Sample records for shear lag analysis

  1. Shear-lag analysis about an internally-dropped ply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizzini, A.J.

    1995-12-31

    The region around a terminated ply is modeled as several elastic layers separated by shear regions. A shear-lag analysis is then performed allowing for the thickness of the elastic and shear layers to vary. Boundary conditions, away for the ply drop, are based on the deflections determined by a finite element model. The interlaminar stresses are compared against those generated by the finite element model for tapered laminates under pure extension, pure bending, and extension-bending coupling. The shear-lag analysis predicts the interlaminar shear at and near the ply drop for pure extension and in cases involving bending if the deflectionsmore » due to bending are removed. The interlaminar shear stress and force equilibrium are used to determine the interlaminar normal stress. The trends in the interlaminar normal stress shown by the finite element model are partially captured by the shear-lag analysis. This simple analysis indicates that the mechanism for load transfer about a ply drop is primarily due to shear transfer through the resin rich areas.« less

  2. The shear-lag effect of thin-walled box girder under vertical earthquake excitation

    NASA Astrophysics Data System (ADS)

    Zhai, Zhipeng; Li, Yaozhuang; Guo, Wei

    2017-03-01

    The variation method based on the energy variation principle is proved to be accurate and valid for analyzing the shear lag effect of box girder under static and dynamic load. Meanwhile, dynamic problems gradually become the key factors in engineering practice. Therefore, a method for calculating the shear lag effect in thin-walled box girder under vertical seismic excitation is proposed by applying Hamilton Principle in this paper. The Timoshenko shear deformation is taken into account. And a new definition of shear lag ratio for box girder is given. What's more, some conclusions are drawn by analysis of numerical example. The results show that small amplitude of earthquake ground motion can generate high stress and obvious shear lag, especially in the region of resonance. And the influence of rotary inertia cannot be ignored for analyzing the shear lag effect. With the increase of span to width ratio, shear lag effect becomes smaller and smaller. These research conclusions will be useful for the engineering practice and enrich the theoretical studies of box girders.

  3. Shear Lag in Box Beams Methods of Analysis and Experimental Investigations

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul; Chiarito, Patrick T

    1942-01-01

    The bending stresses in the covers of box beams or wide-flange beams differ appreciably from the stresses predicted by the ordinary bending theory on account of shear deformation of the flanges. The problem of predicting these differences has become known as the shear-lag problem. The first part of this paper deals with methods of shear-lag analysis suitable for practical use. The second part of the paper describes strain-gage tests made by the NACA to verify the theory. Three tests published by other investigators are also analyzed by the proposed method. The third part of the paper gives numerical examples illustrating the methods of analysis. An appendix gives comparisons with other methods, particularly with the method of Ebner and Koller.

  4. Mitigating shear lag in tall buildings

    NASA Astrophysics Data System (ADS)

    Gaur, Himanshu; Goliya, Ravindra K.

    2015-09-01

    As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.

  5. On the phase lag of turbulent dissipation in rotating tidal flows

    NASA Astrophysics Data System (ADS)

    Zhang, Qianjiang; Wu, Jiaxue

    2018-03-01

    Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

  6. Kinetic analysis of elastomeric lag damper for helicopter rotors

    NASA Astrophysics Data System (ADS)

    Liu, Yafang; Wang, Jidong; Tong, Yan

    2018-02-01

    The elastomeric lag dampers suppress the ground resonance and air resonance that play a significant role in the stability of the helicopter. In this paper, elastomeric lag damper which is made from silicone rubber is built. And a series of experiments are conducted on this elastomeric lag damper. The stress-strain curves of elastomeric lag dampers employed shear forces at different frequency are obtained. And a finite element model is established based on Burgers model. The result of simulation and tests shows that the simple, linear model will yield good predictions of damper energy dissipation and it is adequate for predicting the stress-strain hysteresis loop within the operating frequency and a small-amplitude oscillation.

  7. Interfacial characteristics of hybrid nanocomposite under thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Choyal, Vijay; Kundalwal, Shailesh I.

    2017-12-01

    In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.

  8. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE PAGES

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-30

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.« less

  9. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Rebecca L., E-mail: rlb@lanl.gov; Girimaji, Sharath S., E-mail: girimaji@aero.tamu.edu

    2015-12-15

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.« less

  10. Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.

    2017-04-01

    Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .

  11. Shear-lag effect and its effect on the design of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina

    2018-03-01

    For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  12. Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng

    2018-01-01

    Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.

  13. SUPERGRANULES AS PROBES OF THE SUN'S MERIDIONAL CIRCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathaway, David H., E-mail: david.hathaway@nasa.gov

    2012-11-20

    Recent analysis revealed that supergranules (convection cells seen at the Sun's surface) are advected by the zonal flows at depths equal to the widths of the cells themselves. Here we probe the structure of the meridional circulation by cross-correlating maps of the Doppler velocity signal using a series of successively longer time lags between maps. We find that the poleward meridional flow decreases in amplitude with time lag and reverses direction to become an equatorward return flow at time lags >24 hr. These cross-correlation results are dominated by larger and deeper cells at longer time lags. (The smaller cells havemore » shorter lifetimes and do not contribute to the correlated signal at longer time lags.) We determine the characteristic cell size associated with each time lag by comparing the equatorial zonal flows measured at different time lags with the zonal flows associated with different cell sizes from a Fourier analysis. This association gives a characteristic cell size of {approx}50 Mm at a 24 hr time lag. This indicates that the poleward meridional flow returns equatorward at depths >50 Mm-just below the base of the surface shear layer. A substantial and highly significant equatorward flow (4.6 {+-} 0.4 m s{sup -1}) is found at a time lag of 28 hr corresponding to a depth of {approx}70 Mm. This represents one of the first positive detections of the Sun's meridional return flow and illustrates the power of using supergranules to probe the Sun's internal dynamics.« less

  14. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded region. The results of this study verified qualitatively the validity of assuming a uniform crack spacing (as was done in the shear-lag model).

  15. Life Cycle of Midlatitude Deep Convective Systems in a Lagrangian Framework

    NASA Technical Reports Server (NTRS)

    Feng, Zhe; Dong, Xiquan; Xie, Baike; McFarlane, Sally A.; Kennedy, Aaron; Lin, Bing; Minnis, Patrick

    2012-01-01

    Deep Convective Systems (DCSs) consist of intense convective cores (CC), large stratiform rain (SR) regions, and extensive non-precipitating anvil clouds (AC). This study focuses on the evolution of these three components and the factors that affect convective AC production. An automated satellite tracking method is used in conjunction with a recently developed multi-sensor hybrid classification to analyze the evolution of DCS structure in a Lagrangian framework over the central United States. Composite analysis from 4221 tracked DCSs during two warm seasons (May-August, 2010-2011) shows that maximum system size correlates with lifetime, and longer-lived DCSs have more extensive SR and AC. Maximum SR and AC area lag behind peak convective intensity and the lag increases linearly from approximately 1-hour for short-lived systems to more than 3-hours for long-lived ones. The increased lag, which depends on the convective environment, suggests that changes in the overall diabatic heating structure associated with the transition from CC to SR and AC could prolong the system lifetime by sustaining stratiform cloud development. Longer-lasting systems are associated with up to 60% higher mid-tropospheric relative humidity and up to 40% stronger middle to upper tropospheric wind shear. Regression analysis shows that the areal coverage of thick AC is strongly correlated with the size of CC, updraft strength, and SR area. Ambient upper tropospheric wind speed and wind shear also play an important role for convective AC production where for systems with large AC (radius greater than 120-km) they are 24% and 20% higher, respectively, than those with small AC (radius=20 km).

