Mapping intramuscular tenderness variation in four major muscles of the beef round.
Reuter, B J; Wulf, D M; Maddock, R J
2002-10-01
The objective of this study was to quantify intramuscular tenderness variation within four muscles from the beef round: biceps femoris (BF), semitendinosus (ST), semimembranosus (SM), and adductor (AD). At 48 h postmortem, the BF, ST, SM, and AD were dissected from either the left or right side of ten carcasses, vacuum packaged, and aged for an additional 8 d. Each muscle was then frozen and cut into 2.54-cm-thick steaks perpendicular to the long axis of the muscle. Steaks were broiled on electric broilers to an internal temperature of 71 degrees C. Location-specific cores were obtained from each cooked steak, and Warner-Bratzler shear force was evaluated. Definable intramuscular shear force variation (SD = 0.56 kg) was almost twice as large as between-animal shear force variation (SD = 0.29 kg) and 2.8 times as large as between-muscle variation (SD = 0.20 kg). The ranking of muscles from greatest to least definable intramuscular shear force variation was BF, SM, ST, and AD (SD = 1.09, 0.72, 0.29, and 0.15 kg, respectively). The BF had its lowest shear force values at the origin (sirloin end), intermediate shear force values at the insertion, and its highest shear force values in a middle region 7 to 10 cm posterior to the sirloin-round break point (P < 0.05). The BF had lower shear force values toward the ST side than toward the vastus lateralis side (P < 0.05). The ST had its lowest shear force values in a 10-cm region in the middle, and its highest shear force values toward each end (P < 0.05). The SM had its lowest shear force values in the first 10-cm from the ischial end (origin), and its highest shear force values in a 13-cm region at the insertion end (P < 0.05). Generally, shear force was lower toward the superficial (medial) side than toward the deep side of the SM (P < 0.05). There were no intramuscular differences in shear force values within the AD (P > 0.05). These data indicate that definable intramuscular tenderness variation is substantial and could be used to develop alternative fabrication and(or) merchandising methods for beef round muscles.
Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin
2017-12-01
The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.
Silva, Douglas R G; Torres Filho, Robledo A; Cazedey, Henrique P; Fontes, Paulo R; Ramos, Alcinéia L S; Ramos, Eduardo M
2015-05-01
This study was conducted to investigate the effect of core sampling on Warner-Bratzler shear force evaluations of beef and pork loins (Longissimus thoracis et lumborum muscles) and to determine the relationship between them. Steaks of 2.54 cm from beef and pork loins were cooked and five round cross-section cores and five square cross-section cores of each steak were taken for shear force evaluation. Core sampling influenced both beef and pork shear force values with higher (P<0.05) average values and standard deviations for square cross-section cores. There was a strong and linear relationship (P<0.01) between round and square cross-section cores for beef (R(2)=0.78), pork (R(2)=0.70) and for beef+pork (R(2)=0.82) samples. These results indicate that it is feasible to use square cross-section cores in Warner-Bratzler shear force protocol as an alternative and potential method to standardize sampling for shear force measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
Fowler, Stephanie M; Schmidt, Heinar; van de Ven, Remy; Wynn, Peter; Hopkins, David L
2014-12-01
A Raman spectroscopic hand held device was used to predict shear force (SF) of 80 fresh lamb m. longissimus lumborum (LL) at 1 and 5days post mortem (PM). Traditional predictors of SF including sarcomere length (SL), particle size (PS), cooking loss (CL), percentage myofibrillar breaks and pH were also measured. SF values were regressed against Raman spectra using partial least squares regression and against the traditional predictors using linear regression. The best prediction of shear force values used spectra at 1day PM to predict shear force at 1day which gave a root mean square error of prediction (RMSEP) of 13.6 (Null=14.0) and the R(2) between observed and cross validated predicted values was 0.06 (R(2)cv). Overall, for fresh LL, the predictability SF, by either the Raman hand held probe or traditional predictors was low. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shear Elasticity and Shear Viscosity Imaging in Soft Tissue
NASA Astrophysics Data System (ADS)
Yang, Yiqun
In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all of these effects when estimating the shear elasticity. This new approach simulates shear wave particle velocities using a Green's function-based approach for the Voigt model, where the shear elasticity and viscosity values are estimated using an optimization-based approach that compares measured shear wave particle velocities with simulated shear wave particle velocities in the time-domain. The results are evaluated on a point-by-point basis to generate images. There is good agreement between the simulated and measured shear wave particle velocities, where the new approach yields much better images of the shear elasticity and shear viscosity than the TOF method. The new estimation approach is accelerated with an approximate viscoelastic Green's function model that is evaluated with shear wave data obtained from in vivo human livers. Instead of calculating shear waves with combinations of different shear elasticities and shear viscosities, shear waves are calculated with different shear elasticities on the GPU and then convolved with a viscous loss model, which accelerates the calculation dramatically. The shear elasticity and shear viscosity values are then estimated using an optimization-based approach by minimizing the difference between measured and simulated shear wave particle velocities. Shear elasticity and shear viscosity images are generated at every spatial point in a two-dimensional (2D) field-of-view (FOV). The new approach is applied to measured shear wave data obtained from in vivo human livers, and the results show that this new approach successfully generates shear elasticity and shear viscosity images from this data. The results also indicate that the shear elasticity values estimated with this approach are significantly smaller than the values estimated with the conventional TOF method and that the new approach demonstrates more consistent values for these estimates compared with the TOF method. This experience suggests that the new method is an effective approach for estimating the shear elasticity and the shear viscosity in liver and in other soft tissue.
Factors that influence muscle shear modulus during passive stretch.
Koo, Terry K; Hug, François
2015-09-18
Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meat quality attributes of Agile Wallabies.
Geesink, Geert H; van den Heuvel, Aaron; Hunt, Warren
2017-11-01
Meat quality traits of Agile Wallaby (Macropus agilis) M. longissimus (loin) and M. semimembranosus (topside) were investigated. Both muscles exhibited a relatively high pH (>5.7) and dark colour (L*-, a*-, and b*-values). Aging the loins from 2 to 21days p.m. had a significant effect on shear force. However, the results regarding shear force, myofibrillar fragmentation index (MFI) and degradation of desmin and troponin-T suggested that the aging response largely occurred within 2days p.m. Suspension of carcasses from one leg resulted in a side effect on shear force of the loin at 2 and 7days p.m., but not on sarcomere length or MFI. Topsides from the free hanging leg exhibited lower shear force values (33 vs 42N) and greater sarcomere lengths (2.51 vs 1.84μM). Tenderness, juiciness, flavour and overall liking were higher for loins than topsides. Sensory scores for the loin and topside were slightly lower and similar, respectively, to those reported for lamb. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetics of the head-neck complex in low-speed rear impact.
Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A
2003-01-01
A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.
Simulation of shear thickening in attractive colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.
2017-01-01
The influence of attractive forces between particles under conditions of large particle volume fraction is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris & M. M. Denn, PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one amore » contact frictional interaction and the second a repulsive force common in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress and a characteristic stress based on the combination of interparticle force with kT the thermal energy. At sufficiently large volume fraction, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan & C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.« less
Prediction of plantar shear stress distribution by artificial intelligence methods.
Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L
2009-09-01
Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.
Two-dimensional simulation of red blood cell motion near a wall under a lateral force
NASA Astrophysics Data System (ADS)
Hariprasad, Daniel S.; Secomb, Timothy W.
2014-11-01
The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.
Beef longissimus slice shear force measurement among steak locations and institutions.
Wheeler, T L; Shackelford, S D; Koohmaraie, M
2007-09-01
The objectives of this study were 1) to determine which longissimus thoracis et lumborum steaks were appropriate for slice shear force measurement and 2) to determine the among and within institution variation in LM slice shear force values of 6 institutions after they received expert training on the procedure and a standard kit of equipment. In experiment 1, longissimus thoracis et lumborum muscles were obtained from the left sides of 50 US Select carcasses. Thirteen longissimus thoracis and 12 longissimus lumborum steaks were cut 2.54 cm thick from each muscle. Slice shear force was measured on each steak. Mean slice shear force among steak locations (1 to 25) ranged from 19.7 to 27.3 kg. Repeatability of slice shear force (based on variance) among steak locations ranged from 0.71 to 0.96. In experiment 2, the longissimus thoracis et lumborum were obtained from the left sides of 154 US Select beef carcasses. Eight 2.54-cm-thick steaks were obtained from the caudal end of each frozen longissimus thoracis, and six 2.54-cm-thick steaks were obtained from the cranial end of each frozen longissimus lumborum. Seven pairs of consecutive steaks were assigned for measurement of slice shear force. Seven institutions were assigned to steak pairs within each carcass using a randomized complete block design, such that each institution was assigned to each steak pair 22 times. Repeatability estimates for slice shear force for the 7 institutions were 0.89, 0.83, 0.91, 0.90, 0.89, 0.76, and 0.89, respectively, for institutions 1 to 7. Mean slice shear force values were least (P <0.05) for institutions 3 (22.7 kg) and 7 (22.3 kg) and were greatest (P <0.05) for institutions 5 (27.3 kg) and 6 (27.6 kg). Institutions with greater mean slice shear force (institutions 5 and 6) used cooking methods that required more (P <0.05) time (32.0 and 36.9 min vs. 5.5 to 11.8 min) to reach the end point temperature (71 degrees C) and resulted in greater (P <0.05) cooking loss (both 26.6% vs. 14.4 to 24.1%). Differences among institutions in the repeatability of slice shear force were partially attributable to differences among institutions in the consistency of steak thawing and cooking procedures. These results emphasize the importance of sample location within the muscle and cooking method in the measurement of tenderness and indicate that with proper training and application of the protocol, slice shear force is a highly repeatable (R approximately 0.90) measure of beef LM tenderness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, J.S.; Shults, G.W.; Mason, V.C.
1977-01-01
A series of experiments was conducted to determine the effect of different variables on the quality of an irradiated ground beef product. Factors studied included: different food-grade phosphates; NaCl content; fat content; and size of grind. The influence of these variables on the cooking loss (moisture retention), shear press values and sensory scores was studied. The addition of phosphates and NaCl was desirable in controlling cooking losses. The most effective phosphate was tetrasodium pyrophosphate. The addition of NaCl decreased the shear press force required to penetrate the beef patty, i.e., it tenderized the product. Phosphate addition did not affect themore » shear press force. Increased fat content increased the cooking losses, but did not affect the shear press force. Irradiation with sterilizing doses had a marked effect on decreasing the shear press force.« less
Simulation of shear thickening in attractive colloidal suspensions.
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F
2017-03-01
The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.
Boles, J A; Boss, D L; Neary, K I; Davis, K C; Tess, M W
2009-01-01
The objective of this study was to evaluate the effect of growth implants on the carcass characteristics and tenderness of steers and heifers with different genetic potentials for growth, lean meat yield production, and marbling. Two experiments were conducted. Experiment 1 evaluated Angus steers sired by bulls with high EPD for retail product yield or marbling. Implant treatment was imposed randomly within sire groups. Loins (Institutional Meat Purchasing Specifications 180) were collected from each carcass and cut into three 2.54-cm steaks aged for 7, 14 and 21 d to evaluate tenderness. The second experiment evaluated steers and heifers of British and Continental breed descent. Steers and heifers were slaughtered after 120 d on feed. Loin sections were collected, and one 2.54-cm steak aged 7 d was used for tenderness analysis. When implants were used in Angus steers, HCW and LM area increased, whereas internal fat and marbling decreased (P < 0.01). In Angus steers, sire type did not affect shear force values of steaks; however, implant use significantly increased shear force values (P < 0.01). Carcasses from cattle of Continental breed descent were significantly heavier than carcasses of British breed descent with larger LM area, slightly less fat, and a reduced yield grade (P < 0.01). Also, steer carcasses were heavier than heifer carcasses with larger LM (P < 0.05), but no effect of sex on fat depth, internal fat, yield grade or marbling was observed. No significant interactions were seen between growth implant and breed or between growth implant and sex for shear force values. Shear force values were significantly less for steaks from steers and heifers of British decent compared with steers and heifers of Continental descent (P < 0.01). Steaks from implanted steers and heifers had significantly (P < 0.01) greater shear force values than steaks from steers and heifers not implanted. Use of growth implants in growing cattle resulted in significantly heavier carcass weights, larger LM area, and reduced internal fat. However, implant use also reduced the amount of marbling along with contributing to reduced tenderness. Complicating the tenderness issue is the increased shear force values reported for heifers as well as steers of Continental breed descent. Use of implants may contribute to tenderness variability because of different animal responses to implants.
A mathematical model of force transmission from intrafascicularly terminating muscle fibers.
Sharafi, Bahar; Blemker, Silvia S
2011-07-28
Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Catch bonds govern adhesion through L-selectin at threshold shear.
Yago, Tadayuki; Wu, Jianhua; Wey, C Diana; Klopocki, Arkadiusz G; Zhu, Cheng; McEver, Rodger P
2004-09-13
Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
Reuter, B J; Wulf, D M; Shanks, B C; Maddock, R J
2002-01-01
This study determined whether there is a logical point of value change, related to either tenderness or consumer acceptance, at which to separate the beef carcass within the rib/chuck region. Rib/chuck rolls (RCR); (n = 30) consisting of the ribeye roll and chuck eye roll subprimals (2nd through 12th rib locations) were cut into 22 steaks each (two steaks per rib location), and Warner-Bratzler shear force and consumer purchase preference were evaluated for steaks at each rib location. Steaks from different locations of the RCR were composed of differing proportions of several muscles: longissimus muscle (LM), spinalis dorsi and multifidus dorsi (SM), and complexus (CO). The LM (4th to 12th rib) contained three tenderness regions: 7th through 12th rib, 5th and 6th ribs, and 4th rib regions (lowest, intermediate, and highest shear force values, respectively; P < 0.01). Shear force differed (P < 0.05) among rib locations for the SM (2nd to 9th rib), but no logical pattern was evident. The CO (2nd to 7th rib) was more tender toward the anterior end (P < 0.05). The region of the RCR represented by the 4th through 6th rib locations had steaks with higher weighted-average shear force (average shear force of each steak, weighted for surface area of each muscle) values than the remainder of the RCR (P < 0.05). Animal-to-animal variation in shear force was 36% greater than rib-to-rib variation in shear force; thus, statistically significant differences in tenderness among rib locations may be undetectable by consumers. Steaks (n = 330) were offered for sale at a retail supermarket and case time was monitored on each steak to determine consumer purchase preference. Steaks from the 2nd through 4th rib locations required more time to sell (P < 0.01) than steaks from the 5th through 12th rib locations. Two alternative locations for the rib/chuck separation point could be between the 6th and 7th ribs, yielding a ribeye subprimal useful in marketing a "premium quality" product, or between the 4th and 5th ribs, which would yield four more 2.5-cm ribeye steaks per carcass.
Wu, Po-Ting; Hsu, Chieh-Hsiang; Su, Fong-Chin; Jou, I-Ming; Chen, Shih-Yao; Wu, Chao-Liang; Su, Wei-Ren; Kuo, Li-Chieh
2017-08-18
Few studies discuss kinetic changes in tendinopathy models. We propose a customized corridor to evaluate dynamic weight bearing (DWB) and shearing forces. Sixty rats were randomly given ultrasound-assisted collagenase injections (Collagenase rats) or needle punctures (Control rats) in their left Achilles tendons, and then evaluated 1, 4, and 8 weeks later. The Collagenase rats always had significantly (p < 0.001) higher histopathological and ultrasound feature scores than did the Controls, significantly lower DWB values in the injured than in the right hindlimbs, and compensatorily higher (p < 0.05) DWB values in the contralateral than in the left forelimbs. The injured hindlimbs had lower outward shearing force 1 and 4 weeks later, and higher (p < 0.05) push-off shearing force 8 weeks later, than did the contralateral hindlimbs. Injured Control rat hindlimbs had lower DWB values than did the contralateral only at week 1. The Collagenase rats had only lower static weight bearing ratios (SWBRs) values than did the Controls at week 1 (p < 0.05). Our customized corridor showed changes in DWB compatible with histopathological and ultrasound feature changes in the rat tendinopathy model. The hindlimb SWBRs did not correspond with any tendinopathic changes.
Noguchi, Hiroshi; Takehara, Kimie; Ohashi, Yumiko; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Sanada, Hiromi
2016-01-01
Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i. PMID:28050567
Gutiérrez, Manuel; Monzó, Jorge
2012-01-01
The purpose of this investigation was to determine the association between prevalence of low back disorders in female workers and biomechanical demands of compressive and shear forces at the lumbar spine. A descriptive, cross-sectional and correlational study was carried out in 11 groups of female workers in the Province of Concepción. An interview was performed to investigate the prevalence of low back pain. To estimate biomechanical demands on the lumbar spine, it was used the 3DSSPP software. The Pearson correlation coefficient between the prevalence of low back disorders and peak compression force at the lumbar spine was r = (p<0.005). The Spearman correlation coefficient between the prevalence of low back disorders and peak shear force was r = 0.9 (p <0.005). To protect 90% of female workers studied, the limits of compression and shear forces should be at 2.8 kN and 0.3 kN, respectively. These values differ from the recommendations currently used, 3.4 kN for peak compression force and 0.5 kN for peak shear force.
NASA Astrophysics Data System (ADS)
Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam
2016-04-01
It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.
Prediction of Mechanical Properties of Polymers With Various Force Fields
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.
2005-01-01
The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
NASA Astrophysics Data System (ADS)
Lv, Bowen; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; Li, Yi; Ao, Yanhui; Yang, Yangyang; You, Guoxiang; Xu, Yi
2016-07-01
This study contributed to a better understanding of the behavior of nanoparticles (NPs) in dynamic water. First, the aggregation behavior of CeO2 NPs at different pH values in various salt solutions was examined to determine the appropriate hydrochemical conditions for hydrodynamics study. Second, the aggregation behavior of CeO2 NPs under different shear forces was investigated at pH 4 and ionic strength 0 in various salt solutions to find out whether shear forces could influence the stability of the nanoparticles and if yes, how. Also, five-stage sedimentation tests were conducted to understand the influence of shear stress on the vertical distribution of CeO2 NPs in natural waters. The aggregation test showed that the shear force could increase the collision efficiency between NPs during aggregation and cause a relatively large mass of NPs to remain in suspension. Consequently, the nanoparticles had a greater possibility of continued aggregation. The sedimentation test under static conditions indicated that a large mass of NPs (>1000 nm) sink to the bottom layer, leaving only small aggregates dispersed in the upper or middle layer of the solution. However, later sedimentation studies under stirring conditions demonstrated that shear forces can disrupt this stratification phenomenon. These results suggest that shear forces can influence the spatial distribution of NPs in natural waters, which might lead to different toxicities of CeO2 NPs to aquatic organisms distributed in the different water layers. This study contributes to a better understanding of nanomaterial toxicology and provides a way for further research.
Experimental study and FEM simulation of the simple shear test of cylindrical rods
NASA Astrophysics Data System (ADS)
Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.
Bioinspired orientation-dependent friction.
Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu
2014-09-23
Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.
Story, Anna; Jaworski, Zdzisław
2017-01-01
Results of numerical simulations of momentum transfer for a highly shear-thinning fluid (0.2% Carbopol) in a stirred tank equipped with a Prochem Maxflo T type impeller are presented. The simulation results were validated using LDA data and both tangential and axial force measurements in the laminar and early transitional flow range. A good agreement between the predicted and experimental results of the local fluid velocity components was found. From the predicted and experimental values of both tangential and axial forces, the power number, Po , and thrust number, Th , were also calculated. Values of the absolute relative deviations were below 4.0 and 10.5%, respectively, for Po and Th , which confirms a satisfactory agreement with experiments. An intensive mixing zone, known as cavern, was observed near the impeller. In this zone, the local values of fluid velocity, strain rate, Metzner-Otto coefficient, shear stress and intensity of energy dissipation were all characterized by strong variability. Based on the results of experimental study a new model using non-dimensional impeller force number was proposed to predict the cavern diameter. Comparative numerical simulations were also carried out for a Newtonian fluid (water) and their results were similarly well verified using LDA measurements, as well as experimental power number values.
Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong
2016-03-01
Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork. © 2015 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.
2017-12-01
The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.
High and low rigor temperature effects on sheep meat tenderness and ageing.
Devine, Carrick E; Payne, Steven R; Peachey, Bridget M; Lowe, Timothy E; Ingram, John R; Cook, Christian J
2002-02-01
Immediately after electrical stimulation, the paired m. longissimus thoracis et lumborum (LT) of 40 sheep were boned out and wrapped tightly with a polyethylene cling film. One of the paired LT's was chilled in 15°C air to reach a rigor mortis (rigor) temperature of 18°C and the other side was placed in a water bath at 35°C and achieved rigor at this temperature. Wrapping reduced rigor shortening and mimicked meat left on the carcass. After rigor, the meat was aged at 15°C for 0, 8, 26 and 72 h and then frozen. The frozen meat was cooked to 75°C in an 85°C water bath and shear force values obtained from a 1×1 cm cross-section. The shear force values of meat for 18 and 35°C rigor were similar at zero ageing, but as ageing progressed, the 18 rigor meat aged faster and became more tender than meat that went into rigor at 35°C (P<0.001). The mean sarcomere length values of meat samples for 18 and 35°C rigor at each ageing time were significantly different (P<0.001), the samples at 35°C being shorter. When the short sarcomere length values and corresponding shear force values were removed for further data analysis, the shear force values for the 35°C rigor were still significantly greater. Thus the toughness of 35°C meat was not a consequence of muscle shortening and appears to be due to both a faster rate of tenderisation and the meat tenderising to a greater extent at the lower temperature. The cook loss at 35°C rigor (30.5%) was greater than that at 18°C rigor (28.4%) (P<0.01) and the colour Hunter L values were higher at 35°C (P<0.01) compared with 18°C, but there were no significant differences in a or b values.
NASA Astrophysics Data System (ADS)
Naka, Yoshitsugu; Tsuboi, Ken-Ichiro; Kametani, Yukinori; Fukagata, Koji; Obi, Shinnosuke
We have performed experiments in a turbulent mixing layer with periodic forcing introduced by a Piezo Film Actuator (PFA). Three different lengths of PFAs have been used, and the effects of various combinations of forcing amplitudes and frequencies are investigated. The forcing at the first and second sub-harmonic frequencies against the natural frequency enhances the development of the thickness of the mixing layer: the mixing layer spreads due to the forcing. On the other hand, the forcing near the natural frequency suppresses the development: the mean velocity gradient becomes steeper than the no control case. The vector pattern of the periodic velocity components indicated the formation of the vortical structure. By forcing at the natural and its first sub-harmonic frequencies, two counter-rotating vortices are clearly observed in one period of forcing. By forcing at second sub-harmonic frequency, the vortical structure is found only in the downstream region. The distribution of the periodic Reynolds shear stress significantly varies with the forcing frequency and it takes a positive value when forcing occurs near the natural frequency. However, the total value of the Reynolds shear stress remains negative due to the contribution of the turbulent components.
NASA Astrophysics Data System (ADS)
Weaver, John B.; Miller, Timothy B.; Perrinez, Philip R.; Doyley, Marvin M.; Wang, Huifang; Cheung, Yvonne Y.; Wrobel, James S.; Comi, Richard J.; Kennedy, Francis E.; Paulsen, Keith D.
2006-03-01
MR elastography (MRE) images the intrinsic mechanical properties of soft tissues; e.g., the shear modulus, μ. The μ of the plantar soft tissues is important in understanding the mechanisms whereby the forces induced during normal motion produce ulcers that lead to amputation in diabetic feet. We compared the compliance of the heel fat pad to compressive forces and to shearing forces. The design of prosthetics to protect the foot depends on the proper understanding of the mechanisms inducing damage. In the heel fat pads of six normal subjects, between 25 and 65 years of age, the μ for deformation perpendicular to the direction of weight bearing is similar but not identical to that determined for deformation along the weight bearing axis. The average difference between μ along the weight bearing axis and μ perpendicular to the weight bearing axis, is well correlated with age (Correlation Coefficient = 0.789). The p-value for the data being random was 0.0347 indicating that the observed difference is not likely to be random. The p-value for control points is 0.8989, indicating a random process. The results are suggestive that the high compressive forces imposed during walking damage the heel fat pads over time resulting in softening to compression preferentially over shearing. It is important to validate the observed effect with larger numbers of subjects, and better controls including measures of activity, and to understand if diseases like diabetes increase the observed damage.
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2016-01-01
Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.
Pre rigor processing, ageing and freezing on tenderness and colour stability of lamb loins.
Kim, Yuan H Brad; Luc, Genevieve; Rosenvold, Katja
2013-10-01
Forty eight lamb carcasses with temperature and pH monitored were obtained from two commercial plants. At 24h post mortem both loins (M. longissimus) from each carcass were randomly allocated to a) unaged frozen at -18°C, (b) aged at -1.5°C for 2weeks before freezing, (c) aged for 3 weeks before freezing and (d) aged for 9 weeks without freezing. Shear force, colour stability and proteolysis were analyzed. Carcasses with a slower temperature and more rapid pH decline had more calpain autolysis, slightly higher shear force and less colour stable compared to that counterpart in general (P<0.05). However, the shear force values of the loins were all acceptable (<6 kgF) regardless of different pre rigor processing and ageing/freezing treatments. Furthermore, the loins aged for 2 weeks-then-frozen/thawed had a similar shear force to the loins aged only for 9 weeks suggesting that ageing-then-freezing would result in equivalent tenderness compared to aged only loins for the long-term storage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Goertz, Ruediger S; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F; Wildner, Dane
2016-12-01
Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. A total of 195 patients were included in the study. Healthy parenchyma (n=21) and lipomatosis (n=30) showed similar shear wave velocities of about 1.3m/s. Acute pancreatitis (n=35), chronic pancreatitis (n=53) and adenocarcinoma (n=52) showed consecutively increasing ARFI values, respectively. NET (n=4) revealed the highest shear wave velocities amounting to 3.62m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Vibration and damping of laminated, composite-material plates including thickness-shear effects
NASA Technical Reports Server (NTRS)
Bert, C. W.; Siu, C. C.
1972-01-01
An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.
Transport coefficients for the shear dynamo problem at small Reynolds numbers.
Singh, Nishant K; Sridhar, S
2011-05-01
We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients α(il) and η(il) are derived. We prove that when the velocity field is nonhelical, the transport coefficient α(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X(3) and time τ; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Rädler, M. Rheinhardt, and P. J. Käpylä [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor η(il)(τ). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter. © 2011 American Physical Society
Transport coefficients for the shear dynamo problem at small Reynolds numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nishant K.; Joint Astronomy Programme, Indian Institute of Science, Bangalore 560 012; Sridhar, S.
2011-05-15
We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients {alpha}{sub il} and {eta}{sub iml} are derived. We prove that when the velocity field is nonhelical, the transport coefficient {alpha}{sub il} vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynoldsmore » number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X{sub 3} and time {tau}; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Raedler, M. Rheinhardt, and P. J. Kaepylae [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor {eta}{sub ij}({tau}). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.« less
Measurement of the Shear Lift Force on a Bubble in a Channel Flow
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Motil, Brian; Skor, Mark
2005-01-01
Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These values for the shear lift are then compared with the theoretical predictions from various published works on shear lift in the open literature, which include asymptotic solutions at low bubble Reynolds number, potential flow predictions and numerical studies that deal with intermediate bubble Reynolds numbers.
A microfabricated gecko-inspired controllable and reusable dry adhesive
NASA Astrophysics Data System (ADS)
Chary, Sathya; Tamelier, John; Turner, Kimberly
2013-02-01
Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.
Modeling cell-substrate de-adhesion dynamics under fluid shear
NASA Astrophysics Data System (ADS)
Maan, Renu; Rani, Garima; Menon, Gautam I.; Pullarkat, Pramod A.
2018-07-01
Changes in cell-substrate adhesion are believed to signal the onset of cancer metastasis, but such changes must be quantified against background levels of intrinsic heterogeneity between cells. Variations in cell-substrate adhesion strengths can be probed through biophysical measurements of cell detachment from substrates upon the application of an external force. Here, we investigate, theoretically and experimentally, the detachment of cells adhered to substrates when these cells are subjected to fluid shear. We present a theoretical framework within which we calculate the fraction of detached cells as a function of shear stress for fast ramps as well as the decay in this fraction at fixed shear stress as a function of time. Using HEK and 3T3 fibroblast cells as experimental model systems, we extract characteristic force scales for cell adhesion as well as characteristic detachment times. We estimate force-scales of ∼500 pN associated to a single focal contact, and characteristic time-scales of s representing cell-spread-area dependent mean first passage times to the detached state at intermediate values of the shear stress. Variations in adhesion across cell types are especially prominent when cell detachment is probed by applying a time-varying shear stress. These methods can be applied to characterizing changes in cell adhesion in a variety of contexts, including metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide
2008-07-08
For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed andmore » named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.« less
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-07-01
We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.
Kim, Hyun-Kyung; Zhang, Yanxin
2017-04-01
Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.
Acoustic Radiation Force of a Quasi-Gaussian Beam on an Elastic Sphere in a Fluid.
Nikolaeva, A V; Sapozhnikov, O A; Bailey, M R
2016-09-01
Acoustic radiation force has many applications. One of the related technologies is the ability to noninvasively expel stones from the kidney. To optimize the procedure it is important to develop theoretical approaches that can provide rapid calculations of the radiation force depending in stone size and elastic properties, together with ultrasound beam diameter, intensity, and frequency. We hypothesize that the radiation force nonmonotonically depends on the ratio between the acoustic beam width and stone diameter because of coupling between the acoustic wave in the fluid and shear waves in the stone. Testing this hypothesis by considering a spherical stone and a quasi-Gaussian beam was performed in the current work. The calculation of the radiation force was conducted for elastic spheres of two types. Dependence of the magnitude of the radiation force on the beam diameter at various fixed values of stone diameters was modeled. In addition to using real material properties, speed of shear wave in the stone was varied to reveal the importance of shear waves in the stone. It was found that the radiation force reaches its maximum at the beamwidth comparable to the stone diameter; the gain in the force magnitude can reach 40% in comparison with the case of a narrow beam.
Dimitrakopoulos, P.
2013-01-01
Despite research spanning several decades, the exact value of the shear modulus Gs of the erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based on micropipette aspirations, ektacytometry systems and other flow chambers, and optical tweezers as well as application of several models have found different average values in the range 2–10 µN/m. Our study shows that different methodologies have predicted the correct shear modulus for the specific membrane modeling employed, i.e. the variation in the shear modulus determination results from the specific membrane modeling. Available experimental findings from ektacytometry systems and optical tweezers suggest that the dynamics of the erythrocyte membrane is strain-hardening at both moderate and large deformations. Thus the erythrocyte shear modulus cannot be determined accurately using strain-softening models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models (such as the Yeoh law) which overestimate the erythrocyte shear modulus. According to our analysis, the only available strain-hardening constitutive law, the Skalak et al. law, is able to match well both deformation-shear rate data from ektacytometry and force-extension data from optical tweezers at moderate and large strains, using an average value of the shear modulus of Gs = 2.4–2.75 µN/m, i.e. very close to that found in the linear regime of deformations via force-extension data from optical tweezers, Gs = 2.5±0.4 µN/m. In addition, our analysis suggests that a standard deviation in Gs of 0.4–0.5 µN/m (owing to the inherent differences between erythrocytes within a large population) describes well the findings from optical tweezers at small and large strains as well as from micro-pipette aspirations. PMID:22680508
Laser reflection method for determination of shear stress in low density transitional flows
NASA Astrophysics Data System (ADS)
Sathian, Sarith P.; Kurian, Job
2006-03-01
The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.
Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer
NASA Technical Reports Server (NTRS)
Gillies, John A.; Nickling, William G.; King, James
2007-01-01
Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.
Correlation of fingertip shear force direction with somatosensory cortical activity in monkey
Fortier-Poisson, Pascal; Langlais, Jean-Sébastien
2015-01-01
To examine the activity of somatosensory cortex (S1) neurons to self-generated shear forces on the index and thumb, two monkeys were trained to grasp a stationary metal tab with a key grip and exert forces without the fingers slipping in one of four orthogonal directions for 1 s. A majority (∼85%) of slowly adapting and rapidly adapting (RA) S1 neurons had activity modulated with shear force direction. The cells were recorded mainly in areas 1 and 2 of the S1, although some area 3b neurons also responded to shear direction or magnitude. The preferred shear vectors were distributed in every direction, with tuning arcs varying from 50° to 170°. Some RA neurons sensitive to dynamic shear force direction also responded to static shear force but within a narrower range, suggesting that the direction of the shear force may influence the adaptation rate. Other neurons were modulated with shear forces in diametrically opposite directions. The directional sensitivity of S1 cortical neurons is consistent with recordings from cutaneous afferents showing that shear direction, even without slip, is a powerful stimulus to S1 neurons. PMID:26467520
A national audit of retail lamb loin quality in Australia.
Safari, E; Channon, H A; Hopkins, D L; Hall, D G; van de Ven, R
2002-07-01
A retail audit of lamb loin tenderness was conducted over a 12-month period to determine the variation in tenderness of Australian lamb. Tenderness was objectively measured using Warner-Bratzler (WB) shear force. Muscle pH and cooking loss were determined on all samples and colour was measured on a sub-sample of loins. A total of 909 midloins from retail butcher shops and supermarkets located in four Australian capital cities (Sydney, Canberra, Melbourne, and Perth) were evaluated at four sampling times (December 1997 and March, June, and October 1998). Overall, 20.3% of all midloins purchased had a WB shear force value above the threshold level of 5 kg. Generic samples from Melbourne butcher shops were similar for WB shear force on average to the generic samples from Canberra and Sydney, whereas those from Melbourne supermarkets had significantly (P<0.001) higher WB shear force and were in line with generic samples from Perth. In both Canberra and Perth, alliance (branded) lamb had a greater WB shear force (P<0.05) than generic lamb. No relationship was found between price per kg and shear force (r=0.02) for loins purchased in Sydney (n=220). Price per kg differed between months (P<0.001) and suburbs (P<0.001), but not between retail butcher shops and supermarkets. Of the midloins tested, 10.3% had a pH above the critical point of 5.8. Midloins from the December 1997 sampling had a lower pH (P<0.01) than those sampled at other months. Those sampled in Melbourne and Perth had a similar mean pH, which were lower (P<0.001) than Canberra and Sydney samples. The findings from this quality audit suggest that there is room to improve the tenderness of Australian lamb sold in the domestic market. A lamb eating quality assurance system, based on set protocols, is one approach that is currently being investigated in Australia to ensure the supply of consistently high eating quality lamb to consumers.
Wheeler, T L; Shackelford, S D; Koohmaraie, M
1998-11-01
The objective of this experiment was to compare the effects of belt grill and Open Hearth electric broiler cookery on palatability and cooking traits of longissimus steaks. The longissimus thoracis from carcasses of grain-fed steers or heifers was used. Duplicate measurements were made for Warner-Bratzler shear force at 3 and at 14 d after slaughter (n = 180) and trained sensory evaluation at 14 d after slaughter (n = 91) using both cooking methods. Belt grill-cooked samples had lower (P<.01) percentage of cooking losses (21.5 vs 25.8%) and higher (P<.01) shear force values (4.6 vs 4.3 kg) than electric broiler-cooked samples. Repeatability of duplicate measurements was higher for cooking losses (.58 vs .23) and shear force values (.85 vs .64) for belt grill than for electric broiler cooked samples. Belt grilled steaks had lower (P<.01) cooking losses (20.2 vs 29.8%); higher (P<.01) tenderness (7.0 vs 6.7) and juiciness (6.0 vs 5.1); and lower (P<.02) connective tissue amount (7.7 vs 7.8), beef flavor intensity (5.0 vs 5.1), and off-flavor (3.2 vs 3.3) ratings than steaks cooked with the electric broiler. Belt grill cooking increased the repeatability of duplicate sensory measurements for tenderness (.87 vs .71), connective tissue amount (.66 vs .30), and juiciness (.51 vs .08) ratings, and cooking losses (.63 vs .18) compared with cooking with the electric broiler. Belt grill cooking increased the precision for measurements of cooking, Warner-Bratzler shear force, and palatability traits of beef longissimus thoracis.
A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.
Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P
2015-01-01
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.
Bainy, Eduarda Molardi; Bertan, Larissa Canhadas; Corazza, Marcos Lucio; Lenzi, Marcelo Kaminski
2015-08-01
The influence of two common cooking methods, grilling and baking, on chemical composition, water retention, fat retention, cooking yield, diameter reduction, expressible water, color and mechanical texture of tilapia (Oreochromis niloticus) fish burgers was investigated. Texture analyses were performed using a Warner-Bratzler test. The fish burger had a softer texture with a lower shear force than other meat products reported in the literature. There were no significant differences in proximate composition, diameter reduction, fat retention and expressible water between the grilled and oven-baked fish burgers. Cooking methods did not affect the cooking times and cooking rates. Warner-Bratzler parameters and color were significantly influenced by the cooking method. Grilling contributed to a shear force and work of shearing increase due to the lower cooking yield and water retention. Raw burgers had the highest L* (69.13 ± 0.96) and lowest b* (17.50 ± 0.75) values. Results indicated that baking yielded a product with better cooking characteristics, such as a desired softer texture with lower shear values (4.01 ± 0.54) and increased water retention (95.82 ± 0.77). Additionally, the baked fish burgers were lighter (higher L*) and less red (lower a*) than the grilled ones.
The response of dense dry granular material to the shear reversal
NASA Astrophysics Data System (ADS)
Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert
2008-11-01
We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.
