, indicating significant degrees of crustal melting at depth during extension, and point to mantle heat sources during the timespan of Basin and Range extension as the cause of melting. Basin and Range faulting and final uplift of the range is recorded by apatite fission track ages, averaging 13.4 Ma, and deposition of about 2 km of syn-faulting basin fill deposits along the Grouse Creek fault mapped along the western flank of the range. Similar apatite ages from the Albion Mountains to the north indicate that the western side of the Albion-Raft River-Grouse Creek core complex behaved as a single rigid crustal block at this time.
Fedy, Bradley C.; O'Donnell, Michael; Bowen, Zachary H.
2015-01-01
Human impacts on wildlife populations are widespread and prolific and understanding wildlife responses to human impacts is a fundamental component of wildlife management. The first step to understanding wildlife responses is the documentation of changes in wildlife population parameters, such as population size. Meaningful assessment of population changes in potentially impacted sites requires the establishment of monitoring at similar, nonimpacted, control sites. However, it is often difficult to identify appropriate control sites in wildlife populations. We demonstrated use of Geographic Information System (GIS) data across large spatial scales to select biologically relevant control sites for population monitoring. Greater sage-grouse (Centrocercus urophasianus; hearafter, sage-grouse) are negatively affected by energy development, and monitoring of sage-grouse population within energy development areas is necessary to detect population-level responses. Weused population data (1995–2012) from an energy development area in Wyoming, USA, the Atlantic Rim Project Area (ARPA), and GIS data to identify control sites that were not impacted by energy development for population monitoring. Control sites were surrounded by similar habitat and were within similar climate areas to the ARPA. We developed nonlinear trend models for both the ARPA and control sites and compared long-term trends from the 2 areas. We found little difference between the ARPA and control sites trends over time. This research demonstrated an approach for control site selection across large landscapes and can be used as a template for similar impact-monitoring studies. It is important to note that identification of changes in population parameters between control and treatment sites is only the first step in understanding the mechanisms that underlie those changes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Fedy, B.C.; Aldridge, Cameron L.
2011-01-01
Long-term population monitoring is the cornerstone of animal conservation and management. The accuracy and precision of models developed using monitoring data can be influenced by the protocols guiding data collection. The greater sage-grouse (Centrocercus urophasianus) is a species of concern that has been monitored over decades, primarily, by counting the number of males that attend lek (breeding) sites. These lek count data have been used to assess long-term population trends and for multiple mechanistic studies. However, some studies have questioned the efficacy of lek counts to accurately identify population trends. In response, monitoring protocols were changed to have a goal of counting lek sites multiple times within a season. We assessed the influence of this change in monitoring protocols on model accuracy and precision applying generalized additive models to describe trends over time. We found that at large spatial scales including >50 leks, the absence of repeated counts within a year did not significantly alter population trend estimates or interpretation. Increasing sample size decreased the model confidence intervals. We developed a population trend model for Wyoming greater sage-grouse from 1965 to 2008, identifying significant changes in the population indices and capturing the cyclic nature of this species. Most sage-grouse declines in Wyoming occurred between 1965 and the 1990s and lek count numbers generally increased from the mid-1990s to 2008. Our results validate the combination of monitoring data collected under different protocols in past and future studies-provided those studies are addressing large-scale questions. We suggest that a larger sample of individual leks is preferable to multiple counts of a smaller sample of leks. ?? 2011 The Wildlife Society.
Greater sage-grouse apparent nest productivity and chick survival in Carbon County, Wyoming
Schreiber, Leslie A.; Hansen, Christopher P.; Rumble, Mark A.; ...
2016-03-01
Greater sage-grouse Centrocercus urophasianus populations across North America have been declining due to degradation and fragmentation of sagebrush habitat. As part of a study quantifying greater sage-grouse demographics prior to construction of a wind energy facility, we estimated apparent net nest productivity and survival rate of chicks associated with radio-equipped female sage-grouse in Carbon County, Wyoming, USA. We estimated apparent net nest productivity using a weighted mean of the average brood size and used a modified logistic-exposure method to estimate daily chick survival over a 70-day time period. Apparent nest productivity was 2.79 chicks per female (95% CI: 1.46–4.12) inmore » 2011, 2.00 chicks per female (95% CI: 1.00–3.00) in 2012, and 1.54 chick per female (95% CI: 0.62–2.46) in 2013. Chick survival to 70 days post-hatch was 19.10% (95% CI: 6.22–37.42%) in 2011, 4.20% (95% CI: 0.84–12.31%) in 2012, and 16.05% (95% CI: 7.67–27.22%) in 2013. These estimates were low, yet within the range of other published survival rates. Chick survival was primarily associated with year and chick age, with minor effects of average temperature between surveys and hatch date. The variability in chick survival rates across years of our study suggests annual weather patterns may have large impacts on chick survival. Thus, management actions that increase the availability of food and cover for chicks may be necessary, especially during years with drought and above-average spring temperatures.« less
Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach
Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.
2012-01-01
Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of future land-use scenarios. ?? 2011 The Wildlife Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to theirmore » water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land.« less
Irregular Enemies and the Essence of Strategy: Can the American Way of War Adapt?
2006-03-01
remain major challenges today. The three elements that constitute the argument of this analysis do not make agreeable reading for those who are...keep winning tactically, our strategy will flow agreeably from the cumulative verdicts of the battlefield. In practice, a war may thus be waged all...the sharp end of American war-making can have, and has had, the downside of encouraging a tooth-to-tail ratio almost absurdly weighted in favor of
Extracting volatility signal using maximum a posteriori estimation
NASA Astrophysics Data System (ADS)
Neto, David
2016-11-01
This paper outlines a methodology to estimate a denoised volatility signal for foreign exchange rates using a hidden Markov model (HMM). For this purpose a maximum a posteriori (MAP) estimation is performed. A double exponential prior is used for the state variable (the log-volatility) in order to allow sharp jumps in realizations and then log-returns marginal distributions with heavy tails. We consider two routes to choose the regularization and we compare our MAP estimate to realized volatility measure for three exchange rates.
Conservation buffer distance estimates for Greater Sage-Grouse: a review
Manier, Daniel J.; Bowen, Zachary H.; Brooks, Matthew L.; Casazza, Michael L.; Coates, Peter S.; Deibert, Patricia A.; Hanser, Steven E.; Johnson, Douglas H.
2014-01-01
Distances in this report reflect radii around lek locations because these locations are typically (although not universally) known, and management plans often refer to these locations. Lek sites are most representative of breeding habitats, but their locations are focal points within populations, and as such, protective buffers around lek sites can offer a useful solution for identifying and conserving seasonal habitats required by sage-grouse throughout their life cycle. However, knowledge of local and regional patterns of seasonal habitat use may improve conservation of those important areas, especially regarding the distribution and utilization of nonbreeding season habitats (which may be underrepresented in lek-based designations).
Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).
Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E
2008-04-01
Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.
Bush, K.L.; Dyte, C.K.; Moynahan, B.J.; Aldridge, Cameron L.; Sauls, H.S.; Battazzo, A.M.; Walker, B.L.; Doherty, K.E.; Tack, J.; Carlson, J.; Eslinger, D.; Nicholson, J.; Boyce, M.S.; Naugle, D.E.; Paszkowski, C.A.; Coltman, D.W.
2011-01-01
Range-edge dynamics and anthropogenic fragmentation are expected to impact patterns of genetic diversity, and understanding the influence of both factors is important for effective conservation of threatened wildlife species. To examine these factors, we sampled greater sage-grouse (Centrocercus urophasianus) from a declining, fragmented region at the northern periphery of the species' range and from a stable, contiguous core region. We genotyped 2,519 individuals at 13 microsatellite loci from 104 leks in Alberta, Saskatchewan, Montana, and Wyoming. Birds from northern Montana, Alberta, and Saskatchewan were identified as a single population that exhibited significant isolation by distance, with the Milk River demarcating two subpopulations. Both subpopulations exhibited high genetic diversity with no evidence that peripheral regions were genetically depauperate or highly structured. However, river valleys and a large agricultural region were significant barriers to dispersal. Leks were also composed primarily of non-kin, rejecting the idea that leks form because of male kin association. Northern Montana sage-grouse are maintaining genetic connectivity in fragmented and northern peripheral habitats via dispersal through and around various forms of fragmentation. ?? 2010 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Sarafopoulos, D. V.
2008-06-01
We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS) the stretched (tail-like) magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≍7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC) instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≍10 RE) selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now missing, that might help explain the persistent, outstanding deficiencies in our physical description of magnetospheric substorms. The mechanism is tested, checked, and found consistent with substorm associated observations performed ~30 and 60 RE away from Earth.
Review on advanced composite materials boring mechanism and tools
NASA Astrophysics Data System (ADS)
Shi, Runping; Wang, Chengyong
2010-12-01
With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.
Review on advanced composite materials boring mechanism and tools
NASA Astrophysics Data System (ADS)
Shi, Runping; Wang, Chengyong
2011-05-01
With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.
Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation
NASA Astrophysics Data System (ADS)
Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel
2018-02-01
We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert <\\vert H_c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.
Graham, Tim B.; Brasher, Anne M.D.; Close, Rebecca N.
2008-01-01
Grasshopper and Mormon cricket (Orthoptera) populations periodically build to extremely high numbers and can cause significant economic damage in rangelands and agricultural fields of the Great Plains and Intermountain West. A variety of insecticides have been applied to control population outbreaks, with recent efforts directed at minimizing impacts to nontarget fauna in treated ecosystems. A relatively new insecticide for control of Orthoptera is diflubenzuron, which acts to inhibit chitin production, ultimately causing death during the molt following ingestion of the insecticide. All arthropods, including insects, mites, and crustaceans, use chitin to build their exoskeletons and will die if they are unable to produce it during the next molt. Diflubenzuron is not taxon specific—it affects all arthropods that ingest it, except adult insects, which do not molt. Consequently, application of this pesticide has the potential to significantly reduce not only target populations but all terrestrial and aquatic arthropods within treatment zones.Some research has been done in the Great Plains on the impact of diflubenzuron on nontarget arthropods in the context of grasshopper-control programs, but no work has been done in the Great Basin in Mormon cricket-control areas. This study was instigated in anticipation of the need for extensive control of Orthoptera outbreaks in Utah’s west desert during 2005, and it was designed to sample terrestrial and aquatic arthropod communities in both treated and untreated zones. Three areas were sampled: Grouse Creek, Ibapah, and Vernon. High mortality of Mormon cricket eggs in the wet, cool spring of 2005 restricted the need to control Mormon crickets to Grouse Creek. Diflubenzuron was applied (aerial reduced agent-area treatment) in May 2005. Terrestrial and aquatic arthropod communities were sampled before and after application of diflubenzuron in the Grouse Creek area of northwestern Utah in May and June of 2005. In July 2005, U.S. Geological Survey scientists sampled areas in Ibapah and Vernon that had been treated with diflubenzuron in 2004, along with adjacent untreated areas. Pitfall traps at four treated and four untreated sites were used to collect ground-dwelling terrestrial arthropods. Semiquantitative sweep surveys of aquatic habitats were made before treatment, 2 weeks after treatment, and 4 months after treatment (after leaf fall) at Grouse Creek. One-year post-treatment samples were collected by using the same methods for terrestrial and aquatic arthropods at Ibapah and Vernon in July 2005 (treatments applied in June 2004).More than 124,000 terrestrial arthropods were collected from the three study areas, and more than 200,000 aquatic invertebrates were collected in the aquatic samples. Direct effects of diflubenzuron on aquatic and terrestrial arthropod communities were not apparent in our data from Grouse Creek. The treatment was designed to avoid spraying pesticide on water bodies, and no measurable effects on aquatic communities from either springs or streams were observed, with the exception of the reduction of taxa richness at Vernon (a result confounded by elevational differences in the treatment and nontreatment zones). Some trends indicate diflubenzuron may affect some terrestrial taxa. Ant communities showed some differences, with possible lag effects at Ibapah and Vernon. Forelius was more abundant, while Tapinoma and, perhaps, Formica declined in treated zones in these two study areas. Solenopsis also was more numerous at treated Ibapah sites but varied without pattern at Vernon. Scorpions were abundant at Grouse Creek and Ibapah but rare at Vernon. Numbers did not change during several weeks at Grouse Creek, but at Ibapah, numbers at treated sites were much lower than at untreated sites. The Lygaeidae (in the order Hemiptera) were more abundant in the untreated zones at Ibapah and Vernon, although significantly so only at Ibapah. Lygaeidae were absent from the treated zone at Grouse Creek (before and after treatment) but were present after treatment in the untreated zone. Additional research is recommended to determine more explicitly whether these taxa are sensitive to diflubenzuron applications in the Great Basin.
Mortality of fish in Lake Erie
Van Oosten, John
1936-01-01
The food habits of Blue Grouse vary from a simple winter diet that is made up predominantly of coniferous needles to a complex diet during the summer months, characterized by great variety of foods including green leaves, fruits and seeds, flowers, animal matter and coniferous needles. The spring and fall, which represent the transition periods between these two, are characterized by feeding habits that are generally intermediate. The diets of the two species of Blue Grouse, Dendrugapus obscurus and Dendragapus juliginosus, are quite similar as far as major types of food are concerned, but they differ considerably in the species that are taken. Such differences reflect differences in the vegetation within the ecologic and geographic ranges occupied by the two species.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
...We, the U.S. Fish and Wildlife Service, propose to designate critical habitat for the Gunnison sage-grouse (Centrocercus minimus) under the Endangered Species Act of 1973, as amended (Act). If we finalize this rule as proposed, it would extend the Act's protections to this species' critical habitat. The effect of this regulation is to designate critical habitat for the Gunnison sage-grouse under the Act. In total, approximately 689,675 hectares (ha) (1,704,227 acres (ac)) are being proposed for designation as critical habitat in Chaffee, Delta, Dolores, Gunnison, Hinsdale, Mesa, Montrose, Ouray, Saguache, and San Miguel Counties in Colorado, and in Grand and San Juan Counties in Utah.
Can reliable sage-grouse lek counts be obtained using aerial infrared technology
Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.
2013-01-01
More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.
Ruffed grouse (Bonasa umbellus) drumming log and habitat use in Grand Teton National Park, Wyoming
Buhler, M.L.; Anderson, S.H.