  16. Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture.

    PubMed

    Zhang, Wei; Luo, Cong-Feng; Putnis, Sven; Sun, Hui; Zeng, Zhi-Min; Zeng, Bing-Fang

    2012-03-01

    The posterolateral shearing tibial plateau fracture is uncommon in the literature, however with the increased usage of computer tomography (CT), the incidence of these fractures is no longer as low as previously thought. Few studies have concentrated on this fracture, least of all using a biomechanical model. The purpose of this study was to compare and analyse the biomechanical characteristics of four different types of internal fixation to stabilise the posterolateral shearing tibial plateau fracture. Forty synthetic tibiae (Synbone, right) simulated the posterolateral shearing fracture models and these were randomly assigned into four groups; Group A was fixed with two anterolateral lag screws, Group B with an anteromedial Limited Contact Dynamic Compression Plate (LC-DCP), Group C with a lateral locking plate, and Group D with a posterolateral buttress plate. Vertical displacement of the posterolateral fragment was measured using three different strengths of axial loading force, and finally loaded until fixation failure. It was concluded that the posterolateral buttress plate is biomechanically the strongest fixation method for the posterolateral shearing tibial plateau fracture. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  18. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    PubMed

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    PubMed

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.

    PubMed

    Wu, Jiayu; Yuan, Hong; Li, Longyuan; Fan, Kunjie; Qian, Shanguang; Li, Bing

    2018-01-21

    Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stress transfer mechanisms at the submicron level for graphene/polymer systems.

    PubMed

    Anagnostopoulos, George; Androulidakis, Charalampos; Koukaras, Emmanuel N; Tsoukleri, Georgia; Polyzos, Ioannis; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas

    2015-02-25

    The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼ 2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping.

  2. Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Song, Y. D.; Sun, Y. C.

    2015-07-01

    The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.

  3. Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2018-06-20

    Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.

  4. Prediction of microcracking in composite laminates under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.; Mcmanus, Hugh L.

    1995-01-01

    Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.

  5. Lateral Displacement and Shear Lag Effect of Combination of Diagrid-Frame

    NASA Astrophysics Data System (ADS)

    Abd. Samat, Roslida; Chua, Fong Teng; Mustakim, Nur Akmal Hayati Mohd; Saad, Sariffuddin; Abu Bakar, Suhaimi

    2018-03-01

    Diagrid system, which is the portmanteau of diagonal grid member, is an exterior lateral load resisting system for tall building that has gained a wide acceptance in the design of tall buildings. There is abundance of researches that studied the efficiency of diagrid systems, which are constructed from the ground level to the top of the buildings in resisting the lateral load. Nevertheless, no study had been performed on the effectiveness of the diagrid that is constructed above other tall building systems despite the existence of a few buildings in the world that employ such system. The objective of this research is to understand the behavior of the lateral displacement and shear lag effect due to wind load when the diagrid structure is constructed above a frame. Models of 60-story buildings with a footprint of 36m x 36m were analyzed by using Staad.Pro software. The level where the diagrid members started was altered. The lateral displacement was reduced to 60.6 percent and 41 percent of the lateral displacement of a building with full frame system when the combination of frame-diagrid that had the diagrid started at Level 1 and Level 45, respectively were employed. Furthermore, the shear lag ratio was reduced from 1.7 to 1.3 when the level where the diagrid started was increased from Level 1 to Level 45.

  6. Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems

    PubMed Central

    2015-01-01

    The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping. PMID:25644121

  7. Revisiting the generalized scaling law for adhesion: role of compliance and extension to progressive failure.

    PubMed

    Mojdehi, Ahmad R; Holmes, Douglas P; Dillard, David A

    2017-10-25

    A generalized scaling law, based on the classical fracture mechanics approach, is developed to predict the bond strength of adhesive systems. The proposed scaling relationship depends on the rate of change of debond area with compliance, rather than the ratio of area to compliance. This distinction can have a profound impact on the expected bond strength of systems, particularly when the failure mechanism changes or the compliance of the load train increases. Based on the classical fracture mechanics approach for rate-independent materials, the load train compliance should not affect the force capacity of the adhesive system, whereas when the area to compliance ratio is used as the scaling parameter, it directly influences the bond strength, making it necessary to distinguish compliance contributions. To verify the scaling relationship, single lap shear tests were performed for a given pressure sensitive adhesive (PSA) tape specimens with different bond areas, number of backing layers, and load train compliance. The shear lag model was used to derive closed-form relationships for the system compliance and its derivative with respect to the debond area. Digital image correlation (DIC) is implemented to verify the non-uniform shear stress distribution obtained from the shear lag model in a lap shear geometry. The results obtained from this approach could lead to a better understanding of the relationship between bond strength and the geometry and mechanical properties of adhesive systems.

  8. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping

    NASA Astrophysics Data System (ADS)

    Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang

    2011-02-01

    A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.

  9. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  10. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2017-09-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  11. Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas

    2010-09-01

    We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.

  12. Comparison of the Effects of Debonds and Voids in Adhesive Joints

    NASA Technical Reports Server (NTRS)

    Rossettos, J. N.; Lin, P.; Nayeb-Hashemi, Hamid

    1997-01-01

    An analytical model is developed to compare the effects of voids an debonds on the interfacial shear stresses between the adherends and the adhesive in simple lap joints. Since the adhesive material above the debond may undergo some extension (either due to applied load or thermal expansion or both), a modified shear lag model, where the adhesive can take an extensional as well as shear deformation, is used in the analysis. The adherends take on only axial loads and act as membranes. Two coupled nondimensional differential equations are derived, and in general, five parameters govern the stress distribution in the overlap region. As expected, the major differences between the debond and the void occur for the stresses near the edge of the defect itself. Whether the defect is a debond or a void, is hardly discernible by the stresses at the overlap region. If the defect occurs precisely at or very close to either end of the overlap, however, differences of the order of 20 percent in the peak stresses can be obtained.