Akit, H; Collins, C L; Fahri, F T; Hung, A T; D'Souza, D N; Leury, B J; Dunshea, F R
2014-03-01
The influence of dietary lecithin at doses of 0, 4, 20 or 80 g/kg fed to finisher gilts for six weeks prior to slaughter on growth performance, carcass quality and pork quality was investigated. M. longissimus lumborum (loin) was removed from 36 pig carcasses at 24h post-mortem for Warner-Bratzler shear force, compression, collagen content and colour analyses. Dietary lecithin increased dressing percentage (P=0.009). Pork chewiness and collagen content were decreased by dietary lecithin (P<0.05, respectively), suggesting that improved chewiness may be due to decreased collagen content. However, dietary lecithin had no effect on shear force, cohesiveness or hardness (P>0.05, respectively). Dietary lecithin reduced loin muscle L* values and increased a* values (P<0.05, respectively) but no changes on b* values (P=0.56). The data showed that dietary lecithin improved dressing percentage and resulted in less chewy and less pale pork. © 2013.
Bourauel, C; Vardimon, A D; Drescher, D; Schmuth, G P
1995-09-01
The functional magnetic system (FMS) is a removable functional appliance which induces mandibular advance by means of mandibular and maxillary magnets in an attracting configuration. The maxillary and mandibular plates are each equipped with 2 cylindrically shaped cobalt-samarium magnets, 4 mm in diameter and 3 mm in height, which are welded into stainless steel housings. The force system of this magnetic configuration was analyzed using the orthodontic measurement and simulation system (OMSS). OMSS simulated the mandibular jaw movements by separating the installed magnets vertically, corresponding to a mouth opening of X = -10 mm, transversally (right excursion, +/left excursion, -) at Y = +/- 10 mm and sagittally (anterior displacement, +/posterior displacement, -) at Z = +/- 10 mm. The resulting 2D and 3D force/displacement diagrams elucidate the outstanding centripetal-spatial orientation characteristics of the functional magnetic appliance in reference to the full overlap brought about by the attraction of the mandibular magnet by the maxillary magnet. The maximum centripetal forces reached a value of approximately FY, max = 0.65 N for the vertical attracting force at full overlap of the mandibular and maxillary magnets (X = 0.55 mm, Y = Z = 0 mm), a value of FY, max = 0.65 N for the medial shearing force at a partial transversal overlap Z = 0, Y = +/- 2 mm and Y = +/- 6 mm), and for the sagittal shearing force a value of FZ, max = 1.2 N at a partial sagittal overlap of the magnets (Y = 0 mm, Z = +/- 2 mm).(ABSTRACT TRUNCATED AT 250 WORDS)
Tha, S P; Shuster, J; Goldsmith, H L
1986-01-01
The expressions derived in the previous paper for the respective normal, F3, and shear forces, Fshear, acting along and perpendicular to the axis of a doublet of rigid spheres, were used to determine the hydrodynamic forces required to separate two red cell spheres of antigenic type B crosslinked by the corresponding antibody. Cells were sphered and swollen in isotonic buffered glycerol containing 8 X 10(-5) M sodium dodecyl sulfate, fixed in 0.085% glutaraldehyde, and suspended in aqueous glycerol (viscosity: 15-34 mPa s), containing 0.15 M NaCl and anti-B antibody from human hyperimmune antiserum at concentrations from 0.73 to 3.56 vol%. After incubating and mixing for 12 h, doublets were observed through a microscope flowing in a 178-micron tube by gravity feed between two reservoirs. Using a traveling microtube apparatus, the doublets were tracked in a constantly accelerating flow and the translational and rotational motions were recorded on videotape until breakup occurred. From a frame by frame replay of the tape, the radial position, velocity and orientation of the doublet were obtained and the normal and shear forces of separation at breakup computed. Both forces increased significantly with increasing antiserum concentration, the mean values of F3 increasing from 0.060 to 0.197 nN, and Fshear from 0.023 to 0.072 nN. There was no significant effect of glycerol viscosity on the forces of separation. It was not possible to determine whether the shear or normal force was responsible for doublet separation. Measurements of the mean dimensionless period of rotation, TG, of doublets in suspensions containing 0.73 and 2.40% antiserum undergoing steady flow were also made to test whether the spheres were rigidly linked or capable of some independent rotation. A fairly narrow distribution in TG about the value 15.64, predicted for rigidly-linked doublets, was obtained at both antiserum concentrations. Images FIGURE 1 PMID:3801572
Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-01-01
Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330
Building an open-source simulation platform of acoustic radiation force-based breast elastography
NASA Astrophysics Data System (ADS)
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-03-01
Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.
URBAN STORMWATER STRESSOR SOURCES, CHARACTERIZATION, AND CONTROL
The presentation covers the origin and values of the various pollutants or stressors in urban stormwater including flow (shear force), pathogens, suspended solids/sediment, toxicants (organic and metals), nutrients, oxygen demanding substances, and coarse solids. A broad overvie...
Urban Stormwater Stressors, Sources & BMPS
This paper covers the origin and values of the various pollutants or stressors in urban stormwater including flow (shear force), pathogens, suspended solids/sediment, toxicants (organic and metals), nutrients, oxygen demanding substances, and coarse solids. A broad overview of t...
A method of self-pursued boundary value on a body and the Magnus effect calculated with this method
NASA Astrophysics Data System (ADS)
Yoshino, Fumio; Hayashi, Tatsuo; Waka, Ryoji
1991-03-01
A computational method, designated 'SPB', is proposed for the automatic determination of the stream function Phi on an arbitrarily profiled body without recourse to empirical factors. The method is applied to the case of a rotating, circular cross-section cylinder in a uniform shear flow, and the results obtained are compared with those of both the method in which the value of Phi is fixed on a body and the conventional empirical method; it is in view of this established that the SPB method is very efficient and applicable to both steady and unsteady flows. The SPB method, in addition to yielding the aerodynamic forces acting on a cylinder, shows that the Magnus effect lift force decreases as the velocity gradient of the shear flow increases while the cylinder's rotational speed is kept constant.
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine
2014-01-01
The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.
Reschechtko, Sasha; Zatsiorsky, Vladimir M.; Latash, Mark L.
2016-01-01
Manipulating objects with the hands requires the accurate production of resultant forces including shear forces; effective control of these shear forces also requires the production of internal forces normal to the surface of the object(s) being manipulated. In the present study, we investigated multi-finger synergies stabilizing shear and normal components of force, as well as drifts in both components of force, during isometric pressing tasks requiring a specific magnitude of shear force production. We hypothesized that shear and normal forces would evolve similarly in time, and also show similar stability properties as assessed by the decomposition of inter-trial variance within the uncontrolled manifold hypothesis. Healthy subjects were required to accurately produce total shear and total normal forces with four fingers of the hand during a steady-state force task (with and without visual feedback) and a self-paced force pulse task. The two force components showed similar time profiles during both shear force pulse production and unintentional drift induced by turning the visual feedback off. Only the explicitly instructed components of force, however, were stabilized with multi-finger synergies. No force-stabilizing synergies and no anticipatory synergy adjustments were seen for the normal force in shear force production trials. These unexpected qualitative differences in the control of the two force components – which are produced by some of the same muscles and show high degree of temporal coupling – are interpreted within the theory of control with referent coordinates for salient variables. These observations suggest the existence of two classes of neural variables: one that translates into shifts of referent coordinates and defines changes in magnitude of salient variables, and the other controlling gains in back-coupling loops that define stability of the salient variables. Only the former are shared between the explicit and implicit task components. PMID:27601252
Rate Dependence in Force Networks of Sheared Granular Materials
NASA Astrophysics Data System (ADS)
Hartley, Robert; Behringer, Robert P.
2003-03-01
We describe experiments that explore rate dependence in force networks of dense granular materials undergoing slow deformation by shear and by compression. The experiments were carried out using 2D photoelastic particles so that it was possible to visualize forces at the grain scale. Shear experiments were carried out in a Couette geometry with a rate Ω. Compression experiments were carried out by repetitive compaction via a piston in a rigid chamber at comparable rates to the shear experiments. Under shearing the mean stress/force grew logarithmically with Ω for at least four decades. For compression, no dependence of the mean stress on rate was observed. In related measurements, we observed relaxation of stress in static samples that had been sheared and where the shearing was abruptly stopped. Relaxation of the force network occured over time scales of days. No relaxation of the force network was observable for uniformly compressed static samples. These results are of particular interest because they provide insight into creep and failure in granular materials.
Two-axis direct fluid shear stress sensor
NASA Technical Reports Server (NTRS)
Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)
2011-01-01
A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.
Strain hardening in startup shear of long-chain branched polymer solutions.
Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing
2013-08-09
We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding.
Motion of packings of frictional grains.
Halsey, Thomas C
2009-07-01
Friction plays a key role in controlling the rheology of dense granular flows. Counting the number of constraints vs the number of variables indicates that critical coordination numbers Zc=3 (in D=2) and Zc=4 (in D=3) are special, in that states in which all contacts roll without frictional sliding are naively possible at and below these average coordination numbers. We construct an explicit example of such a state in D=2 based on a honeycomb lattice. This state has surprisingly large values for the typical angular velocities of the particles. Solving for the forces in such a state, we conclude that organized shear can exist in this state only on scales l
Hydraulic parameters in eroding rills and their influence on detachment processes
NASA Astrophysics Data System (ADS)
Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wengel, René; Ries, Johannes B.
2010-05-01
In many experiments as well in laboratory as in field experiments the correlations between the detachment rate and different hydraulic parameters are calculated. The used parameters are water depth, runoff, shear stress, unit length shear force, stream power, Reynolds- and Froude number. The investigations show even contradictory results. In most soil erosion models like the WEPP model, the shear stress is used to predict soil detachment rates. But in none of the WEPP datasets, the shear stress showed the best correlation to the detachment rate. In this poster we present the results of several rill experiments in Andalusia from 2008 and 2009. With the used method, it is possible to measure the needed factors to calculate the mentioned parameters. Water depth is measured by an ultrasonic sensor, the runoff values are calculated by combining flow velocity and flow diameter. The parameters wetted perimeter, flow diameter and hydraulic radius can be calculated from the measured rill cross sections and the measured water levels. In the sample density values, needed for calculation of shear stress, unit length shear force and stream power, the sediment concentration and the grain density are are considered. The viscosity of the samples was measured with a rheometer. The result of this measurements shows, that there is a very high linear correlation (R² = 0.92) between sediment concentration and the dynamic viscosity. The viscosity seems to be an important factor but it is only used in the Reynolds-number-equation, in other equations it is neglected. But the viscosity value increases with increasing sediment concentration and hence the influence also increases and the in multiclications negiligible viscosity value of 1 only counts for clear water. The correlations between shear stress, unit length shear force and stream power at the x-axis and the detachment rate at the ordinate show, that there is not one fixed parameter that always displays the best correlation to the detachment rate. The best hit does not change from one experiment to another, it changes from one measuring point to another. Different processes in rill erosion are responsible for the changing correlations. In some cases no one of the parameters shows an acceptable correlation to the soil detachment, because these factors describe fluvial processes. Our experiments show, that not the fluvial processes cause the main sediment procduction in the rills, but bank failure or knickpoint and headcut retreat and these processes are more gravitative than fluvial. Another sediment producing process is the abrupt spill over of plunge pools, a process not realy fluvial and not realy gravitativ. In some experiments, the highest sediment concentrations were measured at the slowly flowing waterfront that only transports the loose material. But all these processes are not considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They cover the fluvial incising in the rill's bottom, but the main sediment sources are not considered satisying in its equations.
ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi
This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.
Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria
2015-01-01
Background. Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence. PMID:26609528
Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria
2015-01-01
Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.
Normal force and drag force in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.
2009-08-01
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.
Normal Force and Drag Force in Magnetorheological Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2010-01-13
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less
Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.
Zhang, Qi-Yi
2017-02-01
Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun
2017-12-01
The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.
NASA Astrophysics Data System (ADS)
Li, Shouju; Shangguan, Zichang; Cao, Lijuan
A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.
URBAN STORMWATER POLLUTANT SOURCES, CHARACTERIZATION AND BMP TREATABILITY
This paper covers the origin and values of the various pollutants or stressors in urban stormwater including flow (shear force), pathogens, suspended solids/sediment, toxicants (organic and metals(, nutrients, oxygen demanding substances, and coarse solids. A broad overview of th...
Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum
2016-03-01
Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
Cavitt, L C; Meullenet, J F; Gandhapuneni, R K; Youm, G W; Owens, C M
2005-01-01
In each of 2 trials, 75 female and 75 male broilers of different sizes (large and small) were obtained from a commercial grower and were commercially processed. Breast fillets were deboned at 0.25, 1.5, 3, 6, and 24 h postmortem (total n = 15 per treatment per time point). Muscle pH and L* value were determined for each deboning time. Breast fillets were subjected to texture analysis using Allo-Kramer (10-blade), needle puncture (2 mm diameter), or razor blade shear (8.9 mm wide) methods. Allo-Kramer tests were performed on a strip (40 x 20 x 7 mm); needle puncture and razor blade shear were performed on intact muscles. Body size and sex had no effect on rigor development or color as indicated by no significant difference in breast muscle pH, R-value, or L* value. Allo-Kramer and razor blade tests exhibited significant shear value differences among samples deboned early (<1.5 h) and late (>6 h) PM. Allo-Kramer shear and razor blade tests performed similarly for differentiating breast meat of different toughness though Allo-Kramer shear force and razor blade energy were only moderately correlated (r = 0.72). Although both instrumental tests were performed in the same approximate area on each breast, it is possible that variation within the breast would have caused this marginal correlation. Although further studies would be necessary to compare the performance of both tests for assessing poultry meat toughness, the proposed razor blade test has the advantage of requiring no sample preparation (i.e., cutting a strip of constant dimensions) other than cooking.
NASA Astrophysics Data System (ADS)
Hodge, R. A.; Voepel, H.; Leyland, J.; Sear, D. A.; Ahmed, S. I.
2017-12-01
The shear stress at which a grain is entrained is determined by the balance between the applied fluid forces, and the resisting forces of the grain. Recent research has tended to focus on the applied fluid forces; calculating the resisting forces requires measurement of the geometry of in-situ sediment grains which has previously been very difficult to measure. We have used CT scanning to measure the grain geometry of in-situ water-worked grains, and from these data have calculated metrics that are relevant to grain entrainment. We use these metrics to parameterise a new, fully 3D, moment-balance model of grain entrainment. Inputs to the model are grain dimensions, exposed area, elevation relative to the velocity profile, the location of grain-grain contact points, and contact area with fine matrix sediment. The new CT data and model mean that assumptions of previous grain-entrainment models (e.g. spherical grains, 1D measurements of protrusion, entrainment in the downstream direction) are no longer necessary. The model calculates the critical shear stress for each possible set of contact points, and outputs the lowest value. Consequently, metrics including pivot angle and the direction of grain entrainment are now model outputs, rather than having to be pre-determined. We use the CT data and model to calculate the critical shear stress of 1092 in-situ grains from baskets that were buried and water-worked in a flume prior to scanning. We find that there is no consistent relationship between relative grain size (D/D50) and pivot angle, whereas there is a negative relationship between D/D50 and protrusion. Out of all measured metrics, critical shear stress is most strongly controlled by protrusion. This finding suggests that grain-scale topographic data could be used to estimate grain protrusion and hence improve estimates of critical shear stress.
Lau, Mayank; Amarnath, G S; Muddugangadhar, B C; Swetha, M U; Das, Kopal Anshuraj Ashok Kumar
2014-04-01
The condition of the denture bearing tissues may be adversely affected by high stress concentration during function. Chairside Denture (Hard and Soft) reliners are used to distribute forces applied to soft tissues during function. Tensile and shear bond strength has been shown to be dependent on their chemical composition. A weak bond could harbor bacteria, promote staining and delamination of the lining material. To investigate tensile and shear bond strength of 4 different commercially available denture relining materials to conventional heat cured acrylic denture base resin. 4 mm sections in the middle of 160 Acrylic cylindrical specimens (20 mm x 8 mm) were removed, packed with test materials (Mollosil, G C Reline Soft, G C Reline Hard (Kooliner) and Ufi Gel Hard and polymerized. Specimens were divided into 8 groups of 20 each. Tensile and shear bond strength to the conventional heat cured acrylic denture base resin were examined by Instron Universal Tensile Testing Machine using the equation F=N/A (F-maximum force exerted on the specimen (Newton) and A-bonding area= 50.24 mm2). One-way ANOVA was used for multiple group comparisons followed by Bonferroni Test and Hsu's MCB for multiple pairwise comparisons to asses any significant differences between the groups. The highest mean Tensile bond strength value was obtained for Ufi Gel Hard (6.49+0.08 MPa) and lowest for G C Reline Soft (0.52+0.01 MPa). The highest mean Shear bond strength value was obtained for Ufi Gel Hard (16.19+0.1 MPa) and lowest for Mollosil (0.59+0.05 MPa). The Benferroni test showed a significant difference in the mean tensile bond strength and the mean shear bond strength when the two denture soft liners were compared as well as when the two denture hard liners were compared. Hsu's MCB implied that Ufi gel hard is better than its other closest competitors. The Tensile and Shear bond strength values of denture soft reliners were significantly lower than denture hard reliners. How to cite the article: Lau M, Amarnath GS, Muddugangadhar BC, Swetha MU, Das KA. Tensile and shear bond strength of hard and soft denture relining materials to the conventional heat cured acrylic denture base resin: An In-vitro study. J Int Oral Health 2014;6(2):55-61.
Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Motil, Brian J.; Skor, Mark
2003-01-01
Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
Zhuang, Hong; Savage, Elizabeth M
2013-11-01
Four replications were conducted to compare quality measurements, cook loss, shear force, and sensory quality attributes of cooked boneless skinless white meat, broiler breast fillets (pectoralis major) prepared directly from a frozen state or prepared from a thawed state. In each replication, fresh broiler fillets (removed from carcasses 6-8 h postmortem) were procured from a local commercial processing plant and stored in a -20°C freezer until use. On the sensory evaluation date, fillets were cooked to an endpoint temperature of 78°C either directly from the frozen state (thawing during cooking) or after the frozen samples were thawed in a refrigerator (2°C) overnight (thawing before cooking). Cook loss and Warner-Bratzler (WB) shear force were used as indicators for instrumental quality measurements. Sensory quality measurements were conducted by trained descriptive panelists using 0 to 15 universal intensity scales for 8 texture and 10 flavor attributes. Results show that there were no differences (P > 0.05) in measurements for sensory descriptive flavor attributes of cooked fillets between the 2 sample thawing methods, indicating that the sensory flavor profiles of both methods were similar to each other. However, WB shear force (36.98 N), cook loss (21.2%), sensory texture attributes of cohesiveness (intensity score was 5.59), hardness (5.14), rate of breakdown (5.50), and chewiness (5.21) of the breast fillets cooked directly from the frozen state were significantly higher (P < 0.05) than those of the breast meat cooked after being thawed (30.56 N, 19.0%, 5.19, 4.78, 5.29, and 5.02, respectively). These results indicate that cookery directly from frozen boneless skinless white meat can result in different measurement values of cook loss, shear force, and sensory descriptive texture attributes compared with cookery after frozen fillets are thawed.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2015-03-01
Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.
New boundary conditions for fluid interaction with hydrophobic surface
NASA Astrophysics Data System (ADS)
Pochylý, František; Fialová, Simona; Havlásek, Michal
2018-06-01
Solution of both laminar and turbulent flow with consideration of hydrophobic surface is based on the original Navier assumption that the shear stress on the hydrophobic surface is directly proportional to the slipping velocity. In the previous work a laminar flow analysis with different boundary conditions was performed. The shear stress value on the tube walls directly depends on the pressure gradient. In the solution of the turbulent flow by the k-ɛ model, the occurrence of the fluctuation components of velocity on the hydrophobic surface is considered. The fluctuation components of the velocity affect the size of the adhesive forces. We assume that the boundary condition for ɛ depending on the velocity gradients will not need to be changed. When the liquid slips over the surface, non-zero fluctuation velocity components occur in the turbulent flow. These determine the non-zero value of the turbulent kinetic energy K. In addition, the fluctuation velocity components also influence the value of the adhesive forces, so it is necessary to include these in the formulation of new boundary conditions for turbulent flow on the hydrophobic surface.
Coronal Jet Collimation by Nonlinear Induced Flows
NASA Astrophysics Data System (ADS)
Vasheghani Farahani, S.; Hejazi, S. M.
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.
Approximate analytical solutions in the analysis of thin elastic plates
NASA Astrophysics Data System (ADS)
Goloskokov, Dmitriy P.; Matrosov, Alexander V.
2018-05-01
Two approaches to the construction of approximate analytical solutions for bending of a rectangular thin plate are presented: the superposition method based on the method of initial functions (MIF) and the one built using the Green's function in the form of orthogonal series. Comparison of two approaches is carried out by analyzing a square plate clamped along its contour. Behavior of the moment and the shear force in the neighborhood of the corner points is discussed. It is shown that both solutions give identical results at all points of the plate except for the neighborhoods of the corner points. There are differences in the values of bending moments and generalized shearing forces in the neighborhoods of the corner points.
Liu, Aiqin; Jennings, Louise M; Ingham, Eileen; Fisher, John
2015-09-18
The successful development of early-stage cartilage and meniscus repair interventions in the knee requires biomechanical and biotribological understanding of the design of the therapeutic interventions and their tribological function in the natural joint. The aim of this study was to develop and validate a porcine knee model using a whole joint knee simulator for investigation of the tribological function and biomechanical properties of the natural knee, which could then be used to pre-clinically assess the tribological performance of cartilage and meniscal repair interventions prior to in vivo studies. The tribological performance of standard artificial bearings in terms of anterior-posterior (A/P) shear force was determined in a newly developed six degrees of freedom tribological joint simulator. The porcine knee model was then developed and the tribological properties in terms of shear force measurements were determined for the first time for three levels of biomechanical constraints including A/P constrained, spring force semi-constrained and A/P unconstrained conditions. The shear force measurements showed higher values under the A/P constrained condition (predominantly sliding motion) compared to the A/P unconstrained condition (predominantly rolling motion). This indicated that the shear force simulation model was able to differentiate between tribological behaviours when the femoral and tibial bearing was constrained to slide or/and roll. Therefore, this porcine knee model showed the potential capability to investigate the effect of knee structural, biomechanical and kinematic changes, as well as different cartilage substitution therapies on the tribological function of natural knee joints. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay.
Lu, Ling; Zheng, Guo-Xia; Yang, Yu-Suo; Feng, Cheng-Yu; Liu, Fang-Fang; Wang, Yun-Hua
2017-02-01
The mechanisms how Giardias attach to the intestinal epithelium remain unclear. None of the methods currently being used to measure the attachment force could provide a continuous nutrition supply and a micro-aerobic atmosphere to the Giardia. Besides, they are all labor-intensive. In the present research, a microfluidic method based on electric circuit analogy was developed. The input fluid flowed through the inlet channel with different lengths and was distributed in four assay chambers. Shear force gradients were generated in chambers, too. This allowed an easy control of fluids and the shear forces. Most importantly, the shear stress large enough to detach Giardia could be generated in laminar flow regime. Moreover, analysis could be accomplished in one single test. By applying inlet flow rates of 30, 60, and 120 μL ml -1 , shear force gradients ranging from 19.47 to 60.50 Pa were generated. The adhesion forces of trophozoites were analyzed and the EC 50 of the force that caused 50% trophozoites detachment was calculated as 36.60 Pa. This paper presents a novel method for measurement of Giardia adhesion force. Graphical Abstract Measurement of Giardia adhesion force. Various of flow rates were applied to generate different shear forces and Giardia trophozoites remaining attached were counted (a-c). The percentages of attachment vs shear stress were plotted and the EC 50 of adhesion force was calculated (d).
Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki
2014-05-01
The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.
Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam
2013-02-01
Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al(2)O(3) particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al(2)O(3). The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al(2)O(3) phantom at a depth of 52.4 and 36.6 mm, respectively. PAA mixed with Al(2)O(3) provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue.
Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam
2013-01-01
Purpose: Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Methods: Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Results: Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al2O3 particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al2O3. The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al2O3 phantom at a depth of 52.4 and 36.6 mm, respectively. Conclusions: PAA mixed with Al2O3 provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue. PMID:23387774
Jacob, Robin; Rosenvold, Katja; North, Michael; Kemp, Robert; Warner, Robyn; Geesink, Geert
2012-09-01
A study was undertaken to determine whether variations within the defined temperature-by-time profile for very fast chilling (VFC), might explain variations in tenderness found with VFC. Loins from 32 lambs were subjected to one of five cooling regimes; defined by the average temperature between the meat surface and centre reached at a specific time post mortem. These were: -0.3 °C at 22 h (Control), 2.6 °C at 1.5 h (Fast(supra-zero)), 0.7 °C at 5.5 h (Slow(supra-zero)), -1.6 °C at 1.5 h (Fast(sub-zero)) and -2.3 °C at 5.5 h (Slow(sub-zero)), respectively. Shear force values considered very tender by consumers (less than 50 N, MIRINZ tenderometer) were found 2 days post mortem in Fast(sub-zero) loins only. Both time and temperature at the end of the cooling period contributed to variations in shear force. To achieve low shear force, the loins needed to be cooled to less than 0 °C at 1.5 h post mortem. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anber, Usama; Wang, Shuguang; Sobel, Adam
2017-03-01
The effect of coupling a slab ocean mixed layer to atmospheric convection is examined in cloud-resolving model (CRM) simulations in vertically sheared and unsheared environments without Coriolis force, with the large-scale circulation parameterized using the Weak Temperature Gradient (WTG) approximation. Surface fluxes of heat and moisture as well as radiative fluxes are fully interactive, and the vertical profile of domain-averaged horizontal wind is strongly relaxed toward specified profiles with vertical shear that varies from one simulation to the next. Vertical wind shear is found to play a critical role in the simulated behavior. There exists a threshold value of the shear strength above which the coupled system develops regular oscillations between deep convection and dry nonprecipitating states, similar to those found earlier in a much more idealized model which did not consider wind shear. The threshold value of the vertical shear found here varies with the depth of the ocean mixed layer. The time scale of the spontaneously generated oscillations also varies with mixed layer depth, from 10 days with a 1 m deep mixed layer to 50 days with a 10 m deep mixed layer. The results suggest the importance of the interplay between convection organized by vertical wind shear, radiative feedbacks, large-scale dynamics, and ocean mixed layer heat storage in real intraseasonal oscillations.
Al-Owaimer, A N; Suliman, G M; Sami, A S; Picard, B; Hocquette, J F
2014-03-01
Saudi Arabian camels of four breeds (6 animals per breed) were used to evaluate characteristics and quality of their meat. Chemical composition, fibre cross sectional area, collagen content, muscle metabolism, cooking loss, pH at 24 h post mortem, colour values (except redness) and shear force of Longissimus thoracis (LT) muscle did not differ between the breeds. Elevated pH values and short sarcomeres reduced overall tenderisation, with a difference between myofibril fragmentation index (P<0.001) and sarcomere length (P<0.05) between breeds. A positive correlation was observed between the activities of the mitochondrial enzymes (r>0.49), between the glycolytic activities (PFK and LDH) (r=0.61) and between Myosin Heavy Chain IIa and LDH activity. The intramuscular fat content was positively associated with redness and muscle oxidative metabolism, whereas shear force had a slight positive association with collagen content and muscle glycolytic metabolism and a negative association with muscle oxidative metabolism and muscle fibre area. © 2013.
NASA Astrophysics Data System (ADS)
Draebing, D.; Krautblatter, M.; Dikau, R.
2014-12-01
Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.
NASA Technical Reports Server (NTRS)
Shirer, H. N. (Editor); Dutton, J. A. (Editor)
1985-01-01
A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.
Surface deformation and shear flow in ligand mediated cell adhesion.
Sircar, Sarthok; Roberts, Anthony J
2016-10-01
We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.
Coronal Jet Collimation by Nonlinear Induced Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasheghani Farahani, S.; Hejazi, S. M.
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale ofmore » influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.« less
Trottmann, M; Rübenthaler, J; Marcon, J; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
To investigate the difference of standard values of Supersonic shear imaging (SSI) and Acoustic Radiation Force Impulse (ARFI) technique in the evaluation of testicular tissue stiffness in vivo. 58 healthy male testes were examined using B-mode sonography and ARFI and SSI. B-mode sonography was performed in order to scan the testis for pathologies followed by performance of real-time elastography in three predefined areas (upper pole, central portion and lower pole) using the SuperSonic® Aixplorer ultrasound device (SuperSonic Imagine, Aix-en-Provence, France). Afterwards a second assessment of the same testicular regions by elastography followed using the ARFI technique of the Siemens Acuson 2000™ ultrasound device (Siemens Health Care, Germany). Values of shear wave velocity were described in m/s. Parameters of elastography techniques were compared using paired sample t-test. The values of SSI were all significantly higher in all measured areas compared to ARFI (p < 0.001 to p = 0.015). Quantitatively there was a higher mean SSI wave velocity value of 1,1 compared to 0.8 m/s measured by ARFI. SSI values are significantly higher than ARFI values when measuring the stiffness of testicular tissue and should only be compared with caution.
Interfacial Shear Strength of Multilayer Graphene Oxide Films.
Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer
2016-02-23
Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.
Effect of load, cadence, and fatigue on tibio-femoral joint force during a half squat.
Hattin, H C; Pierrynowski, M R; Ball, K A
1989-10-01
Ten male university student volunteers were selected to investigate the 3D articular force at the tibio-femoral joint during a half squat exercise, as affected by cadence, different barbell loads, and fatigue. Each subject was required to perform a half squat exercise with a barbell weight centered across the shoulders at two different cadences (1 and 2 s intervals) and three different loads (15, 22 and 30% of the one repetition maximum). Fifty repetitions at each experimental condition were recorded with an active optoelectronic kinematic data capture system (WATSMART) and a force plate (Kistler). Processing the data involved a photogrammetric technique to obtain subject tailored anthropometric data. The findings of this study were: 1) the maximal antero-posterior shear and compressive force consistently occurred at the lowest position of the weight, and the forces were very symmetrically disposed on either side of this halfway point; 2) the medio-lateral shear forces were small over the squat cycle with few peaks and troughs; 3) cadence increased the antero-posterior shear (50%) and the compressive forces (28%); 4) as a subject fatigues, load had a significant effect on the antero-posterior shear force; 5) fatigue increased all articular force components but it did not manifest itself until about halfway through the 50 repetitions of the exercise; 6) the antero-posterior shear force was most affected by fatigue; 7) cadence had a significant effect on fatigue for the medio-lateral shear and compressive forces.
Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Han; Zhang, Xingwang; Chau, Fook Siong
2016-04-25
We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less
NASA Astrophysics Data System (ADS)
Bradshaw, P.
Computational techniques for accounting for extra strain rates, abnormal distributions of delta-U/delta-y, fluctuating strain rates, and the effects of body forces in modeling shear flows are discussed. Consideration is given to simple shears where the extra strain rate does not affect turbulence, thin shear layers, moderately thin shear layers, and strongly distorted flows. Attention is given to formulations based on the exact transport equations for Reynolds stress as derived from the time-averaged Navier-Stokes equations. Extra strain rates arise from curvature, lateral divergence, and bulk compression, with Coriolis forces accounting for the first, intensification of the spanwise vorticity for the second, and compression or dilation of the shear layer producing the third. The curvature forces, e.g., buoyancy and Coriolis forces, are responsible for hurricanes and tornadoes.
Supercoiled Minivector DNA resists shear forces associated with gene therapy delivery
Catanese, D J; Fogg, J M; Schrock, D E; Gilbert, B E; Zechiedrich, L
2012-01-01
Supercoiled DNAs varying from 281 to 5302 bp were subjected to shear forces generated by aerosolization or sonication. DNA shearing strongly correlated with length. Typical sized plasmids (⩾3000 bp) degraded rapidly. DNAs 2000–3000 bp persisted ∼10 min. Even in the absence of condensing agents, supercoiled DNA <1200 bp survived nebulization, and increased forces of sonication were necessary to shear it. Circular vectors were considerably more resistant to shearing than linear vectors of the same length. DNA supercoiling afforded additional protection. These results show the potential of shear-resistant Minivector DNAs to overcome one of the major challenges associated with gene therapy delivery. PMID:21633394
Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei
2015-01-01
The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics. PMID:26761822
Modeling of traction-coupling properties of wheel propulsor
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.
The effects of forcing on a single stream shear layer and its parent boundary layer
NASA Technical Reports Server (NTRS)
Haw, Richard C.; Foss, John F.
1990-01-01
Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.
Badetti, Michel; Fall, Abdoulaye; Chevoir, François; Roux, Jean-Noël
2018-05-28
Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with [Formula: see text]-independent cohesion c applies as a good approximation for large enough [Formula: see text] (typically [Formula: see text]. Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of [Formula: see text]. The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range [Formula: see text] and [Formula: see text]. Thus, the internal friction coefficient [Formula: see text] of the dry material still relates the contact force contribution to stresses, [Formula: see text], while the capillary force contribution to stresses, [Formula: see text], defines a generalized Mohr-Coulomb cohesion c, depending on [Formula: see text] in general. c relates to [Formula: see text] , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress [Formula: see text] (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.
Effect of muscle restraint on sheep meat tenderness with rigor mortis at 18°C.
Devine, Carrick E; Payne, Steven R; Wells, Robyn W
2002-02-01
The effect on shear force of skeletal restraint and removing muscles from lamb m. longissimus thoracis et lumborum (LT) immediately after slaughter and electrical stimulation was undertaken at a rigor temperature of 18°C (n=15). The temperature of 18°C was achieved through chilling of electrically stimulated sheep carcasses in air at 12°C, air flow 1-1.5 ms(-2). In other groups, the muscle was removed at 2.5 h post-mortem and either wrapped or left non-wrapped before being placed back on the carcass to follow carcass cooling regimes. Following rigor mortis, the meat was aged for 0, 16, 40 and 65 h at 15°C and frozen. For the non-stimulated samples, the meat was aged for 0, 12, 36 and 60 h before being frozen. The frozen meat was cooked to 75°C in an 85°C water bath and shear force values obtained from a 1 × 1 cm cross-section. Commencement of ageing was considered to take place at rigor mortis and this was taken as zero aged meat. There were no significant differences in the rate of tenderisation and initial shear force for all treatments. The 23% cook loss was similar for all wrapped and non-wrapped situations and the values decreased slightly with longer ageing durations. Wrapping was shown to mimic meat left intact on the carcass, as it prevented significant prerigor shortening. Such techniques allows muscles to be removed and placed in a controlled temperature environment to enable precise studies of ageing processes.
Shear thickening and jamming in suspensions of different particle shapes
NASA Astrophysics Data System (ADS)
Brown, Eric; Zhang, Hanjun; Forman, Nicole; Betts, Douglas; Desimone, Joseph; Maynor, Benjamin; Jaeger, Heinrich
2012-02-01
We investigated the role of particle shape on shear thickening and jamming in densely packed suspensions. Various particle shapes were fabricated including rods of different aspect ratios and non-convex hooked rods. A rheometer was used to measure shear stress vs. shear rate for a wide range of packing fractions for each shape. Each suspensions exhibits qualitatively similar Discontinuous Shear Thickening, in which the logarithmic slope of the stress vs. shear rate has the same scaling for each convex shape and diverges at a critical packing fraction φc. The value of φc varies with particle shape, and coincides with the onset of a yield stress, a.k.a. the jamming transition. This suggests the jamming transition controls shear thickening, and the only effect of particle shape on steady state bulk rheology of convex particles is a shift of φc. Intriguingly, viscosity curves for non-convex particles do not collapse on the same set as convex particles, showing strong shear thickening over a wider range of packing fraction. Qualitative shape dependence was only found in steady state rheology when the system was confined to small gaps where large aspect ratio particle are forced to order.
Simulations of shear-thinning frictional non-Brownian suspensions
NASA Astrophysics Data System (ADS)
Lemaire, Elisabeth; Lobry, Laurent; Blanc, Frederic; Peters, Francois; RSC Team
2017-11-01
Most non-Brownian suspensions exhibit non-Newtonian behaviours such as anisotropic normal stresses, shear-thickening or shear-thinning. The later is still largely an open question. Acrivos wet al. (JoR 1994) proposed that particle resuspension is responsible for the apparent shear-thinning behavior in a cylindrical Couette rheometer. Another explanation has been suggested by Vasquez-Quesada et al. (PRL 2017), who noticed that some polymeric suspending liquids themselves are shear-thinning for the high shear-rate values involved in the narrow gaps between particles. Here we propose that the shear-thinning behaviour is directly connected to the solid contact between particles that has been shown to play a crucial role in the rheological behaviour of concentrated non-Brownian suspensions. In particular, it has been recently shown that frictional contact between particles greatly enhances the viscosity. Even though the friction coefficient between macroscopic surfaces does not depend on the load, it may be not the case at the scale of the low load contact between particles in suspensions. Here, we present discrete numerical simulations where the friction coefficient decreases with the interparticle forces. The obtained shear-thinning behaviour is in good agreement with our experiments.
Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant.