2001-01-01
We described 15 Ruffed Grouse (Bonasa umbellus) drumming logs and adjacent habitat within Grand Teton National Park, Wyoming. Drumming logs and adjacent habitat differed from 30 random non-drumming sites. Drumming logs had fewer limbs (8; P = 0.003) and a smaller percentage of bark remaining (12%; P = 0.0001). These logs were in advanced stages of decay but were still firm to the touch. Additionally, drumming logs were found close to clearings but in areas with increased amounts of undergrowth and mature trees. Adjacent habitat analysis (0.04-ha circular plot centered on logs) indicated drumming locations had significantly greater average canopy height, more vegetative cover consisting of conifer and total canopy cover, and more vertical foliage between 0.3 m and 3.0 m in height. Adjacent habitat was in advanced stages of maturity as indicated by significant numbers of both large-diameter logs and large-diameter lodgepole pine (Pinus contorta) and quaking aspen (Populus tremuloides) snags. Tree species dominating the canopy and subcanopy were large-diameter Engelmann spruce (Picea engelmannii), lodgepole pine, and quaking aspen. Subalpine fir (Abies lasiocarpa) and quaking aspen saplings were more numerous at used sites. Ruffed Grouse drummed in coniferous areas within close proximity of quaking aspen.
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.
2016-01-01
Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and increases in freeze-thaw cycles. Understanding these effects can help direct land management, guide scientific research, and influence policy.
Spatial mapping and attribution of Wyoming wind turbines
O'Donnell, Michael S.; Fancher, Tammy S.
2010-01-01
This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These specific data are being used for assessing the effect of disturbance resulting from wind energy development within Wyoming on sage-grouse populations.
NASA Astrophysics Data System (ADS)
Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.
2011-12-01
Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a significant shift in geochemistry across a stratigraphic boundary at both localities.
Dzialak, Matthew R.; Olson, Chad V.; Harju, Seth M.; Webb, Stephen L.; Mudd, James P.; Winstead, Jeffrey B.; Hayden-Wing, L.D.
2011-01-01
Background Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. Methodology/Principal Findings We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. Conclusions/Significance Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments. PMID:22022587
Chambers, Jeanne C.; Maestas, Jeremy D.; Pyke, David A.; Boyd, Chad S.; Pellant, Mike; Wuenschel, Amarina
2017-01-01
Conservation of imperiled species often demands addressing a complex suite of threats that undermine species viability. Regulatory approaches, such as the US Endangered Species Act (1973), tend to focus on anthropogenic threats through adoption of policies and regulatory mechanisms. However, persistent ecosystem-based threats, such as invasive species and altered disturbance regimes, remain critical issues for most at-risk species considered to be conservation-reliant. We describe an approach for addressing persistent ecosystem threats to at-risk species based on ecological resilience and resistance concepts that is currently being used to conserve greater sage-grouse (Centrocercus urophasianus)and sagebrush ecosystems. The approach links biophysical indicators of ecosystem resilience and resistance with species-specific population and habitat requisites in a risk-based framework to identify priority areas for management and guide allocation of resources to manage persistent ecosystem-based threats. US federal land management and natural resource agencies have adopted this framework as a foundation for prioritizing sage-grouse conservation resources and determining effective restoration and management strategies. Because threats and strategies to address them cross-cut program areas, an integrated approach that includes wildland fire operations, postfire rehabilitation, fuels management, and habitat restoration is being used. We believe this approach is applicable to species conservation in other largely intact ecosystems with persistent, ecosystem-based threats.
Code of Federal Regulations, 2011 CFR
2011-01-01
... part at a port of entry. Poultry. Chickens, doves, ducks, geese, grouse, guinea fowl, partridges, pea fowl, pheasants, pigeons, quail, swans, and turkeys (including eggs for hatching). Region. Any defined...
Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.
2009-01-01
A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.
Oyler-McCance, Sara J.; St. John, Judy
2010-01-01
Primers for 10 microsatellite loci were developed specifically to amplify low quantity and quality DNA for Gunnison Sage-grouse (Centrocercus minimus), a species that has been petitioned for listing under the US Endangered Species Act. In a screen of 20 individuals from the largest population in the Gunnison Basin, Colorado, the 10 loci were found to have levels of variability ranging from two to seven alleles. No loci were found to be linked, although one locus revealed significant departures from Hardy–Weinberg equilibrium. These microsatellite loci will be applicable for population genetic analyses and for use in mark recapture studies that utilize DNA collected non invasively from feathers and fecal pellets, which will ultimately aid in management efforts.
78 FR 66379 - Notice of Public Meeting, Northwest Colorado Resource Advisory Council Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
... Sage-Grouse Conservation Strategy, working group reports, recreation, fire management, land use planning, invasive species management, energy and minerals management, travel management, wilderness, wild...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
In accordance with the Department of Energy`s National Environmental Policy Act implementing procedures in Volume 10 of the Code of Federal Regulations, Section 1021,312, the Environmental Restoration and Waste Management Programmatic Environmental Impact Statement Implementation Plan has two primary purposes: to provide guidance for the preparation of the Programmatic Environmental Impact Statement and to record the issues resulting from the scoping and the extended public participation process. The Implementation Plan identifies and discusses the following: background of Environmental Restoration and Waste Management activities, the purpose of the Programmatic Environmental Impact Statement, and the relationship of the Programmatic Environmental Impact Statementmore » to other Departmental initiatives (Chapter 1); need and purposes for action (Chapter 2); scoping process and results of the public participation program in defining the scope of the Programmatic Environmental Impact Statement, including a summary of the comments received and their disposition (Chapter 3); planned scope and content of the Programmatic Environmental Impact Statement (Chapter 4); consultations with other agencies and the role of cooperating agencies (Chapter 5); planned schedule of major Programmatic Environmental Impact Statement milestones (Chapter 6); and responsibilities for preparation of the Programmatic Environmental Impact Statement (Chapter 7).« less
ACHP | News | St. Elizabeths Programmatic Agreement Signed
Search skip specific nav links Home arrow News arrow St. Elizabeths Programmatic Agreement Signed St . Elizabeths Programmatic Agreement Signed December 9, 2008-- The General Services Administration (GSA), the ), and the Department of Homeland Security (DHS) executed a Programmatic Agreement (PA) for the
Perspectives in Peer Programs. Volume 28, Number 1, Winter 2018
ERIC Educational Resources Information Center
Tindall, Judith, Ed.; Black, David R., Ed.; Routson, Sue, Ed.
2018-01-01
This issue of "Perspectives in Peer Programs," the official journal of the National Association of Peer Program Professionals (NAPP), includes: (1) Introduction to this Issue on NAPPP Programmatic Standards Checklist, Programmatic Standards, Ethics, and Rubric; (2) NAPPP Programmatic Standards Checklist; (3) NAPPP Programmatic Standards;…
Sage Grouse Protection and Conservation Act
Rep. Gardner, Cory [R-CO-4
2014-05-22
House - 05/30/2014 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
...] Notice of Availability of the Draft Programmatic Environmental Impact Statement for Solar Energy... Draft Programmatic Environmental Impact Statement (EIS) for Solar Energy Development in Six Southwestern... preferred method of commenting. Mail: Addressed to: Solar Energy Draft Programmatic EIS, Argonne National...
ACHP | News | Nationwide Programmatic Agreement Streamlines 106 Process for
Publications Search skip specific nav links Home arrow News arrow Nationwide Programmatic Agreement Streamlines 106 Process for NPS Nationwide Programmatic Agreement Streamlines 106 Process for NPS Pursuant to Service (NPS) on November 14, 2008, executed a nationwide Programmatic Agreement (PA) with the Advisory
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... Draft Programmatic Environmental Assessment for Office of Coast Survey Hydrographic Survey Projects... Programmatic Environmental Assessment; Request for comments. SUMMARY: NOAA's Office of Coast Survey (OCS) seeks comment on a draft programmatic environmental assessment (PEA) of the hydrographic surveys and related...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... Four Programmatic Environmental Impact Statements for the Northern Border Between the United States and...: Notice of Intent to Prepare Programmatic Environmental Impact Statements; Request for Comments; and... four Programmatic Environmental Impact Statements (PEISs) to identify and assess potential impacts upon...
78 FR 42798 - Notice of Public Meeting, Northwest Colorado Resource Advisory Council Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-17
... Sage-Grouse Planning Strategy, working group reports, recreation, fire management, land use planning, invasive species management, energy and minerals management, travel management, wilderness, wild horse herd...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... DEPARTMENT OF ENERGY Notice of Intent To Prepare a Programmatic Environmental Impact Statement for...: Notice of intent to prepare a programmatic environmental impact statement for the DOE Uranium Leasing Program. SUMMARY: DOE announces its intent to prepare a Programmatic Environmental Impact Statement (PEIS...
78 FR 52524 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
..., Greater Sage Grouse Bi-State Distinct Population Segment Forest Plan Amendment, Comment Period Ends: 11/20... EIS No. 20130237, Final EIS, NMFS, NJ, FEIS Amendment 14 to the Atlantic Mackerel, Squid, and...
Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.
2013-01-01
A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.
Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.
2016-01-01
The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.
Chambers, Jeanne C.; Campbell, Steve; Carlson, John; Beck, Jeffrey L.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Espinosa, Shawn; Griffin, Kathleen A.; Christiansen, Thomas J.; Crist, Michele R.; Hanser, Steven E.; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Mayer, Kenneth E.; Manning, Mary E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Prentice, Karen L.; Perea, Marco A.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina
2016-01-01
The Science Framework for the Conservation and Restoration Strategy of the Department of the Interior, Secretarial Order 3336 (SO 3336), Rangeland Fire Prevention, Management and Restoration, provides a strategic, multiscale approach for prioritizing areas for management and determining effective management strategies across the sagebrush biome. The emphasis of this version is on sagebrush ecosystems and greater sage-grouse. The Science Framework uses a six step process in which sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive annual grasses is linked to species habitat information based on the distribution and abundance of focal species. The predominant ecosystem and anthropogenic threats are assessed, and a habitat matrix is developed that helps decision makers evaluate risks and determine appropriate management strategies at regional and local scales. Areas are prioritized for management action using a geospatial approach that overlays resilience and resistance, species habitat information, and predominant threats. Decision tools are discussed for determining the suitability of priority areas for management and the most appropriate management actions at regional to local scales. The Science Framework and geospatial crosscut are intended to complement the mitigation strategies associated with the Greater Sage-Grouse Land Use Plan amendments for the Department of the Interior Bureaus, such as the Bureau of Land Management, and the U.S. Forest Service.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... Preparation of a Programmatic Environmental Assessment, To Open a Public Scoping Period, and To Conduct Public... Intent of Preparation of a Programmatic Environmental Assessment, to Open a Public Scoping Period, and to...), of the U.S. Department of Transportation (U.S. DOT), will prepare a Programmatic Environmental...
NASA Technical Reports Server (NTRS)
Johnson, Harold I.
1946-01-01
Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with the original vertical tail for smal1 sides1ip angles at low speeds but little consistent change in directional stability was effected by the ventral fin at higher speeds, The effectiveness of the ventral fin was generally much less when used with the enlarged vertical tail than when used with the original vertical tail. The ventral and dorsal fins were found to be very effective in eliminating rudder-force reversals which occurred in low-speed, high-engine-power, sideslipped conditions of flight . Sideslip tests at two altitudes for approximately the sane engine power and indicated airspeed showed that a small decrease in static directional stability occurred with increasing altitude and this decrease in stability was attributed to the increased propeller blade angles required at high altitudes. The variations of rudder pedal force with indicated airspeed using normal rated power and a constant rudder tab setting through the speed range were desirably small for all the configurations tested. The rudder pedal force changed by about 50 pounds for a power change from engine idling power, to normal rated power and this pedal force change was largely independent of airspeed or of vertical-tail configuration for the various configurations tested.
Hawk migration over White Marsh, Maryland
Hackman, C.D.; Henny, C.J.
1971-01-01
The average number of hawks observed per hour in autumn migration between 1951-1954 and 1958-1961 at White Marsh, Maryland, was compared. The counts indicated that the status of the ten species observed may be divided into three categories: (1) relatively stable species (red-tailed hawk), (2) declining species (sparrow hawk, red-shouldered hawk, osprey, marsh hawk, and broad-winged hawk), and (3) rapidly declining species (peregrine falcon, Cooper?s hawk, bald eagle, and sharp-shinned hawk). The findings from this study are in agreement with the available literature and the status of the populations appears to be related to the food habits of the species.
Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems
NASA Astrophysics Data System (ADS)
Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki
1989-10-01
Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.
75 FR 43199 - Notice of Public Meeting; Central Montana Resource Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... sage grouse study project; A presentation about the Undaunted Stewardship Program; A field visit to an... details (next meeting date, location, travel vouchers, etc.). All RAC meetings are open to the public. The...
Landscape capability predicts upland game bird abundance and occurrence
Loman, Zachary G.; Blomberg, Erik J.; DeLuca, William; Harrison, Daniel J.; Loftin, Cyndy; Wood, Petra B.
2017-01-01
Landscape capability (LC) models are a spatial tool with potential applications in conservation planning. We used survey data to validate LC models as predictors of occurrence and abundance at broad and fine scales for American woodcock (Scolopax minor) and ruffed grouse (Bonasa umbellus). Landscape capability models were reliable predictors of occurrence but were less indicative of relative abundance at route (11.5–14.6 km) and point scales (0.5–1 km). As predictors of occurrence, LC models had high sensitivity (0.71–0.93) and were accurate (0.71–0.88) and precise (0.88 and 0.92 for woodcock and grouse, respectively). Models did not predict point-scale abundance independent of the ability to predict occurrence of either species. The LC models are useful predictors of patterns of occurrences in the northeastern United States, but they have limited utility as predictors of fine-scale or route-specific abundances.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Benjamin, Ilan
1993-01-01
A molecular dynamics study of adsorption of p-n-pentylphenol at infinite dilution at the water liquid-vapor interface is reported. The calculated free energy of adsorption is -8.8 +/- 0.7 kcal/mol, in good agreement with the experimental value of -7.3 kcal/mol. The transition between the interfacial region and the bulk solution is sharp and well-defined by energetic, conformational, and orientational criteria. At the water surface, the phenol head group is mostly immersed in aqueous solvent. The most frequent orientation of the hydrocarbon tail is parallel to the interface, due to dispersion interactions with the water surface. This arrangement of the phenol ring and the alkyl chain requires that the chain exhibits a kink. As the polar head group is being moved into the solvent, the chain length increases and the tail becomes increasingly aligned toward the surface normal, such that the nonpolar part of the molecule exposed to water is minimized. The same effect was achieved when phenol was replaced by a more polar head group, phenolate.
Thermal adaptiveness of plumage color in screech owls
Mosher, James A.; Henny, Charles J.