  13. Development of damage suppression system using embedded SMA foil in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Kobayashi, Masakazu; Okabe, Tomonaga; Takeda, Nobuo

    2001-07-01

    Some recent studies have suggested possible applications of Shape Memory Alloy (SMA) for a smart health monitoring and suppression of damage growth. The authors have been conducting research and development studies on applications of embedded SMA foil actuators in CFRP laminates as the basic research for next generation aircrafts. First the effective surface treatment for improvement of bonding properties between SMA and CFRP was studied. It was certified that the anodic oxide treatment by 10% NaOH solution was the most effective treatment from the results of peel resistance test and shear strength test. Then, CFRP laminates with embedded SMA foils were successfully fabricated using this effective surface treatment. The damage behavior of quasi-isotropic CFRP laminates with embedded SMA foils was characterized in both quasi-static load-unload and fatigue tests. The relationship between crack density and applied strain was obtained. The recovery stress generated by embedded SMA foils could increase the onset strain of transverse cracking by 0.2%. The onset strain of delmination in CFRP laminates was also increased accordingly. The shear-lag analysis was also conducted to predict the damage evolution in CFRP laminates with embedded SMA foils. The adhesive layers on both sides of SMA foils were treated as shear elements. The theoretical analysis successfully predicted the experimental results.

  14. Progressive matrix cracking in off-axis plies of a general symmetric laminate

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1993-01-01

    A generalized shear-lag model is derived to determine the average through-the-thickness stress state present in a layer undergoing transverse matrix cracking, by extending the method of Lee and Daniels (1991) to a general symmetric multilayered system. The model is capable of considering cracking in layers of arbitrary orientation, states of general in-plane applied loading, and laminates with a general symmetric stacking sequence. The model is included in a computer program designed for probabilistic laminate analysis, and the results are compared to those determined with the ply drop-off technique.

  15. Is there a quasi-biennial oscillation in tropical deep convection?

    NASA Astrophysics Data System (ADS)

    Collimore, Christopher C.; Hitchman, Matthew H.; Martin, David W.

    We investigate the possibility that the stratospheric Quasi-Biennial Oscillation (QBO) modulates deep convection in the tropics. Interannual variations of outgoing longwave radiation (OLR) in the tropics during 1975-87 are compared with stratospheric zonal winds at Singapore (a measure of the QBO), and with the Tahiti-Darwin sea level pressure difference (the Southern Oscillation Index, or SOI). A monthly time series of anomalous OLR was constructed for regions of consistently low OLR, thus targeting areas of chronic deep convection. This “chronic cold” index and the SOI correlate at -0.6 for zero lag. The “chronic cold” index correlates with 30 hPa Singapore winds at +0.3 and with 50 hPa-70 hPa wind differences at +0.4, both near zero lag. These results are not inconsistent with the hypothesis that deep convection may be enhanced in chronically cold areas when QBO westward shear exists in the lower stratosphere, and diminished during eastward shear.

  16. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  17. The exact solution of shear-lag problems in flat panels and box beams assumed rigid in the transverse direction

    NASA Technical Reports Server (NTRS)

    Hildebrand, Francis B

    1943-01-01

    A mathematical procedure is herein developed for obtaining exact solutions of shear-lag problems in flat panels and box beams: the method is based on the assumption that the amount of stretching of the sheets in the direction perpendicular to the direction of essential normal stresses is negligible. Explicit solutions, including the treatment of cut-outs, are given for several cases and numerical results are presented in graphic and tabular form. The general theory is presented in a from which further solutions can be readily obtained. The extension of the theory to cover certain cases of non-uniform cross section is indicated. Although the solutions are obtained in terms of infinite series, the present developments differ from those previously given in that, in practical cases, the series usually converge so rapidly that sufficient accuracy is afforded by a small number of terms. Comparisons are made in several cases between the present results and the corresponding solutions obtained by approximate procedures devised by Reissner and by Kuhn and Chiarito.

  18. Experimental micromechanical approach to failure process in CFRP cross-ply laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    The microscopic failure process of three different types of cross-ply laminates, (0/90{sub n}/0) (n = 4, 8, 12), was investigated at R.T. and 80 C. Progressive damage parameters, the transverse crack density and the delamination ratio, were measured. A simple modified shear-lag analysis including the thermal residual strains was conducted to predict the transverse crack density as a function of laminate strain, considering the constraint effect, as well as the strength distribution of the transverse layer. The analysis was also extended to the system containing delamination to predict the delamination length. A prediction was also presented for the transverse crackmore » density including the effect of the delamination growth. The prediction showed good agreement with the experimental results.« less

  19. Shear-wave polarization anisotropy in the mantle wedge beneath the southern part of Tohoku, Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, J.; Nakajima, J.; Hasegawa, A.

    2003-12-01

    We investigated shear-wave polarization anisotropy in the mantle wedge beneath the southern part of Tohoku, Japan, by using waveform data of intermediate depth earthquakes with M>2.5 recorded by the seismic networks of Tohoku University and Japan Meteorological Agency (JMA). We selected waveform data with ray paths whose incident angles to the surface are 35 degrees or less to avoid contamination of particle motions by converted phases. All the seismograms thus selected were filtered with bandpassed ranges of 2-8 Hz. Cross-correlation method [Ando et al., 1983] was used for determining delay time between the leading and following shear-waves (delay time) and the leading shear-wave polarization direction (fast direction). Two horizontal components of observed seismograms were rotated with the direction from 0 to 180 degrees with an interval of 5 degrees, and shifted one horizontal component by a time lag. The time lag varied from 0 to 1 s with an interval of 0.01 s. The length of time window used to calculate correlation coefficient was set to be nearly equal to one cycle of the shear-wave. We do not use the data whose maximum correlation coefficient is less than 0.8. Obtained results show that most of the fast directions at stations in the back-arc side are nearly E-W, whereas those at stations in the fore-arc side are N-S. We infer that the anisotropy caused by lattice-preferred orientation of olivine, which is probably produced by flow in the mantle wedge, is a likely candidate for the observed shear-wave splitting with E-W trend fast directions in the back-arc side. Although it is not certain what causes the N-S trend fast directions in the for-arc side, the same trend is seen in the previous studies of other areas in Tohoku [Okada et al.,1995; Nakajima, 2002]. Observed delay times are mostly 0.1-0.3 s, which is consistent with the results of Okada et al. [1995] and Nakajima [2002]. Acknowledgments: We are grateful to the staff of the JMA for allowing us to use their data.