Huffman, K L; Miller, M F; Hoover, L C; Wu, C K; Brittin, H C; Ramsey, C B
1996-01-01
Loin steaks were eaten by 67 consumers over a 15-wk period (n = 739 consumer observations) to determine the consumer acceptability of beef tenderness in the home and a "white table cloth" restaurant. Steaks were rated for tenderness, juiciness, flavor, and overall palatability on an 8-point scale. The acceptability levels for tenderness were established based on Warner-Bratzler shear (WBS) force values, tenderness ratings, and a chisquare analysis of the judgment of tenderness and overall acceptability by the same consumers in both the home and restaurant. Results based only on observations from consumers in Lubbock, TX indicated that the beef industry should target production of beef steaks that have a Warner-Bratzler shear force value of 4.1 kg or less to ensure high levels (98%) of consumer acceptability. Results suggest that an acceptable level of beef tenderness for consumers can be determined and WBS values can be used as criteria for determining which steaks will be considered acceptably tender to consumers before distribution to retail outlets. The beef industry needs to conduct a nationwide research study to determine whether the results from this study will apply to all U.S. beef consumers.
Shear forces in the contact patch of a braked-racing tyre
NASA Astrophysics Data System (ADS)
Gruber, Patrick; Sharp, Robin S.
2012-12-01
This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.
Development of a shear force measurement dummy for seat comfort.
Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung
2017-01-01
Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.
Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M
2017-12-01
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2018-04-01
Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lundstrom, Troy; Clark, William; Jalili, Nader
2017-05-01
In the design and development of end effector pads for silicon wafer handling robots, it is imperative that the static friction/adhesion force properties of the pads with respect to a variety of planar surfaces be characterized. In this work, the overall design, calibration, and data acquisition procedure of an instrument developed for performing these measurements on small (<10 mm × 10 mm) planar samples is presented. This device was used to perform adhesion/maximum shear force measurements on polydimethylsiloxane, a silicon wafer, and custom carbon nanotubes forest surfaces. The device was successfully able to measure an effective, mean profile adhesion force of 715 μN between a silicon wafer and a polydimethylsiloxane (2.768 × 10-6 m2) sample. In addition, a nonlinear maximum shear over normal force relationship was also measured between custom carbon nanotubes forest and the silicon wafer surfaces. The maximum shear over a normal force coefficient was found to decrease with increasing initial normal force. Currently, there are numerous devices for measuring normal/shear forces at the nano/micro- and macroscales; however, this device allows for the consistent measurement of these same types of forces on components with surface dimensions ranging from 0.1 mm to 10 mm.
Effects of Combined Shear and Thermal Forces on Destruction of Microbacterium lacticum
Bulut, S.; Waites, W. M.; Mitchell, J. R.
1999-01-01
A twin-screw extruder and a rotational rheometer were used to generate shear forces in concentrated gelatin inoculated with a heat-resistant isolate of a vegetative bacterial species, Microbacterium lacticum. Shear forces in the extruder were mainly controlled by varying the water feed rate. The water content of the extrudates changed between 19 and 45% (wet weight basis). Higher shear forces generated at low water contents and the calculated die wall shear stress correlated strongly with bacterial destruction. No surviving microorganisms could be detected at the highest wall shear stress of 409 kPa, giving log reduction of 5.3 (minimum detection level, 2 × 104 CFU/sample). The mean residence time of the microorganism in the extruder was 49 to 58 s, and the maximum temperature measured in the end of the die was 73°C. The D75°C of the microorganism in gelatin at 65% water content was 20 min. It is concluded that the physical forces generated in the reverse screw element and the extruder die rather than heat played a major part in cell destruction. In a rotational rheometer, after shearing of a mix of microorganisms with gelatin at 65% (wt/wt) moisture content for 4 min at a shear stress of 2.8 kPa and a temperature of 75°C, the number of surviving microorganisms in the sheared sample was 5.2 × 106 CFU/g of sample compared with 1.4 × 108 CFU/g of sample in the nonsheared control. The relative effectiveness of physical forces in the killing of bacteria and destruction of starch granules is discussed. PMID:10508076
Self-oscillations of a two-dimensional shear flow with forcing and dissipation
NASA Astrophysics Data System (ADS)
López Zazueta, A.; Zavala Sansón, L.
2018-04-01
Two-dimensional shear flows continuously forced in the presence of dissipative effects are studied by means of numerical simulations. In contrast with most previous studies, the forcing is confined in a finite region, so the behavior of the system is characterized by the long-term evolution of the global kinetic energy. We consider regimes with 1 < Reλ << Re, where Reλ is the Reynolds number associated with an external friction (such as bottom friction in quasi-two-dimensional flows), and Re is the traditional Reynolds number associated with Laplacian viscosity. Depending on Reλ, the flow may develop Kelvin-Helmholtz instabilities that exhibit either regular or irregular oscillations. The results are discussed in two parts. First, the flow is limited to develop only one vortical instability by choosing an appropriate width of the forcing band. The most relevant regime is found for Reλ > 36, in which the energy maintains a regular oscillation around a reference value. The flow configuration is an elliptical vortex tilted with respect to the forcing axis, which oscillates steadily also. Second, the flow is allowed to develop two Kelvin-Helmholtz billows and eventually more complicated structures. The regimes of the one-vortex case are observed again, except for Reλ > 135. At these values, the energy oscillates chaotically as the two vortices merge, form dipolar structures, and split again, with irregular periodicity. The self-oscillations are explained as a result of the alternate competition between forcing and dissipation, which is verified by calculating the budget terms in the energy equation. The relevance of the forcing-vs.-dissipation competition is discussed for more general flow systems.
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
NASA Astrophysics Data System (ADS)
Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev
2018-05-01
The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.
Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change
NASA Astrophysics Data System (ADS)
Wijeratne, Sithara S.; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela L.; Frey, Eric W.; Patel, Jay M.; Nolasco, Leticia; Turner, Nancy A.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa
2013-03-01
The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF’s crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.
Küçüközet, Ahmet Oktay; Uslu, Mustafa Kemal
2018-01-01
In this study, edible films were produced from sodium caseinate and a sodium caseinate-starch mixture and with or without oleoresins (cumin and oregano oleoresin mixture). Chicken meat was wrapped in the respective films, stored at 4 ℃ for four days, and roasted at 200 ℃ for 30 min. The cooking loss, color changes, instrumental tenderness (shear force and energy) were measured. In addition, sensory evaluation was performed. All films effectively reduced cooking loss from chicken meat. The sodium caseinate-starch-based films were the most successful in preventing cooking loss. The average shear force and shear energy values of the wrapped samples were about 40% and 30% less than those of control samples, respectively. In sensory evaluation, chicken meat roasted after wrapping with the films was considered more tender and delicious than the control. Particularly, chicken meat wrapped with the films containing oleoresin mixture was assessed as the most delicious among the samples. It was shown that the cooking quality of the chicken meat could be significantly improved by pre-wrapping the meat with edible films.
Siria, A; Barois, T; Vilella, K; Perisanu, S; Ayari, A; Guillot, D; Purcell, S T; Poncharal, P
2012-07-11
This article presents a study of the poorly understood "shear-force" used in an important class of near-field instruments that use mechanical resonance feedback detection. In the case of a metallic probe near a metallic surface in vacuum, we show that in the 10-60 nm range there is no such a thing as a shear-force in the sense of the nonconservative friction force. Fluctuations of the oscillator resonance frequency, likely induced by local charge variations, could account for the reported effects in the literature without introducing a dissipative force.
NASA Astrophysics Data System (ADS)
Harb, Gabriele; Haun, Stefan
2013-04-01
Reservoir sedimentation is a common problem today. Due to the reduced flow velocities, turbulences and bed shear stresses the transported sediment load start to settle. These depositions reduce the worldwide average storage capacity in the range of about 1% per year. However, depending on the climate conditions and the geology in the catchment area this value may vary strongly. Therefore sediment management tasks, especially the removal of already accumulated sediments, have to be developed for each reservoir separately. The critical bed shear stress is a key parameter used to evaluate the different management tasks and depend strongly on the grain size distribution of the inflowing sediments. However, depositions which contain fine particles like clay and silt increase the critical bed shear stress due to occurring cohesive forces and the use of the Shield curve for evaluating the critical shear stress is no longer valid. Additional data is required for estimating the valid critical shear stress at the reservoir bed. In this study the critical shear stress was evaluated for cohesive sediment samples, taken from two different reservoirs, in a flume in the laboratory. The sediment samples were placed in an installed double bottom in the research flume and the discharge was increased stepwise until mass erosion took place (determined by visual inspection). A 2D PIV device was used to measure the flow conditions (velocities and turbulences) over the sediment sample. The obtained values were used to calculate the bed shear stress for the specific discharge rate by the gravity method and the Reynolds stress method. The results of both methods showed good agreement in the comparison of the values, what indicates that nearly uniform flow conditions occurred in the flume. The results from this study showed that the behaviour of natural cohesive sediments depend strongly on the natural conditions as a result of physical, chemical and biological processes. In this case especially the effect of the layer structure in the sediment samples was controlling the erosion mechanism. The results of the experiments showed also that the obtained average shear stress was above most of the values found in previous conducted studies, which may be explained by consolidation effects in the reservoirs. Additional conducted vane strength measurements have been carried out in situ. The in the field obtained vane strength values were set in relation to the critical shear stresses derived by the experimental tests from the laboratory and to data from a previous conducted study to develop a new relation function. This function may be used in future studies for a rough estimation of the critical shear stress, based on in situ measured vane strength values.
Biomechanics of leukocyte rolling
Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus
2011-01-01
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.
Boks, Niels P; Norde, Willem; van der Mei, Henny C; Busscher, Henk J
2008-10-01
Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the following three hypotheses. 1. A strong hydrodynamic shear force to prevent adhesion relates to a strong hydrodynamic shear force to detach an adhering organism. 2. A weak hydrodynamic shear force to detach adhering bacteria implies that more bacteria will be stimulated to detach by passing an air-liquid interface (an air bubble) through the flow chamber. 3. DLVO (Derjaguin, Landau, Verwey, Overbeek) interactions determine the characteristic hydrodynamic shear forces to prevent adhesion and to detach adhering micro-organisms as well as the detachment induced by a passing air-liquid interface. F(prev) varied from 0.03 to 0.70 pN, while F(det) varied from 0.31 to over 19.64 pN, suggesting that after initial contact, strengthening of the bond occurs. Generally, it was more difficult to detach bacteria from DDS-coated glass than from hydrophilic glass, which was confirmed by air bubble detachment studies. Calculated attractive forces based on the DLVO theory (F(DLVO)) towards the secondary interaction minimum were higher on glass than on DDS-coated glass. In general, all three hypotheses had to be rejected, showing that it is important to distinguish between forces acting parallel (hydrodynamic shear) and perpendicular (DLVO, air-liquid interface passages) to the substratum surface.
Force and work to shear green southern pine logs at slow speed
Peter Koch
1971-01-01
When logs of three diameter classes and two specific gravity classes were sheared with a 3/8-inch-thick knife travelling at 2 inches per minute, shearing force and work averaged greatest for dense 13.6-inch logs cut with a knife having a 45o sharpness angle (73,517 pounds; 49,838 foot-pounds). Force and work averaged at least 5.1-inch bolts of...
Variation of meat quality traits among five genotypes of chicken.
Tang, H; Gong, Y Z; Wu, C X; Jiang, J; Wang, Y; Li, K
2009-10-01
The main objective of this study was to examine the diversity of meat quality traits among 5 chicken genotypes. The genotypes included 2 Chinese native breeds (Wenchang,WCH, and Xianju), 1 commercial broiler line (Avian, AV), 1 commercial layer line (Hy-Line Brown, HLB), and 1 Chinese commercial broiler line (Lingnanhuang, LNH) synthesized by exotic and native breeds, which were slaughtered at their market ages: 16, 7, 16, and 8 wk, respectively. The effects of genotype, muscle type, and sex on meat quality traits were examined. Birds from slow-growing genotypes (WCH, Xianju, and HLB) exhibited higher shear value, inosine-5'-monophosphate concentration, lower cook loss, and more fat than those from fast-growing genotypes (AV and LNH). Chickens from WCH possessed the lowest expressible moisture, cook loss, and the highest lipid (%) among the 3 slow-growing genotypes. The HLB birds were intermediate in expressible moisture and cook loss and lowest in lipid among all genotypes. The LNH cross birds were similar to AV broilers in most meat quality parameters, although they had a lower shear force value and higher fat content than AV broilers. Breast muscle had higher expressible moisture, shear force, protein (%), inosine-5'-monophosphate content, lower cook loss, and lipid (%) than leg muscle. Muscles from male chickens had higher expressible moisture than those from the females. Variability of meat quality characteristics is mainly related to genotype and muscle type differences.
Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang
2013-01-01
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817
A mechanical model of metatarsal stress fracture during distance running.
Gross, T S; Bunch, R P
1989-01-01
A model of metatarsal mechanics has been proposed as a link between the high incidence of second and third metatarsal stress fractures and the large stresses measured beneath the second and third metatarsal heads during distance running. Eight discrete piezoelectric vertical stress transducers were used to record the forefoot stresses of 21 male distance runners. Based upon load bearing area estimates derived from footprints, plantar forces were estimated. Highest force was estimated beneath the second and first metatarsal head (341.1 N and 279.1 N, respectively). Considering the toe as a hinged cantilever and the metatarsal as a proximally attached rigid cantilever allowed estimation of metatarsal midshaft bending strain, shear, and axial forces. Bending strain was estimated to be greatest in the second metatarsal (6662 mu epsilon), a value 6.9 times greater than estimated first metatarsal strain. Predicted third, fourth, and fifth metatarsal strains ranged between 4832 and 5241 mu epsilon. Shear force estimates were also greatest in the second metatarsal (203.0 N). Axial forces were highest in the first metatarsal (593.2 N) due to large hallux forces in relationship to the remaining toes. Although a first order model, these data highlight the structural demands placed upon the second metatarsal, a location of high metatarsal stress fracture incidence during distance running.
Multi-muscle synergies in an unusual postural task: quick shear force production.
Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L
2008-05-01
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
Lee, Hyun Jung; Jayasena, Dinesh D; Kim, Sun Hyo; Kim, Hyun Joo; Heo, Kang Nyung; Song, Ji Eun; Jo, Cheorun
2015-01-01
The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no such difference (p>0.05) was found between male and female ducks. The breed and sex had no significant effects on the breast weight, pH value, and shear force. However, KND had significantly lower cooking loss values than did CD. Creatine, anserine, and L-carnitine contents were significantly higher in KND than in CD and were predominant in female ducks compared to males. The results of this study provide rare information regarding the amounts and the determinants of several bioactive compounds in duck meat, which can be useful for selection and breeding programs, and for popularizing indigenous duck meat.
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Balandin, Vl. V.; Kotov, V. L.; Balandin, Vl. Vl.
2018-04-01
We present new experimental results on the investigation of the dynamic properties of sand soil on the basis of the inverse experiment technique using a measuring rod with a flat front-end face. A limited applicability has been shown of the method using the procedure for correcting the shape of the deformation pulse due to dispersion during its propagation in the measuring rod. Estimates of the pulse maximum have been obtained and the results of comparison of numerical calculations with experimental data are given. The sufficient accuracy in determining the drag force during the quasi-stationary stage of penetration has been established. The parameters of dynamic compressibility and resistance to shear of water-saturated sand have been determined in the course of the experimental-theoretical analysis of the maximum values of the drag force and its values at the quasi-stationary stage of penetration. It has been shown that with almost complete water saturation of sand its shear properties are reduced but remain significant in the practically important range of penetration rates.
Kim, Yuan H Brad; Liesse, Charlotte; Kemp, Robert; Balan, Prabhu
2015-12-01
The objective of our study was to evaluate the combined effects of ageing period and different freezing rates on meat quality attributes of beef loins. Pairs of loins (M. longissimus at 1 day post mortem) from 12 carcasses were divided into four equal portions and randomly assigned to four ageing/freezing treatments (aged only, frozen only, and 3 or 4 weeks ageing at -1.5°C then frozen). Two freezing methods (fast freezing by calcium chloride immersion or slow freezing by air freezer at -18°C) were applied to the loin sections. Fast freezing had no effect on shear force (P>0.05), but significantly improved the water-holding capacity of the aged/frozen loins by reducing purge and drip losses. Ageing-then-freezing significantly improved shear force values of loins compared to both the aged only and frozen only loins. These observations suggest that fast freezing will add more value to the aged/frozen/thawed meat by minimising the amount of water-loss due to the freezing/thawing process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls
NASA Astrophysics Data System (ADS)
Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu
2017-10-01
In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.
In vivo wall shear measurements within the developing zebrafish heart.
Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas
2013-01-01
Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berik, Pelin; Maurya, Deepam; Kumar, Prashant
This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-staticmore » 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less
Berik, Pelin; Maurya, Deepam; Kumar, Prashant; Kang, Min Gyu; Priya, Shashank
2017-01-01
Abstract This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of lead-based shear-mode piezoceramics. The Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 (NBT-BT-Mn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m–2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m–1 V–1 under quasi-static 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. These results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts. PMID:28179958
Berik, Pelin; Maurya, Deepam; Kumar, Prashant; ...
2017-01-09
This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-staticmore » 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less
Study on shearing force and impact force of a volcanic mud flow on Mt. Sakurajima
Yoshinobu Taniguchi
1991-01-01
Two kinds of shearing stress meters (type A and type B) were set on the channel bottom in the Arimura River and the Mochiki River on Mt. Sakurajima. Volcanic mud flows take place there about 100 times a year. The results of the surveys demonstrated that the actual shearing force of a volcanic mud flow on Mt. Sakurajima was from 0.46 to 2.50 kgf/cm2...
Finite element analysis of rapid canine retraction through reducing resistance and distraction
XUE, Junjie; YE, Niansong; YANG, Xin; WANG, Sheng; WANG, Jing; WANG, Yan; LI, Jingyu; MI, Congbo; LAI, Wenli
2014-01-01
Objective The aims of this study were to compare different surgical approaches to rapid canine retraction by designing and selecting the most effective method of reducing resistance by a three-dimensional finite element analysis. Material and Methods Three-dimensional finite element models of different approaches to rapid canine retraction by reducing resistance and distraction were established, including maxillary teeth, periodontal ligament, and alveolar. The models were designed to dissect the periodontal ligament, root, and alveolar separately. A 1.5 N force vector was loaded bilaterally to the center of the crown between first molar and canine, to retract the canine distally. The value of total deformation was used to assess the initial displacement of the canine and molar at the beginning of force loading. Stress intensity and force distribution were analyzed and evaluated by Ansys 13.0 through comparison of equivalent (von Mises) stress and maximum shear stress. Results The maximum value of total deformation with the three kinds of models occurred in the distal part of the canine crown and gradually reduced from the crown to the apex of the canine; compared with the canines in model 3 and model 1, the canine in model 2 had the maximum value of displacement, up to 1.9812 mm. The lowest equivalent (von Mises) stress and the lowest maximum shear stress were concentrated mainly on the distal side of the canine root in model 2. The distribution of equivalent (von Mises) stress and maximum shear stress on the PDL of the canine in the three models was highly concentrated on the distal edge of the canine cervix. Conclusions Removal of the bone in the pathway of canine retraction results in low stress intensity for canine movement. Periodontal distraction aided by surgical undermining of the interseptal bone would reduce resistance and effectively accelerate the speed of canine retraction. PMID:24626249
Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa
2010-06-01
The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor-adrenaline and dopamine concentrations (P < 0.05) than non-transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.
Ground reaction forces and plantar pressure distribution during occasional loaded gait.
Castro, Marcelo; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo
2013-05-01
This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-05-01
To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Creation of residual flows in a partially stratified estuary
Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.
2001-01-01
The creation of residual flows in estuaries is examined using acoustic Doppler current profiler data sets from northern San Francisco Bay. The data sets are analyzed using principal component analysis to examine the temporal variability of the flows which create the residual circulation. It is seen that in this periodically and partially stratified estuary the residual flows are created through a series of pulses with strong variability at the 24-hour timescale, through the interaction of shear, stratification and mixing. This interaction is captured through the use of a dimensionless number, the horizontal Richardson number (Rix), which is developed to examine the local balance between the stratifying and destratifying forces at the tidal timescale. It is seen that Rix is a valuable parameter in predicting the onset of the residual-creating events, with a threshold value of ??? 3 on ebb tides. This critical value is argued to be a threshold, above which the stratification and shear flow create a feedback effect, each further intensifying the other. This feedback results in a highly variable exchange flow which creates the estuarine residual in intermittent pulses rather than as a steady flow. Although typically attributed to baroclinic forcing, an argument is made that these pulses of residual-creating exchange flow could be created by barotropic forcing in the presence of variable stratification which is asymmetric between flood and ebb tides. This result poses a great challenge for turbulence modeling, as the timing and magnitude of stratification and shear must be correctly simulated on the tidal timescale in order to reproduce the effects seen in the data sets presented. Copyright 2001 by the American Geophysical Union.
Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine
2015-08-01
Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.
2017-01-01
Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Qi-lin, E-mail: xiongql@hust.edu.cn; Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074; Tian, Xiao Geng
The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length onmore » the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.« less
Dynamics of ultrasonic additive manufacturing.
Hehr, Adam; Dapino, Marcelo J
2017-01-01
Ultrasonic additive manufacturing (UAM) is a solid-state technology for joining similar and dissimilar metal foils near room temperature by scrubbing them together with ultrasonic vibrations under pressure. Structural dynamics of the welding assembly and work piece influence how energy is transferred during the process and ultimately, part quality. To understand the effect of structural dynamics during UAM, a linear time-invariant model is proposed to relate the inputs of shear force and electric current to resultant welder velocity and voltage. Measured frequency response and operating performance of the welder under no load is used to identify model parameters. Using this model and in-situ measurements, shear force and welder efficiency are estimated to be near 2000N and 80% when welding Al 6061-H18 weld foil, respectively. Shear force and welder efficiency have never been estimated before in UAM. The influence of processing conditions, i.e., welder amplitude, normal force, and weld speed, on shear force and welder efficiency are investigated. Welder velocity was found to strongly influence the shear force magnitude and efficiency while normal force and weld speed showed little to no influence. The proposed model is used to describe high frequency harmonic content in the velocity response of the welder during welding operations and coupling of the UAM build with the welder. Copyright © 2016 Elsevier B.V. All rights reserved.
Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger
2016-01-01
Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523
Shear thinning in non-Brownian suspensions.
Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie
2018-02-14
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
Microscopic Origins of Shear Jamming for 2D Frictional Grains
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua A.; Zheng, Hu; Behringer, Robert P.
2018-05-01
Shear jamming (SJ) occurs for frictional granular materials with packing fractions ϕ in ϕS<ϕ <ϕJ0, when the material is subject to shear strain γ starting from a force-free state. Here, ϕJμ is the isotropic jamming point for particles with a friction coefficient μ . SJ states have mechanically stable anisotropic force networks, e.g., force chains. Here, we investigate the origins of SJ by considering small-scale structures—trimers and branches—whose response to shear leads to SJ. Trimers are any three grains where the two outer grains contact a center one. Branches occur where three or more quasilinear force chain segments intersect. Certain trimers respond to shear by compressing and bending; bending is a nonlinear symmetry-breaking process that can push particles in the dilation direction faster than the affine dilation. We identify these structures in physical experiments on systems of two-dimensional frictional discs, and verify their role in SJ. Trimer bending and branch creation both increase Z above Ziso≃3 needed for jamming 2D frictional grains, and grow the strong force network, leading to SJ.
Direct manipulation of metallic nanosheets by shear force microscopy.
Bi, Z; Cai, W; Wang, Y; Shang, G
2018-05-15
Micro/nanomanipulation is a rapidly growing technology and holds promising applications in various fields, including photonic/electronic devices, chemical/biosensors etc. In this work, we present that shear force microscopy (ShFM) can be exploited to manipulate metallic nanosheets besides imaging. The manipulation is realized via controlling the shear force sensor probe position and shear force magnitude based on our homemade ShFM system under an optical microscopy for in situ observation. The main feature of the ShFM system is usage of a piezoelectric bimorph sensor, which has the ability of self-excitation and detection. Moreover, the shear force magnitude as a function of the spring constant of the sensor and setpoint is obtained, which indicates that operation modes can be switched between imaging and manipulation through designing the spring constant before experiment and changing the setpoint during manipulation process, respectively. We believe that this alternative manipulation technique could be used to assemble other nanostructures with different shapes, sizes and compositions for new properties and wider applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Yang, Yiqun; Urban, Matthew W; McGough, Robert J
2018-05-15
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.
NASA Astrophysics Data System (ADS)
Wang, Wei-Chih; Panergo, Reynold R.; Galvanin, Christopher M.; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.
2003-07-01
Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. While it is known from force plate analyses that there are medial/lateral and anterior/posterior shear components of the ground reaction force, there is little known about the actual distribution of this force during daily activities, nor about the role that shear plays in causing plantar ulceration. Furthermore, one critical reason why these data have not been obtained previously is the lack of a validated, widely used, commercially available shear sensor, in part because of the various technical issues associated with shear measurement. Here we have developed novel means of tranducing plantar shear and pressure stress via a new microfabricated optical system. The pressure/shear sensor consists of an array of optical waveguides lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular optical waveguides. The uniqueness of the sensor is in its batch fabrication process, which involves injection molding and embossing techniques with Polydimethylsiloxane (PDMS) as the optical medium. Here we present the preliminary results of the prototype. The sensor has been shown to have low noise and responds linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 N. The smallest area we have resolved in our mesh sensor is currently 950x950μm2
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow
NASA Astrophysics Data System (ADS)
Sesay, Juldeh
2005-11-01
The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.
Foot force direction control during a pedaling task in individuals post-stroke
2014-01-01
Background Appropriate magnitude and directional control of foot-forces is required for successful execution of locomotor tasks. Earlier evidence suggested, following stroke, there is a potential impairment in foot-force control capabilities both during stationary force generation and locomotion. The purpose of this study was to investigate the foot-pedal surface interaction force components, in non-neurologically-impaired and stroke-impaired individuals, in order to determine how fore/aft shear-directed foot/pedal forces are controlled. Methods Sixteen individuals with chronic post-stroke hemiplegia and 10 age-similar non-neurologically-impaired controls performed a foot placement maintenance task under a stationary and a pedaling condition, achieving a target normal pedal force. Electromyography and force profiles were recorded. We expected generation of unduly large magnitude shear pedal forces and reduced participation of multiple muscles that can contribute forces in appropriate directions in individuals post-stroke. Results We found lower force output, inconsistent modulation of muscle activity and reduced ability to change foot force direction in the paretic limbs, but we did not observe unduly large magnitude shear pedal surface forces by the paretic limbs as we hypothesized. Conclusion These findings suggested the preservation of foot-force control capabilities post-stroke under minimal upright postural control requirements. Further research must be conducted to determine whether inappropriate shear force generation will be revealed under non-seated, postural demanding conditions, where subjects have to actively control for upright body suspension. PMID:24739234
1992-03-30
transitionally turbulent by nature. Thus, we expect Rh to fluctuate about some critical threshold turbulence value, RCh. R,, is much larger than the 1/4...the EZ shear results from turning the wind into the v direction. So for a mature mid-latitude BL with u. 0.4ms 1, f =14S-1, z’ = 103m , e = 300 0C, and...will diminish later as zi becomes large. If we require more accuracy, we can couple eqns. (16, 18, 19, 20, and 26) with 2u. 2 v We v2,& G H’t = We + ( Rh
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Tenzer, Robert
2017-07-01
In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).
The supernova-regulated ISM. III. Generation of vorticity, helicity, and mean flows
NASA Astrophysics Data System (ADS)
Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R.
2018-03-01
Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aim. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods: We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions. Results: As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α (AKA) effect. We use the method of moments to fit for the turbulent transport coefficients, and find αAKA values of the order 3-5 km s-1. Conclusions: Even in a weakly rotationally and shear-influenced system, small-scale anisotropies can lead to significant effects at large scales. Here we report on two consequences of such effects, namely on the generation of net helicity and on the emergence of large-scale flows by the AKA effect, the latter detected for the first time in a direct numerical simulation of a realistic astrophysical system.
Predictors of proximal tibia anterior shear force during a vertical stop-jump.
Sell, Timothy C; Ferris, Cheryl M; Abt, John P; Tsai, Yung-Shen; Myers, Joseph B; Fu, Freddie H; Lephart, Scott M
2007-12-01
Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the biomechanical predictors of proximal tibia anterior shear force during a stop-jump task. A biomechanical and electromyographic (EMG) analysis of the knee was conducted while subjects performed a vertical stop-jump task. The task was chosen to simulate an athletic maneuver that included a landing with a sharp deceleration and a change in direction. The final regression model indicated that posterior ground reaction force, external knee flexion moment, knee flexion angle, integrated EMG activity of the vastus lateralis, and sex (female) would significantly predict proximal tibia anterior shear force (p < 0.0001, R2 = 0.8609). Knee flexion moment had the greatest influence on proximal tibia anterior shear force. The mathematical relationships elucidated in the current study support previous clinical and basic science research examining noncontact ACL injuries. This data provides important evidence for clinicians who are examining the risk factors for these injuries and developing/validating training programs to reduce the incidence of injury. Copyright 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Contact force structure and force chains in 3D sheared granular systems
NASA Astrophysics Data System (ADS)
Mair, Karen; Jettestuen, Espen; Abe, Steffen
2010-05-01
Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.
Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2
NASA Astrophysics Data System (ADS)
Neves, Bernardo; Barboza, Ana Paula; Chacham, Helio; Oliveira, Camilla; Fernandes, Thales; Martins Ferreira, Erlon; Archanjo, Braulio; Batista, Ronaldo; Oliveira, Alan
2013-03-01
We report a novel mechanical response of few-layer graphene, h-BN, and MoS2 to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%. The effect is null in the absence of shear, increases with tip velocity, and is anisotropic. It also has similar magnitudes in these solid lubricant materials (few-layer graphene, h-BN, and MoS2), but it is absent in single-layer graphene and in few-layer mica and Bi2Se3. We propose a physical mechanism for the effect where the combined compressive and shear stresses from the tip induce dynamical wrinkling on the upper material layers, leading to the observed flake thickening. The new effect (and, therefore, the proposed wrinkling) is reversible in the three materials where it is observed.[2] Financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono
Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui
2018-01-01
The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases. PMID:29304102
Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J
2018-01-01
The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.
Estimating force and power requirements for crosscut shearing of roundwood.
Rodger A. Arola
1972-01-01
Presents a procedure which, through the use of nomographs, permits rapid estimation of the force required to crosscut shear logs of various species and diameters with shear blades ranging in thickness from 1/4 to 7/8 inch. In addition, nomographs are included to evaluate hydraulic cylinder sizes, pump capacities, and motor horsepower requirements to effect the cut....
Dissolved oxygen as a key parameter to aerobic granule formation.
Sturm, B S McSwain; Irvine, R L
2008-01-01
Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s(-1). When less than 1 cm s(-1) shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L(-1) to 5 mg L(-1), affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s(-1), but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L(-1), with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force. Copyright IWA Publishing 2008.
NASA Astrophysics Data System (ADS)
Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.
2018-05-01
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.
Direct measurements of local bed shear stress in the presence of pressure gradients
NASA Astrophysics Data System (ADS)
Pujara, Nimish; Liu, Philip L.-F.
2014-07-01
This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.
Derrick, Timothy R; Edwards, W Brent; Fellin, Rebecca E; Seay, Joseph F
2016-02-08
The purpose of this research was to utilize a series of models to estimate the stress in a cross section of the tibia, located 62% from the proximal end, during walking. Twenty-eight male, active duty soldiers walked on an instrumented treadmill while external force data and kinematics were recorded. A rigid body model was used to estimate joint moments and reaction forces. A musculoskeletal model was used to gather muscle length, muscle velocity, moment arm and orientation information. Optimization procedures were used to estimate muscle forces and finally internal bone forces and moments were applied to an inhomogeneous, subject specific bone model obtained from CT scans to estimate stress in the bone cross section. Validity was assessed by comparison to stresses calculated from strain gage data in the literature and sensitivity was investigated using two simplified versions of the bone model-a homogeneous model and an ellipse approximation. Peak compressive stress occurred on the posterior aspect of the cross section (-47.5 ± 14.9 MPa). Peak tensile stress occurred on the anterior aspect (27.0 ± 11.7 MPa) while the location of peak shear was variable between subjects (7.2 ± 2.4 MPa). Peak compressive, tensile and shear stresses were within 0.52 MPa, 0.36 MPa and 3.02 MPa respectively of those calculated from the converted strain gage data. Peak values from a inhomogeneous model of the bone correlated well with homogeneous model (normal: 0.99; shear: 0.94) as did the normal ellipse model (r=0.89-0.96). However, the relationship between shear stress in the inhomogeneous model and ellipse model was less accurate (r=0.64). The procedures detailed in this paper provide a non-invasive and relatively quick method of estimating cross sectional stress that holds promise for assessing injury and osteogenic stimulus in bone during normal physical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Quinn, R. D.; Gong, L.
1978-01-01
Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.
Kim, Sun Hyo; Heo, Kang Nyung
2015-01-01
The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no such difference (p>0.05) was found between male and female ducks. The breed and sex had no significant effects on the breast weight, pH value, and shear force. However, KND had significantly lower cooking loss values than did CD. Creatine, anserine, and L-carnitine contents were significantly higher in KND than in CD and were predominant in female ducks compared to males. The results of this study provide rare information regarding the amounts and the determinants of several bioactive compounds in duck meat, which can be useful for selection and breeding programs, and for popularizing indigenous duck meat. PMID:26761808
Influences of end-point heating temperature on the quality attributes of chicken meat.
Chumngoen, W; Chen, C F; Chen, H Y; Tan, F J
2016-12-01
This study aimed to evaluate the changes in physicochemical, textural and sensory characteristics of broiler (BR) and Taiwan native chicken (TNC) pectoralis muscle heated at temperatures of 50-95°C. With increasing temperature, cooking loss, collagen solubility, shear force value and hardness, of samples increased in both chicken breeds. Rapid decreases in protein solubility were observed when the meat was heated to 50°C and gradually decreased thereafter. Meat from BRs and native chickens performed differently upon heating in certain characteristics. TNC meat had longer cooking time and lower myofibrillar fragmentation index than BR meat did. TNC meat had higher collagen content, shear force values and springiness but lower collagen solubility than BR meat did. BR meat had significantly higher onset and end transition temperatures than TNC meat did. In BR meat, a sensory analysis revealed that moisture release decreased and chicken flavour increased with increasing temperature. Protein solubility, cooking loss and the texture of heated meat were highly correlated. This study scientifically assessed the performances of the two breeds of chickens with different thermal treatments; producers could utilise the information to produce poultry products with more desirable qualities.
Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H
2017-03-01
Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.
Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid
2015-01-01
Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.
Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra
2014-01-01
PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002
Colorimetric qualification of shear sensitive liquid crystal coatings
NASA Technical Reports Server (NTRS)
Muratore, Joseph J., Jr.
1993-01-01
The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared with conventional point measurement sensors. It has yet to be determined if a repeatable correlation exists between the measured color of a liquid crystal coating and the magnitude/directional components of a shear vector imposed onto it.
Compact forced simple-shear sample for studying shear localization in materials
Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica
2015-11-06
In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less
Interpretation of the human skin biotribological behaviour after tape stripping
Pailler-Mattei, C.; Guerret-Piécourt, C.; Zahouani, H.; Nicoli, S.
2011-01-01
The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ0, and the second term depending on the electric shear strength, τelec. The experimental results allowed to estimate a numerical value of the electric shear strength τelec. Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption. PMID:21227961
Interpretation of the human skin biotribological behaviour after tape stripping.
Pailler-Mattei, C; Guerret-Piécourt, C; Zahouani, H; Nicoli, S
2011-07-06
The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ(0), and the second term depending on the electric shear strength, τ(elec). The experimental results allowed to estimate a numerical value of the electric shear strength τ(elec). Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption.
NASA Astrophysics Data System (ADS)
Ustione, A.; Cricenti, A.; Piacentini, M.; Felici, A. C.
2006-09-01
A new implementation of a shear-force microscope is described that uses a shear-force detection system to perform topographical imaging of large areas (˜1×1mm2). This implementation finds very interesting application in the study of archeological or artistic samples. Three dc motors are used to move a sample during a scan, allowing the probe tip to follow the surface and to face height differences of several tens of micrometers. This large-area topographical imaging mode exploits new subroutines that were added to the existing homemade software; these subroutines were created in Microsoft VISUAL BASIC 6.0 programming language. With this new feature our shear-force microscope can be used to study topographical details over large areas of archaeological samples in a nondestructive way. We show results detecting worn reliefs over a coin.
Bioprocess Forces and Their Impact on Cell Behavior: Implications for Bone Regeneration Therapy
Brindley, David; Moorthy, Kishaani; Lee, Jae-Ho; Mason, Chris; Kim, Hae-Won; Wall, Ivan
2011-01-01
Bioprocess forces such as shear stress experienced during routine cell culture are considered to be harmful to cells. However, the impact of physical forces on cell behavior is an area of growing interest within the tissue engineering community, and it is widely acknowledged that mechanical stimulation including shear stress can enhance osteogenic differentiation. This paper considers the effects of bioprocess shear stress on cell responses such as survival and proliferation in several contexts, including suspension-adapted cells used for recombinant protein and monoclonal antibody manufacture, adherent cells for therapy in suspension, and adherent cells attached to their growth substrates. The enhanced osteogenic differentiation that fluid flow shear stress is widely found to induce is discussed, along with the tissue engineering of mineralized tissue using perfusion bioreactors. Recent evidence that bioprocess forces produced during capillary transfer or pipetting of cell suspensions can enhance osteogenic responses is also discussed. PMID:21904661
A Two-Axis Direct Fluid Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.