1976-01-01
Clinal variation in the relative proportions of red and gray plum- age phases in Screech Owls (Otus asio) was analyzed by Owen (1963) and Marshall (1967). This variation was well known prior to Owen's work, but was misinterpreted (Baird, et al. 1874, Hasbrouck 1893, Allen 1893).]Laurel VanCamp and Charles Henny (MS) have 30 years of data on a northern Ohio Screech Owl population. They observed an over- winter decline (from about 25% to 15%) in the proportion of red phase birds in the winter of 1951-52. This decline was correlated with a severe winter of above normal snowfall and below average temperatures. They examined banding and recovery data and found overwinter survival of red and gray birds to be the same except for this one severe winter when 44% more red phase birds were lost than grays (VanCamp and Henny MS). Differential mortality was reported by Gullion and Marshall (1968) for red and gray phase Ruffed Grouse (Bonasa umbellus) where snow conditions for roosting is apparently the critical factor for grouse overwinter survival and is related to predation. Snow- roosting has not, to our knowledge, been observed in Screech Owls. VanCamp and Henny (MS) discuss the observations of Ruffed Grouse and Screech Owls and suggest that possible thermoregulatory differences between red and gray phase birds could account for differential overwinter survival.Our objective was to test for differences between color phase in oxygen uptake at several ambient temperatures. We hypothesized that oxygen uptake would be greater by red phase birds, especially at lower temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, Leslie A.; Hansen, Christopher P.; Rumble, Mark A.
Greater sage-grouse Centrocercus urophasianus populations across North America have been declining due to degradation and fragmentation of sagebrush habitat. As part of a study quantifying greater sage-grouse demographics prior to construction of a wind energy facility, we estimated apparent net nest productivity and survival rate of chicks associated with radio-equipped female sage-grouse in Carbon County, Wyoming, USA. We estimated apparent net nest productivity using a weighted mean of the average brood size and used a modified logistic-exposure method to estimate daily chick survival over a 70-day time period. Apparent nest productivity was 2.79 chicks per female (95% CI: 1.46–4.12) inmore » 2011, 2.00 chicks per female (95% CI: 1.00–3.00) in 2012, and 1.54 chick per female (95% CI: 0.62–2.46) in 2013. Chick survival to 70 days post-hatch was 19.10% (95% CI: 6.22–37.42%) in 2011, 4.20% (95% CI: 0.84–12.31%) in 2012, and 16.05% (95% CI: 7.67–27.22%) in 2013. These estimates were low, yet within the range of other published survival rates. Chick survival was primarily associated with year and chick age, with minor effects of average temperature between surveys and hatch date. The variability in chick survival rates across years of our study suggests annual weather patterns may have large impacts on chick survival. Thus, management actions that increase the availability of food and cover for chicks may be necessary, especially during years with drought and above-average spring temperatures.« less
Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.
2018-01-01
Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
.../White Pine, Clan Alpine, Cortez; Desatoya, Desert, East Valley, Fish Creek, Gollaher, Islands, Lincoln, Lone Willow, Massacre, Monitor, North Fork, O'Neil Basin, Pine Forest, Reese River, Ruby Valley, Santa...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... identified as having the highest conservation value to maintaining sustainable GRSG populations; include..., 2012. The BLM held four scoping open houses in January and February 2012. The BLM used public scoping...
Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Roundy, Bruce A.; Schupp, Eugene W.; Knick, Steven T.; Brunson, Mark; McIver, James D.
2017-02-14
Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations.When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.Step 1 describes the process of defining site-level restoration objectives.Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage-grouse. We discuss when passive restoration options may be sufficient and when active restoration may be necessary to achieve restoration objectives.Step 7 addresses decisions regarding post-restoration livestock grazing management.Step 8 addresses monitoring of the restoration; we discuss important aspects associated with implementation monitoring as well as effectiveness monitoring.Step 9 takes the information learned from monitoring to determine how restoration actions in the future might be adapted to improve restoration success.
NASA Astrophysics Data System (ADS)
Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.
2012-12-01
The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving fractionation at shallower depths compared to the Sonora Pass and Grouse Meadows flows, which appear to evolve by clinopyroxene fractionation. These contrasts in the pressures of crystal fractionation may be the result of contrasts in crustal structure or tectonic setting, an issue currently being investigated.
76 FR 61295 - Programmatic Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
...-1608] Programmatic Environmental Assessment AGENCY: Federal Communications Commission. ACTION: Proposed... time to file comments in response to a draft programmatic environmental assessment (PEA) of the Antenna Structure Registration (ASR) program. The purpose of the PEA is to evaluate the potential environmental...
Code of Federal Regulations, 2010 CFR
2010-10-01
... ruffed grouse, squirrel, cottontail rabbit, snowshoe hare, red fox, gray fox, bobcat, woodchuck, coyote... overnight parking. D. Sport Fishing. [Reserved] Ohio River Islands National Wildlife Refuge A. Migratory... blinds. D. Sport Fishing. We allow sport fishing throughout the refuge in accordance with State...
Livestock grazing and wildlife: developing compatabilities.
Martin Vavra
2005-01-01
Livestock grazing has been considered detrimental to wildlife habitat. Managed gazing programs, however, have the potential to maintain habitat diversity and quality. In cases in which single-species management predominates (sage-grouse [Centrocercus urophasianus] or elk [Cervus elaphus nelsoni] winter range), grazing systems...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
...)--Areas identified as having the highest conservation value to maintaining sustainable GRSG populations... FR 77008), and ended on March 23, 2012. The BLM held one scoping open house in North Dakota in...
NRCS Prototype Programmatic Agreement FAQ
Search Frequently Asked Questions regarding the Natural Resources Conservation Service Prototype Programmatic Agreement The Advisory Council on Historic Preservation (ACHP) recently designated a prototype programmatic agreement (PPA) for the United States Department of Agriculture, Natural Resources Conservation
Programmatic Instructional Development.
ERIC Educational Resources Information Center
Schutz, Richard E.
Programmatic instructional development refers to sequenced and coordinated efforts to produce effective instructional programs which cumulate over time and which attain outcomes that would be impossible under non-programmatic projects. As practiced at the Southwest Regional Laboratory (SWRL), it involves the combined efforts of specialists from…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the applicationmore » of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.« less
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1999-01-01
Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Frederic, Peter
2013-01-01
A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.
2018-03-15
Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks to ultimately reduce a greater threat of their destruction from wildfire. However, there is relatively little published science that directly addresses the ability of fuel breaks to influence fire behavior in dryland landscapes or that addresses the potential ecological effects of the construction and maintenance of fuel breaks on sagebrush ecosystems and associated wildlife species.This report is intended to provide an initial assessment of both the potential effectiveness of fuel breaks and their ecological costs and benefits. To provide this assessment, we examined prior studies on fuel breaks and other scientific evidence to address three crucial questions: (1) How effective are fuel breaks in reducing or slowing the spread of wildfire in arid and semi-arid shrubland ecosystems? (2) How do fuel breaks affect sagebrush plant communities? (3) What are the effects of fuel breaks on the greater sage-grouse, other sagebrush obligates, and sagebrush-associated wildlife species? We also provide an overview of recent federal policies and management directives aimed at protecting remaining sagebrush and greater sage-grouse habitat; describe the fuel conditions, fire behavior, and fire trends in the Great Basin; and suggest how scientific inquiry and management actions can improve our understanding of fuel breaks and their effects in sagebrush landscapes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... infrastructure development, including siting wind turbines, access roads, underground collector lines, overhead... Wildlife Service Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS... Plains Wind Energy Draft Programmatic Environmental Impact Statement (Draft [[Page 17654
A Practical Approach to Programmatic Assessment Design
ERIC Educational Resources Information Center
Timmerman, A. A.; Dijkstra, J.
2017-01-01
Assessment of complex tasks integrating several competencies calls for a programmatic design approach. As single instruments do not provide the information required to reach a robust judgment of integral performance, 73 guidelines for programmatic assessment design were developed. When simultaneously applying these interrelated guidelines, it is…
7 CFR 3570.85 - Programmatic changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Programmatic changes. 3570.85 Section 3570.85... AGRICULTURE COMMUNITY PROGRAMS Community Facilities Grant Program § 3570.85 Programmatic changes. The grantee shall obtain prior Agency approval for any change to the objectives of the approved project. (For...
78 FR 23952 - Notice of Temporary Closure on Public Lands in Elmore County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...-grouse habitat. The closure will help to slow the spread of noxious weeds; allow planted shrub, forb, and... in the burned area to provide multiple age classes of shrubs in the burned area. Accessible areas of...
Artemisia tridenata seed bank densities following wildfires
USDA-ARS?s Scientific Manuscript database
Big sagebrush (Artemisia spp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires and big sagebrush seed is generally short-lived a...
Big sagebrush seed bank densities following wildfires
USDA-ARS?s Scientific Manuscript database
Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...
Strategies to enhance plant structure and diversity in crested wheatgrass seedings
Mike Pellant; Cindy R. Lysne
2005-01-01
Crested wheatgrass (Agropyron cristatum sensu amplo [L.] Gaertn.) is an introduced, caespitose grass that has been seeded on millions of acres of Western rangelands. In some areas, crested wheatgrass seedings overlap with critical sage-grouse (Centrocercus urophasianus; C. minimus) habitat,...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... Habitat (PPH)--Areas identified as having the highest conservation value to maintaining sustainable GRSG... Federal Register to extend the scoping period until March 19, 2012. The BLM held a scoping open house on...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... sustainable GRSG populations; include breeding, late brood-rearing and winter concentration areas. Preliminary... ended on March 23, 2012. The BLM held six scoping open houses in January and February 2012. The BLM used...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
...)--Areas identified as having the highest conservation value for maintaining sustainable GRSG populations... the Federal Register (76 FR 77008) and ended on March 23, 2012. The BLM held scoping open houses in...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... DEPARTMENT OF THE INTERIOR National Park Service Coral Reef Restoration Plan, Draft Programmatic... Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National Environmental... availability of a Draft Programmatic Environmental Impact Statement (DEIS) for the Coral Reef Restoration Plan...
78 FR 5403 - Fisheries of the Caribbean, Gulf, and South Atlantic; Aquaculture
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
...: Supplemental Notice of Intent (NOI) to prepare a supplement to the final programmatic environmental impact... programmatic environmental impact statement (PEIS) was published on September 12, 2008. On June 26, 2009, a... includes a final programmatic environmental impact statement (FPEIS), an initial regulatory flexibility...
7 CFR 25.623 - Programmatic changes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 1 2012-01-01 2012-01-01 false Programmatic changes. 25.623 Section 25.623 Agriculture Office of the Secretary of Agriculture RURAL EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES Round II and Round IIS Grants § 25.623 Programmatic changes. Prior approval from USDA is required for all...
7 CFR 25.623 - Programmatic changes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 1 2014-01-01 2014-01-01 false Programmatic changes. 25.623 Section 25.623 Agriculture Office of the Secretary of Agriculture RURAL EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES Round II and Round IIS Grants § 25.623 Programmatic changes. Prior approval from USDA is required for all...
7 CFR 25.623 - Programmatic changes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 1 2013-01-01 2013-01-01 false Programmatic changes. 25.623 Section 25.623 Agriculture Office of the Secretary of Agriculture RURAL EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES Round II and Round IIS Grants § 25.623 Programmatic changes. Prior approval from USDA is required for all...
7 CFR 25.623 - Programmatic changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 1 2010-01-01 2010-01-01 false Programmatic changes. 25.623 Section 25.623 Agriculture Office of the Secretary of Agriculture RURAL EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES Round II and Round IIS Grants § 25.623 Programmatic changes. Prior approval from USDA is required for all...
7 CFR 25.623 - Programmatic changes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 1 2011-01-01 2011-01-01 false Programmatic changes. 25.623 Section 25.623 Agriculture Office of the Secretary of Agriculture RURAL EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES Round II and Round IIS Grants § 25.623 Programmatic changes. Prior approval from USDA is required for all...
Wenzel, Marius A; Douglas, Alex; James, Marianne C; Redpath, Steve M; Piertney, Stuart B
2016-01-01
Landscape genomics promises to provide novel insights into how neutral and adaptive processes shape genome-wide variation within and among populations. However, there has been little emphasis on examining whether individual-based phenotype-genotype relationships derived from approaches such as genome-wide association (GWAS) manifest themselves as a population-level signature of selection in a landscape context. The two may prove irreconcilable as individual-level patterns become diluted by high levels of gene flow and complex phenotypic or environmental heterogeneity. We illustrate this issue with a case study that examines the role of the highly prevalent gastrointestinal nematode Trichostrongylus tenuis in shaping genomic signatures of selection in red grouse (Lagopus lagopus scotica). Individual-level GWAS involving 384 SNPs has previously identified five SNPs that explain variation in T. tenuis burden. Here, we examine whether these same SNPs display population-level relationships between T. tenuis burden and genetic structure across a small-scale landscape of 21 sites with heterogeneous parasite pressure. Moreover, we identify adaptive SNPs showing signatures of directional selection using F(ST) outlier analysis and relate population- and individual-level patterns of multilocus neutral and adaptive genetic structure to T. tenuis burden. The five candidate SNPs for parasite-driven selection were neither associated with T. tenuis burden on a population level, nor under directional selection. Similarly, there was no evidence of parasite-driven selection in SNPs identified as candidates for directional selection. We discuss these results in the context of red grouse ecology and highlight the broader consequences for the utility of landscape genomics approaches for identifying signatures of selection. © 2015 John Wiley & Sons Ltd.
Duvall, Alison L; Metcalf, Alexander L.; Coates, Peter S.
2016-01-01
The Endangered Species Act (ESA) continues to serve as one of the most powerful and contested federal legislative mandates for conservation. In the midst of heated debates, researchers, policy makers, and conservation practitioners champion the importance of cooperative conservation and social-ecological systems approaches, which forge partnerships at multiple levels and scales to address complex ecosystem challenges. However, few real-world examples exist to demonstrate how multifaceted collaborations among stakeholders who share a common goal of conserving at-risk species may be nested within a systems framework to achieve social and ecological goals. Here, we present a case study of Greater Sage-grouse (Centrocercus urophasianus) conservation efforts in the “Bi-State” region of California and Nevada, United States. Using key-informant interviews, we explored dimensions and drivers of this landscape-scale conservation effort. Three themes emerged from the interviews, including 1) ESA action was transformed into opportunity for system-wide conservation; 2) a diverse, locally based partnership anchored collaboration and engagement across multiple levels and scales; and 3) best-available science combined with local knowledge led to “certainty of effectiveness and implementation”—the criteria used by the US Fish and Wildlife Service to evaluate conservation efforts when making listing decisions. Ultimately, collaborative conservation through multistakeholder engagement at various levels and scales led to proactive planning and implementation of conservation measures and precluded the need for an ESA listing of the Bi-State population of Greater Sage-grouse. This article presents a potent example of how a systems approach integrating policy, management, and learning can be used to successfully overcome the conflict-laden and “wicked” challenges that surround at-risk species conservation.
Carlisle, Jason D.; Chalfoun, Anna D.; Smith, Kurt T.; Beck, Jeffery L.