  20. Role of Wall Shear Stress in Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.

    PubMed

    Luo, Xia; Jedlicka, Sabrina S; Jellison, Kristen L

    2017-12-15

    This study investigated Cryptosporidium parvum oocyst deposition onto biofilms as a function of shear stress under laminar or turbulent flow. Annular rotating bioreactors were used to grow stabilized stream biofilms at shear stresses ranging from 0.038 to 0.46 Pa. These steady-state biofilms were then used to assess the impact of hydrodynamic conditions on C. parvum oocyst attachment. C. parvum deposition onto biofilms followed a pseudo-second-order model under both laminar (after a lag phase) and turbulent flows. The total number of oocysts attached to the biofilm at steady state decreased as the hydrodynamic wall shear stress increased. The oocyst deposition rate constant increased with shear stress but decreased at high shear, suggesting that increasing wall shear stress results in faster attachment of Cryptosporidium due to higher mass transport until the shear forces exceed a critical limit that prevents oocyst attachment. These data show that oocyst attachment in the short and long term are impacted differently by shear: higher shear (to a certain limit) may be associated with faster initial oocyst attachment, but lower shear is associated with greater numbers of oocysts attached at equilibrium. IMPORTANCE This research provides experimental evidence to demonstrate that shear stress plays a critical role in protozoan-pathogen transport and deposition in environmental waters. The data presented in this work expand scientific understanding of Cryptosporidium attachment and fate, which will further influence the development of timely and accurate sampling strategies, as well as advanced water treatment technologies, to target protozoan pathogens in surface waters that serve as municipal drinking water sources. Copyright © 2017 American Society for Microbiology.

  1. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates.

    PubMed

    Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H

    2016-03-31

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.

  2. Composite laminate free-edge reinforcement with U-shaped caps. I - Stress analysis. II - Theoretical-experimental correlation

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, Terry, Jr.; Jones, Robert M.

    1989-01-01

    The present generalized plane-strain FEM analysis for the prediction of interlaminar normal stress reduction when a U-shaped cap is bonded to the edge of a composite laminate gives attention to the highly variable transverse stresses near the free edge, cap length and thickness, and a gap under the cap due to the manufacturing process. The load-transfer mechanism between cap and laminate is found to be strain-compatibility, rather than shear lag. In the second part of this work, the three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge-cap designs; symmetric 11-layer graphite-epoxy laminates with a one-layer cap of kevlar-epoxy are shown to carry 130-140 percent greater loading than uncapped laminates, under static tensile and tension-tension fatigue loading.

  3. Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Zhao, Haikun; Wu, Liguang; Raga, G. B.

    2018-02-01

    This study documents the inter-decadal change of the lagged inter-annual relationship between the TC frequency (TCF) and the local sea surface temperature (SST) in the western North Pacific (WNP) during 1979-2014. An abrupt shift of the lagged relationship between them is observed to occur in 1998. Before the shift (1979-1997), a moderately positive correlation (0.35) between previous-year local SST and TCF is found, while a significantly negative correlation (- 0.71) is found since the shift (1998-2014). The inter-decadal change of the lagged relationship between TCF and local SST over the WNP is also accompanied by an inter-decadal change in the lagged inter-annual relationship between large-scale factors affecting TCs and local SST over the WNP. During 1998-2014, the previous-year local SST shows a significant negative correlation with the mid-level moisture and a significant positive correlation with the vertical wind shear over the main development region of WNP TC genesis. Almost opposite relationships are seen during 1979-1997, with a smaller magnitude of the correlation coefficients. These changes are consistent with the changes of the lagged inter-annual relationship between upper- and lower-level winds and local SST over the WNP. Analyses further suggests that the inter-decadal shift of the lagged inter-annual relationship between WNP TCF and local SST may be closely linked to the inter-decadal change of inter-annual SST transition over the tropical central-eastern Pacific associated with the climate regime shift in the late 1990s. Details on the underlying physical process need further investigation using observations and simulations.

  4. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  5. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  6. Fracture and crack growth in orthotropic laminates. Part 1: Analysis of a hybrid, unidirectional laminate with damage

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1982-01-01

    The fracture behavior of unifirectional hybrid (buffer strip) composite laminates is studied. Three particular solutions are discussed: (1) broken fibers in a unidirectional half plane; (2) adjoined half planes of different fiber and matrix properties and (3) the solution of two half planes bounding a third distinct region of finite width. This finite width region represents a buffer strip and the potential of this strip to arrest a crack that originates in one of the half planes is investigated. The analysis is based on a materials modeling approach using the classical shear lag assumption to described the stress transfer between fibers. Explicit fiber and matrix properties of the three regions are retained and changes in the laminate behavior as a function of the relative material properties, buffer strip width and initial crack length are discussed.

  7. Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Adams, D. S.; Bowles, D. E.; Herakovich, C. T.

    1983-01-01

    The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.

  8. Experimental investigation of compliant wall surface deformation in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Cao; Wang, Jin; Katz, Joseph

    2016-11-01

    The dynamic response of a compliant wall under a turbulent channel flow is investigated by simultaneously measuring the time-resolved, 3D flow field (using tomographic PIV) and the 2D surface deformation (using interferometry). The pressure distributions are calculated by spatially integrating the material acceleration field. The Reynolds number is Reτ = 2300, and the centerline velocity (U0) is 15% of the material shear speed. The wavenumber-frequency spectra of the wall deformation contain a non-advected low-frequency component and advected modes, some traveling downstream at U0 and others at 0.72U0. Trends in the wall dynamics are elucidated by correlating the deformation with flow variables. The spatial pressure-deformation correlations peak at y/ h 0.12 (h is half channel height), the elevation of Reynolds shear stress maximum in the log-layer. Streamwise lagging of the deformation behind the pressure is caused in part by phase-lag of the pressure with decreasing distance from the wall, and in part by material damping. Positive deformations (bumps) are preferentially associated with ejections, which involve spanwise vortices located downstream and quasi-streamwise vortices with spanwise offset, consistent with hairpin-like structures. The negative deformations (dents) are preferentially associated with pressure maxima at the transition between an upstream sweep to a downstream ejection. Sponsored by ONR.

  9. Dynamic analysis of rotor flex-structure based on nonlinear anisotropic shell models

    NASA Astrophysics Data System (ADS)

    Bauchau, Olivier A.; Chiang, Wuying

    1991-05-01

    In this paper an anisotropic shallow shell model is developed that accommodates transverse shearing deformations and arbitrarily large displacements and rotations, but strains are assumed to remain small. Two kinematic models are developed, the first using two DOF to locate the direction of the normal to the shell's midplane, the second using three. The latter model allows for an automatic compatibility of the shell model with beam models. The shell model is validated by comparing its predictions with several benchmark problems. In actual helicopter rotor blade problems, the shell model of the flex structure is shown to give very different results shown compared to beam models. The lead-lag and torsion modes in particular are strongly affected, whereas flapping modes seem to be less affected.

  10. The role of zonal flows and predator–prey oscillations in triggering the formation of edge and core transport barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.

    2014-04-24

    Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less

  11. The role of zonal flows and predator-prey oscillations in triggering the formation of edge and core transport barriers

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.

    2014-07-01

    We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.

  12. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  13. Fracture mechanics of matrix cracking and delamination in glass/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Caslini, M.; Zanotti, C.; Obrien, T. K.