2010-01-01
This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.
Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Pierce, F. J.; Mcallister, J. E.
1980-01-01
Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.
Influence of enamel conditioning on the shear bond strength of different adhesives.
Brauchli, Lorenz; Muscillo, Teodoro; Steineck, Markus; Wichelhaus, Andrea
2010-11-01
Phosphoric acid etching is the gold standard for enamel conditioning. However, it is possible that air abrasion or a combination of air abrasion and etching might result in enhanced adhesion. The aim of this study was to investigate the effect of different enamel conditioning methods on the bond strength of six adhesives. Three different enamel conditioning procedures (phosphoric acid etching, air abrasion, air abrasion + phosphoric acid etching) were evaluated for their influence on the shear bond strength of six different adhesives (Transbond™ XT, Cool-Bond™, Fuji Ortho LC, Ultra Band-Lok, Tetric(®) Flow, Light-Bond™). Each group consisted of 15 specimens. Shear forces were measured with a universal testing machine. The scores of the Adhesive Remnant Index (ARI) were also analyzed. There were no significant differences between phosphoric acid etching and air abrasion + phosphoric acid etching. Air abrasion as a single conditioning technique led to significantly lower shear forces. The ARI scores did not correlate with the shear strengths measured. There were greater variations in shear forces for the different adhesives than for the conditioning techniques. The highest shear forces were found for the conventional composites Transbond™ XT and Cool- Bond™ in combination with conventional etching. Air abrasion alone and in combination with phosphoric acid etching showed no advantages compared with phosphoric acid etching alone and, therefore, cannot be recommended.
Function of the medial meniscus in force transmission and stability.
Walker, Peter S; Arno, Sally; Bell, Christopher; Salvadore, Gaia; Borukhov, Ilya; Oh, Cheongeun
2015-06-01
We studied the combined role of the medial meniscus in distributing load and providing stability. Ten normal knees were loaded in combinations of compressive and shear loading as the knee was flexed over a full range. A digital camera tracked the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the centre of the meniscus. For the three types of loading; compression only, compression and anterior shear, compression and posterior shear; between 40% and 80% of the total load was transmitted through the meniscus. The overall average was 58%, the remaining 42% being transmitted through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, but played a role in controlling anterior femoral displacement. The central body was loaded 10-20% which would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load, especially after 30 degrees flexion when a posterior shear force was applied, where the meniscus was estimated to carry 50% of the shear force. This study added new insights into meniscal function during weight bearing conditions, particularly its role in early flexion, and in transmitting shear forces. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimation of viscoelastic parameters in Prony series from shear wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval
2015-07-01
A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to be statistically significant (P>.05). Shear forces predominantly exhibited cohesive failure (64.4%), whereas peel forces predominantly exhibited adhesive failure (93.3%). The mean shear bond strengths of the experimental FRC and aliphatic urethane acrylate groups were not found to be statistically different (P>.05). The mean value of the 180-degree peel strength of the orthodontic acrylic resin group was found to be lower (P<.05). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.
Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C
2016-05-01
The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.
In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.
Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming
2014-12-18
Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok
2016-01-01
The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.
Yoo, Seung Seok
2016-01-01
The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673
Sandfeld, Jesper; Rosgaard, Christian; Jensen, Bente Rona
2014-07-01
The aim of the present study was to assess the acute low back load of cabin attendants during cart handling and to identify working situations which present the highest strain on the worker. In a setup, 17 cabin attendants (ten females and seven males) pushed, pulled and turned a 20 kg standard meal cart (L: 0.5m × W: 0.3 m × H: 0.92 m) loaded with extra 20 kg and 40 kg, respectively on two different surfaces (carpet and linoleum) and at three floor inclinations (-2°, 0° and +2°). Two force transducers were mounted as handles. Two-dimensional movement analysis was performed and a 4D WATBAK modelling tool was used to calculate the acute L4-L5 load. No working situations created loads greater than the accepted values for single exertions, however compression and anterior/posterior shear forces during pulling and turning were much higher when compared with pushing. There were significant effects of handling the cart on different floor types, at the varying inclinations and with different cart weights. Additionally, when external forces were reduced, the cabin attendants did not decrease push/pull force proportionally and thus the L4-L5 load did not decrease as much as expected. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Coronal evolution due to shear motion
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
Numerical solutions of the compressible MHD equations are used here to simulate the evolution of an initially force-free magnetic field in a static corona as a result of slow photospheric motion of the magnetic field footpoints. Simulations have been completed for values of plasma beta from 0.1 to 0.5, maximum shear velocities from 0.5 to 10.3 km/s, and with various amounts of resistive and viscous dissipation. In all cases the evolution proceeds in two qualitatively different stages. In the earlier stage, the field evolves gradually with the field lines, expanding outward at a velocity not unlike the shear velocity. Then, the field begins to expand much more rapidly until it reaches velocities exceeding a characteristic Alfven velocity. Inclusion of the thermodynamics, gravity, and compressibility is shown to have only a quantitative effect on the onset of the eruptive phase, illustrating that the primary interactions are between the dynamics and the magnetic field evolution.
Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity.
Azéma, Emilien; Radjaï, Farhang; Saint-Cyr, Baptiste; Delenne, Jean-Yves; Sornay, Philippe
2013-05-01
We use three-dimensional contact dynamics simulations to analyze the rheological properties of granular materials composed of rigid aggregates. The aggregates are made from four overlapping spheres and described by a nonconvexity parameter depending on the relative positions of the spheres. The macroscopic and microstructural properties of several sheared packings are analyzed as a function of the degree of nonconvexity of the aggregates. We find that the internal angle of friction increases with the nonconvexity. In contrast, the packing fraction first increases to a maximum value but declines as the nonconvexity increases further. At a high level of nonconvexity, the packings are looser but show a higher shear strength. At the microscopic scale, the fabric and force anisotropy, as well as the friction mobilization, are enhanced by multiple contacts between aggregates and interlocking, thus revealings the mechanical and geometrical origins of shear strength.
Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.
Rogachevskii, Igor; Kleeorin, Nathan
2003-09-01
An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.
Using reflectance spectroscopy to predict beef tenderness.
Bowling, M B; Vote, D J; Belk, K E; Scanga, J A; Tatum, J D; Smith, G C
2009-05-01
A study was conducted to determine if reflectance measurements made in the near-infrared region of the spectrum were additive to reflectance measurements made in the visible region of the spectrum for predicting Warner-Bratzler shear force (WBSF) values. Eighty seven strip loins were collected following fabrication over 3d at a commercial beef processing facility from heifer carcasses with Slight or Traces marbling scores. Spectroscopic measurements were made at approximately 50h postmortem using a Hunter-Lab UltraScan. Subsequently, all strip loins were aged for 14d, cooked to an internal temperature of 70°C, and sheared to obtain WBSF values. Reflectance measurements obtained in the near-infrared region of the spectrum were correlated with WBSF values, however, these measurements were not additive to the predictive ability of reflectance measurements (R(2) values did not differ) made in the visible portion of the spectrum when the use of broad-band wavelength filters were simulated. It was therefore determined, that both the visible and near-infrared spectra measure reflectance and that both methods are acceptable methods of tenderness prediction.
Toyama, Shigeru; Tanaka, Yasuhiro; Shirogane, Satoshi; Nakamura, Takashi; Umino, Tokio; Uehara, Ryo; Okamoto, Takuma; Igarashi, Hiroshi
2017-07-31
A sheet-type shear force sensor and a measurement system for the sensor were developed. The sensor has an original structure where a liquid electrolyte is filled in a space composed of two electrode-patterned polymer films and an elastic rubber ring. When a shear force is applied on the surface of the sensor, the two electrode-patterned films mutually move so that the distance between the internal electrodes of the sensor changes, resulting in current increase or decrease between the electrodes. Therefore, the shear force can be calculated by monitoring the current between the electrodes. Moreover, it is possible to measure two-dimensional shear force given that the sensor has multiple electrodes. The diameter and thickness of the sensor head were 10 mm and 0.7 mm, respectively. Additionally, we also developed a measurement system that drives the sensor, corrects the baseline of the raw sensor output, displays data, and stores data as a computer file. Though the raw sensor output was considerably affected by the surrounding temperature, the influence of temperature was drastically decreased by introducing a simple arithmetical calculation. Moreover, the influence of pressure simultaneously decreased after the same calculation process. A demonstrative measurement using the sensor revealed the practical usefulness for on-site monitoring.
Different knee joint loading patterns in ACL deficient copers and non-copers during walking.
Alkjær, Tine; Henriksen, Marius; Simonsen, Erik B
2011-04-01
Rupture of the anterior cruciate ligament (ACL) causes changes in the walking pattern. ACL deficient subjects classified as copers and non-copers have been observed to adopt different post-injury walking patterns. How these different patterns affect the knee compression and shear forces is unresolved. Thus, the aim of the present study was to investigate how different walking patterns observed between copers, non-copers, and controls affect the knee compression and shear forces during walking. Three-dimensional gait analyses were performed in copers (n = 9), non-copers (n = 10), and control subjects (n =19). The net knee joint moment, knee joint reaction forces, and the sagittal knee joint angle were input parameters to a biomechanical model that assessed the knee compression and shear forces. The results showed that the non-copers walked with significantly reduced knee compression and shear forces than the controls. The overall knee compression force pattern was similar between the copers and controls, although this variable was significantly increased at heel strike in the copers compared to both non-copers and controls. The peak shear force was significantly dependent on the peak knee extensor moment. This covariance was significantly different between groups meaning that at a given knee extensor moment the shear force was significantly reduced in the copers compared to controls. The different knee joint loading patterns observed between non-copers and copers reflected the different walking strategies adopted by these groups, which may have implications for the knee joint stability. The strategy adopted by the copers may resemble an effective way to stabilize the knee joint during walking after an ACL rupture and that the knee kinematics may play a key role for this strategy. It is clinically relevant to investigate if gait retraining would enable non-copers to walk as copers and thereby improve their knee joint stability.
Lam, Wing-Kai; Qu, Yi; Yang, Fan; Cheung, Roy T H
2017-01-01
Court shoe designs predominantly focus on reducing excessive vertical ground reaction force, but shear force cushioning has received little attention in the basketball population. We aimed to examine the effect of a novel shoe-cushioning design on both resultant horizontal ground reaction forces and comfort perception during two basketball-specific cutting movements. Fifteen university team basketball players performed lateral shuffling and 45-degree sidestep cutting at maximum effort in basketball shoes with and without the shear-cushioning system (SCS). Paired t -tests were used to examine the differences in kinetics and comfort perception between two shoes. SCS shoe allowed for larger rotational material deformation compared with control shoes, but no significant shoe differences were found in braking phase kinetics during both cutting movements ( P = 0.35). Interestingly, a greater horizontal propulsion impulse was found with the SCS during 45-degree cutting ( P < 0.05), when compared with the control. In addition, players wearing SCS shoes perceived better forefoot comfort ( P = 0.012). During lateral shuffling, there were no significant differences in horizontal GRF and comfort perception between shoe conditions ( P > 0.05). The application of a rotational shear-cushioning structure allowed for better forefoot comfort and enhanced propulsion performance in cutting, but did not influence the shear impact. Understanding horizontal ground reaction force information may be useful in designing footwear to prevent shear-related injuries in sport populations.
Yoshitake, Yasuhide; Uchida, Daiki; Hirata, Kosuke; Mayfield, Dean L; Kanehisa, Hiroaki
2018-06-06
To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bruce, H L; Stark, J L; Beilken, S L
2004-06-01
Beef from cattle finished on grass will be of similar quality to that from cattle finished on grain when their carcasses are processed using best practice protocols. To test this hypothesis, carcasses of twenty Brahman steers, finished to 400 kg live weight on either Buffel grass pasture (n=10) or grain (n=10), were electrically stimulated with 400 V for 50 s 45 min postmortem, and their beef quality assessed 1 and 14 days postmortem. Hot weight, rump subcutaneous fat thickness and animal rate of growth in the 205 days preceding slaughter were recorded for each carcass as potential influences on beef quality. Quality of the M. longissimus thoracis (LT) at 1 and 14 days postmortem was evaluated using peak Warner-Bratzler shear force, compression, pH, cooking loss and taste panel acceptability, as well as by moisture and crude fat contents measured at 1 day postmortem. Results showed that steers finished on pasture grew the slowest and had the least subcutaneous fat at the same carcass weight. LT from carcasses of steers finished on pasture also had the shortest mean sarcomere lengths, suggesting these muscles may have been cold-affected, but there was no effect of diet on peak shear force. LT from carcasses of steers finished on pasture had the highest mean compression value, possibly because of increased collagen cross-linking associated with slow growth or increased exercise. Ageing significantly decreased LT peak shear force and compression values and increased cooking loss, L (∗), a (∗) and b (∗) values. Taste panellists rated the aged, grass-finished beef the most tender and the best quality; however, the taste panel in this study may have favoured LT from grass-finished steers because it was significantly juicier than LT from the grain-finished steer carcasses. These results indicated that carcass composition and processing conditions interact to exert a greater effect on LT toughness and sensory acceptability than finishing diet. Ageing LT from steers finished on grass improved its colour, and thus may enhance its consumer acceptability.
NASA Astrophysics Data System (ADS)
Mitchell, Michael J.; King, Michael R.
2013-01-01
Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents.
Ballooning instabilities in tokamaks with sheared toroidal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waelbroeck, F.L.; Chen, L.
1990-11-01
The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.
Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai
2011-09-02
The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.
Yancey, J W S; Apple, J K; Wharton, M D
2016-10-01
Steaks from USDA Select inside rounds (Exp. 1) and shoulder clods (Exp. 2) were used to test the interactive effect of cookery method and endpoint temperature on Warner-Bratzler shear force (WBSF) and internal cooked color. Pairs of 2.5-cm-thick semimembranosus (SM) or infraspinatus (INF) steaks ( = 360/muscle) were cut from each subprimal, labeled, vacuum packaged, and frozen at -30°C in the dark for approximately 60 d before being cooked to 65.5, 71.1, or 76.6°C using 1) a forced-air convection oven (FAC); 2) a forced-air impingement oven (IMP); 3) a gas-fired, open-hearth charbroiler (CHAR); 4) an electric countertop griddle (GRID); or 5) a clam-shell grill (CLAM). Thawed steaks were cooked to their assigned endpoint temperature × cookery method combination, and, after a 5-min cooling period, steaks were weighed to calculate cooking loss percentage and subsequently sliced perpendicular to the cut surface to measure instrumental cooked color. Then, 6 cores were removed for measurement of WBSF. Cooking losses of SM steaks increased ( < 0.05) with each increase in endpoint temperature, whereas INF steaks cooked on a CHAR had the greatest ( < 0.05) cooking losses and cooking INF steaks with the GRID and the CLAM resulted in lesser ( < 0.05) cooking losses than cooking with the FAC and the IMP. Cooking SM steaks on the CHAR resulted in greater ( < 0.05) WBSF values than all other cookery methods when cooked to 65.5 and 76.6°C and greater ( < 0.05) WBSF values than those cooked on the FAC, GRID, and CLAM when cooked to 71.1°C. Shear force values were greater ( < 0.05) for INF steaks cooked to 71.1 and 76.6°C than those cooked to 65.5°C, but INF WBSF values were similar ( = 0.55) among cookery methods. At 65.5°C, FAC-cooked SM steaks were redder ( < 0.05) than those cooked with the GRID and the IMP and, at 71.1°C, CLAM-cooked SM steaks were redder ( < 0.05) than FAC- and IMP-cooked SM steaks; however, a* values were similar ( > 0.05) among cookery methods when cooked to 76.6°C. Redness did not ( > 0.05) differ among INF steaks cooked to 65.5 and 71.1°C with the FAC and the CHAR, whereas internal color of INF steaks cooked in the IMP and the FAC was redder ( < 0.05) than that of INF steaks cooked with the CLAM and the GRID to 76.6°C. Results suggest that endpoint temperature has a greater impact on cooking properties of SM and INF steaks than cookery method, yet it is apparent that internal cooked color of INF and SM steaks react differently to some cookery method-endpoint temperature combinations.
Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor
NASA Astrophysics Data System (ADS)
Wijeratne, Sithara S.; Li, Jingqiang; Yeh, Hui-Chun; Nolasco, Leticia; Zhou, Zhou; Bergeron, Angela; Frey, Eric W.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa
2016-01-01
Von Willebrand factor (VWF) multimers are large adhesive proteins that are essential to the initiation of hemostatic plugs at sites of vascular injury. The binding of VWF multimers to platelets, as well as VWF proteolysis, is regulated by shear stresses that alter VWF multimeric conformation. We used single molecule manipulation with atomic force microscopy (AFM) to investigate the effect of high fluid shear stress on soluble dimeric and multimeric forms of VWF. VWF dimers are the smallest unit that polymerizes to construct large VWF multimers. The resistance to mechanical unfolding with or without exposure to shear stress was used to evaluate VWF conformational forms. Our data indicate that, unlike recombinant VWF multimers (RVWF), recombinant dimeric VWF (RDVWF) unfolding force is not altered by high shear stress (100 dynes/cm2 for 3 min at 37°C ). We conclude that under the shear conditions used (100 dynes/cm2 for 3 min at 37°C ) , VWF dimers do not self-associate into a conformation analogous to that attained by sheared large VWF multimers.
Wrinkling of Stretched Films: Shear Stress
NASA Technical Reports Server (NTRS)
Zak, M. A.
1982-01-01
Report presents theoretical investigation on nonlinear shearing characteristics of wrinkling films under applied shear stress. Report helps explain force/deflection characteristic of in-planeboom and solar-array blanket structural combinations.
In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0
NASA Technical Reports Server (NTRS)
Quinn, R. D.; Gong, L.
1980-01-01
Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods.
Peña, F; Bonvillani, A; Freire, B; Juárez, M; Perea, J; Gómez, G
2009-11-01
Physicochemical and organoleptic characteristics of meat (longissimus muscle) from Criollo Cordobes (CC) and Anglonubian (AN) suckling kids were analysed to determine the effects of genotype and slaughter weight. Forty suckling entire male kids, 20 CC and 20 AN were assigned to two age/slaughter weight groups (I: 60+2days old and ⩽11kg, and II: 90+2days old and >11kg). Colour, shear force and cholesterol levels of meat were affected by breed. Tenderness decreased and cholesterol increased with age/slaughter weight. Fatty acid profiles were affected primarily by genotype. The sensory attributes were perceived as medium-high intensity, and meat from CC and AN goat kids was valued as tender. However, initial tenderness and connective tissue varied with genotype. The main effect due to the increase in age/slaughter weight was a decrease in tenderness (initial and overall), as observed for instrumental shear force.
Accelerated dry curing of hams.
Marriott, N G; Kelly, R F; Shaffer, C K; Graham, P P; Boling, J W
1985-01-01
Uncured pork legs from the right side of 18 carcasses were treated with a Ross Tenderizer and the left side were controls. All 36 samples were dry-cured for 40, 56 or 70 days and evaluated for appearance traits, cure penetration characteristics, microbial load, Kramer Shear force and taste attributes. The tenderization treatment had no effect (P > 0·05) on visual color or cure penetration rate, weight loss before curing, percentage moisture, nitrate level, nitrite level, total plate count, anaerobic counts, psychrotrophic counts, objective and subjective tenderness measurements or juiciness. However, the higher values of salt suggested a possible acceleration of the dry cure penetration process among the tenderized samples. Cure time had no effect (P > 0·05) on percentage moisture, percentage salt, nitrate content, nitrite content, shear force and juiciness. Results suggest a limited effect of the mechanical tenderization process on certain traits related to dry curing and that total process time should be at least 70 days if color stability during cooking is desired. Copyright © 1985. Published by Elsevier Ltd.
Huang, J C; Yang, J; Huang, M; Chen, K J; Xu, X L; Zhou, G H
2017-03-01
This study was designed to compare the effects of different stunning voltages of pulsed direct current on meat quality of broilers. For this purpose, plasma parameters, blood loss, carcass damage, and meat water holding capacity, color, shear force, pH, and protein solubility were analyzed. A total of 400 broilers were divided into 5 treatment groups and stunned with 5, 15, 25, 35, and 45 V at 750 Hz and 10 s, respectively. Blood samples were collected immediately after cutting the neck. Pectoralis major muscles were removed from the carcass after chilling and placed on ice. Breast muscle pH and meat color were determined at both 2 and 24 h postmortem. Dripping loss, cooking loss, pressing loss, and cooked breast meat shear values were determined after 24 h postmortem. The 5 V treatment significantly increased (P < 0.05) blood plasma corticosterone and lactate concentration compared with the other groups. The carcass damage of wings, Pectoralis major, and Pectoralis minor was significant in the 5, 35, and 45 V groups. The pH of 2 h postmortem in the 5 and 45 V groups was significantly lower (P < 0.05) than in the 15 and 25 V groups. In the 5 and 45 V groups, the protein solubility and shear force value were significantly lower (P < 0.05) and dripping loss was significantly higher (P < 0.05) than the other groups. © 2016 Poultry Science Association Inc.
Chawla, A; Mukherjee, S; Karthikeyan, B
2009-02-01
The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.
Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur
2012-01-03
Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis
NASA Astrophysics Data System (ADS)
Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya
2018-03-01
In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.
Role of 3D force networks in linking grain scale to macroscale processes in sheared granular debris
NASA Astrophysics Data System (ADS)
Mair, K.; Jettestuen, E.; Abe, S.
2013-12-01
Active faults, landslides and subglacial tills contain accumulations of granular debris that evolve during sliding. The macroscopic motion in these environments is at least to some extent determined by processes operating in this sheared granular material. A valid question is how the local behavior at the individual granular contacts actually sums up to influence macroscopic sliding. Laboratory experiments and numerical modeling can potentially help elucidate this. Observations of jamming (stick) and unjamming (flow) as well as concentrated shear bands on the scale of 5-10 grains suggest that a simple continuum description may be insufficient to capture important elements of the behavior. We therefore seek a measure of the organization of the granular fabric and the 3D structure of the load bearing skeleton that effectively demonstrates how the individual grain interactions are manifested in the macroscopic sliding behavior we observe. Contact force networks are an expression of this. Here we investigate the structure and variability of the most connected system spanning force networks produced in 3D discrete element models of granular layers under shear. We use percolation measures to identify, characterize, compare and track the evolution of these strongly connected contact force networks. We show that specific topological measures used in describing the networks, such as number of contacts and coordination number, are sensitive to grain size distribution (and likely the grain shape) of the material as well as loading conditions. Hence, faults of different maturity would be expected to accommodate shear in different ways. Distinct changes in the topological characteristics i.e. the geometry of strong force networks with accumulated strain are directly correlated to fluctuations in macroscopic shearing resistance. This suggests that 3D force networks play an important bridging role between individual grain scale processes and macroscopic sliding behavior.
Wind Shear Effects on the Structure and Dynamics of the Daytime Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Haghshenas, Armin; Mellado, Juan Pedro
2017-04-01
The daytime atmospheric boundary layer (ABL), in which the positive buoyancy flux at the surface creates convective instability and generates turbulence, has been a subject of extensive research during the last century. However, fewer studies have considered wind shear in detail and most of them are single-case studies. So most of the available theories and parameterizations have not been sufficiently tested over a wide range of atmospheric conditions. Moreover, since previous numerical studies were mostly carried out by large eddy simulation, a complete understanding of the physics of the problem is still missing due to the lack of information about the small-scale dynamics. Specifically, despite the consensus in the community that wind shear enhances the entrainment process, the amount of enhancement is still matter of contention. In order to investigate the effects of wind shear on the structure and dynamics of the ABL in detail, direct numerical simulations are used in this study. Shear is prescribed by a height-constant velocity in the troposphere and the simulation runs until a fully turbulent, quasi-equilibrium regime is observed. Despite the simplification of neglecting the Coriolis force, our configuration reproduces the main features observed in the previous studies, which had taken the Coriolis force into account. As a novelty compared to previous single-case studies, we introduce a dimensionless parameter that allows us to study systematically any combination of surface buoyancy flux, buoyancy stratification, and wind shear; We refer to this dimensionless number as shear number. Seven simulations with shear numbers ranging from 0 (no wind) to 20 (moderate wind) are conducted; this range of shear numbers corresponds to wind strength from 0 to 15 m/s in the free troposphere for typical midday atmospheric conditions. In general, we find that shear effects are negligibly small when the shear number is below 10, and for larger values the effects remain constrained inside the entrainment zone and surface layer. This critical shear number is justified by scrutinizing the turbulence regimes (convective and mechanical) within the entrainment zone in the sense that, for this shear number, the turbulence transport of turbulence kinetic energy inside the entrainment zone equals the shear-production rate. Following this analysis a critical flux Richardson number of 0.6 inside the entrainment zone is found. In particular, we observe the following: First, the mean buoyancy and total buoyancy flux inside the mixed layer remain invariant under a change of shear number and they follow the free-convection scaling laws. Second, the height of minimum buoyancy flux increases due to shear effects, but just moderately (less than 5%). Nevertheless, this increment represents a growth of entrainment zone's thickness by 50% for shear numbers of the order of 20. Third, we observe that for shear numbers larger than 10, the entrainment flux ratio grows by up to 50% in an early state of ABL development. We provide explicit parameterizations of all these shear effects.
The Shear Properties of Langmuir-Blodgett Layers
NASA Astrophysics Data System (ADS)
Briscoe, B. J.; Evans, D. C. B.
1982-04-01
The sliding friction between two highly oriented monolayers has been studied by using molecularly smooth mica substrates in the form of contacting orthogonal cylinders. The monolayers in the form of various normal alipathic carboxylic acids and their soaps were deposited with the aid of the Langmuir-Blodgett technique by transfer from aqueous substrates. The normal alkyl group has been varied in length from 14 to 22 methylene repeat units. Data are reported also on the influence of partial saponification of the carboxylic acid and fluorination of the alkyl chain. Most of the investigation has been confined to two contacting single monolayers although a limited amount of data is presented for multilayers sliding over one another. The character of the sliding motion depends not only on the machine but also on the monolayers, particularly their chemistry. Most of the monolayers studied provide a continuous rate of energy dissipation. However, a small number, such as certain soaps, show discontinuous or stick-slip motion. The experimental arrangement allows simultaneous measurement of the sliding frictional force, contact area and film thickness to be made during sliding. In some experiments this friction is the monotonic sliding friction but in others it is the mean maximum value during the stick phase. The film thickness measurement is accurate to 0.2 mm which allows a precise assessment of the shear plane during sliding. In all cases the monolayers and multilayers were found to be extremely durable and shear invariably occurred at the original interface between the monolayers. The sliding friction data are presented as the dynamic specific friction force or interface shear strength, and a number of contact variables have been examined. These include the applied normal load per unit contact area or mean contact pressure, the temperature and the sliding velocity. The interface shear strength is found, to a good approximation, to increase linearly with mean contact pressure but to decrease linearly with temperature in the ranges studied. The influence of sliding velocity is more complex. In the case where intermittent motion is detected the mean maximum values decrease linearly with the logarithm of the velocity.
Cavity-actuated supersonic mixing and combustion control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.H.; Schadow, K.C.
1994-11-01
Compressible shear layers in supersonic jets are quite stable and spread very slowly compared with incompressible shear layers. In this paper, a novel use of a cavity-actuated forcing technique is demonstrated for increasing the spreading rate of compressible shear layers. Periodic modulations were applied to Mach 2.0 reacting and nonreacting jets using the cavities that were attached at the exit of a circular supersonic nozzle. The effect of cavity-actuated forcing was studied as a function of the cavity geometry, in particular, the length and the depth of the cavity. When the cavities were tuned to certain frequencies, large-scale highly coherentmore » structures were produced in the shear layers substantially increasing the growth rate. The cavity excitation was successfully applied to both cold and hot supersonic jets. When applied to cold Mach 2.0 air jets. the cavity-actuated forcing increased the spreading rate of the initial shear layers with the convective Mach number (M[sub C]) of 0.85 by a factor of three. For high-temperature Mach 2.0 jets with M[sub C] of 1.4, a 50% increase in the spreading rate was observed with the forcing. Finally, the cavity-actuated forcing was applied to reacting supersonic jets with ethylene-oxygen afterburning. For this case, the forcing caused a 20%--30% reduction in the afterburning flame length and modified the afterburning intensity significantly. The direction of the modification depended on the characteristics of the afterburning flames. The intensity was reduced with forcing for unstable flames with weak afterburning while it was increased for stable flames with strong afterburning.« less
Preliminary Rotary Wing Full Spectrum Crashworthiness Criteria
2010-01-01
6.2.1 Injury Risk Due to Occupant Loads Cervical forces and moments are to be used to evaluate injury to the head/neck, torso acceleration is used to...injury) for dynamic neck tension (lifting forces) at the occipital condyles (C0-C1, upper neck) and cervical vertebrae (C7-T1, lower neck) are defined...Neck Compression and Shear Force Limits The maximum acceptable cervical compression and shear force limits are defined in the following table
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
Effect of vertical ground motions on shear demand and capacity in bridge columns.
DOT National Transportation Integrated Search
2012-03-01
The objective of this project was to examine the effects of axial force variation in bridge columns due to strong vertical : ground motions and the influence of these axial force fluctuations on shear strength degradation. : Two quarter scale specime...
Increase in Mechanical Resistance to Force in a Shear-Activated Protein
NASA Astrophysics Data System (ADS)
Botello, Eric; Harris, Nolan; Choi, Huiwan; Zhou, Zhou; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa
2009-03-01
von Willebrand factor (VWF) is the largest multimeric adhesion ligand found in human blood. Plasma VWF (pVWF) must be exposed to shear stress, like at sites of vascular injury, to be activated to bind platelets to induce blood clotting. In addition, adhesion activity of VWF is related to its polymer size, with the ultra-large form of VWF (ULVWF) being hyper-active, and forming fibers even without exposure to shear stress. We used the AFM to stretch pVWF, sheared VWF (sVWF) and ULVWF, and monitor the forces as a function of molecular extension. We showed a similar increase in force resistance to unfolding for sVWF and ULVWF when compared to pVWF. The increase in force is reduced when other molecules that are known to disrupt their fibril formation are present. Our results provide evidence that the common higher order structure of sVWF and ULVWF may affect the domain structure that causes difference in their adhesion activity compared to pVWF.
NASA Astrophysics Data System (ADS)
Cohen, D.; Michlmayr, G.; Or, D.
2012-04-01
Shearing of dense granular materials appears in many engineering and Earth sciences applications. Under a constant strain rate, the shearing stress at steady state oscillates with slow rises followed by rapid drops that are linked to the build up and failure of force chains. Experiments indicate that these drops display exponential statistics. Measurements of acoustic emissions during shearing indicates that the energy liberated by failure of these force chains has power-law statistics. Representing force chains as fibers, we use a stick-slip fiber bundle model to obtain analytical solutions of the statistical distribution of stress drops and failure energy. In the model, fibers stretch, fail, and regain strength during deformation. Fibers have Weibull-distributed threshold strengths with either quenched and annealed disorder. The shape of the distribution for drops and energy obtained from the model are similar to those measured during shearing experiments. This simple model may be useful to identify failure events linked to force chain failures. Future generalizations of the model that include different types of fiber failure may also allow identification of different types of granular failures that have distinct statistical acoustic emission signatures.
Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly
2017-01-01
Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.
Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing
Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly
2017-01-01
Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities. PMID:28403171
Force Sensitivity in Saccharomyces cerevisiae Flocculins.
Chan, Cho X J; El-Kirat-Chatel, Sofiane; Joseph, Ivor G; Jackson, Desmond N; Ramsook, Caleen B; Dufrêne, Yves F; Lipke, Peter N
2016-01-01
Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca(2+), yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Shear properties evaluation of a truss core of sandwich beams
NASA Astrophysics Data System (ADS)
Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.
2017-10-01
The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.
Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.
Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E
2015-12-22
The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.
Update on Breast Cancer Detection Using Comb-push Ultrasound Shear Elastography
Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H.; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-01-01
In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale being that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue’s mechanical properties. CUSE utilizes a simultaneous multiple laterally spaced radiation force (ARF) excitations and detection sequence to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property is quantified by Young’s modulus. In this study, the tissue stiffness of 73 breast masses is interrogated. The mean shear wave speeds for malignant masses (3.42 ± 1.32 m/s) were higher than benign breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p < 0.001), when tissue elasticity is quantified by Young’s modulus. A Young’s modulus > 83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC). PMID:26688871
Update on Breast Cancer Detection Using Comb-Push Ultrasound Shear Elastography.
Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-09-01
In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale is that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue's mechanical properties. CUSE utilizes a sequence of simultaneous multiple laterally spaced acoustic radiation force (ARF) excitations and detection to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property can be quantified. In this study, the tissue stiffnesses of 73 breast masses were interrogated. The mean shear wave speeds for benign masses (3.42 ± 1.32 m/s) were lower than malignant breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p <; 0.001), when tissue elasticity is quantified by Young's modulus. A Young's modulus >83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with a receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC).
Cohesiveness and hydrodynamic properties of young drinking water biofilms.
Abe, Yumiko; Skali-Lami, Salaheddine; Block, Jean-Claude; Francius, Grégory
2012-03-15
Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Driving reconnection in sheared magnetic configurations with forced fluctuations
NASA Astrophysics Data System (ADS)
Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David
2018-02-01
We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.
Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials
NASA Technical Reports Server (NTRS)
Dooling, Dave (Editor)
2002-01-01
Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-01-01
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-03-07
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.
Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear
Bertsch, Rebecca L.; Girimaji, Sharath S.
2015-12-30
The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.« less
Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, Rebecca L., E-mail: rlb@lanl.gov; Girimaji, Sharath S., E-mail: girimaji@aero.tamu.edu
2015-12-15
The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.« less
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III
1996-01-01
The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
NASA Astrophysics Data System (ADS)
Ucar, Taner; Merter, Onur
2018-01-01
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
Overuse Injury Assessment Model
2003-06-01
initial physical fitness level foot type lower extremity alignment altered gait pretest anthropometry diet and nutrition genetics endocrine status and...using published anthropometry values. Assuming that these forces are the primary loads that cause the tibia to undergo shear and bending, the maximal...both the model and in vivo results suggest that the ratio of walking to running bone stress is 0.54. Table 3-3 Estimated walk/march and run tensile
Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys
Chen, Pengwan
2018-01-01
To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively. PMID:29303988
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls
NASA Astrophysics Data System (ADS)
Lu, Xilin; Yang, Boya; Zhao, Bin
2018-04-01
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress
Denais, Celine; Chan, Maxine F.; Wang, Zhexiao; Lammerding, Jan
2015-01-01
Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs. PMID:26447202
Wojtysiak, Dorota
2013-01-01
Changes in the structure and properties of the intramuscular connective tissue, muscle fibre size, collagen content and meat tenderness of m. longissimus lumborum during growth was studied in 45 Polish Large White (PLW) pigs slaughtered at 90, 150 and 210 days of age. The results show that the endomysial sheath in m. longissimus lumborum consists of collagen fibrils of wavy appearance which run in all directions and form a loose network. The arrangement of collagen fibrils in the endomysium and perimysium becomes denser and more regular with increasing age of pigs. In addition, the increase in endomysium and perimysium thickness was paralleled by a significant increase in muscle fibre diameter, as well as an increase in shear force value with chronological aging. In contrast, the percentage of collagen area in muscle structure and the amount of total collagen and amount of soluble collagen decreased gradually with age of pigs. In conclusion, the structural changes in the arrangement of collagen fibres in the architecture of intramusclular connective tissue, as well as the decrease in soluble collagen content in m. longissimus lumborum during growth of pigs are important factors influencing shear force value, and thus raw meat tenderness.
Channon, H A; Walker, P J; Kerr, M G; Baud, S R
2003-12-01
This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.
Quantitative Percussion Diagnostics For Evaluating Bond Integrity Between Composite Laminates
NASA Astrophysics Data System (ADS)
Poveromo, Scott Leonard
Conventional nondestructive testing (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was utilized based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Experimental results indicate that this technology is capable of detecting 'kiss' bonds (very low adhesive shear strength), caused by the application of release agents on the bonding surfaces, between flat composite laminates bonded together with epoxy adhesive. Specifically, the local value of the loss coefficient determined from quantitative percussion testing was found to be significantly greater for a release coated panel compared to that for a well bonded sample. Also, the local value of the probe force or force returned to the probe after impact was observed to be lower for the release coated panels. The increase in loss coefficient and decrease in probe force are thought to be due to greater internal friction during the percussion event for poorly bonded specimens. NDT standards were also fabricated by varying the cure parameters of an epoxy film adhesive. Results from QPD for the variable cure NDT standards and lap shear strength measurements taken of mechanical test specimens were compared and analyzed. Finally, experimental results have been compared to a finite element analysis to understand the visco-elastic behavior of the laminates during percussion testing. This comparison shows how a lower quality bond leads to a reduction in the percussion force by biasing strain in the percussion tested side of the panel.
NASA Astrophysics Data System (ADS)
Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.
2018-01-01
The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.