2018-01-01
The “umbrella species” concept is a conservation strategy in which creating and managing reserve areas to meet the needs of one species is thought to benefit other species indirectly. Broad-scale habitat protections on behalf of an umbrella species are assumed to benefit co-occurring taxa, but targeted management actions to improve local habitat suitability for the umbrella species may produce unintended effects on other species. Our objective was to quantify the effects of a common habitat treatment (mowing of big sagebrush [Artemisia tridentata]) intended to benefit a high-profile umbrella species (Greater Sage-Grouse [Centrocercus urophasianus]) on 3 sympatric songbird species of concern. We used a before–after control-impact experimental design spanning 3 yr in Wyoming, USA, to quantify the effect of mowing on the abundance, nest-site selection, nestling condition, and nest survival of 2 sagebrush-obligate songbirds (Brewer's Sparrow [Spizella breweri] and Sage Thrasher [Oreoscoptes montanus]) and one open-habitat generalist songbird (Vesper Sparrow [Pooecetes gramineus]). Mowing was associated with lower abundance of Brewer's Sparrows and Sage Thrashers but higher abundance of Vesper Sparrows. We found no Brewer's Sparrows or Sage Thrashers nesting in the mowed footprint posttreatment, which suggests complete loss of nesting habitat for these species. Mowing was associated with higher nestling condition and nest survival for Vesper Sparrows but not for the sagebrush-obligate species. Management prescriptions that remove woody biomass within a mosaic of intact habitat may be tolerated by sagebrush-obligate songbirds but are likely more beneficial for open-habitat generalist species. By definition, umbrella species conservation entails habitat protections at broad spatial scales. We caution that habitat manipulations to benefit Greater Sage-Grouse could negatively affect nontarget species of conservation concern if implemented across large spatial extents.
Restoring and rehabilitating sagebrush habitats
Pyke, David A.; Knick, S.T.; Connelly, J.W.
2011-01-01
Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.
Scenario-Led Habitat Modelling of Land Use Change Impacts on Key Species
Geary, Matthew; Fielding, Alan H.; McGowan, Philip J. K.; Marsden, Stuart J.
2015-01-01
Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years) scenarios for the 800 km2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5–30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and ‘increased grazing’ (the opposite conversion) the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of open-canopy forestry caused a proportional decrease in suitability, but suitability gains for the ‘reduced grazing’ scenario were nonlinear. ‘Scenario-led’ landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse. PMID:26569604
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... DEPARTMENT OF DEFENSE Department of the Army Programmatic Environmental Impact Statement for the... Programmatic Environmental Impact Statement (PEIS) to evaluate the impacts of current and future training and... (NEPA) to evaluate the environmental impacts of proposed alternatives for implementing the training and...
32 CFR 651.27 - Programmatic NEPA analyses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Programmatic NEPA analyses. 651.27 Section 651.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Records and Documents § 651.27 Programmatic NEPA analyses...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... POSTAL SERVICE Notice of Intent To Prepare a Programmatic Environmental Assessment for Proposed... of intent to prepare a Programmatic Environmental Assessment; Notice of Public Scoping Period. SUMMARY: To comply with the requirements of the National Environmental Policy Act (NEPA), the Postal...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... DEPARTMENT OF ENERGY Extension of the Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement AGENCY: Department of Energy. ACTION: Extension of the public... the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (Draft ULP PEIS, DOE/EIS...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... Number 1040-0001, DOI Programmatic Clearance for Customer Satisfaction Surveys AGENCY: Department of [email protected] . Reference ``DOI Programmatic Clearance for Customer Satisfaction Surveys'' in your email... public accountability by promoting a new focus on results, service quality, and customer satisfaction...
Ecosystem water availability in juniper versus sagebrush snow-dominated rangelands
USDA-ARS?s Scientific Manuscript database
Western Juniper (J. occidentalis Hook.) now dominates over 3.6 million ha of rangeland in the Intermountain Western US. Critical ecological relationships among snow distribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as sage grouse, remain poorly und...
Final Environmental Assessment for High Altitude Mobile Pointing Platform Tests
2006-01-22
with greater grouse Artemisia spp_ occurs in nearby Monticello, Utah_ 1937 males wetghino up to 8 lbs. (sagebrush). Arizona unconfirmed reports for...bursarius arenarius Mammal Species of Concern Chaves, Dona Ana, Luna, Otero, Socorro. Goat Peak pika Ochotona princeps nigrescens Mammal Species of
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
... course of commercial activity, or sell or offer for sale in interstate or foreign commerce any listed... antique specimens of these taxa at least 100 years old, as defined by section 10(h)(1) of the Act. (2...
Distribution and abundance of fallow deer leks at Point Reyes National Seashore, California
Fellers, Gary M.; Osbourn, Michael
2006-01-01
Only two species of ungulates (hoofed mammals) are native to Marin County, tule elk (Cervis elaphus nannodes) and Columbian black-tailed deer (Odocoileus hemionus columbianus). In the 1940s, European fallow deer (Dama dama) obtained from the San Francisco Zoo were released at Point Reyes. When Point Reyes National Seashore was established in 1962, fallow deer were well established within the boundaries of the National Seashore. The fallow deer population was estimated to be 500 in 1973 (Wehausen, 1973) and that number increased to 860 by 2005 (National Park Service, unpubl. data). Fallow deer have an unusual mating system. During the fall mating season (or rut), male fallow deer establish areas known as leks where they display to potential mates (Hirth, 1997). This behavior is unique among deer and elk, but it is similar to breeding systems used by grouse and a few other birds and mammals. Formation of leks in ungulates decreases the number of aggressive encounters in which dominant males are involved when the local male density becomes too high, because the spatial stability of territories in leks reduces the number of aggressive encounters between males (Hovi et al., 1996; Pelabon et al., 1999). A fallow deer lek is typically an area of about 100-150 m2 and typically includes two to five males. Using their hooves and antlers, each male clears away most or all of the vegetation and digs a rutting pit that he defends throughout the breeding season.
Code of Federal Regulations, 2010 CFR
2010-07-01
... financial and programmatic reports will not be publicly disclosed? 37.900 Section 37.900 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Award Terms Related to Other Administrative Matters Financial and Programmatic...
10 CFR 1021.330 - Programmatic (including site-wide) NEPA documents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... prepare a programmatic EIS or EA (40 CFR 1502.4). DOE may also prepare a programmatic EIS or EA at any... Analysis, DOE shall determine whether the existing EIS remains adequate or whether to prepare a new site-wide EIS or supplement the existing EIS, as appropriate. The determination and supporting analysis...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... a Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in the... a programmatic agreement for managing properties included in, or eligible for inclusion in, the... person on the official service list for the above-captioned proceeding may request inclusion on the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Significant Impact and Final Programmatic Environmental Assessment for Army 2020 Force Structure Realignment... Significant Impact (FNSI) and final Programmatic Environmental Assessment (PEA) for Army 2020 force structure realignments that may occur from Fiscal Years (FYs) 2013-2020. The Army published the Notice of Availability of...
NASA Technical Reports Server (NTRS)
1978-01-01
Alternate level 4 integration approaches were synthesized and evaluated to establish the most cost effective experiment integration approach. Program baseline system trade studies are described, as well as Spacelab equipment utilization. Programmatic analysis of the baseline program was evaluated; the 2/3 and 1/3 traffic models were also considered.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
... DEPARTMENT OF ENERGY Re-Opening of the Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement AGENCY: Department of Energy. ACTION: Re-opening of the public... the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (Draft ULP PEIS, DOE/EIS...
Programmatic and teaching initiatives for ethnically diverse nursing students: a literature review.
Torregosa, Marivic B; Morin, Karen H
2012-06-01
The purpose of this study was to examine the evidence of programmatic and teaching initiatives implemented by nursing faculty to enhance the academic success rates of ethnically diverse students (EDS). A search of the literature in the Cumulative Index to Nursing and Allied Health Literature and MEDLINE databases, wherein primary sources about programmatic and teaching initiative to promote academic success among EDS, was conducted. Using specific the Cumulative Index to Nursing and Allied Health Literature subject headings and Medical Subject Headings, 230 articles were retrieved from both databases. A total of 22 peer-reviewed articles published between 2000 and 2011 were included in the literature review. We found that evidence on the predominant programmatic and teaching initiatives for EDS academic success was inconclusive. The most common programmatic and teaching initiatives implemented by nursing faculty were peer mentoring, faculty-student mentoring, social networking, academic support, and financial support. Although positive student outcomes were reported about programmatic and teaching initiatives for EDS, the evidence remained inconclusive. Recommendations for policy and future research in this area of nursing education research were provided. Copyright © 2012. Published by Elsevier B.V.
Popova, N K; Tibeikina, M A
2010-06-01
Immobility and hyperthermia induced by unavoidable stress imposed by the tail suspension test (TST) and the acoustic startle reaction were assessed in mice of 11 inbred strains and in Tg8 mice, which have genetic knockout of MAO A. Sharp genotypic differences in immobility were seen, while there was no correlation with the hyperthermic response to the TST. A correlation was found between the extent of immobility in the TST and the startle reaction. Studies of 11 strains of mice revealed a positive correlation between the duration of immobility in the TST and the Porsolt "despair test." Genetic knockout of MAO A, one of the key enzymes in catecholamine and serotonin metabolism in the brain, weakened the startle reaction and TST-induced hyperthermia but had no significant effect on the immobility of Tg8 mice, which provides evidence of differences in the neurochemical regulation of these reactions. These data provide grounds for using the TST as a "dry" Porsolt test and identify TST-induced hyperthermia as a model for reactions to unavoidable stress.
Cimen, Harun; Půža, Vladimír; NermuŤ, JiŘí; Hatting, Justin; Ramakuwela, Tshima; Hazir, Selcuk
2016-01-01
A new species of entomopathogenic nematode (EPN), Steinernema biddulphi n. sp., was isolated from a maize field in Senekal, Free State Province of South Africa. Morphological and molecular studies indicated the distinctness of S. biddulphi n. sp. from other Steinernema species. Steinernema biddulphi n. sp. is characterized IJs with average body length of 663 μm (606–778 μm), lateral fields with six ridges in mid-body region forming the formula 2,6,2. Excretory pore located anterior to mid-pharynx (D% = 46). Hyaline layer occupies approximately half of tail length. Male spicules slightly to moderately curved, with a sharp tip and golden brown in color. The first generation of males lacking a mucron on the tail tip while the second generation males with a short filamentous mucron. Genital papillae with 11 pairs and one unpaired preanal papilla. The new species is further characterized by sequences of the internal transcribed spacer (ITS) and partial 28S regions (D2-D3) of the ribosomal DNA (rDNA). Phylogenetic data show that S. biddulphi n. sp. belongs to the “bicornutum” clade within the Steinernematidae family. PMID:27765988
Code of Federal Regulations, 2010 CFR
2010-10-01
.... D. Sport Fishing. Anglers may sport fish on the refuge in accordance with state law, as specifically... Hunting. Hunting of pronghorn antelope and deer is permitted on designated areas of the refuge. D. Sport... of sage grouse, cottontail rabbit, jackrabbit, raccoon, fox, and skunk on designated areas of the...
78 FR 19522 - Notice of Public Meeting, Northwest Colorado Resource Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... White River Field Office, 220 E. Market St., Meeker, CO. FOR FURTHER INFORMATION CONTACT: David Boyd... the BLM National Sage Grouse Conservation Strategy, working group reports, recreation, fire management... National Conservation Area, Kremmling Resource Management Plan revision and the White River Field Office...
Zimmerman, Guthrie S; Millspaugh, Joshua J; Link, William A; Woods, Rami J; Gutiérrez, R J
2013-12-01
Population cycles have long interested biologists. The ruffed grouse, Bonasa umbellus, is one such species whose populations cycle over most of their range. Thus, much effort has been expended to understand the mechanisms that might control cycles in this and other species. Corticosterone metabolites are widely used in studies of animals to measure physiological stress. We evaluated corticosterone metabolites in feces of territorial male grouse as a potential tool to study mechanisms governing grouse cycles. However, like most studies of corticosterone in wild animals, we did not know the identity of all individuals for which we had fecal samples. This presented an analytical problem that resulted in either pseudoreplication or confounding. Therefore, we derived an analytical approach that accommodated for uncertainty in individual identification. Because we had relatively low success capturing birds, we estimated turnover probabilities of birds on territorial display sites based on capture histories of a limited number of birds we captured. Hence, we developed a study design and modeling approach to quantify variation in corticosterone levels among individuals and through time that would be applicable to any field study of corticosterone in wild animals. Specifically, we wanted a sampling design and model that was flexible enough to partition variation among individuals, spatial units, and years, while incorporating environmental covariates that would represent potential mechanisms. We conducted our study during the decline phase of the grouse cycle and found high variation among corticosterone samples (11.33-443.92 ng/g [x=113.99 ng/g, SD=69.08, median=99.03 ng/g]). However, there were relatively small differences in corticosterone levels among years, but levels declined throughout each breeding season, which was opposite our predictions for stress hormones correlating with a declining population. We partitioned the residual variation into site, bird, and repetition (i.e., multiple samples collected from the same bird on the same day). After accounting for years and three general periods within breeding seasons, 42% of the residual variation among observations was attributable to differences among individual birds. Thus, we attribute little influence of site on stress level of birds in our study, but disentangling individual from site effects is difficult because site and bird are confounded. Our model structures provided analytical approaches for studying species having different ecologies. Our approach also demonstrates that even incomplete information on individual identity of birds within samples is useful for analyzing these types of data. Copyright © 2013 Elsevier Inc. All rights reserved.
Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report
NASA Technical Reports Server (NTRS)
1974-01-01
The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.
Implementation of Programmatic Quality and the Impact on Safety
NASA Astrophysics Data System (ADS)
Huls, Dale T.; Meehan, Kevin M.
2005-12-01
The implementation of an inadequate programmatic quality assurance discipline has the potential to adversely affect safety and mission success. This is best demonstrated in the lessons provided by the Apollo 1 Apollo 13 Challenger, and Columbia accidents; NASA Safety and Mission Assurance (S&MA) benchmarking exchanges; and conclusions reached by the Shuttle Return-to-Flight Task Group established following the Columbia Shuttle accident. Examples from the ISS Program demonstrate continuing issues with programmatic quality. Failure to adequately address programmatic quality assurance issues has a real potential to lead to continued inefficiency, increases in program costs, and additional catastrophic accidents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... organization shall negotiate with the Secretary the type and frequency of program narrative and program data... 25 Indians 2 2011-04-01 2011-04-01 false What programmatic reports and data shall the Indian tribe... INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Programmatic Reports and Data Requirements § 900...
Code of Federal Regulations, 2012 CFR
2012-04-01
... organization shall negotiate with the Secretary the type and frequency of program narrative and program data... 25 Indians 2 2012-04-01 2012-04-01 false What programmatic reports and data shall the Indian tribe... INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Programmatic Reports and Data Requirements § 900...
Code of Federal Regulations, 2010 CFR
2010-04-01
... organization shall negotiate with the Secretary the type and frequency of program narrative and program data... 25 Indians 2 2010-04-01 2010-04-01 false What programmatic reports and data shall the Indian tribe... INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Programmatic Reports and Data Requirements § 900...
ERIC Educational Resources Information Center
Beller, Jennifer M.