    1986-01-01

    This study focused on characterizing matrix cracking and delamination behavior in multidirectional laminates. Static tension and tension-tension fatigue tests were conducted on two different layups. Damage onset, accumulation, and residual properties were measured. Matrix cracking was shown to have a considerable influence on residual stiffness of glass epoxy laminates, and could be predicted reasonably well for cracks in 90 deg piles using a simple shear lag analysis. A fracture mechanics analysis for the strain energy release rate associated with 90 deg ply-matrix crack formation was developed and was shown to correlate the onset of 90 deg ply cracks in different laminates. The linear degradation of laminate modulus with delamination area, previously observed for graphite epoxy laminates, was predicted for glass epoxy laminates using a simple rule of mixtures analysis. The strain energy release rate associated with edge delamination formation under static and cyclic loading was difficult to analyze because of the presence of several contemporary damage phenomena.

  14. Aeroelastic response and blade loads of a composite rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  15. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  16. Factors affecting suspended-solids concentrations in South San Francisco Bay, California

    USGS Publications Warehouse

    Schoellhamer, D.H.

    1996-01-01

    Measurements of suspended-solids concentration (SSC) were made at two depths at three sites in South San Francisco Bay (South Bay) to determine the factors that affect SSC. Twenty-eight segments of reliable and continuous SSC time series data longer than 14 days were collected from late 1991 or 1992 through September 1993. Spectral analysis and singular spectrum analysis were used to relate these data segments to time series of several potential forcing factors, including diurnal and semidiurnal tides, the spring-neap tidal cycle, wind shear, freshwater runoff, and longitudinal density differences. SSC is greatest during summer when a landward wind shear is applied to South Bay by the afternoon sea breeze. About one half the variance of SSC is caused by the spring-neap cycle, and SSC lags the spring-neap cycle by about 2 days. Relatively short duration of slack water limits the duration of deposition of suspended solids and consolidation of newly deposited bed sediment during the tidal cycle, so suspended solids accumulate in the water column as a spring tide is approached and slowly deposit as a neap tide is approached. Perturbations in SSC caused by wind and local runoff from winter storms during the study period were usually much smaller than SSC variations caused by the spring-neap cycle. Variations of SSC at the study sites at tidal timescales are tidally forced, and nonlinear physical processes are significant. Advective transport dominates during spring tides when water with higher SSC due to wind wave resuspension is advected to the main channel from shallow water, but during neap tides, advective transport is less significant. The findings of this and other studies indicate that the tidally averaged transport of suspended solids responds to seasonal variations of wind shear in South Bay.

  17. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1981-01-01

    A review of some approximate analytical models for damaged, fiber reinforced composite materials is presented. Using the classical shear lag stress displacement assumption, solutions are presented for a unidirectional laminate containing a notch, a rectangular cut-out, and a circular hole. The models account for longitudinal matrix yielding and splitting as well as transverse matrix yielding and fiber breakage. The constraining influence of a cover sheet on the unidirectional laminate is also modeled.

  18. Enhanced tendon-to-bone repair through adhesive films.

    PubMed

    Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros

    2018-04-01

    Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold. Experiments using idealized and clinically-relevant repairs validated these models. This work demonstrates an opportunity to dramatically improve tendon-to-bone repair strength using adhesive films with appropriate material properties. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  20. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    PubMed

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  1. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    PubMed Central

    Zhang, Fangzhou; Bordia, Rajendra K.

    2018-01-01

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates. PMID:29584647

  2. Recommendations for numerical solution of reinforced-panel and fuselage-ring problems

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Libby, Paul A

    1949-01-01

    Procedures are recommended for solving the equations of equilibrium of reinforced panels and isolated fuselage rings as represented by the external loads and the operations table established according to Southwell's method. From the solution of these equations the stress distribution can be easily determined. The method of systematic relaxations, the matrix-calculus method, and several other methods applicable in special cases are discussed. Definite recommendations are made for obtaining the solution of reinforced-panel problems which are generally designated as shear lag problems. The procedures recommended are demonstrated in the analysis of a number of panels. In the case of fuselage rings it is not possible to make definite recommendations for the solution of the equilibrium equations for all rings and loadings. However, suggestions based on the latest experience are made and demonstrated on several rings.

  3. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films

    PubMed Central

    Qu, Jing; Ouyang, Liangqi; Kuo, Chin-chen; Martin, David C.

    2015-01-01

    Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this study the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 ± 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 ± 0.6 MPa. PMID:26607768

  4. Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Q.

    1994-01-01

    The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.

  5. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau

    NASA Astrophysics Data System (ADS)

    Calixto, Frank J.; Robinson, Danielle; Sandvol, Eric; Kay, Suzanne; Abt, David; Fischer, Karen; Heit, Ben; Yuan, Xiaohui; Comte, Diana; Alvarado, Patricia

    2014-11-01

    We have investigated the seismic anisotropy beneath the Central Andean southern Puna plateau by applying shear wave splitting analysis and shear wave splitting tomography to local S waves and teleseismic SKS, SKKS and PKS phases. Overall, a very complex pattern of fast directions throughout the southern Puna plateau region and a circular pattern of fast directions around the region of the giant Cerro Galan ignimbrite complex are observed. In general, teleseismic lag times are much greater than those for local events which are interpreted to reflect a significant amount of sub and inner slab anisotropy. The complex pattern observed from shear wave splitting analysis alone is the result of a complex 3-D anisotropic structure under the southern Puna plateau. Our application of shear wave splitting tomography provides a 3-D model of anisotropy in the southern Puna plateau that shows different patterns depending on the driving mechanism of upper-mantle flow and seismic anisotropy. The trench parallel a-axes in the continental lithosphere above the slab east of 68W may be related to deformation of the overriding continental lithosphere since it is under compressive stresses which are orthogonal to the trench. The more complex pattern below the Cerro Galan ignimbrite complex and above the slab is interpreted to reflect delamination of continental lithosphere and upwelling of hot asthenosphere. The a-axes beneath the Cerro Galan, Cerro Blanco and Carachi Pampa volcanic centres at 100 km depth show some weak evidence for vertically orientated fast directions, which could be due to vertical asthenospheric flow around a delaminated block. Additionally, our splitting tomographic model shows that there is a significant amount of seismic anisotropy beneath the slab. The subslab mantle west of 68W shows roughly trench parallel horizontal a-axes that are probably driven by slab roll back and the relatively small coupling between the Nazca slab and the underlying mantle. In contrast, the subslab region (i.e. depths greater than 200 km) east of 68W shows a circular pattern of a-axes centred on a region with small strength of anisotropy (Cerro Galan and its eastern edge) which suggest the dominant mechanism is a combination of slab roll back and flow driven by an overlying abnormally heated slab or possibly a slab gap. There seems to be some evidence for vertical flow below the slab at depths of 200-400 km driven by the abnormally heated slab or slab gap. This cannot be resolved by the tomographic inversion due to the lack of ray crossings in the subslab mantle.

  6. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  7. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  8. Modeling eye gaze patterns in clinician-patient interaction with lag sequential analysis.