Zhong, Xiujuan; Liu, Zhiping; Cao, Dapeng
2011-08-25
A cost-effective, classical united-atom (UA) force field for ionic liquids (ILs) was proposed, which can be used in simulations of ILs composed by 1-alkyl-3-methyl-imidazolium cations ([C(n)mim](+)) and seven kinds of anions, including tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)), methylsulfate ([CH(3)SO(4)](-)), trifluoromethylsulfonate ([CF(3)SO(3)](-)), acetate ([CH(3)CO(2)](-)), trifluoroacetate ([CF(3)CO(2)](-)), and bis(trifluoromethylsulfonyl)amide ([NTf(2)](-)). The same strategy in our previous work (J. Phys. Chem. B 2010, 114, 4572) was used to parametrize the force field, in which the effective atom partial charges are fitted by the electrostatic potential surface (ESP) of ion pair dimers to account for the overall effects of polarization in ILs. The total charges (absolute values) on the cation/anion are in the range of 0.64-0.75, which are rescaled to 0.8 for all kinds of ions by a compromise between transferability and accuracy. Extensive molecular dynamics (MD) simulations were performed over a wide range of temperatures to validate the force field, especially on the enthalpies of vaporization (ΔH(vap)) and transport properties, including the self-diffusion coefficient and shear viscosity. The liquid densities were predicted very well for all of the ILs studied in this work with typical deviations of less than 1%. The simulated ΔH(vap) at 298 and 500 K are also in good agreement with the measured values by different experimental methods, with a slight overestimation of about 5 kJ/mol. The influence of ΔC(p) (the difference between the molar heat capacity at constant pressure of the gas and that of liquid) on the calculation of ΔH(vap) is also discussed. The transport coefficients were estimated by the equilibrium MD method using 20-60 ns trajectories to improve the sampling. The proposed force field gives a good description of the self-diffusion coefficients and shear viscosities, which is comparable to the recently developed polarizable force field. Although slightly lower dynamics is found in simulations by our force field, the order of magnitude of the self-diffusion coefficient and viscosity are reproduced for all the ILs very well over a wide temperature range. The largest underestimation of the self-diffusion coefficient is about one-third of the experimental values, while the largest overestimation of the viscosity is about two times the experimental values. © 2011 American Chemical Society
Hayashi, Yoshihiro; Kosugi, Atsushi; Miura, Takahiro; Takayama, Kozo; Onuki, Yoshinori
2018-01-01
The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (μ) and lower by internal friction angle (α y ) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by α y . On the other hand, the pressure transmissibility rate of punches value was affected not only by the α y value, but also by μ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that μ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.
Microbial responses to microgravity and other low-shear environments.
Nickerson, Cheryl A; Ott, C Mark; Wilson, James W; Ramamurthy, Rajee; Pierson, Duane L
2004-06-01
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.
Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid
2013-06-01
Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microbial Responses to Microgravity and Other Low-Shear Environments
NASA Technical Reports Server (NTRS)
Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.
2004-01-01
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking
Lerner, Zachary F.; Browning, Raymond C.
2016-01-01
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.
Lerner, Zachary F; Browning, Raymond C
2016-06-14
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.
Effects of broiler carcass scalding and chilling methods on quality of early-deboned breast fillets.
Zhuang, Hong; Bowker, Brian C; Buhr, R Jeff; Bourassa, Dianna V; Kiepper, Brian H
2013-05-01
The impact of scalding and chilling methods on quality of broiler breast fillets (pectoralis major) was evaluated. In 4 replications, 6- to 7-wk-old male and female broilers were slaughtered and scalded either at 60°C for 1.5 min (hard scalding) or 52.8°C for 3 min (soft scalding). Following evisceration, the carcasses were either air-chilled (0.5°C, 120 min) or immersion-chilled in water and ice (79 L/carcass, 0.5°C, 40 min, air agitated). Breast fillets were removed from the carcass within 4 h postmortem. Quality attributes including fillet color (both dorsal-bone and ventral-skin sides), pH, total moisture content, water-holding capacity (drip loss and cook loss), and Warner-Bratzler shear force were determined. Significant interactions between replication and scalding were found for pH, ventral side redness (a*) value, and cook loss and between replication and chilling for pH and ventral side a* and yellowness (b*) values. There were no interactions (P > 0.05) between chilling and scalding methods for any of the measurements. Immersion chilling resulted in higher (P < 0.05) ventral side lightness (L*) values, dorsal side b* values, drip loss, cook loss, and shear force compared with air chilling. No significant differences (P > 0.05) between the 2 scalding methods were observed for any of the quality attributes. These results indicate that broiler carcass chilling method has a much greater impact on quality of breast meat than scalding method and that the influence of chilling on breast meat quality is independent of scalding treatment.
NASA Technical Reports Server (NTRS)
Bennett, R. L.
1975-01-01
The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-07
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-01
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
Bose, Dipan; Bhalla, Kavi S; Untaroiu, Costin D; Ivarsson, B Johan; Crandall, Jeff R; Hurwitz, Shepard
2008-06-01
Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear displacement was determined by performing regression analysis on the experimental data. The threshold values of the bending angle (16.2 deg) and shear displacement (25.2 mm) estimated from the injury threshold function were in agreement with previously published knee injury threshold data. The continuous knee injury function expressed in terms of bending angle and shear displacement enabled injury prediction for combined loading conditions such as those observed in pedestrian-car collisions.
García-Sifuentes, Celia Olivia; Pacheco-Aguilar, Ramón; Scheuren-Acevedo, Susana María; Carvallo-Ruiz, Gisela; Garcia-Sanchez, Guillermina; Gollas-Galván, Teresa; Hernández-López, Jorge
2013-06-01
The effect of ante-mortem hypoxia on the physicochemical and functional properties of raw and cooked white shrimp was studied. Hue angle was greater (p ≤ 0.05) for stressed raw shrimp compared to control (greener color); whereas a lower angle was detected for cooked stressed shrimp (redder/orange coloration). In addition, hue angle increased (p ≤ 0.05) over the ice storage period for control and stressed shrimp (raw and/or cooked). Muscle hardness and shear force showed no differences when comparing control and stressed shrimp (raw and/or cooked). However, during ice storage, shear force increased (p ≤ 0.05) by 22% and 9% for control and stressed raw shrimp, respectively; in contrast, shear force and muscle hardness decreased for cooked shrimp (p ≤ 0.05). Control showed more (p ≤ 0.05) elasticity than stressed cooked shrimp. Stressed raw shrimp showed a water holding capacity 10.8% lower (p ≤ 0.05) than control. However, during the storage, water holding capacity increased (p ≤ 0.05) reaching similar values to control after day 4. Muscle protein solubility of stressed shrimp was 31% lower than control; however, no differences (p > 0.05) were observed after the second day. The thermal stability of myosin (T max) showed differences (p ≤ 0.05) among control and stressed shrimp, whereas no differences for ΔH were observed. Results showed the influence of ante-mortem hypoxia on the physicochemical and functional properties of white shrimp muscle.
Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
1997-08-01
We conducted three experiments to determine the effects of the callipyge phenotype on the tenderness of several major lamb muscles and to determine the effect of method of cookery on the tenderness of callipyge lamb at 7 d postmortem. In Exp. 1, chops from normal (n = 23) and callipyge (n = 16) carcasses were open-hearth-broiled. Warner-Bratzler shear force values of longissimus, gluteus medius, semimembranosus, biceps femoris, semitendinosus, adductor, and quadriceps femoris were 123, 44, 28, 26, 19, 16, and 13% greater, respectively, for callipyge (P < .05). In Exp. 2, muscles from normal (n = 18) and callipyge (n = 18) carcasses were oven-roasted. Shear force of triceps brachii was 11% greater for callipyge (P < .001); however, phenotype did not affect shear force of supraspinatus (P = .87) or psoas major (P = .64). In Exp. 3, a trained sensory panel evaluated leg roasts and open-hearth-broiled leg chops from normal (n = 60) and callipyge lamb carcasses (n = 60). Callipyge chops were less tender than normal chops (P < .05). Regardless of callipyge phenotype, muscles were more (P < .05) tender when roasted; however, the effect of method of cookery on tenderness scores was greater for callipyge muscles than for normal muscles. Callipyge roasts and normal roasts had similar tenderness (P = .58), and callipyge roasts were more tender than normal chops (P < .05). Regardless of cooking method, callipyge samples were less juicy than normal samples (P < .05). These data demonstrate that the callipyge phenotype will likely reduce consumer satisfaction due to reduced tenderness and juiciness; however, reduced tenderness in callipyge leg muscles could be prevented by ovenroasting.
Shear-induced inflation of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
1989-01-01
Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z)squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.
Shear-induced inflation of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
1990-01-01
Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.
Insights into adhesion of abalone: A mechanical approach.
Li, Jing; Zhang, Yun; Liu, Sai; Liu, Jianlin
2018-01-01
Many living creatures possess extremely strong capability of adhesion, which has aroused great attention of many scientists and engineers. Based on the self-developed equipment, we measured the normal and shear adhesion strength of the abalone underwater and out of water on different contact surfaces. It is found that the adhesion force of the abalone can amount to 200 or 300 times its body weight. The effects of wettability and roughness of the surface, and the frictional coefficient of mucus on the adhesion strength have been discussed. The theoretical calculation manifests that the normal adhesion force mainly stems from the suction pressure, van der Waals force and capillary force of the pedal, and their limit values are given. These findings may provide some inspirations to engineer new-typed materials, micro-devices, adhesives and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lewis, P K; Babiker, S A
1983-01-01
Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.
Comb-push ultrasound shear elastography of breast masses: initial results show promise.
Denis, Max; Mehrmohammadi, Mohammad; Song, Pengfei; Meixner, Duane D; Fazzio, Robert T; Pruthi, Sandhya; Whaley, Dana H; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-01-01
To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE) for classification of breast masses. CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF) beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results. Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s) in comparison to benign masses (3.65 ± 1.36 m/s). Therefore, the stiffness of the mass quantified by the Young's modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC), the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC). CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses.
Rheology of granular materials composed of crushable particles.
Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang
2018-04-11
We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.
Lopez-Quintero, Sandra V; Cancel, Limary M; Pierides, Alexis; Antonetti, David; Spray, David C; Tarbell, John M
2013-01-01
Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.
Lopez-Quintero, Sandra V.; Cancel, Limary M.; Pierides, Alexis; Antonetti, David; Spray, David C.; Tarbell, John M.
2013-01-01
Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques. PMID:24260138
USDA-ARS?s Scientific Manuscript database
Establishing standards for meat tenderness based on Warner-Bratzler shear force (WBSF) is complicated by the lack of methods for certifying WBSF testing among texture systems or laboratories. The objective of this study was to determine the suitability of using gelatin gels as a reference material ...
Genome Wide Scan for Loci influencing Warner Bratzler Shear Force in Five Bos taurus Breeds
USDA-ARS?s Scientific Manuscript database
Genetic tests for beef tenderness are currently limited to single nucleotide polymorphisms (SNPs) within µ-calpain (CAPN1) and calpastatin (CAST) and explain little of the phenotypic variation in Warner-Bratzler shear force (WBSF). We performed a genome-wide association study for WBSF by genotyping...
NASA Astrophysics Data System (ADS)
Leahy, Lauren N.; Haslach, Henry W.
2018-02-01
During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.
NASA Technical Reports Server (NTRS)
Havens, Vance; Ragaller, Dana
1988-01-01
Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.
NASA Astrophysics Data System (ADS)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.; Corley, Richard A.; Ansong, Charles; Laskin, Julia
2018-02-01
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 μm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue height were found to be dependent on the tissue type and were in the range of 0-5 μm for lung tissue and 0-3 μm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.
Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending
NASA Astrophysics Data System (ADS)
Filatov, V. B.
2017-11-01
The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.
Energy buildup in sheared force-free magnetic fields
NASA Technical Reports Server (NTRS)
Wolfson, Richard; Low, Boon C.
1992-01-01
Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.
Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
Dwyer, Harry A; Matthews, Peter B; Azadani, Ali; Jaussaud, Nicolas; Ge, Liang; Guy, T Sloane; Tseng, Elaine E
2009-08-01
Studied under clinical trials, transcatheter aortic valves (TAV) have demonstrated good short-term feasibility and results in high-risk surgical patients with severe aortic stenosis. However, their long-term safety and durability are unknown. The objective of this study is to evaluate hemodynamic changes within TAV created by bioprosthetic leaflet degeneration. Computational fluid dynamics (CFD) simulations were performed to evaluate the hemodynamics through TAV sclerosis (35% orifice reduction) and stenosis (78% orifice reduction). A three-dimensional surface mesh of the TAV within the aortic root was generated for each simulation. Leaflets were contained within an open, cylindrical body without attachment to the sinus commissures representing the stent. A continuous surface between the annulus and TAV excluded the geometry of the native calcified leaflets and prevented paravalvular leak. Unsteady control volume analysis throughout systole was used to calculate leaflet shear stress and total force on the TAV. Sclerosis increased total force on the TAV by 63% (0.602-0.98 N). Advancement of degeneration from sclerosis to stenosis was accompanied by an 86% increase in total force (1.82 N) but only a 32% increase in peak wall shear stress on the leaflets. Of the total force exerted on the TAV, 99% was in the direction of axial flow. Shear stresses on the TAV were greatest during peak systolic flow with stress concentrations on the tips of the leaflets. In the normal TAV, the aortic root geometry and physiologic flow dominate location and magnitude of shear stress. Following leaflet degeneration, the specific geometry of the stenosis dictates the profile of axial velocity leaving the TAV and shear stress on the leaflets. A dramatic increase in peak leaflet shear stress was observed (115 Pa stenosis vs. 87 Pa sclerosis and 29 Pa normal). CFD simulations in this study provide the first of its kind data quantifying hemodynamics within stenosed TAV. Stenosis leads to significant forces of TAV during systole; however, diastolic forces predominate even with significant stenosis. Substantial changes in peak shear stress occur with TAV degeneration. As the first implanted TAV begin to stenose, the authors recommend watchful examination for device failure.
Influence of vibration on structure rheological properties of a highly concentrated suspension
NASA Astrophysics Data System (ADS)
Ouriev Uriev, Boris N.; Uriev, Naum B.
2005-08-01
The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.
Mantsopoulos, Konstantinos; Klintworth, Nils; Iro, Heinrich; Bozzato, Alessandro
2015-09-01
Our aim in this study was to determine normal shear wave elastography (SWE) values for the parenchyma of the major salivary glands and to evaluate the influences of gender, smoking, side and type of gland and varying amounts of ultrasound probe pressure on SWE values. Twenty-five consecutive healthy patients were examined with ultrasound. SWE velocities were measured with acoustic radiation force imaging in the hilum and central region of both glands with "normal" and very low pressure. Mean SWE velocities were 1.854 m/s for the parotid gland and 1.932 m/s for the submandibular gland. No statistically significant differences were detected between males and females, smokers and non-smokers, parotid and submandibular gland and left and right sides. Greater pre-compression with the ultrasound probe resulted in a statistically significant increase in the SWE values of both salivary glands (p < 0.000). The degree of pre-compression by the ultrasound transducer should be standardized, so that the reliability and reproducibility of this innovative method can be improved. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves
NASA Astrophysics Data System (ADS)
Greenleaf, James F.; Chen, Shigao
2007-03-01
Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.
Hernandez-Andrade, Edgar; Aurioles-Garibay, Alma; Garcia, Maynor; Korzeniewski, Steven J.; Schwartz, Alyse G.; Ahn, Hyunyoung; Martinez-Varea, Alicia; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Romero, Roberto
2014-01-01
Aim To investigate the effect of depth on cervical shear-wave elastography. Methods Shear-wave elastography was applied to estimate the velocity of propagation of the acoustic force impulse (shear-wave) in the cervix of 154 pregnant women at 11-36 weeks of gestation. Shear-wave speed (SWS) was evaluated in cross-sectional views of the internal and external cervical os in five regions of interest: anterior, posterior, lateral right, lateral left, and endocervix. Distance from the center of the US transducer to the center of the each region of interest was registered. Results In all regions, SWS decreased significantly with gestational age (p=0.006). In the internal os SWS was similar among the anterior, posterior and lateral regions, and lower in the endocervix. In the external os, the endocervix and anterior regions showed similar SWS values, lower than those from the posterior and lateral regions. In the endocervix, these differences remained significant after adjustment for depth, gestational age and cervical length. SWS estimations in all regions of the internal os were higher than those of the external os, suggesting denser tissue. Conclusion Depth from the ultrasound probe to different regions in the cervix did not significantly affect the SWS estimations. PMID:25029081
Harding, Graeme T; Dunbar, Michael J; Hubley-Kozey, Cheryl L; Stanish, William D; Astephen Wilson, Janie L
2016-01-01
Obesity is an important risk factor for knee osteoarthritis initiation and progression. However, it is unclear how obesity may directly affect the mechanical loading environment of the knee joint, initiating or progressing joint degeneration. The objective of this study was to investigate the interacting role of obesity and moderate knee osteoarthritis presence on tibiofemoral contact forces and muscle forces within the knee joint during walking gait. Three-dimensional gait analysis was performed on 80 asymptomatic participants and 115 individuals diagnosed with moderate knee osteoarthritis. Each group was divided into three body mass index categories: healthy weight (body mass index<25), overweight (25≤body mass index≤30), and obese (body mass index>30). Tibiofemoral anterior-posterior shear and compressive forces, as well as quadriceps, hamstrings and gastrocnemius muscle forces, were estimated based on a sagittal plane contact force model. Peak contact and muscle forces during gait were compared between groups, as well as the interaction between disease presence and body mass index category, using a two-factor analysis of variance. There were significant osteoarthritis effects in peak shear, gastrocnemius and quadriceps forces only when they were normalized to body mass, and there were significant BMI effects in peak shear, compression, gastrocnemius and hamstrings forces only in absolute, non-normalized forces. There was a significant interaction effect in peak quadriceps muscle forces, with higher forces in overweight and obese groups compared to asymptomatic healthy weight participants. Body mass index was associated with higher absolute tibiofemoral compression and shear forces as well as posterior muscle forces during gait, regardless of moderate osteoarthritis presence or absence. The differences found may contribute to accelerated joint damage with obesity, but with the osteoarthritic knees less able to accommodate the high loads. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advances in active control and optimization in turbulence
NASA Astrophysics Data System (ADS)
Freeman, Aaron Paul
The main objective of this research is to explore the effectiveness of pulsed plasma actuators for turbulence control. In particular, a pulsed plasma actuator is used in this research to implement active control, in the form of a localized body force, over turbulent separated shear layers. Applications of tins research include controlling the formation and distribution of large scale turbulent structures and optimizing turbulence-aberrated laser propagation. This research is primarily experimental, with the motivation for the work derived from theoretical analysis of a turbulent shear layer. The experimental work is considered within two primary flow regimes, compressible and incompressible. For both cases, a turbulent shear layer is generated and then forced with plasma which is introduced periodically at frequencies ranging between 1.0 kHz and 25.0 kHz. The Reynolds numbers, based on visual thickness, of the compressible and incompressible flows investigated in this research are 6.0 106 and 8.0 104 respectively. Experimental results for the compressible case, based on Shack-Hartmann profiling of turbulence-aberrated laser wavefronts, for laser propagation through forced and unforced shear flows show reductions in the laser aberrations of up to 27.5% with a pulsing frequency of 5.0 kHz as well as increases of up to 16.9% with a pulsing frequency of 1.0 kHz. Other pulsing frequencies within the specified range were experimental analyzed and found to exhibit little or no significant change in the laser aberrations compared to the unforced case. The direct results from the Shack-Hartmann wavefront sensor are used to calculate the power spectra of the recorded Optical Path Difference profiles to verify the correlation between large aero-optical aberrations and propagation through large turbulent structures. Shadowgraph imaging of the compressible flow field was conducted to visually demonstrate the same. The experimental procedure for the incompressible shear layer involves imaging the flow field using fog-Mie scattering. The analysis for the resulting incompressible shear layer images include investigations of the distribution of large scale structures and the associated effects that periodic forcing has on the shear layer relating to mixing enhancement and scalar geometry. The effects of periodic forcing on mixing will be determined based on the scalar probability density function and the scalar power spectrum. In addition, the geometry of the scalar interfaces will be examined in terms of the generalized fractal dimension to determine the effects that periodic forcing has on the scale dependency of self-similarity within the flow field. Results from the experiments for the incompressible shear layer show that mixing can be increased by up to 8.4% as determined based on increases within the intermediate scalar probability density function and decreased by as much as 30.8% at forcing frequencies of 25.0 kHz and 1.0 kHz respectively. Additionally, this research shows that the extent of the range of scales of geometrical self-similarity of iso-concentration interfaces extracted from the flow images can be increased by up to 75.0% or reduced by as much as 75.0% depending on the forcing frequency applied. These results show that aero-optical interactions in a compressible shear layer as well as both mixing and the interfacial geometry in incompressible shear layers can be substantially modified by the periodic forcing.
Effect of contact time and force on monocyte adhesion to vascular endothelium.
Rinker, K D; Prabhakar, V; Truskey, G A
2001-01-01
In this study we examined whether monocytic cell attachment to vascular endothelium was affected by elevating shear stress at a constant shear rate. Contact time, which is inversely related to the shear rate, was fixed and viscosity elevated with dextran to increase the shear stress (and hence the net force on the cell) independently of shear rate. At a fixed contact time, tethering frequencies increased, rolling velocities decreased, and median arrest durations increased with increasing shear stress. Rolling and short arrests (< 0.2 s) were well fit by a single exponential consistent with adhesion via the formation of a single additional bond. The cell dissociation constant, k(off), increased when the shear stress was elevated at constant shear rate. Firmly adherent cells arresting for at least 0.2 s were well fit by a stochastic model involving dissociation from multiple bonds. Therefore, at a fixed contact time and increasing shear stress, bonds formed more frequently for rolling cells resulting in more short arrests, and more bonds formed for firmly arresting cells resulting in longer arrest durations. Possible mechanisms for this increased adhesion include greater monocyte deformation and/or more frequent penetration of microvilli through steric and charge barriers. PMID:11259286
The efficacy of three objective systems for identifying beef cuts that can be guaranteed tender.
Wheeler, T L; Vote, D; Leheska, J M; Shackelford, S D; Belk, K E; Wulf, D M; Gwartney, B L; Koohmaraie, M
2002-12-01
The objective of this study was to determine the accuracy of three objective systems (prototype BeefCam, colorimeter, and slice shear force) for identifying guaranteed tender beef. In Phase I, 308 carcasses (105 Top Choice, 101 Low Choice, and 102 Select) from two commercial plants were tested. In Phase II, 400 carcasses (200 rolled USDA Select and 200 rolled USDA Choice) from one commercial plant were tested. The three systems were evaluated based on progressive certification of the longissimus as "tender" in 10% increments (the best 10, 20, 30%, etc., certified as "tender" by each technology; 100% certification would mean no sorting for tenderness). In Phase I, the error (percentage of carcasses certified as tender that had Warner-Bratzler shear force of > or = 5 kg at 14 d postmortem) for 100% certification using all carcasses was 14.1%. All certification levels up to 80% (slice shear force) and up to 70% (colorimeter) had less error (P < 0.05) than 100% certification. Errors in all levels of certification by prototype BeefCam (13.8 to 9.7%) were not different (P > 0.05) from 100% certification. In Phase I, the error for 100% certification for USDA Select carcasses was 30.7%. For Select carcasses, all slice shear force certification levels up to 60% (0 to 14.8%) had less error (P < 0.05) than 100% certification. For Select carcasses, errors in all levels of certification by colorimeter (20.0 to 29.6%) and by BeefCam (27.5 to 31.4%) were not different (P > 0.05) from 100% certification. In Phase II, the error for 100% certification for all carcasses was 9.3%. For all levels of slice shear force certification less than 90% (for all carcasses) or less than 80% (Select carcasses), errors in tenderness certification were less than (P < 0.05) for 100% certification. In Phase II, for all carcasses or Select carcasses, colorimeter and prototype BeefCam certifications did not significantly reduce errors (P > 0.05) compared to 100% certification. Thus, the direct measure of tenderness provided by slice shear force results in more accurate identification of "tender" beef carcasses than either of the indirect technologies, prototype BeefCam, or colorimeter, particularly for USDA Select carcasses. As tested in this study, slice shear force, but not the prototype BeefCam or colorimeter systems, accurately identified "tender" beef.
Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico
2013-09-01
A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.
Flutter of Hybrid Laminated Flat Panels with Simply Supported Edges in Supersonic Flow
NASA Astrophysics Data System (ADS)
Barai, A.; Durvasula, S.
1994-01-01
Flutter of hybrid laminated flat panels in supersonic flow is studied by using first order shear deformation theory in conjunction with the assumed mode method. Both the quasi-static approximation and piston theory are used for aerodynamic force calculations at supersonic speeds. The flutter stability boundaries are determined by using the frequency coalescence criterion with the quasi-static approximation and Movchan-Krumhaar's criterion with the piston theory aerodynamics. Numerical calculations are presented for hybrid laminates consisting of graphite, Kevlar and glass fibres in an epoxy matrix. The effects of hybridization, shear deformation, ply orientation and aspect ratio are studied. The critical dynamic pressure parameter of a hybrid laminate lies between the values for laminates made with all plies of higher stiffness and with all plies of lower stiffness, respectively. The role of aerodynamic damping is found to be particularly important in determining the aeroelastic stability boundaries of laminated composite panels. Shear flexibility reduces the critical dynamic pressure parameter, but the reduction is insignificant for thin panels.
Roughness-dependent tribology effects on discontinuous shear thickening
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N.; Zanini, Michele; Spencer, Nicholas D.
2018-01-01
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle–particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as “stick–slip” frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle–particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. PMID:29717043
Roughness-dependent tribology effects on discontinuous shear thickening.
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N; Zanini, Michele; Spencer, Nicholas D; Isa, Lucio
2018-05-15
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. Copyright © 2018 the Author(s). Published by PNAS.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.
Linkmann, Moritz F; Morozov, Alexander
2015-09-25
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.
Shear wave elastography with a new reliability indicator.
Dietrich, Christoph F; Dong, Yi
2016-09-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Shear wave elastography with a new reliability indicator
Dong, Yi
2016-01-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731
Zhuang, H; Savage, E M
2008-10-01
Quality assessment results of cooked meat can be significantly affected by sample preparation with different cooking techniques. A combi oven is a relatively new cooking technique in the U.S. market. However, there was a lack of published data about its effect on quality measurements of chicken meat. Broiler breast fillets deboned at 24-h postmortem were cooked with one of the 3 methods to the core temperature of 80 degrees C. Cooking methods were evaluated based on cooking operation requirements, sensory profiles, Warner-Bratzler (WB) shear and cooking loss. Our results show that the average cooking time for the combi oven was 17 min compared with 31 min for the commercial oven method and 16 min for the hot water method. The combi oven did not result in a significant difference in the WB shear force values, although the cooking loss of the combi oven samples was significantly lower than the commercial oven and hot water samples. Sensory profiles of the combi oven samples did not significantly differ from those of the commercial oven and hot water samples. These results demonstrate that combi oven cooking did not significantly affect sensory profiles and WB shear force measurements of chicken breast muscle compared to the other 2 cooking methods. The combi oven method appears to be an acceptable alternative for preparing chicken breast fillets in a quality assessment.
Modeling Force Transfer around Openings in Wood-Frame Shear Walls
Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker
2012-01-01
This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...
Pressure effects on the nose by an in-flight oxygen mask during simulated flight conditions.
Schreinemakers, J Rieneke C; Boer, C; van Amerongen, P C G M; Kon, M
2016-12-01
Dutch F-16 fighter pilots experience oxygen mask inflicted nasal trauma, including discomfort, pain, skin abrasions, bruises and bone remodelling. Pressure and shear forces on the nose might contribute to causing these adverse effects. In this study, it was evaluated how flight conditions affected the exerted pressure, and whether shear forces were present. The pressure exerted by the oxygen mask was measured in 20 volunteers by placing pressure sensors on the nose and chin underneath the mask. In the human centrifuge, the effects on the exerted pressure during different flight conditions were evaluated (+3G z , +6G z , +9G z , protocolised head movements, mounted visor or night vision goggles, NVG). The runs were recorded to evaluate if the mask's position changed during the run, which would confirm the presence of shear forces. Head movements increased the median pressure on the nose by 50 mm Hg and on the chin by 37 mm Hg. NVG, a visor and accelerative forces also increased the median pressure on the nose. Pressure drops on the nose were also observed, during mounted NVG (-63 mm Hg). The recordings showed the mask slid downwards, especially during the acceleration phase of the centrifuge run, signifying the presence of shear forces. The exerted pressure by the oxygen mask changes during different flight conditions. Exposure to changing pressures and to shear forces probably contributes to mask-inflicted nasal trauma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Seismic response of elevated rectangular water tanks considering soil structure interaction
NASA Astrophysics Data System (ADS)
Visuvasam, J.; Simon, J.; Packiaraj, J. S.; Agarwal, R.; Goyal, L.; Dhingra, V.
2017-11-01
The overhead staged water tanks are susceptible for high lateral forces during earthquakes. Due to which, the failure of beam-columns joints, framing elements and toppling of tanks arise. To avoid such failures, they are analyzed and designed for lateral forced induced by devastating earthquakes assuming the base of the structures are fixed and considering functional needs, response reduction, soil types and severity of ground shaking. In this paper, the flexible base was provided as spring stiffness in order to consider the effect of soil properties on the seismic behaviour of water tanks. A linear time history earthquake analysis was performed using SAP2000. Parametric studies have been carried out based on various types of soils such as soft, medium and hard. The soil stiffness values highly influence the time period and base shear of the structure. The ratios of time period of flexible to fixed base and base shear of flexible to fixed base were observed against capacities of water tank and the overall height of the system. The both responses are found to be increased as the flexibility of soil medium decreases
Calculation and analysis of shear resistance of segment ring joint with shear pin
NASA Astrophysics Data System (ADS)
Wu, Shengzhi; Huang, Haibin; Wang, Mingnian; Xiao, Shihui; Liu, Dagang
2018-03-01
In order to get the effect of shear pins between segments on the shear resistance of segment girth joints. Take the Maliuzhou traffic tunnel project of Zhuhai which with super large diameter and Marine Composite strata as the research object, the longitudinal shear stiffness of tunnel shear considering the shear rigidity of shear pins was obtained through the finite element shear experiment of segment ring. By comparing the calculation results of shear pin and non shear pin between segment ring connections, the conclusion that shear pin setting can effectively decompose and transfer shear force and control the dislocation between segment ring blocks is obtained. The study can be used as reference for the design and construction of shield tunnel.
Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M
2013-03-01
Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.
Jeans instability in a universe with dissipation
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; Richarte, Martín G.; Teston, Felipe
2018-01-01
The problem of Jeans gravitational instability is investigated for static and expanding universes within the context of the five and thirteen field theories which account for viscous and thermal effects. For the five-field theory a general dispersion relation has been derived with the help of relevant linearized perturbation equations, showing that the shear viscosity parameter alters the propagating modes for large and small wavelengths. The behavior of density and temperature contrasts are analyzed for the hard-sphere model in detail. In the small wavelengths regime, increasing the amount of shear viscosity into the system forces the harmonic perturbations to damp faster, however, in the opposite limit larger values of shear viscosity lead to smaller values of density and temperature contrasts. We also consider the hyperbolic case associated with the thirteen-field theory which involves two related parameters, namely the shear viscosity and the collision frequency, the last one is due to the production terms which appear in the Grad method. The dispersion relation becomes a polynomial in the frequency with two orders higher in relation to the five-field theory, indicating that the effects associated with the shear viscosity and heat flux are nontrivial. The profile of Jeans mass in terms of the temperature and number density is explored by contrasting with several data of molecular clouds. Regarding the dynamical evolution of the density, temperature, stress and heat flux contrasts for a universe dominated by pressureless matter, we obtain also damped harmonic waves for small wavelengths. In the case of large wavelengths, the density and temperature contrasts grow with time (due to the Jeans mechanism) while the stress and heat flux contrasts heavily decay with time. For an expanding universe, the Jeans mass and Jeans length are obtained and their physical consequences are explored.
Steel Shear Walls, Behavior, Modeling and Design
NASA Astrophysics Data System (ADS)
Astaneh-Asl, Abolhassan
2008-07-01
In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of overturning moments and any normal forces that might act on the steel shear wall.
NASA Astrophysics Data System (ADS)
Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.
2017-12-01
Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of Vp at shear strains of 7-9 reflects near complete alignment and increased compaction and density. This interpretation is supported by SEM imaging and analysis of a suite of experiments stopped at different shear strains.
Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn A.; Wheeler, Mark M.
2012-01-01
The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for the LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for the launch customer.
Random three-dimensional jammed packings of elastic shells acting as force sensors
NASA Astrophysics Data System (ADS)
Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout
2016-06-01
In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.
Viscoinertial regime of immersed granular flows
NASA Astrophysics Data System (ADS)
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-07-01
By means of extensive coupled molecular dynamics-lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.
Martoïa, F; Dumont, P J J; Orgéas, L; Belgacem, M N; Putaux, J-L
2016-02-14
In this study, we characterized and modeled the rheology of TEMPO-oxidized cellulose nanofibril (NFC) aqueous suspensions with electrostatically stabilized and unflocculated nanofibrous structures. These colloidal suspensions of slender and wavy nanofibers exhibited a yield stress and a shear thinning behavior at low and high shear rates, respectively. Both the shear yield stress and the consistency of these suspensions were power-law functions of the NFC volume fraction. We developed an original multiscale model for the prediction of the rheology of these suspensions. At the nanoscale, the suspensions were described as concentrated systems where NFCs interacted with the Newtonian suspending fluid through Brownian motion and long range fluid-NFC hydrodynamic interactions, as well as with each other through short range hydrodynamic and repulsive colloidal interaction forces. These forces were estimated using both the experimental results and 3D networks of NFCs that were numerically generated to mimic the nanostructures of NFC suspensions under shear flow. They were in good agreement with theoretical and measured forces for model colloidal systems. The model showed the primary role played by short range hydrodynamic and colloidal interactions on the rheology of NFC suspensions. At low shear rates, the origin of the yield stress of NFC suspensions was attributed to the combined contribution of repulsive colloidal interactions and the topology of the entangled NFC networks in the suspensions. At high shear rates, both concurrent colloidal and short (in some cases long) range hydrodynamic interactions could be at the origin of the shear thinning behavior of NFC suspensions.
Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow
NASA Astrophysics Data System (ADS)
Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua
2017-06-01
Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.
Krieger, Christine C.; An, Xiuli; Tang, Hsin-Yao; Mohandas, Narla; Speicher, David W.; Discher, Dennis E.
2011-01-01
Questions of if and when protein structures change within cells pervade biology and include questions of how the cytoskeleton sustains stresses on cells—particularly in mutant versus normal cells. Cysteine shotgun labeling with fluorophores is analyzed here with mass spectrometry of the spectrin–actin membrane skeleton in sheared red blood cell ghosts from normal and diseased mice. Sheared samples are compared to static samples at 37 °C in terms of cell membrane intensity in fluorescence microscopy, separated protein fluorescence, and tryptic peptide modification in liquid chromatography–tandem mass spectrometry (LC-MS/MS). Spectrin labeling proves to be the most sensitive to shear, whereas binding partners ankyrin and actin exhibit shear thresholds in labeling and both the ankyrin-binding membrane protein band 3 and the spectrin–actin stabilizer 4.1R show minimal differential labeling. Cells from 4.1R-null mice differ significantly from normal in the shear-dependent labeling of spectrin, ankyrin, and band 3: Decreased labeling of spectrin reveals less stress on the mutant network as spectrin dissociates from actin. Mapping the stress-dependent labeling kinetics of α- and β-spectrin by LC-MS/MS identifies Cys in these antiparallel chains that are either force-enhanced or force-independent in labeling, with structural analyses indicating the force-enhanced sites are sequestered either in spectrin’s triple-helical domains or in interactions with actin or ankyrin. Shear-sensitive sites identified comprehensively here in both spectrin and ankyrin appear consistent with stress relief through forced unfolding followed by cytoskeletal disruption. PMID:21527722
Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Stimatze, Justin T.
We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.
Dynamic rheological comparison of silicones for podiatry applications.
Díaz-Díaz, Ana-María; Sánchez-Silva, Bárbara; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Janeiro-Arocas, Julia; Gracia-Fernández, Carlos; Artiaga, Ramón
2018-05-26
This work shows an effective methodology to evaluate the dynamic viscoelastic behavior of silicones for application in podiatry. The aim is to characterize, compare their viscoelastic properties according to the dynamic stresses they can be presumably subjected when used in podiatry orthotic applications. These results provide a deeper insight which extends the previous creep-recovery results to the world of dynamic stresses developed in physical activity. In this context, it shoulod be taken into account that an orthoses can subjected to a set of static and dynamic shear and compressive forces. Two different podiatric silicones, Blanda-blanda and Master, from Herbitas, are characterized by dynamic rheological methods. Three kinds of rheological tests are considered: shear stress sweep, compression frequency sweep and shear frequency sweep, all the three with simultaneous control of the static force at three different levels. The static force represents a static load like that produced by the weight of a human body on a shoe insole. In a practical sense, dynamic stresses are related to physical activity and are needed to evaluate the frequency effect on the viscoelastic behavior of the material. It is considered that the dynamic stresses can be applied in compression and shear since, in practice, the way the stresses are applied in real life depends on the orthoses geometry and its exact location with respect to the foot and shoe. The effects of static and dynamic loads are individualized and compared to each other through the relations between the elastic constants for isotropic materials. The overall proposed experimental methodology can provide very insightful information for better selection of materials in podiatry applications. This study focuses on the rheological characterization to choose the right silicone for each podiatric application, taking into account the dynamic viscoelastic requirements associated to the physical activity of user. Accordingly, one soft and one hard silicones of common use in podiatry were tested. Each of the two silicones exhibit not only different moduli values, but also, a different kind of dependence of the dynamic moduli with respect to the static load. In the case of the soft sample a linear trend is observed but in the case of of the hard one the dependence is of the power law type. Moreover, these samples exhibit very different Poisson's coefficient values for compression stresses lower than 20 kPa, and almost the same values for stresses above 40 kPa. That different dependence of the Poisson's ratio on the static load should also be taken into account for material selection in customized podiatry applications, where static and dynamic loads are strongly dependent on the individual weight and activity. Copyright © 2018. Published by Elsevier Ltd.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
Hashizawa, Yoshinori; Kubota, Masatoshi; Kadowaki, Motoni; Fujimura, Shinobu
2013-11-01
This study was conducted to evaluate the effect of dietary vitamin E (VE) on broiler meat quality, especially focused on PSE (pale color, soft and exudative), under chronic heat stress (HS) conditions. Twenty-eight-day-old female Ross broilers were kept in independent cages with a controlled temperature of 24°C (normal temperature: NT) or 30°C (high temperature: HT). The NT chickens were fed basal feed. The HT chickens were fed basal feed (HT) or VE (200 mg/kg) added feed (HT + E). Broilers were weighed and slaughtered at 38 days old. The breast muscle was removed immediately and then the samples were used for determination of meat color, pH, water holding capacity (WHC) and shear force value (SFV). Body weight gain and feed intake were significantly decreased in the HT and HT + E groups compared to the NT group. VE supplementation did not affect the growth performance. Chronic HS at 30°C for 10 days may cause deterioration of meat quality such as PSE. The effects of chronic HS on meat quality were most significant in the toughness of broiler breast meat. Supplementation of VE in broiler feed would be effective to prevent the extent of PSE on broiler meat by chronic HS. © 2013 Japanese Society of Animal Science.