2013-01-01
This article describes a programmatic approach to undergraduate research (UGR) at Washington State University. In a programmatic approach, UGR is woven throughout the curriculum, with the expressed intent of producing undergraduate students who have at least a moderate ability to read, use, conduct, and present research. Washington State…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... of the Draft Programmatic Environmental Impact Statement for Allocation of Oil Shale and Tar Sands... of Oil Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado, Utah, and Wyoming... preferred method of commenting. Mail: Addressed to: Oil Shale and Tar Sands Resources Draft Programmatic EIS...
Micro CT characterization of a coastal mine tailings deposit, Portmán Bay, SE Spain
NASA Astrophysics Data System (ADS)
Frigola, Jaime; Cerdà-Domènech, Marc; Barriuso, Eduardo; Sanchez-Vidal, Anna; Amblas, David; Canals, Miquel
2017-04-01
Scanning of sediment cores by means of high-resolution non-destructive techniques provides researchers with huge amounts of highly valuable data allowing fast and detailed characterization of the materials. In the last decades several devoted instruments have been developed and applied to the study of sedimentary sequences, mainly multi-sensor core loggers (MSCL) for the physical properties and XRF core scanners for the chemical elemental composition. The geoscientific community started using computed tomography (CT) systems about two decades ago. These were mainly medical systems as dedicated instruments were essentially lacking by that time. The resolution of those medical systems was limited to several hundreds of micrometres voxel size. Micro computed tomography (micro-CT) systems have also spread into geoscientific research, although their limited workspace dimensions prevents their use for large objects, such as long sediment cores. Recently, a new micro-CT system, the MultiTom Core X-ray CT, conceived by University of Barcelona (UB) researchers and developed by X-ray Engineering, became operational. It is able of scanning sediment cores up to 1.5 m long, and allows adjustable resolutions from 300 microns down to 3-4 microns. The system is now installed at UB's CORELAB Laboratory for non-destructive analyses of geological materials. Here we present, as an example, the results of MultiTom scans of a set of sediment cores recovered offshore Portmán Bay, SE Spain, in order to characterize at very high-resolution the metal-enriched deposit generated after 33 years of direct discharge into the sea of mine tailings resulting from the exploitation of Pb and Zn ores. In total 52 short cores and 6 long gravity cores from the mine tailings infilled bay were scanned with the MultiTom system at a mean voxel resolution of 125 microns. The integrated study of micro-CT data allowed differentiating the main tailings units from deposits formed after disposal cessation. Tailings units show higher radio-density values, which correspond to metal enrichments. A lower unit consists of highly laminated interbedded low radio-density and very high radio-density layers, while an upper mine tailings unit is more homogeneous and shows intermediate radio-density values. The limit between the tailings and the post-mining deposits is defined by a sharp surface associated with an abrupt decrease in the radio-densities. Post-mining deposits are also characterized by an increment in bioturbation marks, which are practically absent in the tailings units, and an increase in carbonate particles and organic matter patches. Micro CT scans allow observation of very small structures, which are indicative of the complexity of the sedimentation processes involved in the transport and final deposition of the mine tailings. Integration of micro CT scans together with XRF core scanner and MSCL data allows a better characterization of the metal concentrations and their distribution within the deposit, directly demonstrating the great value of non-destructive techniques for actually high-resolution sedimentological studies.
USDA-ARS?s Scientific Manuscript database
Utah lotus (Lotus utahensis Ottley) is a North American leguminous forb that may hold promise for rangeland revegetation in the western USA for diversifying planting mixtures, attracting pollinators, providing high quality forage, and expanding habitats for insects needed by sage grouse chicks. We ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... impacts to the human environment from the proposed Umbrella CCAA and alternatives to the action. DATES..., State, and local governments: Draft Greater Sage-grouse Umbrella Candidate Conservation Agreement with Assurances for Wyoming Ranch Management (Umbrella CCAA), and Draft Environment Assessment of the Greater Sage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Game Bird Hunting. We allow hunting of duck, goose, coot, and snipe on designated areas of the refuge... each day. B. Upland Game Hunting. We allow hunting of pheasant, grouse, partridge, and cottontail... condition: You may only possess approved nontoxic shotshells while in the field (see § 32.2(k)). C. Big Game...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Game Bird Hunting. We allow hunting of duck, goose, coot, and snipe on designated areas of the refuge... each day. B. Upland Game Hunting. We allow hunting of pheasant, grouse, partridge, and cottontail... condition: You may only possess approved nontoxic shotshells while in the field (see § 32.2(k)). C. Big Game...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Game Bird Hunting. We allow hunting of duck, goose, coot, and snipe on designated areas of the refuge... each day. B. Upland Game Hunting. We allow hunting of pheasant, grouse, partridge, and cottontail... condition: You may only possess approved nontoxic shotshells while in the field (see § 32.2(k)). C. Big Game...
The importance of maintaining perennial bunchgrass in the sagebrush steppe
USDA-ARS?s Scientific Manuscript database
The sagebrush steppe is generally described as an ecosystem at great risk from encroachment of invasive annual grasses and conifer woodlands, land use changes, climate shifts and fragmentation in general. A great deal of attention has been focused on sage-grouse and need for sagebrush cover and for...
The impact of disease on wildlife populations
Herman, C.M.
1969-01-01
It is postulated that disease is a product of adverse habitats. Overpopulation causes overutilization of food supplies, which results in malnutrition and a decrease in resistance to diseases. Examples of such ecological relationships in populations of Canada geese, California quail, red grouse, deer, rabbits, voles, mice and lemmings are presented.
Restoring arid western habitats: Native plants maximize wildlife conservation effectiveness
Kas Dumroese; Jeremy Pinto; Deborah M. Finch
2016-01-01
Greater sage-grouse (Centrocercus urophasianus) and monarch butterflies (Danaus plexippus) and other pollinating insects have garnered a lot of attention recently from federal and state wildlife officials. These two species and pollinators share dwindling sagebrush habitat in the western United States that is putting their populations at risk. Sagebrush...
Sagebrush identification, ecology, and palatability relative to sage-grouse
Roger Rosentreter
2005-01-01
Basic identification keys and comparison tables for 23 low and big sagebrush (Artemisia) taxa are presented. Differences in sagebrush ecology, soil temperature regimes, geographic range, palatability, mineralogy, and chemistry are discussed. Coumarin, a chemical produced in the glands of some Artemisia species, causes UV-light fluorescence of the...
75 FR 10813 - Notice of Public Meeting, Southeast Oregon Resource Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... update, litigation updates, update on the BLM sagebrush/sage-grouse teams, Phase II Blue Mountain Forest...] Notice of Public Meeting, Southeast Oregon Resource Advisory Council AGENCY: Bureau of Land Management... (BLM) Southeast Oregon Resource Advisory Council (SEORAC) will meet as indicated below: DATES: The...
NASA Technical Reports Server (NTRS)
1985-01-01
Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.
On the duration and intensity of cumulative advantage competitions
NASA Astrophysics Data System (ADS)
Jiang, Bo; Sun, Liyuan; Figueiredo, Daniel R.; Ribeiro, Bruno; Towsley, Don
2015-11-01
Network growth can be framed as a competition for edges among nodes in the network. As with various other social and physical systems, skill (fitness) and luck (random chance) act as fundamental forces driving competition dynamics. In the context of networks, cumulative advantage (CA)—the rich-get-richer effect—is seen as a driving principle governing the edge accumulation process. However, competitions coupled with CA exhibit non-trivial behavior and little is formally known about duration and intensity of CA competitions. By isolating two nodes in an ideal CA competition, we provide a mathematical understanding of how CA exacerbates the role of luck in detriment of skill. We show, for instance, that when nodes start with few edges, an early stroke of luck can place the less skilled in the lead for an extremely long period of time, a phenomenon we call ‘struggle of the fittest’. We prove that duration of a simple skill and luck competition model exhibit power-law tails when CA is present, regardless of skill difference, which is in sharp contrast to the exponential tails when fitness is distinct but CA is absent. We also prove that competition intensity is always upper bounded by an exponential tail, irrespective of CA and skills. Thus, CA competitions can be extremely long (infinite mean, depending on fitness ratio) but almost never very intense. The theoretical results are corroborated by extensive numerical simulations. Our findings have important implications to competitions not only among nodes in networks but also in contexts that leverage socio-physical models embodying CA competitions.
Space construction system analysis. Part 2: Cost and programmatics
NASA Technical Reports Server (NTRS)
Vonflue, F. W.; Cooper, W.
1980-01-01
Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... likely impacts of climate change on the Gunnison sage-grouse and proposed critical habitat. (11) With... draft economic analysis, or the draft environmental assessment by mail from the Western Colorado Field... public hearing will be held at Western State Colorado University, University Center, 600 N. Adams Street...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Refuge A. Migratory Game Bird Hunting. We allow hunting of waterfowl on the Farmers Pool Unit area of the... snowmobiles and ATVs. 8. We prohibit camping. B. Upland Game Hunting. We allow hunting of ruffed grouse and... areas around the administrative buildings. 4. Conditions A2 through A8 apply. C. Big Game Hunting. We...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Refuge A. Migratory Game Bird Hunting. We allow hunting of waterfowl on the Farmers Pool Unit area of the... snowmobiles and ATVs. 8. We prohibit camping. B. Upland Game Hunting. We allow hunting of ruffed grouse and... areas around the administrative buildings. 4. Conditions A2 through A8 apply. C. Big Game Hunting. We...
Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems
Kevin C. Knutson; David A. Pyke; Troy A. Wirth; Robert S. Arkle; David S. Pilliod; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace
2014-01-01
Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Impact Statements To Incorporate Greater Sage-grouse Conservation Measures Into Land Use Plans and Land Management Plans AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Correction. SUMMARY: The BLM... Supplemental EISs, extends the scoping period, and adds 11 Forest Service Land Management Plans (LMPs) to this...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... preliminary general management areas (PGMA). PPMAs are BLM-administered public lands or National Forest System... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLUT1110000.L16100000.DS0000] Notice of... AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Availability. SUMMARY: In accordance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... and Plants; Proposed Endangered Status for Gunnison Sage-Grouse and Proposed Designation of Critical...; reopening of comment period; announcement of public hearings. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce the reopening of the public comment periods on our January 11, 2013, proposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
..., including: (a) Habitat requirements for feeding, breeding, and sheltering; (b) Genetics and taxonomy; (c...-grouse breeding complex) counts, population trends, and land ownership information is available in the... local breeding complexes. The six PMUs include: Pine Nut, Desert Creek-Fales, Bodie, Mount Grant, South...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... that could include loss of habitat for Greater sage-grouse and loss of acreage for livestock grazing...). Any information about historic and cultural resources within the area potentially affected by the... impacts on Indian trust assets and potential impacts to cultural resources, will be given due...
A Web-Based Resource for Investigating Environmental Change: The Emigrant Pass Observatory
ERIC Educational Resources Information Center
Davis, Michael G.; Chapman, David S.
2012-01-01
We present a user-friendly, data-driven Web site (http://thermal.gg.utah.edu/facilities/epo/) for a geothermal, climate change observatory that is educational for the general public, students, and researchers alike. The Emigrant Pass Observatory (EPO), located in the Grouse Creek Mountains in northwestern Utah, gathers both meteorological data…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... final rule. In some cases, it has been indicated in the citations by ``personal communication'' (pers. comm.), which could indicate either an e-mail or telephone conversation; while in other cases, the... of different plants throughout the season. (2) Comment: One peer reviewer stated that grouse...
Plant guide: Douglas' dusty-maiden (Chaenactic douglasii)
Derek Tilley; Dan Ogle; Loren St. John
2010-01-01
Douglas' dustymaiden can be used as part of a native forb component in wildland seedings to increase biodiversity, improve wildlife habitat, and provide food for numerous birds and mammals. Douglas' dustymaiden is readily visited by pollinators and other insect species. It is considered an important species for sage grouse during brood rearing because of its...
78 FR 68467 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
... of Public Meetings, Twin Falls District Resource Advisory Council, ID AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) and..., the Twin Falls District RAC subcommittee members for the Greater sage-grouse will meet at the Twin...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... to use certified noxious-weed-free forage and straw. Restoration, rehabilitation, and stabilization... domestic ungulates, weaken rehabilitation and landscape restoration efforts, increase soil erosion and... consistent with and supportive of the statewide Conservation Plan for the Greater Sage- Grouse in Idaho...
Simulating future climate and land-use impacts on at-risk species in parks and protected areas
Alpine and sagebrush ecosystems in the mountain west are under threat from climate change and development. The wolverine, fisher, greater sage-grouse,and pygmy rabbit are iconic at-risk species in the region. We explore the impacts of future climate and land-use change on these s...
ERIC Educational Resources Information Center
Hubbard, Kathy; Terrell, Chelsea
2009-01-01
"Armadillo Ray," by John Beifuss, is the tale of a young, curious armadillo who wants to know what the moon is. He is joined in his quest by snakes, prairie dogs, sage grouse, and owls. The beauty of the book is its simplicity, illustrations and landscapes, and its potential links to reading, geography, science, and mathematics. In this…
Sage-grouse groceries: forb response to pinon-juniper treatments
USDA-ARS?s Scientific Manuscript database
In the past 150 years, juniper (Juniperus spp. L.) and piñon (Pinus spp. L.) coniferous woodlands have increased 2 to 10-fold in 9 ecoregions spanning the Intermountain area of the western United States. Control of piñon-juniper woodlands by mechanical treatments and prescribed fire have been appli...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
..., and Thunder Basin National Grassland Planning Units and by this notice is announcing the opening of... the Thunder Basin National Grassland. Current management decisions for resources are described in the... Forest LRMP (1990) Medicine Bow National Forest LRMP (2003) Thunder Basin National Grassland LRMP (2002...
NASA Astrophysics Data System (ADS)
Wellington, D. F.; Bell, J. F., III; Johnson, J. R.; Fraeman, A. A.; Kinch, K. M.; Godber, A.; Rice, M. S.
2016-12-01
The Mars Science Laboratory Curiosity rover reached the lower units of Mt. Sharp in Gale Crater approximately two years ago. Along the traverse, Mastcam multispectral observations have documented the visible/near-IR spectral variability of drill tailings, bedrock, float rocks, fines, and other materials, recording a set of diverse reflectance properties in twelve unique filters over wavelengths 400-1100 nm. The most recent multi-filter images include new spectral diversity not encountered in near-field imaging acquired earlier in the mission. Since departing Marias Pass ( sol 1072), the rover has sampled material from the Stimson sandstone unit four times at two widely separated locations. These drill pairs were designed to investigate alteration regions visible as bright haloes bordering fractures in the bedrock. Drill fines and piles of dumped sample material from these sites (at Bridger Basin and on the Naukluft Plateau) were targeted for multispectral observations, which quantify the differences in overall reflectance and spectral shape between the unaltered Stimson material and the light-toned haloes. In the latter, high reflectances and relatively flat spectral shapes are consistent with interpretations of silica enrichment from other instruments. Mastcam spectra of the portions of the underlying Murray Formation (mudstone) that were encountered on first approach to the Bagnold dunes, and again upon exiting the Naukluft Plateau, are consistent with the presence of crystalline hematite. Variations in the relative strength of hematite absorption features in different locations may suggest possible differences in relative and/or absolute abundances of hematite of varying degrees of crystallinity. Dune materials have low reflectances with a broad, shallow absorption near 1-µm consistent with an olivine-bearing basaltic composition. We present these and other examples of spectral variability encountered by the rover during its ascent up the lower slopes of Mt. Sharp.
Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.
2009-03-31
The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull troutmore » were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.« less
Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël
2016-01-01
In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species’ habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial allocation of management resources in geographic regions where shrub encroachment represents a major biodiversity conservation issue. PMID:27727325
Carryover effects and climatic conditions influence the postfledging survival of greater sage-grouse
Blomberg, Erik J.; Sedinger, James S.; Gibson, Daniel; Coates, Peter S.; Casazza, Michael L.
2014-01-01
Prebreeding survival is an important life history component that affects both parental fitness and population persistence. In birds, prebreeding can be separated into pre- and postfledging periods; carryover effects from the prefledging period may influence postfledging survival. We investigated effects of body condition at fledging, and climatic variation, on postfledging survival of radio-marked greater sage-grouse (Centrocercus urophasianus) in the Great Basin Desert of the western United States. We hypothesized that body condition would influence postfledging survival as a carryover effect from the prefledging period, and we predicted that climatic variation may mediate this carryover effect or, alternatively, would act directly on survival during the postfledging period. Individual body condition had a strong positive effect on postfledging survival of juvenile females, suggesting carryover effects from the prefledging period. Females in the upper 25th percentile of body condition scores had a postfledging survival probability more than twice that (Φ = 0.51 ± 0.06 SE) of females in the bottom 25th percentile (Φ = 0.21 ± 0.05 SE). A similar effect could not be detected for males. We also found evidence for temperature and precipitation effects on monthly survival rates of both sexes. After controlling for site-level variation, postfledging survival was nearly twice as great following the coolest and wettest growing season (Φ = 0.77 ± 0.05 SE) compared with the hottest and driest growing season (Φ = 0.39 ± 0.05 SE). We found no relationships between individual body condition and temperature or precipitation, suggesting that carryover effects operated independently of background climatic variation. The temperature and precipitation effects we observed likely produced a direct effect on mortality risk during the postfledging period. Conservation actions that focus on improving prefledging habitat for sage-grouse may have indirect benefits to survival during postfledging, due to carryover effects between the two life phases.
Coates, Peter S.; Prochazka, Brian G.; Ricca, Mark A.; Wann, Gregory T.; Aldridge, Cameron L.; Hanser, Steven E.; Doherty, Kevin E.; O'Donnell, Michael S.; Edmunds, David R.; Espinosa, Shawn P.
2017-08-10
Population ecologists have long recognized the importance of ecological scale in understanding processes that guide observed demographic patterns for wildlife species. However, directly incorporating spatial and temporal scale into monitoring strategies that detect whether trajectories are driven by local or regional factors is challenging and rarely implemented. Identifying the appropriate scale is critical to the development of management actions that can attenuate or reverse population declines. We describe a novel example of a monitoring framework for estimating annual rates of population change for greater sage-grouse (Centrocercus urophasianus) within a hierarchical and spatially nested structure. Specifically, we conducted Bayesian analyses on a 17-year dataset (2000–2016) of lek counts in Nevada and northeastern California to estimate annual rates of population change, and compared trends across nested spatial scales. We identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial for other species occupying landscapes with heterogeneous disturbance and climatic regimes.
The influence of mitigation on sage-grouse habitat selection within an energy development field.
Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L
2015-01-01
Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may be responsible for the measurable improvement in sage-grouse nesting habitats within the development area. However, we cannot reject alternative hypotheses concerning the influence of population density and intraspecific competition. Additionally, we were unable to assess the actual fitness consequences of mitigation or the source-sink dynamics of the habitats. We compared the pre-mitigation and post-mitigation models predicted as maps with habitats ranked from low to high relative probability of use (equal-area bins: 1 - 5). We found more improvement in habitat rank between the two time periods around mitigated wells compared to non-mitigated wells. Informed mitigation within energy development fields could help improve habitats within the field. We recommend that any mitigation effort include well-informed plans to monitor the effectiveness of the implemented mitigation actions that assess both habitat use and relevant fitness parameters.
The interrupted power law and the size of shadow banking.
Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio
2014-01-01
Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is "interrupted" by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an "interrupted" Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate-which we propose as a shadow banking index-compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity.
NASA Technical Reports Server (NTRS)
1986-01-01
The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.
Jeanne C. Chambers; Jeremy D. Maestas; David A. Pyke; Chad S. Boyd; Mike Pellant; Amarina Wuenschel
2017-01-01
Conservation of imperiled species often demands addressing a complex suite of threats that undermine species viability. Regulatory approaches, such as the US Endangered Species Act (1973), tend to focus on anthropogenic threats through adoption of policies and regulatory mechanisms. However, persistent ecosystem-based threats, such as invasive species and altered...
Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?
ERIC Educational Resources Information Center
Duncan, Michael B.
2010-01-01
Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
...: Thomas Bills, Buffalo RMP Team Leader, BLM Buffalo Field Office, 1425 Fort Street, Buffalo, WY 82834... sage-grouse, livestock grazing, air quality, lands with wilderness characteristics, suitability for... CFR 1506.10, 43 CFR 1610.2. Donald A. Simpson, State Director, Wyoming. [FR Doc. 2013-15381 Filed 6-27...
Hechinger, R.F.; Lafferty, K.D.
2005-01-01
It is postulated that disease is a product of adverse habitats. Overpopulation causes overutilization of food supplies, which results in malnutrition and a decrease in resistance to diseases. Examples of such ecological relationships in populations of Canada geese, California quail, red grouse, deer, rabbits, voles, mice and lemmings are presented.
Antelope, sage grouse, and neotropical migrants
Reg. Rothwell
1993-01-01
The momentum this Partners in Flight initiative has developed is very impressive. I'm encouraged because, although it will have its costs, I see it as a potential aid to existing wildlife management efforts. Here, I will discuss some types of information that are routinely used by wildlife and habitat managers for other species. If this same information is made...
Auxiliary VHF transmitter to aid recovery of solar Argos/GPS PTTs
Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh
2014-01-01
While conducting greater sage-grouse (Centrocercus urophasianus) research, we found that solar-powered global positioning systems platform transmitter terminals (GPS PTTs) can be lost if the solar panel does not receive adequate sunlight. Thus, we developed 5-g (mortality sensor included; Prototype A) and 9.8-g (no mortality sensor; Prototype B) auxiliary very high...
Effective management strategies for sage-grouse and sagebrush: a question of triage?
Michael J. Wisdom; Mary M. Rowland; Robin J. Tausch
2005-01-01
The sagebrush (Artemisia spp.) ecosystem once occupied over 150 million acres of western North America (Barbour and Billings 1988). The ecosystem still occupies over 100 million acres (Connelly et al. 2004, Wisdom et al. 2005), but the abundance and condition of sagebrush communities is declining rapidly in response to a variety of detrimental land...
Chadwick D. Rittenhouse; William D. Dijak; Frank R. III Thompson; Joshua J. Millspaugh
2007-01-01
Reports landscape-level habitat suitability models for 10 species in the Central Hardwoods Region of the Midwestern United States: American woodcock, cerulean warbler, Henslow's sparrow, Indiana bat, northern bobwhite, ruffed grouse, timber rattlesnake, wood thrush, worm-eating warbler, and yellow-breasted chat. All models included spatially explicit variables and...
Robert L. Eng; John E. Toepfer; Jay A. Newell
1988-01-01
Cover requirements of prairie grouse are primarily related to vegetative structure, whereas food needs are species related. Seasonal distribution and intensity of grazing initially alter the structure and ultimately can alter species composition. Initial successful nests were found in areas of more and higher residual cover than unsuccessful nests. Nesting areas were...
How to Manage Oak Forests for Acorn Production
Paul Johnson
1994-01-01
Oak forests are life support systems for the many animals that live in them. Acorns, a staple product of oaks forests, are eaten by many species of birds and mammals including deer, bear, squirrels, mice, rabbits, foxes, raccoons, grackles, turkey, grouse, quail, blue jays, woodpeckers, and waterfowl. The population and health of wildlife often rise and fall with the...
NASA Astrophysics Data System (ADS)
Erkal, Denis; Koposov, Sergey E.; Belokurov, Vasily
2017-09-01
Only in the Milky Way is it possible to conduct an experiment that uses stellar streams to detect low-mass dark matter subhaloes. In smooth and static host potentials, tidal tails of disrupting satellites appear highly symmetric. However, perturbations from dark subhaloes, as well as from GMCs and the Milky Way bar, can induce density fluctuations that destroy this symmetry. Motivated by the recent release of unprecedentedly deep and wide imaging data around the Pal 5 stellar stream, we develop a new probabilistic, adaptive and non-parametric technique that allows us to bring the cluster's tidal tails into clear focus. Strikingly, we uncover a stream whose density exhibits visible changes on a variety of angular scales. We detect significant bumps and dips, both narrow and broad: two peaks on either side of the progenitor, each only a fraction of a degree across, and two gaps, ˜2° and ˜9° wide, the latter accompanied by a gargantuan lump of debris. This largest density feature results in a pronounced intertail asymmetry which cannot be made consistent with an unperturbed stream according to a suite of simulations we have produced. We conjecture that the sharp peaks around Pal 5 are epicyclic overdensities, while the two dips are consistent with impacts by subhaloes. Assuming an age of 3.4 Gyr for Pal 5, these two gaps would correspond to the characteristic size of gaps created by subhaloes in the mass range of 106-107 M⊙ and 107-108 M⊙, respectively. In addition to dark substructure, we find that the bar of the Milky Way can plausibly produce the asymmetric density seen in Pal 5 and that GMCs could cause the smaller gap.
Nichols, J Tyler; Krueger, Paul S
2012-09-01
Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases.
Analysis of microgravity space experiments Space Shuttle programmatic safety requirements
NASA Technical Reports Server (NTRS)
Terlep, Judith A.
1996-01-01
This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
Management of birch for wildlife habitat
Samuel P. Shaw
1969-01-01
The list of wildlife species known to prefer paper birch and yellow birch as food ls a long one. To mention a few: beavers and porcupines chew on the bark and wood; sapsuckers feed on the sap; other songbirdsnotably the redpoll, pine siskin, and chikadeerelish the seeds; ruffed grouse eat the catkins, buds, and seeds (in northern Maine and Canada...
Prabin Bajgain
2011-01-01
Big sagebrush (Artemisia tridentata) is one of the ecologically most important shrub species in western North America. The species serves as a major source of food and habitat for the nearthreatened sage grouse and various other fauna. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is considered as a serious threat...
Winter prey selection of Canada lynx in northwestern Montana
John R. Squires; Leonard F. Ruggiero
2007-01-01
The roles that diet and prey abundance play in habitat selection of Canada lynx (Lynx canadensis) in the contiguous United States is poorly understood. From 1998-2002, we back-tracked radiocollared lynx (6 F, 9 M) for a distance of 582 km and we located 86 kills in northwestern Montana, USA. Lynx preyed on 7 species that included blue grouse (Dendragapus...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Basin Region: Web site: http://www.blm.gov/wo/st/en/prog/more/sagegrouse/western.html . Email: sagewest...: Lauren Mermejo, Great Basin Region Project Manager, telephone 775-861-6400; address 1340 Financial.../sagegrouse/eastern.html , and for the Great Basin Region at http://www.blm.gov/wo/st/en/prog/more/sagegrouse...
Effects of grazing management treatment on grassland plant communities and prairie grouse habitat
Llewellyn L. Manske; William T. Barker; Mario E. Biondini
1988-01-01
Seasonlong grazing treatments show no benefit to grass basal cover and visual obstruction is not adequate. Pastures with one grazing period in mid season show no positive change in grass basal cover but have better visual obstruction than seasonlong. Deferred grazing decreases basal cover of warm season grasses and visual obstruction reduced to inadequate levels the...
Torregrosa, Alicia; Casazza, Michael L.; Caldwell, Margaret R.; Mathiasmeier, Teresa A.; Morgan, Peter M.; Overton, Cory T.
2010-01-01
Integration of scientific data and adaptive management techniques is critical to the success of species conservation, however, there are uncertainties about effective methods of knowledge exchange between scientists and decisionmakers. The conservation planning and implementation process for Greater Sage-grouse (Centrocercus urophasianus; ) in the Mono Basin, Calif. region, was used as a case study to observe the exchange of scientific information among stakeholders with differing perspectives; resource manager, scientist, public official, rancher, and others. The collaborative development of a risk-simulation model was explored as a tool to transfer knowledge between stakeholders and inform conservation planning and management decisions. Observations compiled using a transdisciplinary approach were used to compare the exchange of information during the collaborative model development and more traditional interactions such as scientist-led presentations at stakeholder meetings. Lack of congruence around knowledge needs and prioritization led to insufficient commitment to completely implement the risk-simulation model. Ethnographic analysis of the case study suggests that further application of epistemic community theory, which posits a strong boundary condition on knowledge transfer, could help support application of risk simulation models in conservation-planning efforts within similarly complex social and bureaucratic landscapes.
Evaluation of genetic variability in a small, insular population of spruce grouse
O'Connell, A.F.; Rhymer, Judith; Keppie, D.M.; Svenson, K.L.; Paigan, B.J.
2002-01-01
Using microsatellite markers we determined genetic variability for two populations of spruce grouse in eastern North America, one on a coastal Maine island where breeding habitat is limited and highly fragmented, the other in central New Brunswick (NB), where suitable breeding habitat is generally contiguous across the region. We examined six markers for both populations and all were polymorphic. Although the number of alleles per locus and the proportion of unique alleles were lower in the island population, and probably a result of small sample.size, heterozygosity and a breeding coefficient (Fis) indicated slightly more variability in the island population. Deviation from Hardy-Weinberg equilibrium also was more evident in loci for the mainland population. Several traits previously documented in the island population: relatively long natal dispersal distances, reproductive success, territoriality, adult survival, and longevity support the maintenance of hetrerzygosity, at least in the short-term. Sample collection from two small (500 ha), separate areas in NB, and the predicted importance of immigration density to supplement this population demonstrate the need for behavioral and ecological information when interpreting genetic variation. We discuss the relevance of these issues with respect to genetic variability and viability.
A practical approach to programmatic assessment design.