    PubMed

    Montague, Enid; Xu, Jie; Chen, Ping-Yu; Asan, Onur; Barrett, Bruce P; Chewning, Betty

    2011-10-01

    The aim of this study was to examine whether lag sequential analysis could be used to describe eye gaze orientation between clinicians and patients in the medical encounter. This topic is particularly important as new technologies are implemented into multiuser health care settings in which trust is critical and nonverbal cues are integral to achieving trust. This analysis method could lead to design guidelines for technologies and more effective assessments of interventions. Nonverbal communication patterns are important aspects of clinician-patient interactions and may affect patient outcomes. The eye gaze behaviors of clinicians and patients in 110 videotaped medical encounters were analyzed using the lag sequential method to identify significant behavior sequences. Lag sequential analysis included both event-based lag and time-based lag. Results from event-based lag analysis showed that the patient's gaze followed that of the clinician, whereas the clinician's gaze did not follow the patient's. Time-based sequential analysis showed that responses from the patient usually occurred within 2 s after the initial behavior of the clinician. Our data suggest that the clinician's gaze significantly affects the medical encounter but that the converse is not true. Findings from this research have implications for the design of clinical work systems and modeling interactions. Similar research methods could be used to identify different behavior patterns in clinical settings (physical layout, technology, etc.) to facilitate and evaluate clinical work system designs.

  9. Modeling Eye Gaze Patterns in Clinician-Patient Interaction with Lag Sequential Analysis

    PubMed Central

    Montague, E; Xu, J; Asan, O; Chen, P; Chewning, B; Barrett, B

    2011-01-01

    Objective The aim of this study was to examine whether lag-sequential analysis could be used to describe eye gaze orientation between clinicians and patients in the medical encounter. This topic is particularly important as new technologies are implemented into multi-user health care settings where trust is critical and nonverbal cues are integral to achieving trust. This analysis method could lead to design guidelines for technologies and more effective assessments of interventions. Background Nonverbal communication patterns are important aspects of clinician-patient interactions and may impact patient outcomes. Method Eye gaze behaviors of clinicians and patients in 110-videotaped medical encounters were analyzed using the lag-sequential method to identify significant behavior sequences. Lag-sequential analysis included both event-based lag and time-based lag. Results Results from event-based lag analysis showed that the patients’ gaze followed that of clinicians, while clinicians did not follow patients. Time-based sequential analysis showed that responses from the patient usually occurred within two seconds after the initial behavior of the clinician. Conclusion Our data suggest that the clinician’s gaze significantly affects the medical encounter but not the converse. Application Findings from this research have implications for the design of clinical work systems and modeling interactions. Similar research methods could be used to identify different behavior patterns in clinical settings (physical layout, technology, etc.) to facilitate and evaluate clinical work system designs. PMID:22046723

  10. AN INVESTIGATION OF TIME LAG MAPS USING THREE-DIMENSIONAL SIMULATIONS OF HIGHLY STRATIFIED HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Lionello, Roberto; Downs, Cooper

    2016-11-10

    The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use themore » 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion.« less

  11. Simulation of 90{degrees} ply fatigue crack growth along the width of cross-ply carbon-epoxy coupons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henaff-Gardin, C.; Urwald, E.; Lafarie-Frenot, M.C.

    1994-07-01

    We study the mechanism of fatigue cracking of the matrix of cross-ply carbon-epoxy laminates. Primary attention is given to the study of the influence of the specimen width on the evolution of damage. On the basis of shear lag analysis, we determine the strain energy release rate in the processes of initiation and growth of transverse fatigue cracks. We also present results of experimental research on the evolution of the edge crack density per ply, the average length of the cracks, and the crack propagation rate under transverse fatigue cracking. It is shown that these characteristics are independent of themore » specimen width. At the same time, as soon as the edge crack density reaches its saturation value, the average crack growth rate becomes constant. All the experimental results are in good agreement with results obtained by using the theoretical model.« less

  12. Nanoflare vs Footpoint Heating : Observational Signatures

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Alexander, Caroline; Lionello, Roberto; Linker, Jon; Mikic, Zoran; Downs, Cooper

    2015-01-01

    Time lag analysis shows very long time lags between all channel pairs. Impulsive heating cannot address these long time lags. 3D Simulations of footpoint heating shows a similar pattern of time lags (magnitude and distribution) to observations. Time lags and relative peak intensities may be able to differentiate between TNE and impulsive heating solutions. Adding a high temperature channel (like XRT Be-­thin) may improve diagnostics.

  13. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave propagating outward from reconnection region.

  14. The Lag-Luminosity Relation in the GRB Source-Frame: An Investigation with Swift BAT Bursts

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Dhuga, K. S.; Stamatikos, M.; Dermer, C. D.; Sakamoto, T.; Sonbas, E.; Parke, W. C.; Maximon, L. C.; Linnemann, J. T.; Bhat, P. N.; hide

    2012-01-01

    Spectral lag, which is defined as the difference in time of arrival of high and low energy photons, is a common feature in Gamma-ray Bursts (GRBs). Previous investigations have shown a correlation between this lag and the isotropic peak luminosity for long duration bursts. However, most of the previous investigations used lags extracted in the observer-frame only. In this work (based on a sample of 43 Swift long GRBs with known redshifts), we present an analysis of the lag-luminosity relation in the GRB source-frame. Our analysis indicates a higher degree of correlation -0.82+/-0.05 (chance probability of approx 5.5 X 10(exp -5) between the spectral lag and the isotropic peak luminosity, L(sub iso), with a best-fit power-law index of -1.2 +/- 0.2, such that L(sub iso) varies as lag(exp -1.2). In addition, there is an anti-correlation between the source-frame spectral lag and the source-frame peak energy of the burst spectrum, E(sub pk)(1 + z).

  15. [Complexity and its integrative effects of the time lags of environment factors affecting Larix gmelinii stem sap flow].

    PubMed

    Wang, Hui-Mei; Sun, Wei; Zu, Yuan-Gang; Wang, Wen-Jie

    2011-12-01

    Based on the one-year (2005) observations with a frequency of half hour on the stem sap flow of Larix gmelinii plantation trees planted in 1969 and the related environmental factors air humidity (RH), air temperature (T(air)), photosynthetic components active radiation (PAR), soil temperature (T(soil)), and soil moisture (TDR), principal analysis (PCA) and correction analysis were made on the time lag effect of the stem flow in different seasons (26 days of each season) and in a year via dislocation analysis, with the complexity and its integrative effects of the time lags of environment factors affecting the stem sap flow approached. The results showed that in different seasons and for different environmental factors, the time lag effect varied obviously. In general, the time lag of PAR was 0.5-1 hour ahead of sap flow, that of T(air) and RH was 0-2 hours ahead of or behind the sap flow, and the time lags of T(soil) and TDR were much longer or sometimes undetectable. Because of the complexity of the time lags, no evident improvements were observed in the linear correlations (R2, slope, and intercept) when the time lags based on short-term (20 days) data were used to correct the time lags based on whole year data. However, obvious improvements were found in the standardized and non-standardized correlation coefficients in stepwise multiple regressions, i.e., the time lag corrections could improve the effects of RH, but decreased the effects of PAR, T(air), and T(soil). PCA could be used to simplify the complexity. The first and the second principal components could stand for over 75% information of all the environmental factors in different seasons and in whole year. The time lags of both the first and the second principal components were 1-1.5 hours in advance of the sap flow, except in winter (no time lag effect).