NASA Technical Reports Server (NTRS)
White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)
1989-01-01
A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
Prediction of static friction coefficient in rough contacts based on the junction growth theory
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.
NASA Astrophysics Data System (ADS)
Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.
2018-03-01
The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.
Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx.
Zhao, Y; Chien, S; Weinbaum, S
2001-01-01
We develop a theoretical model to examine the combined effect of gravity and microvillus length heterogeneity on tip contact force (F(m)(z)) during free rolling in vitro, including the initiation of L-, P-, and E-selectin tethers and the threshold behavior at low shear. F (m)(z) grows nonlinearly with shear. At shear stress of 1 dyn/cm(2), F(m)(z) is one to two orders of magnitude greater than the 0.1 pN force for gravitational settling without flow. At shear stresses > 0.2 dyn/cm(2) only the longest microvilli contact the substrate; hence at the shear threshold (0.4 dyn/cm(2) for L-selectin), only 5% of microvilli can initiate tethering interaction. The characteristic time for tip contact is surprisingly short, typically 0.1-1 ms. This model is then applied in vivo to explore the free-rolling interaction of leukocyte microvilli with endothelial glycocalyx and the necessary conditions for glycocalyx penetration to initiate cell rolling. The model predicts that for arteriolar capillaries even the longest microvilli cannot initiate rolling, except in regions of low shear or flow reversal. In postcapillary venules, where shear stress is approximately 2 dyn/cm(2), tethering interactions are highly likely, provided that there are some relatively long microvilli. Once tethering is initiated, rolling tends to ensue because F(m)(z) and contact duration will both increase substantially to facilitate glycocalyx penetration by the shorter microvilli. PMID:11222278
The effects of forcing on a single stream shear layer and its parent boundary layer
NASA Technical Reports Server (NTRS)
Haw, R. C.; Foss, J. F.
1989-01-01
The detailed response of a large single-stream shear layer to a sinusoidal forcing at x = 0 is quantitatively defined. Phase-averaged data are used to characterize the increased disturbance convection velocity and a width measure of the disturbance field. These findings are consistent with and complement those of Fiedler and Mensing (1985).
Effects of Deformation on Drag and Lift Forces Acting on a Droplet in a Shear Flow
NASA Astrophysics Data System (ADS)
Suh, Youngho; Lee, Changhoon
2010-11-01
The droplet behavior in a linear shear flow is studied numerically to investigate the effect of deformation on the drag and lift acting on droplet. The droplet shape is calculated by a level set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid- gas interface. By adopting the feedback forces which can maintain the droplet at a fixed position, we determine the acting force on a droplet in shear flow field with efficient handling of deformation. Based on the numerical results, drag and lift forces acting on a droplet are observed to depend strongly on the deformation. Droplet shapes are observed to be spherical, deformed, and oscillating depending on the Reynolds number. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Comparisons of the calculated results by the current method with those obtained from body-fitted methods [Dandy and Leal, J. Fluid Mech. 208, 161 (1989)] and empirical models [Feng and Beard, J. Atmos. Sci. 48, 1856 (1991)] show good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 µm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue heightmore » were found to be dependent on the tissue type and were in the range of 0-5 µm for lung tissue and 0-3 µm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.« less
Microgravity Effects on Transendothelial Transport
NASA Technical Reports Server (NTRS)
Tarbell, John M.
1996-01-01
The Endothelial Cell (EC) layer which lines blood vessels from the aorta to the capillaries provides the principal barrier to transport of water and solutes between blood and underlying tissue. Endothelial cells are continuously exposed to the mechanical shearing force (shear stress) and normal force (pressure) imposed by flowing blood on their surface, and they are adapted to this mechanical environment. When the cardiovascular system is exposed to microgravity, the mechanical environmental of endothelial cells is perturbed drastically and the transport properties of EC layers are altered in response. We have shown recently that step changes in shear stress have an acute effect on transport properties of EC layers in a cell culture model, and several recent studies in different vessels of live animals have confirmed the shear-dependent transport properties of the endothelium. We hypothesize that alterations in mechanical forces induced by microgravity and their resultant influence on transendothelial transport of water and solutes are, in large measure, responsible for the characteristic cephalad fluid shift observed in humans experiencing microgravity. To study the effects of altered mechanical forces on transendothelial transport and to test pharmacologic agents as counter measures to microgravity induced fluid shifts we have proposed ground-based studies using well defined cell culture models.
Hopkins, D L; Toohey, E S; Lamb, T A; Kerr, M J; van de Ven, R; Refshauge, G
2011-08-01
The temperature when the pH=6.0 (temp@pH6) impacts on the tenderness and eating quality of sheep meat. Due to the expense, sarcomere length is not routinely measured as a variable to explain variation in shear force, but whether measures such as temp@pH6 are as useful a parameter needs to be established. Measures of rigor onset in 261 carcases, including the temp@pH6, were evaluated in this study for their ability to explain some of the variation in shear force. The results show that for 1 day aged product combinations of the temp@pH6, the pH at 18 °C and the pH at 24 h provided a larger reduction (almost double) in total shear force variation than sarcomere length alone, with pH at 24 h being the single best measure. For 5 day aged product, pH at 18 °C was the single best measure. Inclusion of sarcomere length did represent some improvement, but the marginal increase would not be cost effective. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY
2008-09-02
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
Measuring shear force transmission across a biomimetic glycocalyx
NASA Astrophysics Data System (ADS)
Bray, Isabel; Young, Dylan; Scrimgeour, Jan
Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.
Effects of Environment Forcing on Marine Boundary Layer Cloud-Drizzle Processes
NASA Astrophysics Data System (ADS)
Dong, X.
2017-12-01
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzle occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number (Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. By analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Peng; Dong, Xiquan; Xi, Baike
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less
Wu, Peng; Dong, Xiquan; Xi, Baike; ...
2017-04-20
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less
Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.
Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P
2008-05-01
To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p < 0.001). When the nature of failure was assessed with the ARI Index, 83 per cent of the enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.
Olivier, L A; Truskey, G A
1993-10-01
Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area. (c) 1993 John Wiley & Sons, Inc.
Measuring the force of drag on air sheared sessile drops
NASA Astrophysics Data System (ADS)
Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad
2012-11-01
To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge
Comb-Push Ultrasound Shear Elastography of Breast Masses: Initial Results Show Promise
Song, Pengfei; Fazzio, Robert T.; Pruthi, Sandhya; Whaley, Dana H.; Chen, Shigao; Fatemi, Mostafa
2015-01-01
Purpose or Objective To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE) for classification of breast masses. Materials and Methods CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF) beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results. Results Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s) in comparison to benign masses (3.65 ± 1.36 m/s). Therefore, the stiffness of the mass quantified by the Young’s modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC), the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC). Conclusion CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses. PMID:25774978
Shear thickening in suspensions: the lubricated-to-frictional contact scenario
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2017-11-01
Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the predictions of the lubricated-to-frictional rheology is generally good, but discrepancies demand some perspective on the strong simplifying assumptions in the model. Since contact is difficult to both establish and to characterize for surfaces between particles of micron scale or smaller, what is happening in the very close ``contacts'' is not clear, and how changes at this scale give rise to the large-scale force organization is yet to be established. The insight to the elements needed for the abrupt flow induced transition seen in DST thus suggests a need for consideration of both the microscopic physics of contact and the statistical physics governing the macroscopic properties. This work was supported in part by the NSF CBET program, Grant # 1605283.
Bulk Modulus Relaxation in Partially Molten Dunite?
NASA Astrophysics Data System (ADS)
Jackson, I.; Cline, C. J., II
2016-12-01
Synthetic solgel-derived Fo90 olivine was mixed with 3.5 wt % basaltic glass and hot-pressed within Ni/Fe foil to produce a dense aggregate expected to contain a small melt fraction at temperatures ≥ 1100°C. This specimen was precision ground and tested in both torsional and flexural forced oscillation to determine the relaxation behavior of both shear (G) and bulk (K) moduli at seismic frequencies. A recent upgrade of our experimental facility allows such measurements to be made without alteration of the driver/detector geometry, and uses an oscillating bending force rather than a bending moment, as previously described. The torsional and flexural tests were conducted in a gas apparatus at 200 MPa confining pressure, with oscillation periods ranging between 1 and 1000 s, during slow staged-cooling from 1300 to 25°C. Shear modulus and associated dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background within the 1-1000 s observational window at temperatures of 1100-1200°C. A filament elongation model relates the observed flexural measurements to the variations along the experimental assembly of the complex Young's modulus (E*), bending moment and diametral moment of inertia. With E* given by 1/E*=1/(3G*) + 1/(9K*), and the complex shear modulus (G*) derived from torsional oscillation, any relaxation of K can be identified. Preliminary modeling shows that the viscoelastic properties in flexure are broadly consistent with those expected from the shear-mode viscoelasticity with anharmonic (real) values of K. However, some discrepancies between modeled results and flexure data at super-solidus temperatures require further investigation of possible differences in shear modulus relaxation between the torsional and flexural modes, and of potential relaxation of the bulk modulus through stress-induced changes in melt redistribution and/or proportions of coexisting crystalline and melt phases.
Mechanics of wheel-soil interaction
NASA Technical Reports Server (NTRS)
Houland, H. J.
1973-01-01
An approximate theory for wheel-soil interaction is presented which forms the basis for a practical solution to the problem. It is shown that two fundamental observations render the problem determinate: (1) The line of action of the resultant of radial stresses acting at the wheel soil interface approximately bisects the wheel-soil contact angle for all values of slip. (2) A shear stress surface can be hypothesized. The influence of soil inertia forces is also evaluated. A concept of equivalent cohesion is introduced which allows a convenient experimental comparison for both cohesive and frictional soils. This theory compares favorably with previous analyses and experimental data, and shows that soil inertia forces influencing the motion of a rolling wheel can be significant.
KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT
Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul
2014-01-01
Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996
Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.
Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul
2014-09-01
Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P < 0.0001), patellofemoral forces (P < 0.006), and knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P < 0.001), and patellofemoral forces (P = 0.01) and knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.
Cañas, Teresa; Fontanilla, Teresa; Miralles, María; Maciá, Araceli; Malalana, Ana; Román, Enriqueta
2015-08-01
Portal hypertension, a major complication of hepatic fibrosis, can affect the stiffness of the spleen. To suggest normal values of spleen stiffness determined by acoustic radiation force impulse imaging in healthy children and to compare measurements using two different US probes. In a prospective study, 60 healthy children between 1 day and 14 years of age were assigned to four age groups with 15 children in each. Measurements were performed using two transducers (convex 4C1 and linear 9L4), and 10 measurements were obtained in each child, 5 with each probe. The mean splenic shear wave velocities were 2.17 m/s (SD 0.35, 95% CI 2.08-2.26) with the 4C1 probe and 2.15 m/s (SD 0.23, 95% CI 2.09-2.21) with the 9L4 probe (not significant). We found normal values for spleen stiffness with no difference in the mean values obtained using two types of US transducers, but with higher variability using a convex compared to a linear transducer.
Dynamic shear deformation in high purity Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P
2009-01-01
The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen ismore » highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.« less
NASA Astrophysics Data System (ADS)
Montesi, L.; Gueydan, F.
2016-12-01
Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.
NASA Astrophysics Data System (ADS)
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.
2016-04-01
In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.
Shear induced orientation of edible fat and chocolate crystals
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.
Factors affecting the pullout strength of cancellous bone screws.
Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D
1996-08-01
Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal threads in the porous material.
NASA Astrophysics Data System (ADS)
Ishida, Shunichi; Imai, Yohsuke; Ichikawa, Yuki; Nix, Stephanie; Matsunaga, Daiki; Omori, Toshihiro; Ishikawa, Takuji
2016-01-01
We developed a numerical model of the behavior of a red blood cell infected by Plasmodium falciparum malaria on a wall in shear flow. The fluid and solid mechanics of an infected red blood cell (Pf-IRBC) were coupled with the biochemical interaction of ligand-receptor bindings. We used the boundary element method for fluid mechanics, the finite element method for membrane mechanics, and the Monte Carlo method for ligand-receptor interactions. We simulated the behavior of a Pf-IRBC in shear flow, focusing on the effects of bond type. For slip bonds, the Pf-IRBC exhibited firm adhesion, tumbling motion, and tank-treading motion, depending on the applied shear rate. The behavior of catch bonds resembled that of slip bonds, except for a 'catch' state at high shear stress. When the reactive compliance decreased to a value in the order of ? nm, both the slip and catch bonds behaved like an ideal bond. Such bonds do not respond to the force applied to the bond, and the velocity is stabilized at a high shear rate. Finally, we compared the numerical results with previous experiments for A4- and ItG-infected cells. We found that the interaction between PfEMP1 and ICAM-1 could be a nearly ideal bond, with a dissociation rate ranging from ? to ?.
Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins.
Schwarz, G; Callewaert, G; Droogmans, G; Nilius, B
1992-01-01
1. Changes of the free cytosolic Ca2+ concentration induced by shear stress were measured in Fura-2 acetoxymethyl ester-loaded endothelial cells from human umbilical cord veins. 2. We were able to induce Ca2+ transients in almost every cell by blowing a stream of physiological solution onto a single endothelial cell thereby inducing shear stress between 0 and 50 dyn cm-2. The Ca2+ response could be graded by varying the shear stress, and reached a half-maximal value at a shear stress of 30 dyn cm-2. 3. The shear stress responses critically depended on the extracellular Ca2+ concentration and were absent in a Ca(2+)-free solution. Repetitive application of short pulses of shear stress induced cumulative effects because of the slow decay of the shear stress Ca2+ responses (time constants 82.3 +/- 17.8 s from twenty-five cells). Application of a depolarizing high potassium solution to reduce the driving force for Ca2+ entry decreased the Ca2+ transients in some of the cells. 4. Application of shear stress in the presence of other divalent cations, such as nickel, cobalt or barium, always produced substantial changes in the ratio of the 390/360 nm fluorescence signal, indicating influx of these cations and subsequent quenching of the Fura-2 fluorescence. 5. Shear stress responses in the presence of 10 mM Ca2+ were completely blocked by application of 1 mM La3+. 6. Incubation of the cells with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not alter the shear stress response, but completely blocked histamine-induced Ca2+ transients. 7. Small submaximal shear stress potentiated the Ca2+ transients induced by histamine. 8. We conclude that shear stress-dependent Ca2+ signals are induced by an influx of calcium that is not modulated via protein kinase C and not activated by membrane depolarization. The influx pathway is also permeable to divalent cations such as Ni2+, Co2+ and Ba2+, but is blocked by La3+. PMID:1338792
You, Jun; Chen, Juan; Xiang, Feixiang; Song, Yue; Khamis, Simai; Lu, Chengfa; Lv, Qing; Zhang, Yanrong; Xie, Mingxing
2018-04-01
This study aimed at evaluating the diagnostic performance of quantitative shear wave elastography (SWE) in differentiating metastatic cervical lymph nodes from benign nodes in patients with thyroid nodules. One hundred and forty-one cervical lymph nodes from 39 patients with thyroid nodules that were diagnosed as papillary thyroid cancer had been imaged with SWE. The shear elasticity modulus, which indicates the stiffness of the lymph nodes, was measured in terms of maximum shear elasticity modulus (maxSM), minimum shear elasticity modulus (minSM), mean shear elasticity modulus (meanSM), and standard deviation (SD) of the shear elasticity modulus. All the patients underwent thyroid surgery, 50 of the suspicious lymph nodes were resected, and 91 lymph nodes were followed up for 6 months. The maxSM value, minSM value, meanSM value, and SD value of the metastatic lymph nodes were significantly higher than those of the benign nodes. The area under the curve of the maxSM value, minSM value, meanSM value, and SD value were 0.918, 0.606, 0.865, and 0.915, respectively. SWE can differentiate metastasis from benign cervical lymph nodes in patients with thyroid nodules, and the maxSM, meanSM, and SD may be valuable quantitative indicators for characterizing cervical lymph nodes.
An observational analysis of a derecho in South China
NASA Astrophysics Data System (ADS)
Xia, Rudi; Wang, Donghai; Sun, Jianhua; Wang, Gaili; Xia, Guancong
2012-12-01
Derechos occur frequently in Europe and the United States, but reports of derechos in China are scarce. In this paper, radar, satellite, and surface observation data are used to analyze a derecho event in South China on 17 April 2011. A derecho-producing mesoscale convective system formed in an environment with medium convective available energy, strong vertical wind shear, and a dry layer in the middle troposphere, and progressed southward in tandem with a front and a surface wind convergence line. The windstorm can be divided into two stages according to differences in the characteristics of the radar echo and the causes of the gale. One stage was a supercell stage, in which the sinking rear inflow of a high-precipitation supercell with a bow-shaped radar echo induced a Fujita F0 class gale. The other stage was a non-supercell stage (the echo was sequentially kidney-shaped, foot-shaped, and an ordinary single cell), in which downbursts induced a gale in Fujita F1 class. This derecho event had many similarities with derechos observed in western countries. For example, the windstorm was perpendicular to the mean flow, the gale was located in the bulging portion of the bow echo, and the derecho moved southward along with the surface front. Some differences were observed as well. The synoptic-scale forcing was weak in the absence of an advancing high-amplitude midlevel trough and an accompanying strong surface cyclone; however, the vertical wind shear was very strong, a characteristic typical of derechos associated with strong synoptic-scale forcing. Extremely high values of convective available potential energy and downdraft convective available potential energy have previously been considered necessary to the formation of weak-forcing archetype and hybrid derechos; however, these values were much less than 2000 J during this derecho event.
Effect of Blood Shear Forces on Platelet Mediated Thrombosis Inside Arterial Stenosis.
NASA Astrophysics Data System (ADS)
Maalej, Nabil
Shear induced activation of platelets plays a major role in the onset of thrombosis in atherosclerotic arteries. Blood hemodynamics and its effect on platelet kinetics has been studied mainly in in vitro and in ex vivo experiments. We designed new in vivo methods to study blood hemodynamic effects on platelet kinetics in canine stenosed carotid arteries. A carotid artery-jugular vein anastomotic shunt was produced. Intimal damage and controlled variations in the degree of stenosis were produced on the artery. An inflatable cuff was placed around the jugular vein to control vascular resistance. An electromagnetic flowmeter was used to measure blood flow. Doppler ultrasound crystals were used to measure the velocity profiles inside and distal to the stenosis. Stenosis geometry was obtained using digital subtraction angiography and quantitative arteriography. Using these measurements we calculated the wall shear stress using the finite difference solution of the Navier-Stokes equations. To study platelet kinetics, autologous platelets were labeled with Indium Oxine and injected IV. A collimated Nal gamma counter was placed over the stenosis to detect radio-labeled platelet accumulation as platelet mediated thrombi formed in the stenosis. The radioactive count rate increased in an inverse parallel fashion to the decline in flow rate during thrombus formation. The platelet accumulation increased with the increase of percent stenosis and was maximal at the narrow portion of the stenosis. Acute thrombus formation leading to arterial occlusion was only observed for stenosis higher than 70 +/- 5%. Platelet accumulation rate was not significant until the pressure gradient across the stenosis exceeded 40 +/- 10 mmHg. Totally occlusive thrombus formation was only observed for shear stresses greater than a critical value of 100 +/- 10 Pa. Beyond this critical value acute platelet thrombus formation increased exponentially with shear. Increased shear stresses were found to overcome the antithrombotic effect of aspirin. Critical levels of shear might be produced clinically at sites of arterial lesions by a sudden change in blood hemodynamics or flow geometry. This may put a patient with arterial stenosis at greater risk of acute thrombus formation leading to stroke or myocardial infarction.
NASA Astrophysics Data System (ADS)
Chang, Li-Tung; Huang, Tsai-Jeon
Rubber tiles are commonly used in playgrounds as protective surfacing to reduce the incidence of head injuries in children caused by falling from equipment. This study developed a rubber tile model consisting of a surface layer of solid and a base layer of plate-cell and used it to investigate head injury protective performance. An explicit finite element method based on the experimental data was used to simulate head impact on the rubber tile. The peak acceleration and head injury criterion (HIC) were employed to assess the shock-absorbing capability of the tile. The results showed that compared to the peak acceleration, use of the HIC index provided a more conservative assessment of the shock absorption ability, and ultimately the protection against head injuries. This study supports the feasibility of using rubber tile with plate-cell construction to improve shock-absorbing capability. The plate-cell structure provided an excellent cushioning effect via a lower axial shear stiffness of the surface layer and lower transverse shearing stiffness of the core. The core's dimensions were an important parameter in determining the shearing stiffness. The analysis suggested that the cushioning effect would significantly reduce the peak force on the head from a fall and delay the occurrence of the peak value during impact, resulting in a marked reduction in the peak acceleration and HIC values of the head. Two plate-cell constructions with honeycomb and box-like cores were proposed and validated in this study. The better protective ability of the honeycomb core was attributed to its lower transverse shearing stiffness.
Snively, Eric; Fahlke, Julia M; Welsh, Robert C
2015-01-01
Bite marks suggest that the late Eocence archaeocete whale Basilosaurus isis (Birket Qarun Formation, Egypt) fed upon juveniles of the contemporary basilosaurid Dorudon atrox. Finite element analysis (FEA) of a nearly complete adult cranium of B. isis enables estimates of its bite force and tests the animal's capabilities for crushing bone. Two loadcases reflect different biting scenarios: 1) an intitial closing phase, with all adductors active and a full condylar reaction force; and 2) a shearing phase, with the posterior temporalis active and minimized condylar force. The latter is considered probable when the jaws were nearly closed because the preserved jaws do not articulate as the molariform teeth come into occulusion. Reaction forces with all muscles active indicate that B. isis maintained relatively greater bite force anteriorly than seen in large crocodilians, and exerted a maximum bite force of at least 16,400 N at its upper P3. Under the shearing scenario with minimized condylar forces, tooth reaction forces could exceed 20,000 N despite lower magnitudes of muscle force. These bite forces at the teeth are consistent with bone indentations on Dorudon crania, reatract-and-shear hypotheses of Basilosaurus bite function, and seizure of prey by anterior teeth as proposed for other archaeocetes. The whale's bite forces match those estimated for pliosaurus when skull lengths are equalized, suggesting similar tradeoffs of bite function and hydrodynamics. Reaction forces in B. isis were lower than maxima estimated for large crocodylians and carnivorous dinosaurs. However, comparison of force estimates from FEA and regression data indicate that B. isis exerted the largest bite forces yet estimated for any mammal, and greater force than expected from its skull width. Cephalic feeding biomechanics of Basilosaurus isis are thus consistent with habitual predation.
Kinetic Approaches to Shear-Driven Magnetic Reconnection for Multi-Scale Modeling of CME Initiation
NASA Astrophysics Data System (ADS)
Black, C.; Antiochos, S. K.; DeVore, C.; Germaschewski, K.; Karpen, J. T.
2013-12-01
In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance, consisting of an upward force due to the magnetic pressure of the sheared field balanced by a downward tension due to overlying un-sheared field, is widely believed to be disrupted by magnetic reconnection. Therefore, understanding initiation of solar explosive phenomena requires a true multi-scale model of reconnection onset driven by the buildup of magnetic shear. While the application of magnetic-field shear is a trivial matter in MHD simulations, it is a significant challenge in a PIC code. The driver must be implemented in a self-consistent manner and with boundary conditions that avoid the generation of waves that destroy the applied shear. In this work, we describe drivers for 2.5D, aperiodic, PIC systems and discuss the implementation of driver-consistent boundary conditions that allow a net electric current to flow through the walls. Preliminary tests of these boundaries with a MHD equilibrium are shown. This work was supported, in part, by the NASA Living With a Star TR&T Program.
A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation
Wilkinson, Darren J.; Jayathilake, Pahala Gedara; Rushton, Steve P.; Bridgens, Ben; Li, Bowen; Zuliani, Paolo
2018-01-01
We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress. PMID:29649240
Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces
Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L.; Israelachvili, Jacob N.
2015-01-01
The discovery and understanding of gecko ‘frictional-adhesion’ adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick–slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick–slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick–slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. PMID:25589569
Analysis of Transient Shear Wave in Lossy Media.
Parker, Kevin J; Ormachea, Juvenal; Will, Scott; Hah, Zaegyoo
2018-07-01
The propagation of shear waves from impulsive forces is an important topic in elastography. Observations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some underlying models of shear wave propagation. The models typically include specific choices of the spatial and temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheological model of the tissue's viscoelastic properties. Estimators of attenuation and shear wave speed are derived from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements of phase velocity. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Analysis of Stress in Steel and Concrete in Cfst Push-Out Test Samples
NASA Astrophysics Data System (ADS)
Grzeszykowski, Bartosz; Szadkowska, Magdalena; Szmigiera, Elżbieta
2017-09-01
The paper presents the analysis of stress in steel and concrete in CFST composite elements subjected to push-out tests. Two analytical models of stress distribution are presented. The bond at the interface between steel and concrete in the initial phase of the push-out test is provided by the adhesion. Until the force reach a certain value, the slip between both materials does not occur or it is negligibly small, what ensures full composite action of the specimen. In the first analytical model the full bond between both materials was assumed. This model allows to estimate value of the force for which the local loss of adhesion in given cross section begins. In the second model it was assumed that the bond stress distribution is constant along the shear transfer length of the specimen. Based on that the formulas for triangle distribution of stress in steel and concrete for the maximum push-out force were derived and compared with the experimental results. Both models can be used to better understand the mechanisms of interaction between steel and concrete in composite steel-concrete columns.
Correlation of compressive and shear stress with spalling of plasma-sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic. Previously announced in STAR as N83-27016
Kulas, Anthony S.; Hortobágyi, Tibor; DeVita, Paul
2010-01-01
Abstract Context: Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. Objective: To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing. Design: Crossover study. Setting: Controlled laboratory environment. Patients or Other Participants: Twenty-one participants (10 men: age = 20.3 ± 1.15 years, height = 1.82 ± 0.04 m, mass = 78.2 ± 7.3 kg; 11 women: age = 20.0 ± 1.10 years, height = 1.72 ± 0.06 m, mass = 62.3 ± 6.4 kg). Intervention(s): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor. Main Outcome Measure(s): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model. Results: We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F1,19 = 10.56, P = .004; average: F1,19 = 9.56, P = .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F1,19 = 5.52, P = .030) and average (8%; F1,19 = 8.83, P = .008) quadriceps forces increased and average (4%; F1,19 = 4.94, P = .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F1,19 = 5.16, P = .035) and average (F1,19 = 12.35, P = .002) hamstrings forces. When trunk load was added, average hamstrings forces decreased by 16% in the trunk-extensor group but increased by 13% in the trunk-flexor group. Conclusions: Added trunk loads increased knee anterior shear and knee muscle forces, depending on trunk adaptation strategy. The trunk-extensor adaptation to the load resulted in a quadriceps-dominant strategy that increased knee anterior shear forces. Trunk-flexor adaptations may serve as a protective strategy against the added load. These findings should be interpreted with caution, as only the face validity of the biomechanical model was assessed. PMID:20064042
DOT National Transportation Integrated Search
2015-09-01
Even though the behavior of concrete elements subjected to shear force has been : studied for many years, researchers do not have a full agreement on concrete : shear resistance. This is mainly because of the many different mechanisms : that affect t...
2017-01-01
Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
A free convection parameterization has been introduced into the Mars Planetary Boundary Layer Model (MPBL). Previously, the model would fail to generate turbulence under conditions of zero wind shear, even when statically unstable. This in turn resulted in erroneous results at the equator, for example, when the lack of Coriolis forcing allowed zero wind conditions. The underlying cause of these failures was the level 2 second-order turbulence closure scheme which derived diffusivities as algebraic functions of the Richardson number (the ratio of static stability to wind shear). In the previous formulation, the diffusivities were scaled by the wind shear--a convenient parameter since it is non-negative. This was the drawback that all diffusivities are zero under conditions of zero shear (viz., the free convection case). The new scheme tests for the condition of zero shear in conjunction with static instability and recalculates the diffusivities using a static stability scaling. The results for a simulation of the equatorial boundary layer at autumnal equinox are presented. (Note that after some wind shear is generated, the model reverts to the traditional diffusivity calculation.)
Effect of friction on shear jamming
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert
2014-11-01
Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.
Bounds on strain in large Tertiary shear zones of SE Asia from boudinage restoration
NASA Astrophysics Data System (ADS)
Lacassin, R.; Leloup, P. H.; Tapponnier, P.
1993-06-01
We have used surface-balanced restoration of stretched, boudinaged layers to estimate minimum amounts of finite strain in the mylonitic gneisses of the Oligo-Miocene Red River-Ailao Shan shear zone (Yunnan, China) and of the Wang Chao shear zone (Thailand). The layer-parallel extension values thus obtained range between 250 and 870%. We discuss how to use such extension values to place bounds on amounts of finite shear strain in these large crustal shear zones. Assuming simple shear, these values imply minimum total and late shear strains of, respectively, 33 ± 6 and 7 ± 3 at several sites along the Red River-Ailao Shan shear zone. For the Wang Chao shear zone a minimum shear strain of 7 ± 4 is deduced. Assuming homogeneous shear would imply that minimum strike-slip displacements along these two left-lateral shear zones, which have been interpreted to result from the India-Asia collision, have been of the order of 330 ± 60 km (Red River-Ailao Shan) and 35 ± 20 km (Wang Chao).
NASA Astrophysics Data System (ADS)
Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.
2017-10-01
Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.
Du, Xing; Qu, Fangshu; Liang, Heng; Li, Kai; Chang, Haiqing; Li, Guibai
2016-05-01
In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane.
Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone
NASA Astrophysics Data System (ADS)
Penney, Camilla; Tavakoli, Farokh; Saadat, Abdolreza; Nankali, Hamid Reza; Sedighi, Morteza; Khorrami, Fateme; Sobouti, Farhad; Rafi, Zahid; Copley, Alex; Jackson, James; Priestley, Keith
2017-06-01
We study the Makran subduction zone, along the southern coasts of Iran and Pakistan, to gain insights into the kinematics and dynamics of accretionary prism deformation. By combining techniques from seismology, geodesy and geomorphology, we are able to put constraints on the shape of the subduction interface and the style of strain across the prism. We also address the long-standing tectonic problem of how the right-lateral shear taken up by strike-slip faulting in the Sistan Suture Zone in eastern Iran is accommodated at the zone's southern end. We find that the subduction interface in the western Makran may be locked, accumulating elastic strain, and move in megathrust earthquakes. Such earthquakes, and associated tsunamis, present a significant hazard to populations around the Arabian Sea. The time-dependent strain within the accretionary prism, resulting from the megathrust earthquake cycle, may play an important role in the deformation of the Makran region. By considering the kinematics of the 2013 Balochistan and Minab earthquakes, we infer that the local gravitational and far-field compressive forces in the Makran accretionary prism are in balance. This force balance allows us to calculate the mean shear stress and effective coefficient of friction on the Makran megathrust, which we find to be 5-35 MPa and 0.01-0.03, respectively. These values are similar to those found in other subduction zones, showing that the abnormally high sediment thickness in the offshore Makran does not significantly reduce the shear stress on the megathrust.
Simulating Regoliths in a Microgravity Environment
NASA Astrophysics Data System (ADS)
Murdoch, N.; Rozitis, B.; Green, S. F.; Michel, P.; Losert, W.; de Lophem, T. L.
2011-10-01
The dynamics of granular materials are involved in the evolution of solid planets and small bodies in our Solar System, whose surfaces are generally covered with regolith. An understanding of granular dynamics appears also to be critical for the design and/or operations of landers, sampling devices and rovers to be included in space missions. The AstEx experiment uses a microgravity modified Taylor-Couette shear cell to investigate granular motion caused by shear and shear reversal forces under the microgravity conditions of parabolic flight. The results will lead to a greater understanding of the mechanical response of granular materials subject to external forces in varying gravitational environments.
Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials
2017-01-01
Injectable hydrogels have gained popularity as a vehicle for the delivery of cells, growth factors, and other molecules to localize and improve their retention at the injection site, as well as for the mechanical bulking of tissues. However, there are many factors, such as viscosity, storage and loss moduli, and injection force, to consider when evaluating hydrogels for such applications. There are now numerous tools that can be used to quantitatively assess these factors, including for shear-thinning hydrogels because their properties change under mechanical load. Here, we describe relevant rheological tests and ways to measure injection force using a force sensor or a mechanical testing machine toward the evaluation of injectable hydrogels. Injectable, shear-thinning hydrogels can be used in a variety of clinical applications, and as an example we focus on methods for injection into the heart, where an understanding of injection properties and mechanical forces is imperative for consistent hydrogel delivery and retention. We discuss methods for delivery of hydrogels to mouse, rat, and pig hearts in models of myocardial infarction, and compare methods of tissue postprocessing for hydrogel preservation. Our intent is that the methods described herein can be helpful in the design and assessment of shear-thinning hydrogels for widespread biomedical applications. PMID:29250593
The culmination of an inverse cascade: Mean flow and fluctuations
NASA Astrophysics Data System (ADS)
Frishman, Anna
2017-12-01
Two dimensional turbulence has a remarkable tendency to self-organize into large, coherent structures, forming a mean flow. The purpose of this paper is to elucidate how these structures are sustained and what determines them and the fluctuations around them. A recent theory for the mean flow will be reviewed. The theory assumes that turbulence is excited by a forcing supported on small scales and uses a linear shear model to relate the turbulent momentum flux to the mean shear rate. Extending the theory, it will be shown here that the relation between the momentum flux and mean shear is valid, and the momentum flux is non-zero, for both an isotropic forcing and an anisotropic forcing, independent of the dissipation mechanism at small scales. This conclusion requires taking into account that the linear shear model is an approximation to the real system. The proportionality between the momentum flux and the inverse of the shear can then be inferred most simply on dimensional grounds. Moreover, for a homogeneous pumping, the proportionality constant can be determined by symmetry considerations, recovering the result of the original theory. The regime of applicability of the theory, its compatibility with observations from simulations, a formula for the momentum flux for an inhomogeneous pumping, and results for the statistics of fluctuations will also be discussed.
Modeling mechanical properties of a shear thickening fluid damper based on phase transition theory
NASA Astrophysics Data System (ADS)
Wei, Minghai; Lin, Kun; Guo, Qian
2018-03-01
Shear thickening fluids (STFs) are highly concentrated colloidal suspensions consisting of monodisperse nano-particles suspended in a carrying fluid, and have the capacity to display both flowable and rigid behaviors, when subjected to sudden stimuli. In that process, the external energy that acts on an STF can be dissipated quickly. The aim of this study is to present a dynamic model of a damper filled with STF that can be directly used in control engineering fields. To this end, shear stress during phase transition of the STF material is chosen as an internal variable. A non-convex function with bifurcation behavior is used to describe the phase transitioning of STF by determining the relationship between the behavioral characteristics of the microscopic phase and macroscopic damping force. This model is able to predict force-velocity and force-displacement relationships as functions of the loading frequency. Efficacy of the model is demonstrated via comparison with experimental results from previous studies. In addition, the results confirm the hypothesis regarding the occurrence of STF phase transitioning when subject to shear stress.
NASA Astrophysics Data System (ADS)
Ward, Thomas
2017-11-01
The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.
Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F
2018-01-01
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.
Effects of shear stress on the microalgae Chaetoceros muelleri
van der Goot, Atze J.; Norsker, Niels-Henrik; Wijffels, René H.