Timmerman, A A; Dijkstra, J
2017-12-01
Assessment of complex tasks integrating several competencies calls for a programmatic design approach. As single instruments do not provide the information required to reach a robust judgment of integral performance, 73 guidelines for programmatic assessment design were developed. When simultaneously applying these interrelated guidelines, it is challenging to keep a clear overview of all assessment activities. The goal of this study was to provide practical support for applying a programmatic approach to assessment design, not bound to any specific educational paradigm. The guidelines were first applied in a postgraduate medical training setting, and a process analysis was conducted. This resulted in the identification of four steps for programmatic assessment design: evaluation, contextualisation, prioritisation and justification. Firstly, the (re)design process starts with sufficiently detailing the assessment environment and formulating the principal purpose. Key stakeholders with sufficient (assessment) expertise need to be involved in the analysis of strengths and weaknesses and identification of developmental needs. Central governance is essential to balance efforts and stakes with the principal purpose and decide on prioritisation of design decisions and selection of relevant guidelines. Finally, justification of assessment design decisions, quality assurance and external accountability close the loop, to ensure sound underpinning and continuous improvement of the assessment programme.
Benefits and costs of programmatic agreements
DOT National Transportation Integrated Search
2015-02-01
The performing organization, on behalf of the FHWA Office of Planning, Environment, and Realty, conducted a benefit-cost assessment of programmatic agreements and approaches. The assessment consisted of a case study approach that evaluated three agre...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... the Draft Environmental Impact Statement, Including a Draft Programmatic Agreement, for the Clark... Programmatic Agreement, for the Southern Nevada Water Authority's (SNWA) proposed Clark, Lincoln, and White...
Using EMBL-EBI services via Web interface and programmatically via Web Services
Lopez, Rodrigo; Cowley, Andrew; Li, Weizhong; McWilliam, Hamish
2015-01-01
The European Bioinformatics Institute (EMBL-EBI) provides access to a wide range of databases and analysis tools that are of key importance in bioinformatics. As well as providing Web interfaces to these resources, Web Services are available using SOAP and REST protocols that enable programmatic access to our resources and allow their integration into other applications and analytical workflows. This unit describes the various options available to a typical researcher or bioinformatician who wishes to use our resources via Web interface or programmatically via a range of programming languages. PMID:25501941
Tilt changes of short duration
McHugh, Stuart
1976-01-01
Section I of this report contains a classification scheme for short period tilt data. For convenience, all fluctuations in the local tilt field of less than 24 hours duration will be designated SP (i.e., short period) tilt events. Three basic categories of waveshape appearance are defined, and the rules for naming the waveforms are outlined. Examples from tilt observations at four central California sites are provided. Section II contains some coseismic tilt data. Fourteen earthquakes in central California, ranging in magnitude from 2.9 to 5.2, were chosen for study on four tiltmeters within 10 source dimensions of the epicenters. The raw records from each of the four tiltmeters at the times of the earthquakes were photographed and are presented in this section. Section III contains documentation of computer programs used in the analysis of the short period tilt data. Program VECTOR computes the difference vector of a tilt event and displays the sequence of events as a head-to-tail vector plot. Program ONSTSP 1) requires two component digitized tilt data as input, 2) scales and plots the data, and 3) computes and displays the amplitude, azimuth, and normalized derivative of the tilt amplitude. Program SHARPS computes the onset sharpness, (i.e., the normalized derivative of the tilt amplitude at the onset of the tilt event) as a function of source-station distance from a model of creep-related tilt changes. Program DSPLAY plots the digitized data.
The impact of programmatic assessment on student learning: theory versus practice.
Heeneman, Sylvia; Oudkerk Pool, Andrea; Schuwirth, Lambert W T; van der Vleuten, Cees P M; Driessen, Erik W
2015-05-01
It is widely acknowledged that assessment can affect student learning. In recent years, attention has been called to 'programmatic assessment', which is intended to optimise both learning functions and decision functions at the programme level of assessment, rather than according to individual methods of assessment. Although the concept is attractive, little research into its intended effects on students and their learning has been conducted. This study investigated the elements of programmatic assessment that students perceived as supporting or inhibiting learning, and the factors that influenced the active construction of their learning. The study was conducted in a graduate-entry medical school that implemented programmatic assessment. Thus, all assessment information, feedback and reflective activities were combined into a comprehensive, holistic programme of assessment. We used a qualitative approach and interviewed students (n = 17) in the pre-clinical phase of the programme about their perceptions of programmatic assessment and learning approaches. Data were scrutinised using theory-based thematic analysis. Elements from the comprehensive programme of assessment, such as feedback, portfolios, assessments and assignments, were found to have both supporting and inhibiting effects on learning. These supporting and inhibiting elements influenced students' construction of learning. Findings showed that: (i) students perceived formative assessment as summative; (ii) programmatic assessment was an important trigger for learning, and (iii) the portfolio's reflective activities were appreciated for their generation of knowledge, the lessons drawn from feedback, and the opportunities for follow-up. Some students, however, were less appreciative of reflective activities. For these students, the elements perceived as inhibiting seemed to dominate the learning response. The active participation of learners in their own learning is possible when learning is supported by programmatic assessment. Certain features of the comprehensive programme of assessment were found to influence student learning, and this influence can either support or inhibit students' learning responses. © 2015 John Wiley & Sons Ltd.
Carbon Dioxide Snow Storms During the Polar Night on Mars
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Colaprete, Anthony
2001-01-01
The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.
Suprathermal electrons associated with a plasma discharge on an active sounding rocket experiment
NASA Astrophysics Data System (ADS)
Bale, S. D.; Kellogg, P. J.; Monson, S. J.; Anderson, H. R.; Potter, D. W.
1995-12-01
Electrons with energies up to 600 eV are observed with the retarding potential analyzer (RPA) instrument aboard the Several Compatible Experiments (SCEX) III sounding rocket. The electrons are concomitant with high-energy (2-6 keV) electron gun injections and also evidence themselves by luminosity observed with 3805 Å and 3914 Å photometers. Both the collected electron flux and luminosity measurements are strongly nonlinear with gun injection current. For a typical event, the electron distribution is similar to laboratory beam-plasma discharge (BPD) distributions reported by Sharp (1982) and when backed by HF electric field observations (Goerke et al., 1992; Llobet et al., 1985), the BPD mechanism becomes a most likely explanation. Strong turbulence theories of BPD predict a power law tail in the electron distribution, and we compare our spectral index with some previous observations.
Telling apart Felidae and Ursidae from the distribution of nucleotides in mitochondrial DNA
NASA Astrophysics Data System (ADS)
Rovenchak, Andrij
2018-02-01
Rank-frequency distributions of nucleotide sequences in mitochondrial DNA are defined in a way analogous to the linguistic approach, with the highest-frequent nucleobase serving as a whitespace. For such sequences, entropy and mean length are calculated. These parameters are shown to discriminate the species of the Felidae (cats) and Ursidae (bears) families. From purely numerical values we are able to see in particular that giant pandas are bears while koalas are not. The observed linear relation between the parameters is explained using a simple probabilistic model. The approach based on the non-additive generalization of the Bose distribution is used to analyze the frequency spectra of the nucleotide sequences. In this case, the separation of families is not very sharp. Nevertheless, the distributions for Felidae have on average longer tails comparing to Ursidae.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Power Company; Holt Hydroelectric Project; Notice of Revised Restricted Service List for a Programmatic... Hydroelectric Project No. 2203. The programmatic agreement, when executed by the Commission, the Alabama SHPO...
Ecological risks of DOE`s programmatic environmental restoration alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representativemore » facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.« less
Seminal plasma and sperm proteome of ring-tailed coatis (Nasua nasua, Linnaeus, 1766).
Silva, Herlon Victor Rodrigues; Rodriguez-Villamil, Paula; Magalhães, Francisco Felipe de; Nunes, Thalles Gothardo Pereira; Freitas, Luana Azevedo de; Ribeiro, Leandro Rodrigues; Silva, Alexandre Rodrigues; Moura, Arlindo A; Silva, Lúcia Daniel Machado da
2018-04-15
Ring-tailed coati is listed as a species of least concern in the International Union for Conservation of Nature (IUCN) Red List, however, there has been a sharp decline in their population. The present study was conducted to evaluate the major proteins of both seminal plasma and sperm in ring-tailed coatis. Semen sample was collected from three adult coatis and evaluated for their morphological characteristics. Further, the sample was centrifuged to separate spermatozoa from seminal plasma, and then stored in liquid nitrogen. The seminal plasma and sperm proteins were subjected to one-dimensional (1-D) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by mass spectrometry. Gene ontology and protein networks were analyzed using bioinformatics tools. Based on sperm concentration and average protein content of the semen, the concentration of protein/spermatozoon was found to be 104.69 ± 44.43 μg. The analysis of SDS-PAGE gels showed 20.3 ± 3.1 and 17 ± 2 protein bands/lane for seminal plasma and sperm, respectively. In-gel protein digestion and peptide analysis by mass spectrometry revealed 238 and 246 proteins in the seminal plasma and sperm, respectively. The gene ontology analysis revealed that the proteins of seminal plasma mainly participated in cellular (35%) and regulatory (21%) processes. According to their cellular localization, seminal plasma proteins were categorized as structural (18%), extracellular (17%), and nuclear (14%) proteins with molecular functions, such as catalytic activity (43%) and binding (43%). The sperm proteins were also involved in cellular (38%) and regulatory (23%) processes, and mainly categorized as extracellular (17%), nuclear (13%), and cytoplasmic (10%) proteins. The major molecular functions of the sperm proteins were catalytic activity (44%) and binding (42%). These results indicated that the seminal plasma of ring-tailed coati has an array of proteins that can potentially modulate several sperm functions, from sperm protection to oocyte binding. However, further studies are necessary to interpret the roles of these major seminal plasma proteins in coatis. Copyright © 2018 Elsevier Inc. All rights reserved.
The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field
Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.
2015-01-01
Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may be responsible for the measurable improvement in sage-grouse nesting habitats within the development area. However, we cannot reject alternative hypotheses concerning the influence of population density and intraspecific competition. Additionally, we were unable to assess the actual fitness consequences of mitigation or the source-sink dynamics of the habitats. We compared the pre-mitigation and post-mitigation models predicted as maps with habitats ranked from low to high relative probability of use (equal-area bins: 1 – 5). We found more improvement in habitat rank between the two time periods around mitigated wells compared to non-mitigated wells. Informed mitigation within energy development fields could help improve habitats within the field. We recommend that any mitigation effort include well-informed plans to monitor the effectiveness of the implemented mitigation actions that assess both habitat use and relevant fitness parameters. PMID:25835296
DOT National Transportation Integrated Search
The federal government can take programmatic and financial actions to : promote the deployment of intelligent transportation systems. The : programmatic actions include providing technical assistance and training : to state and local officials, disse...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
... Inclusion in the National Register of Historic Places; Marseilles Land and Water Company September 3, 2010... Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in the National Register...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
.... George, Utah. ADDRESSES: The RAC/RRAC will meet at the Hilton Garden Inn (Indigo meeting room), 1731... the implementation of the instruction memoranda and the impact to the grazing community on sage grouse... meet in the lobby of the Hilton Garden Inn at 7:15 a.m. for departure at 7:30 a.m. The tour will...
Carl L. Wambolt; Aaron J. Harp; Bruce L. Welch; Nancy Shaw; John W. Connelly; Kerry P. Reese; Clait E. Braun; Donald A. Klebenow; E. Durant McArthur; James G. Thompson; L. Allen Torell; John A. Tanaka
2002-01-01
The role of the Policy Analysis Center for Western Public Lands is to provide integrated social, economic and ecological analyses of public land policies that affect communities in the West. Its mission is to help rural communities, policy makers, resource managers, resource users and others understand, analyze and engage effectively in the public-land policy process...
Environmental Assessment: Space Innovation and Development Center Schriever AFB, Colorado
2006-03-01
Ptychocheilus lucius E Gunnison sage-grouse Centrocercus minimus c Humpback chub Gila cypha E Razorback sucker© Xyrauchentexanus E Uinta Basin hookless...debilis c Razorback sucker© Xyrauchen texanus E Uinta Basin hookless cactus Sclerocactus glaucus T Yellow-billed cuckoo Coccyzus americanus c GILPIN...Razorback sucker© Xyrauchen texanus E Uinta Basin hookless cactus Sclerocactus glaucus T Yellow-billed cuckoo Coccyzus americanus c MINERAL Bald
Falkowski, Michael J.; Evans, Jeffrey S.; Naugle, David E.; Hagen, Christian A.; Carleton, Scott A.; Maestas, Jeremy D.; Henareh Khalyani, Azad; Poznanovic, Aaron J.; Lawrence, Andrew J.
2017-01-01
Invasive woody plant expansion is a primary threat driving fragmentation and loss of sagebrush (Artemisia spp.) and prairie habitats across the central and western United States. Expansion of native woody plants, including conifer (primarily Juniperus spp.) and mesquite (Prosopis spp.), over the past century is primarily attributable to wildfire suppression, historic periods of intensive livestock grazing, and changes in climate. To guide successful conservation programs aimed at reducing top-down stressors, we mapped invasive woody plants at regional scales to evaluate landscape level impacts, target restoration actions, and monitor restoration outcomes. Our overarching goal was to produce seamless regional products across sociopolitical boundaries with resolution fine enough to depict the spatial extent and degree of woody plant invasion relevant to greater sage-grouse (Centrocercus urophasianus) and lesser prairie-chicken (Tympanuchus pallidicinctus)conservation efforts. We mapped tree canopy cover at 1-m spatial resolution across an 11-state region (508 265 km2). Greater than 90% of occupied lesser prairie-chicken habitat was largely treeless for conifers (< 1% canopy cover), whereas > 67% was treeless for mesquite. Conifers in the higher canopy cover classes (16 − 50% and > 50% canopy cover) were scarce (< 2% and 1% canopy cover), as was mesquite (< 5% and 1% canopy cover). Occupied habitat by sage-grouse was more variable but also had a relatively large proportion of treeless areas (x−">x− = 71, SE = 5%). Low to moderate levels of conifer cover (1 − 20%) were fewer (x−">x− = 23, SE = 5%) as were areas in the highest cover class (> 50%; x−">x−= 6, SE = 2%). Mapping indicated that a high proportion of invading woody plants are at a low to intermediate level. Canopy cover maps for conifer and mesquite resulting from this study provide the first and most geographically complete, high-resolution assessment of woody plant cover as a top-down threat to western sage-steppe and prairie ecosystems.
The Interrupted Power Law and the Size of Shadow Banking
Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio
2014-01-01
Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is “interrupted” by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an “interrupted” Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate–which we propose as a shadow banking index–compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity. PMID:24728096
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less
36 CFR 800.14 - Federal agency program alternatives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... program or the resolution of adverse effects from certain complex project situations or multiple... by the agreement. (3) Developing programmatic agreements for complex or multiple undertakings. Consultation to develop a programmatic agreement for dealing with the potential adverse effects of complex...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... Service List for a Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in... programmatic agreement for managing properties included in, or eligible for inclusion in, the National Register...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... of documents #0;appearing in this section. #0; #0; #0; #0;#0;Federal Register / Vol. 78, No. 230... contracts. The 2008 CRP Programmatic EA (PEA) and FONSI, which evaluated mandatory changes to CRP...