  16. Fatigue crack growth in unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Telesman, Jack; Kantzos, Peter

    1990-01-01

    The weight function method was used to determine the effective stress intensity factor and the crack opening profile for a fatigue tested composite which exhibited fiber bridging. The bridging mechanism was modeled using two approaches; the crack closure approach and the shear lag approach. The numerically determined stress intensity factor values from both methods were compared and correlated with the experimentally obtained crack growth rates for SiC/Ti-15-3 (0)(sub 8) oriented composites. The near crack tip opening profile was also determined for both methods and compared with the experimentally obtained measurements.

  17. The Lag-Luminosity Relation in the GRB Source Frame: An Investigation with Swift BAT Bursts

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Dhuga, K. S.; Stamatikos, M.; Dermer, C. D.; Sakamoto, T.; Sonbas, E.; Parke, W. C.; Maximon, L. C.; Linnemann, J. T.; Bhat, P. N.; hide

    2011-01-01

    Spectral lag. which is defined as the difference in time of arrival of high- and low-energy photons. is a common feature in gamma-ray bursts (GRBs). Previous investigations have shown a correlation between this lag and the isotropic peak luminosity for long duration bursts. However. most of the previous investigations used lags extracted in the observer frame only. In this work (based on a sample of 43 Swift long GRBs with known redshifts). we present an analysis of the lag-luminosity relation in the GRB source frame. Our analysis indicates a higher degree of correlation -0.82 +/- 0.05 (chance probability of approx. 5.5 x 10(exp -5) between the spectral lag and the isotropic peak luminosity, L(sub iso). with a best-fitting power-law index of -1.2 +/- 0.2. In addition, there is an anticorrelation between the source-frame spectral lag and the source-frame peak energy of the burst spectrum.

  18. Flap-lag-torsional dynamic modelling of rotor blades in hover and in forward flight, including the effect of cubic nonlinearities

    NASA Technical Reports Server (NTRS)

    Crespodasilva, M. R. M.

    1981-01-01

    The differential equations of motion, and boundary conditions, describing the flap-lead/lag-torsional motion of a flexible rotor blade with a precone angle and a variable pitch angle, which incorporates a pretwist, are derived via Hamilton's principle. The meaning of inextensionality is discussed. The equations are reduced to a set of three integro partial differential equations by elimination of the extension variable. The generalized aerodynamic forces are modelled using Greenberg's extension of Theodorsen's strip theory. The equations of motion are systematically expanded into polynomial nonlinearities with the objective of retaining all terms up to third degree. The blade is modeled as a long, slender, of isotropic Hookean materials. Offsets from the blade's elastic axis through its shear center and the axes for the mass, area and aerodynamic centers, radial nonuniformaties of the blade's stiffnesses and cross section properties are considered and the effect of warp of the cross section is included in the formulation.

  19. Lean production of taste improved lipidic sodium benzoate formulations.

    PubMed

    Eckert, C; Pein, M; Breitkreutz, J

    2014-10-01

    Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  1. Direct and Large Eddy Simulation of non-equilibrium wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Park, Hee-Jun

    2005-11-01

    The performance of several existing SGS models in non-equilibrium wall-bounded turbulent flows is investigated through comparisons of LES and DNS. The test problem is a shear-driven three-dimensional turbulent channel flow at base Reτ˜210 established by impulsive motion of one of the channel walls in the spanwise direction with a spanwise velocity equal to 3/4 of the bulk mean velocity in the channel. The DNS and LES are performed using pseudo-spectral methods with resolutions of 128x128x129 and 32x64x65, respectively. The SGS models tested include the nonlinear Interactions Approximation model (NIA) [Haliloglu and Akhavan (2004)], the Dynamic Smagorinsky model (DSM) [Germano et al. (1991)], and the Dynamic Mixed Model (DMM) [Zang et al. (1993)]. The results show that NIA gives the best overall agreement with DNS. Both DMM and DSM over-predict the decay of the mean streamwise wall shear stress on the moving wall, while NIA gives results in close agreements with DNS. Similarly, NIA gives the best agreement with DNS in the prediction of the mean velocity, the higher-order turbulence statistics, and the lag angle between the mean shear and the turbulent shear stress. These results suggest that non-equilibrium wall-bounded turbulent flows can be accurately computed by LES with NIA as the SGS model.

  2. Distributed lags time series analysis versus linear correlation analysis (Pearson's r) in identifying the relationship between antipseudomonal antibiotic consumption and the susceptibility of Pseudomonas aeruginosa isolates in a single Intensive Care Unit of a tertiary hospital.

    PubMed

    Erdeljić, Viktorija; Francetić, Igor; Bošnjak, Zrinka; Budimir, Ana; Kalenić, Smilja; Bielen, Luka; Makar-Aušperger, Ksenija; Likić, Robert

    2011-05-01

    The relationship between antibiotic consumption and selection of resistant strains has been studied mainly by employing conventional statistical methods. A time delay in effect must be anticipated and this has rarely been taken into account in previous studies. Therefore, distributed lags time series analysis and simple linear correlation were compared in their ability to evaluate this relationship. Data on monthly antibiotic consumption for ciprofloxacin, piperacillin/tazobactam, carbapenems and cefepime as well as Pseudomonas aeruginosa susceptibility were retrospectively collected for the period April 2006 to July 2007. Using distributed lags analysis, a significant temporal relationship was identified between ciprofloxacin, meropenem and cefepime consumption and the resistance rates of P. aeruginosa isolates to these antibiotics. This effect was lagged for ciprofloxacin and cefepime [1 month (R=0.827, P=0.039) and 2 months (R=0.962, P=0.001), respectively] and was simultaneous for meropenem (lag 0, R=0.876, P=0.002). Furthermore, a significant concomitant effect of meropenem consumption on the appearance of multidrug-resistant P. aeruginosa strains (resistant to three or more representatives of classes of antibiotics) was identified (lag 0, R=0.992, P<0.001). This effect was not delayed and it was therefore identified both by distributed lags analysis and the Pearson's correlation coefficient. Correlation coefficient analysis was not able to identify relationships between antibiotic consumption and bacterial resistance when the effect was delayed. These results indicate that the use of diverse statistical methods can yield significantly different results, thus leading to the introduction of possibly inappropriate infection control measures. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Flight-determined lag of angle-of-attack and angle-of-sideslip sensors in the YF-12A airplane from analysis of dynamic maneuvers

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Belte, D.