2010-01-01
The effect of shear stress on the viability of Chaetoceros muelleri was studied using a combination of a rheometer and dedicated shearing devices. Different levels of shear stress were applied by varying the shear rates and the medium viscosities. It was possible to quantify the effect of shear stress over a wide range, whilst preserving laminar flow conditions through the use of a thickening agent. The threshold value at which the viability of algae was negatively influenced was between 1 and 1.3 Pa. Beyond the threshold value the viability decreased suddenly to values between 52 and 66%. The effect of shear stress was almost time independent compared to normal microalgae cultivation times. The main shear stress effect was obtained within 1 min, with a secondary effect of up to 8 min. PMID:20191365
Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force
2012-01-01
Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10) and 20 mm×20 mm×5 mm (20)) were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS) ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10) and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20) in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz) when displacements corresponding to four degrees of freedom (DOF) forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only). Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10). The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10) and 16.4% (20), respectively. The standard normal forces were approximately 1.5 (10) and 9.4 N (20) when pressure displacements were 3 (10) and 2 mm (20), respectively. The estimated normal forces were approximately 1.5 (10) and 8.6 N (10) in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had characteristics that enabled the correction by linear approximation for adjustment of gain and offset. In estimation of forces/torque, we considered accuracy to be within an acceptable range. PMID:23186069
Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L
2016-03-21
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Shear bond strength of one-step self-etch adhesives: pH influence
Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco
2015-01-01
Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459
Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone
NASA Astrophysics Data System (ADS)
Caulk, R.; Tomac, I.
2017-12-01
This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-01-01
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening. PMID:28561032
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-05-31
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.
Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface
NASA Astrophysics Data System (ADS)
Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan
2008-11-01
In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.
Couette shear of an ideal 2D photo-elastic granular system
NASA Astrophysics Data System (ADS)
Behringer, Robert; Zheng, Hu; Barés, Jonathan; Wang, Dong
2016-11-01
In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information at the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Couette shear of an ideal 2D photo-elastic granular system
NASA Astrophysics Data System (ADS)
Wang, Meimei; Zheng, Hu; BaréS, Jonathan; Wang, Dong; Behringe, Robert
In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information st the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Understanding Magnetic Reconnection: The Physical Mechanism Driving Space Weather
NASA Astrophysics Data System (ADS)
Black, Carrie; Antiochos, Spiro K.; Karpen, Judith T.; Germaschewski, Kai; Bessho, Naoki
2015-04-01
The explosive energy release in solar eruptive events is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by the downward tension of the overlying unsheared field. Magnetic reconnection disrupts this force balance. Therefore, to understand CME/flare initiation, it is critical to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is trivial. However, kinetic effects are important in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is nontrivial, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. In the work presented here, we show reconnection in an X-Point geometry due to a velocity shear driver perpendicular to the plane of reconnection.This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356 and NASA's Living With a Star Targeted Research and Technology program.
Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio
2014-01-01
Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept
NASA Astrophysics Data System (ADS)
Pakdeewanich, J.; Onjun, T.; Chatthong, B.
2017-09-01
This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.
Khoshkava, Vahid; Kamal, Musa R
2014-06-11
Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.
Shear viscosity for a heated granular binary mixture at low density.
Montanero, José María; Garzó, Vicente
2003-02-01
The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed. The mixture is heated by the action of an external driving force (Gaussian thermostat) that exactly compensates for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat, and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free cooling case [V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002)], practical evaluation requires a Sonine polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow, using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement between theory and simulation over a wide range of values of the restitution coefficients and the parameters of the mixture (masses, concentrations, and sizes).
Tribology of the lubricant quantized sliding state.
Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio
2009-11-07
In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.
Vasileiou, Alexandros A; Kontopoulou, Marianna; Gui, Hua; Docoslis, Aristides
2015-01-28
The objectives of this work are to quantify the degree of multiwalled carbon nanotube (MWCNT) length reduction upon melt compounding and to demonstrate unambiguously that the length reduction is mainly responsible for the increase in electrical percolation threshold of the resulting composites. Polyolefin matrices of varying viscosities and different functional groups are melt compounded with MWCNTs. A simple method is developed to solubilize the polymer matrix and isolate the MWCNTs, enabling detailed imaging analysis. In spite of the perceived strength of the MWCNTs, the results demonstrate that the shear forces developed during melt mixing are sufficient to cause significant nanotube breakage and length reduction. Breakage is promoted when higher MWCNT contents are used, due to increased probability of particle collisions. Furthermore, the higher shear forces transmitted to the nanotubes in the presence of higher matrix viscosities and functional groups that promote interfacial interactions, shift the nanotube distribution toward smaller sizes. The length reduction of the MWCNTs causes significant increases in the percolation threshold, due to the loss of interconnectivity, which results in fewer conductive pathways. These findings are validated by comparing the experimental percolation threshold values with those predicted by the improved interparticle distance theoretical model.
Musundire, M T; Halimani, T E; Chimonyo, M
2017-08-01
1. The effects of age and sex on body weight, carcass traits, physical and chemical properties of breast muscle from chickens and helmeted guinea fowls managed under village free-range conditions were assessed in random samples of 48 guinea fowls and 48 chickens obtained from local markets. 2. Guinea fowls had higher body weight, hot carcass weight, cold dressed weight and breast weight than chickens. 3. Guinea fowls had more dry matter, protein and less fat than chickens. Ash content did not differ between guinea fowls and chickens. Protein and fat increased, whereas dry matter and ash decreased with age (P < 0.05) 4. Chicken meat was lighter, less red and more yellow than guinea fowl meat. Cooking loss was higher in guinea fowls, male and grower birds than chickens, females and adult birds, respectively. Shear force was affected by age, as mature birds had a higher value than growers. 5. Guinea fowl carcasses contained more meat that was leaner, higher in protein and redder compared with chicken meat. As age increased the meat increased in protein and fat content and shear force, whereas colour became darker, redder and yellower.
A local model of warped magnetized accretion discs
NASA Astrophysics Data System (ADS)
Paris, J. B.; Ogilvie, G. I.
2018-06-01
We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.
Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins.
Kim, Yuan H Brad; Meyers, Brandon; Kim, Hyun-Wook; Liceaga, Andrea M; Lemenager, Ronald P
2017-01-01
The objective of this study was to evaluate the effects of stepwise dry/wet-aging and freezing method on quality attributes of beef loins. Paired loins (M. Longissimus lumborum) from eight carcasses were assigned to either stepwise dry/wet-aging (carcass dry-aging for 10days then further wet-aging for 7days in vacuum bags) or carcass dry-aging only for 17days. Then, each loin was divided into three sections for freezing (never-frozen, blast or cryogenic freezing). Stepwise dry/wet-aged loin had lower purge/drip loss and shear force than conventionally dry-aged loin (P<0.05), but similar color and sensory characteristics (P>0.05). The cryogenic freezing resulted in a significant decrease in shear force values and a significant improvement in water-holding capacity (WHC). These findings indicate that the stepwise dry/wet-aging coupled with cryogenic freezing could provide beneficial impacts to the local meat industry by providing equivalent quality attributes as conventional dry-aging and improving WHC of frozen/thawed meat, while reducing the time needed for dry-aging. Copyright © 2016 Elsevier Ltd. All rights reserved.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Surface Stresses and a Force Balance at a Contact Line.
Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V
2018-06-26
Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.
Flow-Mediated Endothelial Mechanotransduction
Davies, Peter F.
2011-01-01
Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed. PMID:7624393
Probing the Mechanical Properties of Plasma von Willebrand Factor Using Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Botello, Eric; Frey, Eric; Kiang, Ching-Hwa; Dong, Jing-Fei; Yeh, Hui-Chun
2010-03-01
Single-molecule manipulation allows us to study the real time kinetics of many complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be unraveled by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine the conformational states of VWF. We found the shear induced conformational, hence mechanical property changes can be detected by the change in unfolding forces. The relaxation rate of such effect is much longed than expected. This supports the model of lateral association VWF under shear stress. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.
NASA Astrophysics Data System (ADS)
Xie, Hongtao; Mead, James L.; Wang, Shiliang; Fatikow, Sergej; Huang, Han
2018-06-01
The adhesion and friction between two Al2O3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al2O3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.
The role of peel stresses in cyclic debonding
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1982-01-01
When an adhesively bonded joint is undergoing cyclic loading, one of the possible damage modes that occurs is called cyclic debonding - progressive separation of the adherends by failure of the adhesive bond under cyclic loading. In most practical structures, both peel and shear stresses exist in the adhesive bonding during cyclic loading. The results of an experimental and analytical study to determine the role of peel stresses on cyclic debonding in a mixed mode specimen are presented. Experimentally, this was done by controlling the forces that create the peel stresses by applying a clamping force to oppose the peel stresses. Cracked lap shear joints were chosen for this study. A finite element analysis was developed to assess the effect of the clamping force on the strain energy release rates due to shear and peel stresses. The results imply that the peel stress is the principal stress causing cyclic debonding.
Xie, Hongtao; Mead, James L; Wang, Shiliang; Fatikow, Sergej; Huang, Han
2018-06-01
The adhesion and friction between two Al 2 O 3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al 2 O 3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.
Gautieri, Alfonso; Pate, Monica I; Vesentini, Simone; Redaelli, Alberto; Buehler, Markus J
2012-08-09
In vertebrates, collagen tissues are the main component responsible for force transmission. In spite of the physiological importance of these phenomena, force transmission mechanisms are still not fully understood, especially at smaller scales, including in particular collagen molecules and fibrils. Here we investigate the mechanism of molecular sliding between collagen molecules within a fibril, by shearing a central molecule in a hexagonally packed bundle mimicking the collagen microfibril environment, using varied lateral distance between the molecules in both dry and solvated conditions. In vacuum, the central molecule slides under a stick-slip mechanism that is due to the characteristic surface profile of collagen molecules, enhanced by the breaking and reformation of H-bonds between neighboring collagen molecules. This mechanism is consistently observed for varied lateral separations between molecules. The high shearing force (>7 nN) found for the experimentally observed intermolecular distance (≈1.1 nm) suggests that in dry samples the fibril elongation mechanism relies almost exclusively on molecular stretching, which may explain the higher stiffnesses found in dry fibrils. When hydrated, the slip-stick behavior is observed only below 1.3 nm of lateral distance, whereas above 1.3 nm the molecule shears smoothly, showing that the water layer has a strong lubricating effect. Moreover, the average force required to shear is approximately the same in solvated as in dry conditions (≈2.5 nN), which suggests that the role of water at the intermolecular level includes the transfer of load between molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
1999-06-01
The objectives of this study were to evaluate the efficacy of a system for classifying beef for tenderness based on a rapid, simple method of measuring cooked longissimus shear force. Longissimus steaks (2.54 cm thick) were trimmed free of s.c. fat and bone and rapidly cooked using a belt grill. A 1-cm-thick, 5-cm-long slice was removed from the cooked longissimus parallel with the muscle fibers for measurement of shear force. Slices were sheared with a flat, blunt-end blade using an electronic testing machine. The entire process was completed in less than 10 min. Therefore, in commercial application, this process could be completed during the 10- to 15-min period that carcasses are normally held to allow the ribeye to bloom for quality grading. In Exp. 1, the repeatability of slice shear force (SSF), as determined by evaluation of duplicate samples from 204 A-maturity carcasses, was .89. In Exp. 2, A-maturity carcasses (n = 483) were classified into three groups based on SSF (< 23, 23 to 40, and > 40 kg) at 3 d postmortem that differed (P < .001) in mean trained sensory panel tenderness ratings (7.3 +/- .04, 6.4 +/- .06, and 4.4 +/- .20) and the percentages (100, 91, and 28%) of samples rated "Slightly Tender" or higher at 14 d postmortem. Therefore, this tenderness classification system could be used to accurately segregate beef carcasses into expected tenderness groups. Further research is needed to test the feasibility and accuracy of this system under a variety of commercial processing conditions.
MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.
Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes inmore » EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.« less
Shear-induced partial translational ordering of a colloidal solid
NASA Astrophysics Data System (ADS)
Ackerson, B. J.; Clark, N. A.
1984-08-01
Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.
The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.
West, T; Ng, L; Campbell, A
2014-12-01
The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shear wave elasticity imaging based on acoustic radiation force and optical detection.
Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing
2012-09-01
Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Molla, Shahnawaz; Bhattacharjee, Subir
2007-10-09
The ability of dielectrophoretic (DEP) forces created using a microelectrode array to levitate particles in a colloidal suspension is studied experimentally and theoretically. The experimental system employs microfabricated electrode arrays on a glass substrate to apply repulsive DEP forces on polystyrene latex particles suspended in an aqueous medium. A numerical model based on the convection-diffusion-migration equation is presented to calculate the concentration distribution of colloidal particles in shear flow under the influence of a repulsive DEP force field. The results obtained from the numerical simulations are compared against trajectory analysis results and experimental data. The results indicate that by incorporating ac electric field-induced DEP forces in a shear flow, particle accumulation and deposition on the flow channel surfaces can be significantly reduced or even completely averted. The mathematical model is then used to indicate how the deposition behavior is modified in the presence of a permeable substrate, representative of tangential flow membrane filtration operations. The results indicate that the repulsive dielectrophoretic (DEP) forces imparted to the particles suspended in the feed can be employed to mitigate membrane fouling in a cross-flow filtration process.
Friction on a granular-continuum interface: Effects of granular media
NASA Astrophysics Data System (ADS)
Ecke, Robert; Geller, Drew
We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.
Molecular-scale shear response of the organic semiconductor β -DBDCS (100) surface
NASA Astrophysics Data System (ADS)
Álvarez-Asencio, Rubén; Moreno-Ramírez, Jorge S.; Pimentel, Carlos; Casado, Santiago; Matta, Micaela; Gierschner, Johannes; Muccioli, Luca; Yoon, Seong-Jun; Varghese, Shinto; Park, Soo Young; Gnecco, Enrico; Pina, Carlos M.
2017-09-01
In this work we present friction-force microscopy (FFM) lattice-resolved images acquired on the (100) facet of the semiconductor organic oligomer (2 Z ,2'Z )-3 , 3' -(1,4-phenylene)bis(2-(4-butoxyphenyl)acrylonitrile) (β -DBDCS) crystal in water at room temperature. Stick-slip contrast, lateral contact stiffness, and friction forces are found to depend strongly on the sliding direction due to the anisotropic packing of the molecular chains forming the crystal surface along the [010] and [001] directions. The anisotropy also causes the maximum value of the normal force applicable before wearing to increase by a factor of 3 when the scan is performed along the [001] direction on the (100) face. Altogether, our results contribute to achieving a better understanding of the molecular origin of friction anisotropy on soft crystalline surfaces, which has been often hypothesized but rarely investigated in the literature.
Effects of rear cavities on the wake behind an accelerating D-shaped bluff body
NASA Astrophysics Data System (ADS)
Lorite-Díez, M.; Jiménez-González, J. I.; Gutiérrez-Montes, C.; Martínez-Bazán, C.
2018-04-01
We investigate experimentally and numerically the transient development of the wake induced by a constant acceleration of a D-shaped bluff body, starting from rest and reaching a permanent regime of Reynolds number Re = 2000, under different values of acceleration and implementing three distinct rear geometrical configurations. Thus, alongside the classical blunt base, two control passive devices, namely, a straight cavity and an optimized, curved cavity, recently designed using adjoint optimization techniques, have also been used to assess their performance in transient flow conditions. Particle image velocimetry measurements were performed in a towing tank to characterize the near wake development in the early transient stages. It has been observed that the flow first develops symmetric shear layers with primary eddies attracted toward the base of the body due to the flow suction generated by the accelerated motion. Eventually, the interaction between the upper and lower shear layers provokes the destabilization of the flow and the symmetry breaking of the wake, finally giving rise to an alternate transitional vortex shedding regime. The transition between these phases is sped-up when the optimized cavity is used, reaching earlier the permanent flow conditions. In particular, the use of the optimized geometry has been shown to limit the growth of the primary eddies, decreasing both the recirculation and vortex formation length and providing with a more regularized, more organized vortex shedding. In addition, numerical simulations have been performed to evaluate the distribution of forces induced by the addition of rear cavities. In general, the aforementioned smoother and faster transition related to the use of optimized cavity translates into a lower averaged value of the drag coefficient, together with less energetic force fluctuations, regardless of the acceleration value.
Colors Of Liquid Crystals Used To Measure Surface Shear Stresses
NASA Technical Reports Server (NTRS)
Reda, D. C.; Muratore, J. J., Jr.
1996-01-01
Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.
Chan, Roger W; Rodriguez, Maritza L
2008-08-01
Previous studies reporting the linear viscoelastic shear properties of the human vocal fold cover or mucosa have been based on torsional rheometry, with measurements limited to low audio frequencies, up to around 80 Hz. This paper describes the design and validation of a custom-built, controlled-strain, linear, simple-shear rheometer system capable of direct empirical measurements of viscoelastic shear properties at phonatory frequencies. A tissue specimen was subjected to simple shear between two parallel, rigid acrylic plates, with a linear motor creating a translational sinusoidal displacement of the specimen via the upper plate, and the lower plate transmitting the harmonic shear force resulting from the viscoelastic response of the specimen. The displacement of the specimen was measured by a linear variable differential transformer whereas the shear force was detected by a piezoelectric transducer. The frequency response characteristics of these system components were assessed by vibration experiments with accelerometers. Measurements of the viscoelastic shear moduli (G' and G") of a standard ANSI S2.21 polyurethane material and those of human vocal fold cover specimens were made, along with estimation of the system signal and noise levels. Preliminary results showed that the rheometer can provide valid and reliable rheometric data of vocal fold lamina propria specimens at frequencies of up to around 250 Hz, well into the phonatory range.
Goldsmith, H L; McIntosh, F A; Shahin, J; Frojmovic, M M
2000-01-01
We studied the shear-induced breakup of doublets of aldehyde/sulfate (A/S) latex spheres covalently linked with purified platelet GPIIb-IIIa receptor, and cross-linked by fibrinogen. Flow cytometry with fluorescein isothiocyanate-fibrinogen showed than an average of 22,500 molecules of active GPIIb-IIIa were captured per sphere, with a mean K(d) = 56 nM for fibrinogen binding. The spheres, suspended in buffered 19% Ficoll 400 containing 120 or 240 pM fibrinogen, were subjected to Couette flow in a counter-rotating cone-plate rheoscope. Doublets, formed by two-body collisions at low shear rate (G = 8 s(-1)) for < or =15 min, were subjected to shear stress from 0.6 to 2.9 Nm(-2), their rotations recorded until they broke up or were lost to view. Although breakup was time dependent, occurring mostly in the first 2 rotations after the onset of shear, the percentage of doublets broken up after 10 rotations were almost independent of normal hydrodynamic force, F(n): at 240 pN, 15.6, 16.0, and 17.0% broke up in the force range 70-150 pN, 150-230 pN, and 230-310 pN. Unexpectedly, at both [fibrinogen], the initial rate of breakup was highest in the lowest force range, and computer simulation using a stochastic model of breakup was unable to simulate the time course of breakup. When pre-sheared at low G for >15 min, no doublets broke up within 10 rotations at 70 < F(n) < 310 pN; it required >3 min shear (>1110 rotations) at F(n) = 210 pN for significant breakup to occur. Other published work has shown that binding of fibrinogen to GPIIb-IIIa immobilized on plane surfaces exhibits an initial fast reversible process with relative low affinity succeeded by transformation of GPIIb-IIIa to a stable high-affinity complex. We postulate that most doublet breakups observed within 10 rotations were from a population of young doublets having low numbers of bonds, by dissociation of the initial receptor complex relatively unresponsive to force. The remaining, older doublets with GPIIb-IIIa in the high-affinity complex were not broken up in the time or range of forces studied. PMID:10692309
Shackelford, S D; Wheeler, T L; Koohmaraie, M
2004-03-01
Experiments were conducted to compare the effects of two cookery methods, two shear force procedures, and sampling location within non-callipyge and callipyge lamb LM on the magnitude, variance, and repeatability of LM shear force data. In Exp. 1, 15 non-callipyge and 15 callipyge carcasses were sampled, and Warner-Bratzler shear force (WBSF) was determined for both sides of each carcass at three locations along the length (anterior to posterior) of the LM, whereas slice shear force (SSF) was determined for both sides of each carcass at only one location. For approximately half the carcasses within each genotype, LM chops were cooked for a constant amount of time using a belt grill, and chops of the remaining carcasses were cooked to a constant endpoint temperature using open-hearth electric broilers. Regardless of cooking method and sampling location, repeatability estimates were at least 0.8 for LM WBSF and SSF. For WBSF, repeatability estimates were slightly higher at the anterior location (0.93 to 0.98) than the posterior location (0.88 to 0.90). The difference in repeatability between locations was probably a function of a greater level of variation in shear force at the anterior location. For callipyge LM, WBSF was higher (P < 0.001) at the anterior location than at the middle or posterior locations. For non-callipyge LM, WBSF was lower (P < 0.001) at the anterior location than at the middle or posterior locations. Consequently, the difference in WBSF between callipyge and non-callipyge LM was largest at the anterior location. Experiment 2 was conducted to obtain an estimate of the repeatability of SSF for lamb LM chops cooked with the belt grill using a larger number of animals (n = 87). In Exp. 2, LM chops were obtained from matching locations of both sides of 44 non-callipyge and 43 callipyge carcasses. Chops were cooked with a belt grill and SSF was measured, and repeatability was estimated to be 0.95. Repeatable estimates of lamb LM tenderness can be achieved either by cooking to a constant endpoint temperature with electric broilers or cooking for a constant amount of time with a belt grill. Likewise, repeatable estimates of lamb LM tenderness can be achieved with WBSF or SSF. However, use of belt grill cookery and the SSF technique could decrease time requirements which would decrease research costs.
Post retention and post/core shear bond strength of four post systems.
Stockton, L W; Williams, P T; Clarke, C T
2000-01-01
As clinicians we continue to search for a post system which will give us maximum retention while maximizing resistance to root fracture. The introduction of several new post systems, with claims of high retentive and resistance to root fracture values, require that independent studies be performed to evaluate these claims. This study tested the tensile and shear dislodgment forces of four post designs that were luted into roots 10 mm apical of the CEJ. The Para Post Plus (P1) is a parallel-sided, passive design; the Para Post XT (P2) is a combination active/passive design; the Flexi-Post (F1) and the Flexi-Flange (F2) are active post designs. All systems tested were stainless steel. This study compared the test results of the four post designs for tensile and shear dislodgment. All mounted samples were loaded in tension until failure occurred. The tensile load was applied parallel to the long axis of the root, while the shear load was applied at 450 to the long axis of the root. The Flexi-Post (F1) was significantly different from the other three in the tensile test, however, the Para Post XT (P2) was significantly different to the other three in the shear test and had a better probability for survival in the Kaplan-Meier survival function test. Based on the results of this study, our recommendation is for the Para Post XT (P2).
Mitigating shear lag in tall buildings
NASA Astrophysics Data System (ADS)
Gaur, Himanshu; Goliya, Ravindra K.
2015-09-01
As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.
Resistance to Fluid Shear Stress Is a Conserved Biophysical Property of Malignant Cells
Henry, Michael D.
2012-01-01
During metastasis, cancer cells enter the circulation in order to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. A longstanding view is that circulating cancer cells derived from solid tissues may be susceptible to damage from hemodynamic shear forces, contributing to metastatic inefficiency. Here we report that compared to non-transformed epithelial cells, transformed cells are remarkably resistant to fluid shear stress (FSS) in a microfluidic protocol, exhibiting a biphasic decrease in viability when subjected to a series of millisecond pulses of high FSS. We show that magnitude of FSS resistance is influenced by several oncogenes, is an adaptive and transient response triggered by plasma membrane damage and requires extracellular calcium and actin cytoskeletal dynamics. This novel property of malignant cancer cells may facilitate hematogenous metastasis and indicates, contrary to expectations, that cancer cells are quite resistant to destruction by hemodynamic shear forces. PMID:23226552
NASA Astrophysics Data System (ADS)
Luo, Yong; Zhou, Dong Hua; Duan, Bin
2018-05-01
In practice, in the steel-concrete composite continuous beam, the shear stud connectors with step changed spacing are often used: How are the slip, deflection and the shear stud connector forces influenced by the step changed spacing of studs connectors? For this question, it will be discussed in the text.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2015-01-01
Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew
2015-01-01
Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
Biomechanical forces promote embryonic haematopoiesis
Adamo, Luigi; Naveiras, Olaia; Wenzel, Pamela L.; McKinney-Freeman, Shannon; Mack, Peter J.; Gracia-Sancho, Jorge; Suchy-Dicey, Astrid; Yoshimoto, Momoko; Lensch, M. William; Yoder, Mervin C.; García-Cardeña, Guillermo; Daley, George Q.
2009-01-01
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system1,2. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3–5), a master regulator of haematopoiesis, and give rise to haematopoietic cells4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7,concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the paraaortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development. PMID:19440194
Discerning the role of mechanosensors in regulating proximal tubule function
Weisz, Ora A.
2015-01-01
All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study. PMID:26662200
NASA Astrophysics Data System (ADS)
Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor
2017-03-01
In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.
NASA Astrophysics Data System (ADS)
Lin, Kevin K.; Young, Lai-Sang
2008-05-01
Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.
On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells
NASA Astrophysics Data System (ADS)
Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.
Meniscal shear stress for punching.
Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek
2009-01-01
Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.
Aeolian Erosion on Mars - a New Threshold for Saltation
NASA Astrophysics Data System (ADS)
Teiser, J.; Musiolik, G.; Kruss, M.; Demirci, T.; Schrinski, B.; Daerden, F.; Smith, M. D.; Neary, L.; Wurm, G.
2017-12-01
The Martian atmosphere shows a large variety of dust activity, ranging from local dust devils to global dust storms. Also, sand motion has been observed in form of moving dunes. The dust entrainment into the Martian atmosphere is not well understood due to the small atmospheric pressure of only a few mbar. Laboratory experiments on Earth and numerical models were developed to understand these processes leading to dust lifting and saltation. Experiments so far suggested that large wind velocities are needed to reach the threshold shear velocity and to entrain dust into the atmosphere. In global circulation models this threshold shear velocity is typically reduced artificially to reproduce the observed dust activity. Although preceding experiments were designed to simulate Martian conditions, no experiment so far could scale all parameters to Martian conditions, as either the atmospheric or the gravitational conditions were not scaled. In this work, a first experimental study of saltation under Martian conditions is presented. Martian gravity is reached by a centrifuge on a parabolic flight, while pressure (6 mbar) and atmospheric composition (95% CO2, 5% air) are adjusted to Martian levels. A sample of JSC 1A (grain sizes from 10 - 100 µm) was used to simulate Martian regolith. The experiments showed that the reduced gravity (0.38 g) not only affects the weight of the dust particles, but also influences the packing density within the soil and therefore also the cohesive forces. The measured threshold shear velocity of 0.82 m/s is significantly lower than the measured value for 1 g in ground experiments (1.01 m/s). Feeding the measured value into a Global Circulation Model showed that no artificial reduction of the threshold shear velocity might be needed to reproduce the global dust distribution in the Martian atmosphere.
Richards, Jeffrey J; Gagnon, Cedric V L; Krzywon, Jeffery R; Wagner, Norman J; Butler, Paul D
2017-04-10
A procedure for the operation of a new dielectric RheoSANS instrument capable of simultaneous interrogation of the electrical, mechanical and microstructural properties of complex fluids is presented. The instrument consists of a Couette geometry contained within a modified forced convection oven mounted on a commercial rheometer. This instrument is available for use on the small angle neutron scattering (SANS) beamlines at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). The Couette geometry is machined to be transparent to neutrons and provides for measurement of the electrical properties and microstructural properties of a sample confined between titanium cylinders while the sample undergoes arbitrary deformation. Synchronization of these measurements is enabled through the use of a customizable program that monitors and controls the execution of predetermined experimental protocols. Described here is a protocol to perform a flow sweep experiment where the shear rate is logarithmically stepped from a maximum value to a minimum value holding at each step for a specified period of time while frequency dependent dielectric measurements are made. Representative results are shown from a sample consisting of a gel composed of carbon black aggregates dispersed in propylene carbonate. As the gel undergoes steady shear, the carbon black network is mechanically deformed, which causes an initial decrease in conductivity associated with the breaking of bonds comprising the carbon black network. However, at higher shear rates, the conductivity recovers associated with the onset of shear thickening. Overall, these results demonstrate the utility of the simultaneous measurement of the rheo-electro-microstructural properties of these suspensions using the dielectric RheoSANS geometry.
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Oceanic response to buoyancy, wind and tidal forcing in a Greenlandic glacial fjord
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.
2013-12-01
The Greenland Ice Sheet is losing mass at an accelerating rate. This acceleration may in part be due to changes in oceanic heat transport to marine-terminating outlet glaciers. Ocean heat transport to glaciers depends upon fjord dynamics, which include buoyancy-driven estuarine exchange flow, tides, internal waves, turbulent mixing, and connections to the continental shelf. A 3D model of Rink Isbrae fjord in West Greenland is used to investigate the role of ocean forcing on heat transport to the glacier face. Initial conditions are prescribed from oceanographic field data collected in Summer 2013; wind and tidal forcing, along with meltwater flux, are varied in individual model runs. Subglacial meltwater flux values range from 25-500 m3 s-1. For low discharge values, a subsurface plume drives circulation in the fjord. Our simulations indicate that offshore wind forcing is the dominant mechanism for exchange flow between the fjord and the continental shelf. These results show that glacial fjord circulation is a complex, 3D process with multi-cell estuarine circulation and large velocity shears due to coastal winds. Our results are a first step towards a realistic 3D representation of a high-latitude glacial fjord in a numerical model, and will provide insight to future observational studies.
Force Density Function Relationships in 2-D Granular Media
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.
2004-01-01
An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms
Single-Molecule Manipulation Studies of a Mechanically Activated Protein
NASA Astrophysics Data System (ADS)
Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa
2009-10-01
Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.
Flexure and the role of inplane force around coronae on Venus
NASA Technical Reports Server (NTRS)
Brown, C. David; Grimm, Robert E.
1993-01-01
Large coronae on Venus, such as Artemis and Latona, are rimmed by conspicuous trenches and associated outer rises. Sandwell and Schubert have observed that these systems resemble terrestrial subduction zones in planform and have succeeded in fitting an elastic plate bending equation to the inferred flexural topography. However, the first zero crossing bending moments required are -2.5 x 10(exp 17) N for Artemis and -5.0 x 10(exp 16) N for Latona. Since these moments are similar in magnitude to those of subducting slabs on Earth, a rollback subduction mechanism was proposed to explain the flexure around the largest coronae, although a differential thermal subsidence model is sufficient to account for the topography around some coronae. The purpose is to investigate the effect of inplane force as a possible alternative to large applied moments in producing flexure at Artemis and Latona. The close correlation of gravity to topography on Venus implies the absence of a low viscosity zone and the strong coupling of the lithosphere to mantle convection. If coronae are the surface manifestations of mantle plumes, they may be the sites of active convective stress coupling. As the upwelling reaches the lithosphere, it spreads radially outward, inducing shear tractions on the base of the plate. In addition, the hot, expanding corona may load the surrounding plate horizonally. Both the basal shear stresses and radial loading can be treated as an equivalent compressive inplane force in the mechanical lithosphere, which contributes to the bending of the outlying plate. Using a model that relates inplane force to the measured gravity anomalies, a rough value of the inplane force at Artemis was calculated. Recent Pioneer Venus spherical harmonic gravity models indicate a geoid anomaly of about 75 m over Artemis, which corresponds to an estimated inplane force on the order of -1x10(exp 13) N/m. The gravity model is unable to resolve Latona, but an inplane force of similar dimensions is assumed. The maximum possible inplane force based on the expected rheology can be constrained by using the approximate 5 K/km thermal gradient inferred from the best fit 30 km elastic plate at Artemis and Latona. For a dry olivine flow law in the upper mantle, the compressional load limit of the 60 km thick mechanical lithosphere is -4 x 10(exp 13) N/m. This value is equivalent to a load of -8 x 10(exp 13) N/m on a 30 km thick elastic plate.
Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.
Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing
2012-06-01
The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface with powder coating could significantly increase the shear bond strength of zirconia to veneering porcelain. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Snively, Eric; Fahlke, Julia M.; Welsh, Robert C.
2015-01-01
Bite marks suggest that the late Eocence archaeocete whale Basilosaurus isis (Birket Qarun Formation, Egypt) fed upon juveniles of the contemporary basilosaurid Dorudon atrox. Finite element analysis (FEA) of a nearly complete adult cranium of B. isis enables estimates of its bite force and tests the animal’s capabilities for crushing bone. Two loadcases reflect different biting scenarios: 1) an intitial closing phase, with all adductors active and a full condylar reaction force; and 2) a shearing phase, with the posterior temporalis active and minimized condylar force. The latter is considered probable when the jaws were nearly closed because the preserved jaws do not articulate as the molariform teeth come into occulusion. Reaction forces with all muscles active indicate that B. isis maintained relatively greater bite force anteriorly than seen in large crocodilians, and exerted a maximum bite force of at least 16,400 N at its upper P3. Under the shearing scenario with minimized condylar forces, tooth reaction forces could exceed 20,000 N despite lower magnitudes of muscle force. These bite forces at the teeth are consistent with bone indentations on Dorudon crania, reatract-and-shear hypotheses of Basilosaurus bite function, and seizure of prey by anterior teeth as proposed for other archaeocetes. The whale’s bite forces match those estimated for pliosaurus when skull lengths are equalized, suggesting similar tradeoffs of bite function and hydrodynamics. Reaction forces in B. isis were lower than maxima estimated for large crocodylians and carnivorous dinosaurs. However, comparison of force estimates from FEA and regression data indicate that B. isis exerted the largest bite forces yet estimated for any mammal, and greater force than expected from its skull width. Cephalic feeding biomechanics of Basilosaurus isis are thus consistent with habitual predation. PMID:25714832
The mean and turbulent flow structure of a weak hydraulic jump
NASA Astrophysics Data System (ADS)
Misra, S. K.; Kirby, J. T.; Brocchini, M.; Veron, F.; Thomas, M.; Kambhamettu, C.
2008-03-01
The turbulent air-water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air-water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.
Costantini, Oren; Choi, Daniel S; Kontaxis, Andreas; Gulotta, Lawrence V
2015-07-01
There has been a renewed interest in lateralizing the center of rotation (CoR) in implants used in reverse shoulder arthroplasty. The aim of this study was to determine the sensitivity of lateralization of the CoR on the glenohumeral joint contact forces, muscle moment arms, torque across the bone-implant interface, and the stability of the implant. A 3-dimensional virtual model was used to investigate how lateralization affects deltoid muscle moment arm and glenohumeral joint contact forces. This model was virtually implanted with 5 progressively lateralized reverse shoulder prostheses. The joint contact loads and deltoid moment arms were calculated for each lateralization over the course of 3 simulated standard humerothoracic motions. Lateralization of the CoR leads to an increase in the overall joint contact forces across the glenosphere. Most of this increased loading occurred through compression, although increases in anterior/posterior and superior/inferior shear were also observed. Moment arms of the deltoid consistently decreased with lateralization. Bending moments at the implant interface increased with lateralization. Progressive lateralization resulted in improved stability ratios. Lateralization results in increased joint loading. Most of that loading occurs through compression, although there were also increases in shear forces. Anterior/posterior shear is currently not accounted for in implant fixation studies, leaving its effect on implant fixation unknown. Future studies should incorporate shear forces into their models to more accurately assess fixation methods. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Stress-strain state of reinforced bimodulus beam on an elastic foundation
NASA Astrophysics Data System (ADS)
Beskopylny, A. N.; Kadomtseva, E. E.; Strelnikov, G. P.; Berdnik, Y. A.
2017-10-01
The paper provides the calculation theory of an arbitrary supported and arbitrary loaded reinforced beam filled with bimodulus material. The formulas determining normal stresses, bending moments, shear forces, rotation angles and a deflection of a rectangular crosssection beam reinforced with any number of bars aligned parallel to the beam axis have been obtained. The numerical study has been carried out to investigate an influence of a modulus of subgrade reaction on values of maximum normal stresses, maximum bending moments and a maximum deflection of a hinged supported beam loaded with a point force or uniform distributed load. The estimation is based on the method of initial parameters for a beam on elastic foundation and the Bubnov-Galerkin method. Values of maximum deflections, maximum bending moments and maximum stresses obtained by these methods coincide. The numerical studies show that taking into consideration the bimodulus of material leads to the necessity to calculate the strength analysis of both tensile stresses and compressive stresses.
Rheological and Tribological Properties of Complex Biopolymer Solutions
NASA Astrophysics Data System (ADS)
Klossner, Rebecca Reese
2011-12-01
The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have little impact on the actual aggregation process. Additionally, the relationship between the rheology and tribology of the SFM was studied through a series of nanoscratch tests using a Hysitron nanoindenter. The nanoindenter has the ability to measure both normal and lateral forces simultaneously, which gives an indication of the lubricity of the solution. The coefficient of friction values for solutions of varying protein concentrations were determined by dividing the lateral force by the normal force. Tribological testing of the synovial fluid model and modified solutions were carried out on spin-cast polyethylene and ultra high molecular weight polyethylene sheets. At lower molecular weight substrates, the film thickness limited the validity of the generated data, and with higher molecular weight surfaces, surface roughness effects were found to dominate the tribological response. Finally, the addition of HCQ does not have a large impact on the tribological data, indicating that the anti-inflammatory drug does not significantly impact the lubrication properties within the synovial fluid model. Finally, additional rheological studies of biopolymer solutions were conducted in which solutions containing chitosan, a natural, bioactive polymer, were characterized to determine their fitness for the electropsinning process. Chitosan fibers are difficult to electrospin, and through these studies, the entanglement concentration, a critical parameter for electrospinning, was determined. The generated rheological data provided a means to predict the morphology of the resulting nanofibers, and aspects of the difficulty in electrospinning chitosan were revealed.