33 CFR 385.1 - Purpose of the programmatic regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... regulations. 385.1 Section 385.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN General... of Project Implementation Reports, Project Cooperation Agreements, plans and specifications, Pilot...
33 CFR 385.1 - Purpose of the programmatic regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... regulations. 385.1 Section 385.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN General... of Project Implementation Reports, Project Cooperation Agreements, plans and specifications, Pilot...
33 CFR 385.1 - Purpose of the programmatic regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regulations. 385.1 Section 385.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN General... of Project Implementation Reports, Project Cooperation Agreements, plans and specifications, Pilot...
33 CFR 385.1 - Purpose of the programmatic regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... regulations. 385.1 Section 385.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN General... of Project Implementation Reports, Project Cooperation Agreements, plans and specifications, Pilot...
33 CFR 385.1 - Purpose of the programmatic regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulations. 385.1 Section 385.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN General... of Project Implementation Reports, Project Cooperation Agreements, plans and specifications, Pilot...
Using EMBL-EBI Services via Web Interface and Programmatically via Web Services.
Lopez, Rodrigo; Cowley, Andrew; Li, Weizhong; McWilliam, Hamish
2014-12-12
The European Bioinformatics Institute (EMBL-EBI) provides access to a wide range of databases and analysis tools that are of key importance in bioinformatics. As well as providing Web interfaces to these resources, Web Services are available using SOAP and REST protocols that enable programmatic access to our resources and allow their integration into other applications and analytical workflows. This unit describes the various options available to a typical researcher or bioinformatician who wishes to use our resources via Web interface or programmatically via a range of programming languages. Copyright © 2014 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
1986-01-01
Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.
7 CFR 3015.113 - Programmatic changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER... project than was anticipated when the award was made. (d) Transferring work and providing financial... performance of the substantive programmatic work, and for providing any form of financial assistance to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... DEPARTMENT OF ENERGY Nuclear Infrastructure Programmatic Environmental Impact Statement Supplement... Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production...), Office of Nuclear Energy, U.S. Department of Energy, 1000 Independence Ave. SW., Washington, DC 20585...
33 CFR 385.20 - Restoration Coordination and Verification (RECOVER).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Verification (RECOVER). 385.20 Section 385.20 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION... technical team described in the “Final Integrated Feasibility Report and Programmatic Environmental Impact...
33 CFR 385.20 - Restoration Coordination and Verification (RECOVER).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Verification (RECOVER). 385.20 Section 385.20 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION... technical team described in the “Final Integrated Feasibility Report and Programmatic Environmental Impact...
33 CFR 385.20 - Restoration Coordination and Verification (RECOVER).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Verification (RECOVER). 385.20 Section 385.20 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION... technical team described in the “Final Integrated Feasibility Report and Programmatic Environmental Impact...
33 CFR 385.20 - Restoration Coordination and Verification (RECOVER).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Verification (RECOVER). 385.20 Section 385.20 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION... technical team described in the “Final Integrated Feasibility Report and Programmatic Environmental Impact...
A Systematic Approach to Programmatic Assessment
ERIC Educational Resources Information Center
Moffit, Dani M.; Mansell, Jamie L.; Russ, Anne C.
2016-01-01
Context: Accrediting bodies and universities increasingly require evidence of student learning within courses and programs. Within athletic training, programmatic assessment has been a source of angst for program directors. While there are many ways to assess educational programs, this article introduces 1 systematic approach. Objective: This…
Programmatic Agreements for Project-Level Air Quality Analyses : NCHRP 25-25 Task 78
DOT National Transportation Integrated Search
2015-09-01
The research performed under Task 78 was divided into two phases. The first phase involved development of a draft Programmatic Agreement (PA) template and a draft Technical Support Document (TSD) template for project-level carbon monoxide (CO) hot-sp...
10 CFR 603.895 - Protection of information in programmatic reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 603.895 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Award Terms Related to Other Administrative Matters Financial and Programmatic Reporting § 603.895... transaction that would be trade secret, or commercial or financial information that is privileged or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
... NATIONAL SCIENCE FOUNDATION Notice Regarding Changed Venue for Public Hearing On a Draft Programmatic Environmental Impact Statement/Overseas Environmental Impact Statement (PEIS) AGENCY: National Science Foundation. ACTION: Notice regarding changed venue for public hearing. SUMMARY: The National...
2010-12-01
vehicles with a blast resistant V‐shaped underbody designed to protect the crew from mine blasts, fragments and direct fire weapons. The CAT I vehicle...Army Programmatic Environmental Assessment of the Mine Resistant Ambush Protected (MRAP) Vehicle Program December 2010...06-07-2010 to 20-11-2010 4. TITLE AND SUBTITLE Army Programmatic Environmental Assessment of the Mine Resistant Ambush Protected (MRAP) Vehicle
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
NASA Technical Reports Server (NTRS)
1985-01-01
The study was conducted in 3 parts over a 3 year period. The study schedule and the documentation associated with each study part is given. This document summarized selected study results from the conceptual design and programmatics segment of the effort. The objectives were: (1) to update requirements and tradeoffs and develop a detailed design and mission requirements document; (2) to develop conceptual designs and mission descriptions; and (3) to develop programmatic, i.e., work breakdown structure and work breakdown structure dictionary, estimated cost, and implementing plans and schedules.
Andrew J. Shirk; Michael A. Schroeder; Leslie A. Robb; Samuel A. Cushman
2015-01-01
The ability of landscapes to impede speciesâ movement or gene flow may be quantified by resistance models. Few studies have assessed the performance of resistance models parameterized by expert opinion. In addition, resistance models differ in terms of spatial and thematic resolution as well as their focus on the ecology of a particular species or more generally on the...
Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia.
Angelstam, P; Lindström, E; Widén, P
1984-05-01
We tested the hypothesis that synchronous fluctuations in small game species in boreal Fennoscandia are caused by varying predation pressure. The main prey of predators are the cyclically superabundant voles. Small game species (alternative prey) are rare compared to voles. The following 4 predictions were checked: (1) Predators should shift their diet from main prey to alternative prey as main prey decline. - This was confirmed using data on red fox (Vulpes vulpes L.) diet.; (2) The mortality rate of alternative prey should be inversely correlated to the abundance of main prey. - This was true for mountain hare (Lepus timidus L.) mortality rates and the rate of nest predation on black grouse (Tetrao tetrix L.).; (3) The total consumption of prey by all the predators should at least equal the critical losses in alternative prey during a decline year. - A tentative estimate of predator consumption amounted to 10 times the losses in grouse and hare.; and (4) The absence of synchrony between the species in the boreonemoral region should be associated with a more diverse diet of predators. - This was the case for red fox diets throughout Sweden. Although all 4 predictions were confirmed, we could not necessarily exclude other hypotheses involving changes in quality or quantity of plant food.
Jankowski, M. D.; Wittwer, D. J.; Heisey, D. M.; Franson, J. C.; Hofmeister, E. K.
2009-01-01
Investigators of wildlife populations often utilize demographic indicators to understand the relationship between habitat characteristics and population viability. Assessments of corticosterone may enable earlier detection of populations at risk of decline because physiological adjustments to habitat disturbance occur before reproductive diminutions. Noninvasive methods to accomplish these assesments are important in species of concern, such as the greater sage grouse (GRSG). Therefore, we validated a radioimmunoassay that measures immunoreactive corticosterone metabolites (ICM) in fecal samples and used it to characterize the adrenocortical response of 15 GRSG exposed to capture, intravenous injection of 50 IU/kg adrenocorticotrophic hormone (ACTH) or saline, and 22 h of confinement. Those animals injected with ACTH exhibited a more sustained (P = 0.0139) and less variable (P = 0.0012) response than those injected with saline, indicating different levels of adrenocortical activity. We also found that potential field-collection protocols of fecal samples did not alter ICM concentrations: samples held at 4°C for up to 16 h contained similar levels of ICM as those frozen (−20°C) immediately. This study demonstrates a multiphasic adrenocortical response that varied with the level of stimulation and indicates that the assay used to measure this phenomenon is applicable for studies of wild GRSG. PMID:19199814
Mayer, Kenneth F.; Anderson, Pete; Chambers, Jeanne; Boyd, Chad; Christiansen, Tom; Davis, Dawn; Espinosa, Shawn; Havlina, Doug; Ielmini, Michael; Kemner, Don; Kurth, Laurie; Maestas, Jeremy; Mealor, Brian; Milesneck, Ted; Niell, Lara; Pellant, Mike; Pyke, David A.; Tague, Joe; Vernon, Jason
2013-01-01
The WG will continue to meet on a regular basis to further develop and expand this list of gaps. Additionally, the WG will offer specific options to address the identified gaps. However, the WG recommends that the FWS, possibly through the State/Federal (Western Governors Association) Sage Grouse Task Force or the National Sage-grouse Executive Oversight Committee, establish a Subcommittee to specifically review this Gap Report and develop a multi-agency approach on how to address each gap. The WG will continue to endeavor to establish a priority list and identify the “low hanging fruit” that can be addressed in the short-term to affect the listing decision. Additionally, the WG will propose a longer-term strategy. However, to successfully establish such a strategy it will take buy-in and commitment at the highest levels in federal and state governments. In an effort to provide managers an opportunity to address the most important issues this coming fiscal year, we offer the following top 5 gaps. Beyond these top 5, the WG has identified 17 additional gaps that should be evaluated by both federal and state agencies as a means to help better manage the wildfire/invasive threat in the west.
Jankowski, M.D.; Wittwer, D.J.; Heisey, D.M.; Franson, J. Christian; Hofmeister, Erik K.
2009-01-01
Investigators of wildlife populations often utilize demographic indicators to understand the relationship between habitat characteristics and population viability. Assessments of corticosterone may enable earlier detection of populations at risk of decline because physiological adjustments to habitat disturbance occur before reproductive diminutions. Noninvasive methods to accomplish these assesments are important in species of concern, such as the greater sage grouse (GRSG). Therefore, we validated a radioimmunoassay that measures immunoreactive corticosterone metabolites (ICM) in fecal samples and used it to characterize the adrenocortical response of 15 GRSG exposed to capture, intravenous injection of 50 IU/kg adrenocorticotrophic hormone (ACTH) or saline, and 22 h of confinement. Those animals injected with ACTH exhibited a more sustained (P = 0.0139) and less variable (P = 0.0012) response than those injected with saline, indicating different levels of adrenocortical activity. We also found that potential field-collection protocols of fecal samples did not alter ICM concentrations: samples held at 4??C for up to 16 h contained similar levels of ICM as those frozen (-20??C) immediately. This study demonstrates a multiphasic adrenocortical response that varied with the level of stimulation and indicates that the assay used to measure this phenomenon is applicable for studies of wild GRSG. ?? 2009 by The University of Chicago. All rights reserved.
A free flight investigation of transonic sting interference
NASA Technical Reports Server (NTRS)
Jaffe, P.
1975-01-01
Transonic sting interference has been studied in a supersonic wind tunnel to obtain free flight and sting support data on identical models. The two principal configurations, representing fuselage bodies, were cigar shaped with tail fins. The others were a sharp 10-deg cone, a sphere, and a blunt entry body. Comparative data indicated that the sting had an appreciable effect on drag for the fuselage-like configurations; drag rise occurred 0.02 Mach number earlier in free flight, and drag level was 15% greater. The spheres and the blunt bodies were insensitive to the presence of stings regardless of their size. The 10-deg cones were in between, experiencing no drag difference with a minimum diameter sting, but a moderate difference with the largest diameter sting tested. All data tend to confirm the notion that for the more slender bodies the sting not only affects flow but the forebody flow as well.
Identifying Inputs to Leadership Development within an Interdisciplinary Leadership Minor
ERIC Educational Resources Information Center
McKim, Aaron J.; Sorensen, Tyson J.; Velez, Jonathan J.
2015-01-01
Researchers conducted a qualitative analysis of students' experiences while enrolled in an interdisciplinary leadership minor with the intent to determine programmatic inputs that spur leadership development. Based on students' reflections, three domains of programmatic inputs for leadership development within the minor were identified. These…
ERIC Educational Resources Information Center
Bowman, Thomas G.; Dodge, Thomas M.; Mazerolle, Stephanie M.
2015-01-01
Context: Graduates of athletic training programs (ATPs) have identified factors contributing to their persistence through professional education. However, program directors have yet to elaborate on programmatic attributes that might contribute to athletic training student retention in their respective ATPs. Objective: To determine program…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... Final Programmatic Environmental Impact Statement for the Mechanical and Artificial Creation and... Statement (FPEIS) for the Mechanical and Artificial Creation and Maintenance of Emergent Sandbar Habitat on... provide National Environmental Policy Act (NEPA) coverage for the mechanical and artificial construction...
Conservation Service Develops Prototype Programmatic Agreement That Can Give States More Time Savings and ) is pleased to announce it has designated a Prototype Programmatic Agreement (PA) for the use of the ) without the need for ACHP participation in consultation or execution of the agreement. This program
Solar Energy Development PEIS Information Center
skip navigation Solar Energy Development Programmatic EIS Home About the EIS Public Involvement Solar Energy Solar Energy Zones Maps Documents secondary menu News Frequently Asked Questions Glossary E the Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern
The U.S. Environmental Protection Agency’s Chesapeake Bay Program Office is announcing a Request for Proposals for applicants to provide the Chesapeake Bay Program partners with a proposal(s) for providing technical analysis and programmatic evaluation
Closing up Shop: Perspectives on the Departmental/Programmatic Elimination Experience
ERIC Educational Resources Information Center
Donoff, Susan B.; Rosser, Vicki J.
2016-01-01
Departmental and programmatic eliminations represent a new paradigm in the history of American higher education. Hastened by a national economic recession and competing state funding priorities, public postsecondary institutions have turned to academic attrition as a solution to continuous budgetary shortfalls. As a means of addressing the lived…
Closing up Shop: Meditations on the Departmental/Programmatic Elimination Experience
ERIC Educational Resources Information Center
Donoff, Susan Beth
2012-01-01
Departmental and programmatic eliminations represent a new paradigm in the history of American higher education. Hastened by a national economic recession and competing state funding priorities, public post-secondary institutions have turned to academic attrition as a solution to continuous budgetary shortfalls. As a means of addressing the lived…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... DEPARTMENT OF THE INTERIOR National Park Service [2310-0003-422] Coral Reef Restoration Plan... for the Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National... availability of a Final Programmatic Environmental Impact Statement for the Coral Reef Restoration Plan (Plan...