Xu Zhou, Ke; Li, Nan; Christie, Graham
2017-01-01
Abstract The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food‐borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning‐in‐place procedures. Practical Application Spore‐forming bacteria are a concern to the food industry because they have the potential to cause food‐borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning‐in‐place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. PMID:29125641
High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System
Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C. T.; Shui, Lingling
2017-01-01
DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1–10 Kbp fragment lengths with a yield of 75.30–91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future. PMID:28098208
High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.
Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling
2017-01-18
DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-01-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437
A Langevin dynamics simulation study of the tribology of polymer loop brushes.
Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael
2007-08-28
The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
NASA Astrophysics Data System (ADS)
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-04-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.
Shear Stress in Magnetorheological FInishing for Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2009-04-28
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by themore » hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.« less
Shear stress in magnetorheological finishing for glasses.
Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D
2009-05-01
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.
Shear stress cleaning for surface departiculation
NASA Technical Reports Server (NTRS)
Musselman, R. P.; Yarbrough, T. W.
1986-01-01
A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.
Centrifugal Size-Separation Sieve for Granular Materials
NASA Technical Reports Server (NTRS)
Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)
2015-01-01
A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.
Szulcek, Robert; van Bezu, Jan; Boonstra, Johannes; van Loon, Jack J. W. A.; van Nieuw Amerongen, Geerten P.
2015-01-01
Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion. PMID:26637177
Study on shear properties of coral sand under cyclic simple shear condition
NASA Astrophysics Data System (ADS)
Ji, Wendong; Zhang, Yuting; Jin, Yafei
2018-05-01
In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.
A novel method of testing the shear strength of thick honeycomb composites
NASA Technical Reports Server (NTRS)
Hodge, A. J.; Nettles, A. T.
1991-01-01
Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.
Thermomechanical conditions and stresses on the friction stir welding tool
NASA Astrophysics Data System (ADS)
Atthipalli, Gowtam
Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.
Shear-induced aggregation dynamics in a polymer microrod suspension
NASA Astrophysics Data System (ADS)
Kumar, Pramukta S.
A non-Brownian suspension of micron scale rods is found to exhibit reversible shear-driven formation of disordered aggregates resulting in dramatic viscosity enhancement at low shear rates. Aggregate formation is imaged at low magnification using a combined rheometer and fluorescence microscope system. The size and structure of these aggregates are found to depend on shear rate and concentration, with larger aggregates present at lower shear rates and higher concentrations. Quantitative measurements of the early-stage aggregation process are modeled by a collision driven growth of porous structures which show that the aggregate density increases with a shear rate. A Krieger-Dougherty type constitutive relation and steady-state viscosity measurements are used to estimate the intrinsic viscosity of complex structures developed under shear. Higher magnification images are collected and used to validate the aggregate size versus density relationship, as well as to obtain particle flow fields via PIV. The flow fields provide a tantalizing view of fluctuations involved in the aggregation process. Interaction strength is estimated via contact force measurements and JKR theory and found to be extremely strong in comparison to shear forces present in the system, estimated using hydrodynamic arguments. All of the results are then combined to produce a consistent conceptual model of aggregation in the system that features testable consequences. These results represent a direct, quantitative, experimental study of aggregation and viscosity enhancement in rod suspension, and demonstrate a strategy for inferring inaccessible microscopic geometric properties of a dynamic system through the combination of quantitative imaging and rheology.
NASA Astrophysics Data System (ADS)
Iwasaki, T.; Hasegawa, Y.; Yamamoto, K.; Nakamura, K.
We have investigated that the relationship between the stiffness of myofibrils and the tenderness of muscle during postmortem aging. The stiffness (elasticity) of A and I bands as well as Z-line of chicken myofibrils during postmortem aging were measured by atomic force microscope. The stiffness of all regions increased till 12 hr of postmortem, then it decreased to 96 hr. This tendency was the same as the changes of shear force value of whole muscle during postmortem aging. The elasticity of the Z-line of chicken myofibrils treated with calcium ions in the presence of protease inhibitor decreased with treating time. This indicates that the nonenzymatic structural changes of myofibrils is one of the causes of meat tenderization.
Stelzleni, A M; Patten, L E; Johnson, D D; Calkins, C R; Gwartney, B L
2007-10-01
The objective of this study was to benchmark carcasses and muscles from commercially identified fed (animals that were perceived to have been fed an increased plane of nutrition before slaughter) and nonfed cull beef and dairy cows and A-maturity, USDA Select steers, so that the muscles could be identified from cull cow carcasses that may be used to fill a void of intermediately priced beef steaks. Carcass characteristics were measured at 24 h postmortem for 75 carcasses from 5 populations consisting of cull beef cows commercially identified as fed (B-F, n = 15); cull beef cows commercially identified as nonfed (B-NF, n = 15); cull dairy cows commercially identified as fed (D-F, n = 15); cull dairy cows commercially identified as nonfed (D-NF, n = 15); and A-maturity, USDA Select grade steers (SEL, n = 15). Nine muscles were excised from each carcass [m. infraspinatus, m. triceps brachii (lateral and long heads), m. teres major, m. longissimus dorsi (also termed LM), m. psoas major, m. gluteus medius, m. rectus femoris, and m. tensor fasciae latae] and subjected to Warner-Bratzler shear force testing and objective sensory panel evaluation after 14 d of postmortem aging. Carcass characteristics differed (P < 0.05) among the 5 commercially identified slaughter groups for the traits of lean maturity, bone maturity, muscle score, HCW, fat color, subjective lean color, marbling, ribeye area, 12th-rib fat thickness, and preliminary yield grade. Carcasses from commercially identified, fed cull cows exhibited more (P < 0.01) weight in carcass lean than did commercially identified, nonfed cull cows. There was a group x muscle interaction (P = 0.02) for Warner-Bratzler shear force. Warner-Bratzler shear force and sensory overall tenderness values demonstrates that muscles from the SEL group were the most tender (P < 0.01), whereas muscles from the B-NF group were the least tender (P < 0.01). Sensory, beef flavor intensity was similar (P > 0.20) among cull cow carcass groups and more intense (P < 0.01) than the SEL carcass group. Muscles from the SEL group exhibited less (P < 0.01) detectable off-flavor than the cull cow carcass groups, whereas the B-NF group exhibited the most (P < 0.01) detectable off-flavor. Although carcass and muscle quality from commercially identified, fed, cull beef and dairy cows was not similar to A-maturity, USDA Select beef, they did show improvements when compared with nonfed, cull, beef and dairy cow carcasses and muscles.
On the self-organizing process of large scale shear flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, Andrew P. L.; Kim, Eun-jin; Liu, Han-Li
2013-09-15
Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2Dmore » hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.« less
Tuning Shear Jamming by Basal Assisted Couette Shear
NASA Astrophysics Data System (ADS)
Zhao, Yiqiu; Barés, Jonathan; Behringer, Robert
Granular matter with packing fraction ϕS < ϕ <ϕJ can be jammed by applying shear strain. However, the stress-strain relation in shear jamming transition is not very well understood. Part of the difficulty is that the strain inside the granular system is very complicated and hard to control. In this work, by using a novel Couette shear apparatus capable of generating arbitrary shear profiles, we study the stress-strain relation during shear jamming transition for granular system under different kinds of controlled interior strain. The novel Couette shear apparatus consists of 21 independently movable rings and two circular boundaries. The apparatus can shear the granular sample not only from the boundaries but also from the bottom. The granular sample is made of about 2000 bi-disperse photo elastic disks, making it possible to extract force information. This work is supported by NSF-DMR1206351, DMS1248071, NASA NNX15AD38G.
A pressure-based force and torque prediction technique for the study of fish-like swimming
Dabiri, John O.; Lauder, George V.
2017-01-01
Many outstanding questions about the evolution and function of fish morphology are linked to swimming dynamics, and a detailed knowledge of time-varying forces and torques along the animal’s body is a key component in answering many of these questions. Yet, quantifying these forces and torques experimentally represents a major challenge that to date prevents a full understanding of fish-like swimming. Here, we develop a method for obtaining these force and torque data non-invasively using standard 2D digital particle image velocimetry in conjunction with a pressure field algorithm. We use a mechanical flapping foil apparatus to model fish-like swimming and measure forces and torques directly with a load cell, and compare these measured values to those estimated simultaneously using our pressure-based approach. We demonstrate that, when out-of-plane flows are relatively small compared to the planar flow, and when pressure effects sufficiently dominate shear effects, this technique is able to accurately reproduce the shape, magnitude, and timing of locomotor forces and torques experienced by a fish-like swimmer. We conclude by exploring of the limits of this approach and its feasibility in the study of freely-swimming fishes. PMID:29216264
Shear sensing based on a microstrip patch antenna
NASA Astrophysics Data System (ADS)
Mohammad, I.; Huang, H.
2012-10-01
A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.
Effect of rotation on the elastic moduli of solid 4He
NASA Astrophysics Data System (ADS)
Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.
2018-02-01
We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.
Development of an intravascular ultrasound elastography based on a dual-element transducer
NASA Astrophysics Data System (ADS)
Shih, Cho-Chiang; Chen, Pei-Yu; Ma, Teng; Zhou, Qifa; Shung, K. Kirk; Huang, Chih-Chung
2018-04-01
The ability to measure the elastic properties of plaques and vessels would be useful in clinical diagnoses, particularly for detecting a vulnerable plaque. This study demonstrates the feasibility of the combination of intravascular ultrasound (IVUS) and acoustic radiation force elasticity imaging for detecting the distribution of stiffness within atherosclerotic arteries ex vivo. A dual-frequency IVUS transducer with two elements was used to induce the propagation of the shear wave (by the 8.5 MHz pushing element) which could be simultaneously monitored by the 31 MHz imaging element. The wave-amplitude image and the wave-velocity image were reconstructed by measuring the peak displacement and wave velocity of shear wave propagation, respectively. System performance was verified using gelatin phantoms. The phantom results demonstrate that the stiffness differences of shear modulus of 1.6 kPa can be distinguished through the wave-amplitude and wave-velocity images. The stiffness distributions of the atherosclerotic aorta from a rabbit were obtained, for which the values of peak displacement and the shear wave velocity were 3.7 ± 1.2 µm and 0.38 ± 0.19 m s-1 for the lipid-rich plaques, and 1.0 ± 0.2 µm and 3.45 ± 0.45 m s-1 for the arterial walls, respectively. These results indicate that IVUS elasticity imaging can be used to distinguish the elastic properties of plaques and vessels.
NASA Astrophysics Data System (ADS)
Anthony, J. L.; Marone, C. J.
2003-12-01
Previous studies have shown that particle characteristics such as shape, dimension, and roughness affect friction in granular shear zones. Other work shows that humidity plays a key role in frictional healing and rate/state dependence within granular gouge. In order to improve our understanding of grain-scale deformation mechanisms within fault gouge, we performed laboratory experiments using a double-direct-shear testing apparatus. This assembly includes three rigid forcing blocks with two gouge layers sandwiched between rough or smooth surfaces. Roughened surfaces were triangular grooves 0.8 mm deep and 1 mm wavelength. These promote distributed shear throughout the layer undergoing cataclastic deformation. Smooth surfaces were mirror-finished hardened steel and were used to promote and isolate grain boundary sliding. The center block is forced at controlled displacement rate between the two side blocks to create frictional shear. We studied gouge layers 3-7 mm thick, consisting of either quartz rods sheared in 1-D and 2-D configurations and smooth glass beads mixed with varying amounts of rough sand particles. We report on particle diameters that range from 0.050-0.210 mm, and quartz rods 1 mm in diameter and 100 mm long. The experiments are run at room temperature, controlled relative humidity ranging from 5 to 100%, and shear displacement rates from 0.1 to 300 microns per second. Experiments are carried out under a normal stress of 5 MPa, a non-fracture loading regime where sliding friction for smooth spherical particles is measurably lower than for rough angular particles. We compare results from shear between smooth boundaries, where we hypothesize that grain boundary sliding is the mechanism influencing granular friction, to rough sample experiments where shear undergoes a transition from distributed, pervasive shear to progressively localized as a function of increasing strain. For shear within rough surfaces, stick-slip instability occurs in gouge that consists of less than 30% angular grains and begins once the coefficient of friction (shear stress divided by normal stress) reaches a value of 0.35-0.40. Peak friction during stick-slip cycles is 0.40-0.45. Each stick-slip event involves a small amount of quasi-static displacement prior to failure, which we refer to as pre-seismic slip. For unstable sliding regimes, we measure the amount of pre-seismic slip and the magnitude of dynamic stress drop. These parameters vary systematically with sliding velocity, particle characteristics, and bounding roughness. For shear within smooth surfaces, friction is very low (0.15-0.16 for spherical particles) and sliding is stable, without stick-slip instability. As more angular grains are mixed with spherical beads the coefficient of friction increases. This holds true for both the rough and smooth sample experiments. We expand on previous work done by Frye and Marone 2002 (JGR) to study the effect of humidity on 1-D, 2-D, and 3-D gouge layer configurations. Our data show that humidity has a significant effect on frictional strength and stability and that this effect is observed for both smooth surfaces, where grain boundary sliding is the dominant deformation mechanisms, and for shear within rough surfaces where gouge deformation occurs by rolling, dilation, compaction, and grain boundary sliding.
NASA Astrophysics Data System (ADS)
Palarz, Angelika; Celiński-Mysław, Daniel
2017-04-01
The dominant role in the development of deep convection is played by kinematic and thermodynamic conditions, as well as atmospheric circulation, land cover and local relief. Severe thunderstorms are considerably more likely to form in environments with large values of convective available potential energy (CAPE) and significant magnitude of vertical wind shears (VWSs). According to the most recent research, the tropospheric wind shears have an important influence on intensity, longevity and organisation of the primary convective systems - bow echoes, squall lines and supercell thunderstorms. This study, in turn, examines the role of wind structure in controlling the spatial and temporal variability of VWSs over Europe. Considering the importance of the kinematic conditions for the convective systems formation, research is limited exclusively to 0-1 km, 0-3 km and 0-6 km wind shears. In order to compute the VWS' values, the data derived from ERA-Interim reanalysis for the period 1981-2015 was applied. It consisted of U and V wind components with 12-hourly sampling and horizontal resolution of 0.75×0.75°. The VWS' values were calculated as wind difference between two levels - this entails that the hodograph's shape was not considered (e.g. Clark 2013, Pucik et. al 2015). We have analysed both VWS' mean values (MN) and frequency of VWSs exceeding assumed thresholds (FQ). Taking into account previous studies (e.g. Rasmussen & Blanchard 1998, Schneider et al. 2006, Schaumann & Przybylinski 2012), the thresholds for extremely high values of vertical wind shears were set at 10 m/s for 0-1 km shear, 15 m/s for 0-3 km shear and 18 m/s for 0-6 km shear. Both MN and FQ values were characterised by strong temporal variability, as well as significant spatial differentiation over the research area. A clear diurnal cycle was identified in the case of 0-1 km shear, while seasonal variability was typical for 0-3 km and 0-6 km shears. Regardless of the season, 0-1 km shear reached higher MN and FQ values at 00 UTC than at 12 UTC. Moreover, its spatial distribution showed distinct differences linked to the underlying surface type. Surface energy budget seems to be an important factor contributing to the diurnal and spatial variability of VWSs - it generates the formation of local air circulation leading to modification of the wind direction and speed in the boundary layer. For 0-3 km and 0-6 km shears, a noticeable spatial differentiation between land and sea areas was not recognised. The significantly higher MN and FQ values over the land were found exclusively in the case of 0-3 km shear during the winter, particularly over the Mediterranean region. In the middle troposphere, the VWS' fluctuations (0-3 and 0-6 km shears) are primarily determined by the seasonal changes in atmospheric circulation patterns over the research area.
Local structure controls the nonaffine shear and bulk moduli of disordered solids
NASA Astrophysics Data System (ADS)
Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.
2016-01-01
Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.
Lozowy, Richard J; Kuhn, David C S; Ducas, Annie A; Boyd, April J
2017-03-01
Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.
Yucel, Serap; Ceyhan Bilgici, Meltem; Kara, Cengiz; Can Yilmaz, Gulay; Aydin, H Murat; Elmali, Muzaffer; Tomak, Leman; Saglam, Dilek
2018-05-01
To evaluate the parenchymal elasticity of the thyroid gland with acoustic radiation force impulse imaging in pediatric patients with Hashimoto thyroiditis and to compare it with healthy volunteers. Twenty-six patients with Hashimoto thyroiditis and 26 healthy volunteers between 6 and 17 years were included. The shear wave velocity (SWV) values of both thyroid lobes in both groups were evaluated. The age and sex characteristics of the controls and patients with Hashimoto thyroiditis were similar. The SWV of the thyroid gland in patients with Hashimoto thyroiditis (mean ± SD, 1.67 ± 0.63 m/s) was significantly higher than that in the control group (1.30 ± 0.13 m/s; P < .001). There was no significant difference between the thyroid lobes in both groups. A receiver operating characteristic curve analyses showed an optimal cutoff value of 1.41 m/s, with 73.1% sensitivity, 80.8% specificity, a 79.2 % positive predictive value, and a 75.0% negative predictive value (area under the curve, 0.806; P < .001). In patients with Hashimoto thyroiditis, there was a positive correlation between the SWV values versus anti-thyroperoxidase (Pearson r = 0.46; P = .038). There were no correlations between age, body mass index, thyroid function test results, and anti-thyroglobulin values and versus SWV values. Also, no significant differences were seen between the groups for gland size, gland vascularity, and l-thyroxine treatment. Acoustic radiation force impulse elastography showed a significant difference in the stiffness of the thyroid gland between children with Hashimoto thyroiditis and the healthy group. Using acoustic radiation force impulse elastography immediately after a standard ultrasound evaluation may predict chronic autoimmune thyroiditis. © 2017 by the American Institute of Ultrasound in Medicine.
Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids
NASA Astrophysics Data System (ADS)
Rénier, Mathieu; Gennisson, Jean-Luc; Barrière, Christophe; Catheline, Stefan; Tanter, Mickaël; Royer, Daniel; Fink, Mathias
2008-06-01
Recently a nonlinear equation describing the plane shear wave propagation in isotropic quasi-incompressible media has been developed using a new expression of the strain energy density, as a function of the second, third and fourth order shear elastic constants (respectively μ, A, D) [1]. In such a case, the shear nonlinearity parameter βs depends only from these last coefficients. To date, no measurement of the parameter D have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids are measured. Firstly, this theoretical background is applied to the acoustoelasticity theory, giving the variations of the shear wave speed as a function of the stress applied to the medium. From such variations, both linear (μ) and third order shear modulus (A) are deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a focused ultrasound beam is used to generate quasi-plane linear shear waves within the medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force generation technique is replaced by a vibrating plate applied at the surface of the phantoms. The propagation is also imaged using the same ultrafast scanner. From the assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. Finally, combining these results with the acoustoelasticity experiment, the fourth order modulus (D) is deduced. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. Measurements of the A moduli reveal that while the behaviors of both soft solids are close from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30±10 kPa.
Beef customer satisfaction: trained sensory panel ratings and Warner-Bratzler shear force values.
Lorenzen, C L; Miller, R K; Taylors, J F; Neely, T R; Tatum, J D; Wise, J W; Buyek, M J; Reagan, J O; Savell, J W
2003-01-01
Trained sensory panel ratings and Warner-Bratzler shear force (WBS) values from the Beef Customer Satisfaction study are reported. Carcasses were chosen to fit into USDA quality grades of Top Choice (upper two-thirds of USDA Choice), Low Choice, High Select, and Low Select. A trained, descriptive attribute panel evaluated top loin, top sirloin, and top round steaks for muscle fiber tenderness, connective tissue amount, overall tenderness, juiciness, flavor intensity, cooked beef flavor intensity, and cooked beef fat flavor intensity. Four steaks from each of the three cuts from each carcass were assigned randomly to one of four cooking endpoint temperature treatments (60, 65, 70, or 75 degrees C) for WBS determination. For all trained panel measures of tenderness and WBS, regardless of USDA quality grade, top loin steaks were rated higher than top sirloin steaks, which were rated higher than top round steaks (P < 0.05). There were significant interactions between USDA quality grade and cut for most of the trained sensory panel traits: USDA quality grade influenced ratings for top loin steaks more than ratings for top round steaks or top sirloin steaks. Three interactions were significant for WBS values: USDA quality grade x endpoint temperature (P = 0.02), USDA quality grade x cut (P = 0.0007), and cut x endpoint temperature (P = 0.0001). With the exception of High Select, WBS values increased (P < 0.05) for each grade with increasing endpoint temperature. Choice top loin and top round steaks had lower (P < 0.05) WBS values than Select steaks of the same cut; however, only Top Choice top sirloin steaks differed (P < 0.05) from the other USDA grades. As endpoint temperatures increased, WBS values for top sirloin steaks increased substantially compared to the other cuts. When cooked to 60 degrees C, top sirloin steaks were closer to top loin steaks in WBS values, when cooked to 75 degrees C, top sirloin steaks were closer to top round steaks in WBS values. Simple correlation coefficients between consumer ratings and trained sensory muscle fiber tenderness, connective tissue amount, overall tenderness, juiciness, flavor intensity, and cooked beef fat flavor were significant (P < 0.05), but values were low. While relationships exist between consumer and trained sensory measures, it is difficult to predict from objective data how consumers will rate meat at home.
S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology.
Pan, Zhongcheng; de Cagny, Henri; Weber, Bart; Bonn, Daniel
2015-09-01
We study the rheological behavior of concentrated granular suspensions of simple spherical particles. Under controlled stress, the system exhibits an S-shaped flow curve (stress vs shear rate) with a negative slope in between the low-viscosity Newtonian regime and the shear thickened regime. Under controlled shear rate, a discontinuous transition between the two states is observed. Stress visualization experiments with a fluorescent probe suggest that friction is at the origin of shear thickening. Stress visualization shows that the stress in the system remains homogeneous (no shear banding) if a stress is imposed that is intermediate between the high- and low-stress branches. The S-shaped shear thickening is then due to the discontinuous formation of a frictional force network between particles upon increasing the stress.
Singh, Kulshrest; Naik, Rajaram; Hegde, Srinidhi; Damda, Aftab
2015-01-01
This in vitro study is intended to compare the shear bond strength of recent self-etching primers to superficial, intermediate, and deep dentin levels. All teeth were sectioned at various levels and grouped randomly into two experimental groups and two control groups having three subgroups. The experimental groups consisted of two different dentin bonding system. The positive control group consisted of All Bond 2 and the negative control group was without the bonding agent. Finally, the specimens were subjected to shear bond strength study under Instron machine. The maximum shear bond strengths were noted at the time of fracture. The results were statistically analyzed. Comparing the shear bond strength values, All Bond 2 (Group III) demonstrated fairly higher bond strength values at different levels of dentin. Generally comparing All Bond 2 with the other two experimental groups revealed highly significant statistical results. In the present investigation with the fourth generation, higher mean shear bond strength values were recorded compared with the self-etching primers. When intermediate dentin shear bond strength was compared with deep dentin shear bond strength statistically significant results were found with Clearfil Liner Bond 2V, All Bond 2 and the negative control. There was a statistically significant difference in shear bond strength values both with self-etching primers and control groups (fourth generation bonding system and without bonding system) at superficial, intermediate, and deep dentin. There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to intermediate to deep.
Lee, Yun-Kyung; Ko, Bo-Bae; Min, Sang-Gi; Hong, Geun-Pyo
2015-01-01
The present study was carried out to investigate the effects of soy protein hydrolysates (SPHs) addition on the quality characteristics of pork patties. The SPHs was prepared by subcritical water process (SWP) at 180℃ without holding time and mixed with the pork patty components at varying concentrations (0-3%), and the patties were stored at 4℃ for 14 d. As quality parameters, instrumental color, thiobarbituric acid-reactive substances (TBARS), pH, water holding capacity (WHC) and shear force were measured at the end of storage. Regardless of SPHs concentration, the addition of SPHs significantly manifested low L* and high a* values compared to those of untreated control (p<0.05). For b* value, addition of SPHs in the 0.5-1.5% was unaffected, while >2.0% of SPHs caused significantly lower b* than control (p<0.05). The color changes in pork patties with and without SPHs were also identified in visual appearance where the pork patties containing 0.5-2.0% showed bright red color which was comparable to brownish color of control and patties containing >2.5% SPHs. Lipid oxidation was delayed by the addition of 0.5-1.5% SPHs, while it was accelerated by the addition of 3% SPHs. The pH of patties increased with increasing concentration of SPHs, whereas there were no significant differences in WHC and shear force of patties. Consequently, the results indicated that the addition of 0.5-1.5% SPHs had a potential advantage in suppressing oxidative deterioration of fat-containing meat products during chilled storage.
In-home consumer and shear force evaluation of steaks from the M. serratus ventralis thoracis.
Bagley, J L; Nicholson, K L; Pfeiffer, K D; Savell, J W
2010-05-01
The M. serratus ventralis thoracis was obtained from US Select arm chucks (n=87) to investigate if this underutilized muscle can be used as a steak alternative. Muscles were assigned randomly into three treatment groups: (1) control; (2) blade tenderization; and (3) injection, containing salt, phosphate, and papain. Steaks were cut from each muscle for in-home consumer evaluation (n=136) and Warner-Bratzler shear (WBS) force determination. The WBS values for injected steaks (13.1N) were lower (P<0.05) than for blade-tenderized (18.4N) and control (19.9N) steaks. Tenderness ratings for the injected steaks were higher (P<0.05) compared to the other treatments when steaks were grilled, oven prepared or were cooked in a skillet; however, this improvement did not significantly influence overall like scores for steaks that were oven prepared or cooked in a skillet. For the most part, degree of doneness did not significantly impact consumer evaluations of steaks prepared by the various cooking methods. However, there was a treatment x degree of doneness interaction for grilled-cooked steaks where increased doneness for blade-tenderized and injected steaks resulted in increased palatability ratings, whereas increased doneness for control steaks generally resulted in lowered palatability ratings. Consumer ratings and WBS values for the M. serratus ventralis thoracis indicate that merchandising steaks from this muscle may be a viable option in the marketplace, especially if blade tenderization or injection processes are used for further enhancement. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames
2015-05-01
The shear coaxial jet injector is a typical injector design in liquid rocket engines, used as the main chamber element for Space Shuttle Main...current study. (b) Representation of the injector tip of the shear coaxial burner with propellant streams and dimensions labeled. (c) Picture of flame...integrated with the Air Force Research Laboratories’ (AFRL) Mobile Flow Laboratory (MFL). This facility is designed to allow aerospace-propulsion injector
Forces on a segregating particle
NASA Astrophysics Data System (ADS)
Lueptow, Richard M.; Shankar, Adithya; Fry, Alexander M.; Ottino, Julio M.; Umbanhowar, Paul B.
2017-11-01
Size segregation in flowing granular materials is not well understood at the particle level. In this study, we perform a series of 3D Discrete Element Method (DEM) simulations to measure the segregation force on a single spherical test particle tethered to a spring in the vertical direction in a shearing bed of particles with gravity acting perpendicular to the shear. The test particle is the same size or larger than the bed particles. At equilibrium, the downward spring force and test particle weight are offset by the upward buoyancy-like force and a size ratio dependent force. We find that the buoyancy-like force depends on the bed particle density and the Voronoi volume occupied by the test particle. By changing the density of the test particle with the particle size ratio such that the buoyancy force matches the test particle weight, we show that the upward size segregation force is a quadratic function of the particle size ratio. Based on this, we report an expression for the net force on a single particle as the sum of a size ratio dependent force, a buoyancy-like force, and the weight of the particle. Supported by NSF Grant CBET-1511450 and the Procter and Gamble Company.
Impact of implant support on mandibular free-end base removable partial denture: theoretical study.
Oh, Won-suk; Oh, Tae-Ju; Park, Ju-mi
2016-02-01
This study investigated the impact of implant support on the development of shear force and bending moment in mandibular free-end base removable partial dentures (RPDs). Three theoretical test models of unilateral mandibular free-end base RPDs were constructed to represent the base of tooth replacement, as follows: Model 1: first and second molars (M1 and M2); Model 2: second premolar (P2), M1, and M2; and Model 3: first premolar (P1), P2, M1, and M2. The implant support located either at M1 or M2 sites. The occlusal loading was concentrated at each replacement tooth to calculate the stress resultants developed in the RPD models using the free-body diagrams of shear force and bending moment. There was a trend of reduction in the peak shear force and bending moment when the base was supported by implant. However, the degree of reduction varied with the location of implant support. The moment reduced by 76% in Model 1, 58% in Model 2, and 42% in Model 3, when the implant location shifted from M1 to M2 sites. The shear forces and bending moments subjected to mandibular free-end base RPDs were found to decrease with the addition of implant support. However, the impact of implant support varied with the location of implant in this theoretical study. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Non-double-couple earthquakes. 1. Theory
Julian, B.R.; Miller, A.D.; Foulger, G.R.
1998-01-01
Historically, most quantitative seismological analyses have been based on the assumption that earthquakes are caused by shear faulting, for which the equivalent force system in an isotropic medium is a pair of force couples with no net torque (a 'double couple,' or DC). Observations of increasing quality and coverage, however, now resolve departures from the DC model for many earthquakes and find some earthquakes, especially in volcanic and geothermal areas, that have strongly non-DC mechanisms. Understanding non-DC earthquakes is important both for studying the process of faulting in detail and for identifying nonshear-faulting processes that apparently occur in some earthquakes. This paper summarizes the theory of 'moment tensor' expansions of equivalent-force systems and analyzes many possible physical non-DC earthquake processes. Contrary to long-standing assumption, sources within the Earth can sometimes have net force and torque components, described by first-rank and asymmetric second-rank moment tensors, which must be included in analyses of landslides and some volcanic phenomena. Non-DC processes that lead to conventional (symmetric second-rank) moment tensors include geometrically complex shear faulting, tensile faulting, shear faulting in an anisotropic medium, shear faulting in a heterogeneous region (e.g., near an interface), and polymorphic phase transformations. Undoubtedly, many non-DC earthquake processes remain to be discovered. Progress will be facilitated by experimental studies that use wave amplitudes, amplitude ratios, and complete waveforms in addition to wave polarities and thus avoid arbitrary assumptions such as the absence of volume changes or the temporal similarity of different moment tensor components.
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
NASA Technical Reports Server (NTRS)
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
Bazant, Zdenek P; Caner, Ferhun C
2013-11-26
Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.
Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil
2017-11-22
Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.
Control of a three-dimensional turbulent shear layer by means of oblique vortices
NASA Astrophysics Data System (ADS)
Jürgens, Werner; Kaltenbach, Hans-Jakob
2018-04-01
The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.
True Shear Parallel Plate Viscometer
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2010-01-01
This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.
Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming
2018-01-01
During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom. PMID:29758968
Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming
2018-04-27
During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom.
The coefficient of restitution of pressurized balls: a mechanistic model
NASA Astrophysics Data System (ADS)
Georgallas, Alex; Landry, Gaëtan
2016-01-01
Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model
The effects of muscle weakness on degenerative spondylolisthesis: A finite element study.
Zhu, Rui; Niu, Wen-Xin; Zeng, Zhi-Li; Tong, Jian-Hua; Zhen, Zhi-Wei; Zhou, Shuang; Yu, Yan; Cheng, Li-Ming
2017-01-01
Whether muscle weakness is a cause, or result, of degenerative spondylolisthesis is not currently well understood. Little biomechanical evidence is available to offer an explanation for the mechanism behind exercise therapy. Therefore, the aim of this study is to investigate the effects of back muscle weakness on degenerative spondylolisthesis and to tease out the biomechanical mechanism of exercise therapy. A nonlinear 3-D finite element model of L3-L5 was constructed. Forces representing global back muscles and global abdominal muscles, follower loads and an upper body weight were applied. The force of the global back muscles was reduced to 75%, 50% and 25% to simulate different degrees of back muscle weakness. An additional boundary condition which represented the loads from other muscles after exercise therapy was set up to keep the spine in a neutral standing position. Shear forces, intradiscal pressure, facet joint forces and von Mises equivalent stresses in the annuli were calculated. The intervertebral rotations of L3-L4 and L4-L5 were within the range of in vitro experimental data. The calculated intradiscal pressure of L4-L5 for standing was 0.57MPa, which is similar to previous in vivo data. With the back muscles were reduced to 75%, 50% and 25% force, the shear force moved increasingly in a ventral direction. Due to the additional stabilizing force and moment provided by boundary conditions, the shear force varied less than 15%. Reducing the force of global back muscles might lead to, or aggravate, degenerative spondylolisthesis with forward slipping from biomechanical point of view. Exercise therapy may improve the spinal biomechanical environment. However, the intrinsic correlation between back muscle weakness and degenerative spondylolisthesis needs more clinical in vivo study and biomechanical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluating the DLVO Model for Non-Aqueous Colloidal Suspensions
NASA Astrophysics Data System (ADS)
DeCarlo, Keith Joseph
Application of DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory for suspensions utilizing non-aqueous suspension mediums has been tested. Prediction of suspension stability using DLVO theory requires the calculation of the attractive and repulsive forces between the suspended colloids and that the only significant stabilization mechanism present is electrostatic stabilization which was tested. The van der Waals attractive potential was calculated for 12 different colloids in 11 suspending mediums in accord with Lifshitz's treatment and a new approximation proposing that the material bandgap energy can be used to approximate the Hamaker constant was developed. This treatment requires the complete knowledge of the permittivity as a function of frequency for all the components in the respective suspension. The permittivity data was simplified using a damped oscillator model described by Ninham and Parsegian. All permittivity data was compiled from the literature. Microwave data was tabulated by NIST, infrared parameters were determined from FTIR data, and the ultraviolet/visual parameters were determined via Cauchy plots or estimated by the bandgap. Using the bandgap to approximate the ultraviolet/visual parameters proved to be more accurate than other approximations when compared to the accepted values. It was found that the non-oxide and non-stoichiometric colloids tested had the largest associated van der Waals attractive force. The van der Waals potential calculated for oxide particles was found to follow a direct relationship with the ionic character of the bonding. Repulsive forces were calculated for 12 different colloids in 11 suspending mediums. The calculated repulsive potential generated is a function of both the magnitude of charge generated on each colloid (zeta-potential) and the size of the interacting double-layers. zeta-potential was measured for each suspension using a microelectrophoretic technique and the double-layer thickness was calculated. It was demonstrated that as the polarity of the suspending medium increased, the thickness of the double-layer also increased. A large double-layer thickness was found to directly correlate to the suspension stability. A large double-layer thickness results in a decreased slope of the charge degradation from the colloidal surface to the bulk suspension. This coupled with a large magnitude of surface charge increases the probability of dispersion. Through viscosity measurements, the stability mechanism of each suspension was determined by comparison of the viscosity at a shear rate of 1.0s -1 with the shear thinning exponent. It was determined that, of the suspension mediums tested, heptane, octanoic acid, and poly(ethylene glycol) introduce non-electrostatic stabilization mechanisms significant enough to invalidate the DLVO predictions for suspensions made using those mediums. Consistent with DLVO theory, the total interaction potential was calculated by summation of the repulsive and attractive potentials of each suspension (84 suspensions total) as a function of separation distance. Based upon the results of the summation, the suspension stability can be predicted. 64 of the 84 suspensions were determined to be unstable as the colloids agglomerated in the primary minimum, 11 suspensions were determined to be weakly flocculated, and nine suspensions were found to be stable. Viscosity was used to determine the critical value for the thermal energy barrier and to test the DLVO predictions. The critical value of the thermal energy barrier was found to be 2.0 x 10 -6J/m2. Therefore, for suspensions calculated to have a thermal energy barrier less than the critical value, the Brownian motion of the colloids in suspension at 298K were enough to overcome it, resulting in agglomeration at the primary minimum. For suspensions with a thermal barrier larger than 2.0 x 10-6J/m2, the interacting colloids moved into the secondary energy minimum. All suspensions tested in which the thermal energy barrier was less than 2.0 x 10-6J/m 2 had a specific viscosity at a shear rate of 1.0s-1 greater than the cut-off viscosity for stability. If the colloids moved into the secondary minimum, the resulting suspension was characterized as either being weakly flocculated or stable. Weakly flocculated suspensions had an equilibrium separation distance of colloids less than 40nm resulting in a viscosity at a shear rate of 1.0s-1 larger than the determined specific viscosity cut-off (1.1x 104), but a shear thinning exponent greater than 1.0. Stable suspensions were defined by the colloids as having an equilibrium separation distance greater than 40nm, resulting in viscosity values at a shear rate of 1.0s-1 smaller than that of the determined cut-off viscosity value.
A novel capsulorhexis technique using shearing forces with cystotome.
Karim, Shah M R; Ong, Chin T; Sleep, Tamsin J
2010-05-15
To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye. Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge. Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size. The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.
The Plunge Phase of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur; McClure, John; Avila, Ricardo
2005-01-01
Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.
Single Piezo-Actuator Rotary-Hammering Drill
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph
2011-01-01
This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to prevent it from being subjected to tensile stress that will cause it to fail. The backing is intended to transfer the generated mechanical vibrations towards the horn. In order to cause rotation, the horn is configured asymmetrically with helical segments and, upon impacting the bit, it introduces longitudinal along the axis of the actuator and tangential force causing twisting action that rotates the bit. The longitudinal component of the vibrations of the stack introduces percussion impulses between the bit and the rock to fracture it when the ultimate strain is exceeded under the bit.
Pretreatment of high solid microbial sludges
Rivard, Christopher J.; Nagle, Nicholas J.
1998-01-01
A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.