    1974-01-01

    Magnitudes of lags in the pneumatic angle-of-attack and angle-of-sideslip sensor systems of the YF-12A airplane were determined for a variety of flight conditions by analyzing stability and control data. The three analysis techniques used are described. An apparent trend with Mach number for measurements from both of the differential-pressure sensors showed that the lag ranged from approximately 0.15 second at subsonic speed to 0.4 second at Mach 3. Because Mach number was closely related to altitude for the available flight data, the individual effects of Mach number and altitude on the lag could not be separated clearly. However, the results indicated the influence of factors other than simple pneumatic lag.

  4. Use of segmented constrained layer damping treatment for improved helicopter aeromechanical stability

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu

    2000-08-01

    The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.

  5. LAG-3 in Non-Small-cell Lung Cancer: Expression in Primary Tumors and Metastatic Lymph Nodes Is Associated With Improved Survival.

    PubMed

    Hald, Sigurd M; Rakaee, Mehrdad; Martinez, Inigo; Richardsen, Elin; Al-Saad, Samer; Paulsen, Erna-Elise; Blix, Egil Støre; Kilvaer, Thomas; Andersen, Sigve; Busund, Lill-Tove; Bremnes, Roy M; Donnem, Tom

    2018-05-01

    Lymphocyte activation gene-3 (LAG-3) is an immune checkpoint receptor and a putative therapeutic target in non-small-cell lung cancer (NSCLC). We explored the prognostic effect of LAG-3 + tumor-infiltrating lymphocytes (TILs) in primary tumors and metastatic lymph nodes in NSCLC and its potential for inclusion in an immunoscore, supplementing the TNM classification. Primary tumor tissue from 553 stage I-IIIB NSCLC patients and 143 corresponding metastatic lymph nodes were collected. The expression of LAG-3 was evaluated by immunohistochemistry on tissue microarrays. On univariate analysis, LAG-3 + TILs in the intraepithelial and stromal compartments of primary tumors and in the intraepithelial and extraepithelial compartments of metastatic lymph nodes were associated with improved disease-specific survival (DSS). On multivariate analysis, stromal LAG-3 + TILs were a significant independent predictor of improved DSS (hazard ratio [HR], 0.59; 95% confidence interval [CI], 0.43-0.82; P = .002). Stromal LAG-3 + TILs did not have prognostic impact across all pathologic stages. In the metastatic lymph nodes, intraepithelial (HR, 0.61; 95% CI, 0.38-0.99; P = .049) and extraepithelial (HR, 0.54; 95% CI, 0.29-0.70; P < .001) LAG-3 + TILs were independently associated with favorable DSS. LAG-3 + TILs are an independent positive prognostic factor in stage I-IIIB NSCLC. LAG-3 in metastatic lymph nodes is a candidate marker for an immunoscore in NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Spectral lags in different episodes of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Jia, LanWei; Yi, TingFeng; Liang, EnWei

    2013-08-01

    A systematical analysis of the spectral lags in different episodes within a gamma-ray burst (GRB) for the BATSE GRB sample is given. The identified episodes are usually a single pulse with mixing of small fluctuations. The spectral lags were calculated for lightcurves in the 25-55 keV and 110-320 keV bands. No universal spectral lag evolution feature in different episodes within a GRB were found for most GRBs. Among 362 bright GRBs that have at least three well-identified episodes, 19 of them show long-to-short lag and 19 of them show short-to-long lag in successive episodes. The other 324 GRBs have no clear evolution trend. Defining the specified lag with the ratio of the spectral lag to the episode duration in 110-320 keV band, no prominent case of specified lag was found showing clear evolution features. The results suggest that the observed spectral lag may contribute to the dynamics and/or the radiation physics of a given emission episode.

  7. Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale

    NASA Astrophysics Data System (ADS)

    Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe

    2017-08-01

    A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.Plain Language SummaryWe develop a core scale modeling method to simulate the viscoelastic properties of rocks saturated with viscous fluid at low frequencies based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. By using this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the composite's viscoelastic properties. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and pore aspect ratio affect the rock frame stiffness and result in different viscoelastic behavior of the saturated rocks. The lower the rock frame stiffness, the larger the stress-strain phase lags. The viscoelastic properties of saturated rocks are more sensitive to the pore aspect ratio. The results suggest that significant seismic dispersion might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids. This will be important in the context of heavy hydrocarbon reservoirs and igneous rocks saturated with silicate melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJBm...60.1919Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJBm...60.1919Z"><span>Association between flood and the morbidity of bacillary dysentery in Zibo City, China: a symmetric bidirectional case-crossover study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Feifei; Ding, Guoyong; Liu, Zhidong; Zhang, Caixia; Jiang, Baofa</p> <p>2016-12-01</p> <p>This study examined the relationship between daily morbidity of bacillary dysentery and flood in 2007 in Zibo City, China, using a symmetric bidirectional case-crossover study. Odds ratios (ORs) and 95 % confidence intervals (CIs) on the basis of multivariate model and stratified analysis at different lagged days were calculated to estimate the risk of flood on bacillary dysentery. A total of 902 notified bacillary dysentery cases were identified during the study period. The median of case distribution was 7-year-old and biased to children. Multivariable analysis showed that flood was associated with an increased risk of bacillary dysentery, with the largest OR of 1.849 (95 % CI 1.229-2.780) at 2-day lag. Gender-specific analysis showed that there was a significant association between flood and bacillary dysentery among males only (ORs >1 from lag 1 to lag 5), with the strongest lagged effect at 2-day lag (OR = 2.820, 95 % CI 1.629-4.881), and the result of age-specific indicated that youngsters had a slightly larger risk to develop flood-related bacillary dysentery than older people at one shorter lagged day (OR = 2.000, 95 % CI 1.128-3.546 in youngsters at lag 2; OR = 1.879, 95 % CI 1.069-3.305 in older people at lag 3). Our study has confirmed that there is a positive association between flood and the risk of bacillary dysentery in selected study area. Males and youngsters may be the vulnerable and high-risk populations to develop the flood-related bacillary dysentery. Results from this study will provide recommendations to make available strategies for government to deal with negative health outcomes due to floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27121465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27121465"><span>Association between flood and the morbidity of bacillary dysentery in Zibo City, China: a symmetric bidirectional case-crossover study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Feifei; Ding, Guoyong; Liu, Zhidong; Zhang, Caixia; Jiang, Baofa</p> <p>2016-12-01</p> <p>This study examined the relationship between daily morbidity of bacillary dysentery and flood in 2007 in Zibo City, China, using a symmetric bidirectional case-crossover study. Odds ratios (ORs) and 95 % confidence intervals (CIs) on the basis of multivariate model and stratified analysis at different lagged days were calculated to estimate the risk of flood on bacillary dysentery. A total of 902 notified bacillary dysentery cases were identified during the study period. The median of case distribution was 7-year-old and biased to children. Multivariable analysis showed that flood was associated with an increased risk of bacillary dysentery, with the largest OR of 1.849 (95 % CI 1.229-2.780) at 2-day lag. Gender-specific analysis showed that there was a significant association between flood and bacillary dysentery among males only (ORs >1 from lag 1 to lag 5), with the strongest lagged effect at 2-day lag (OR = 2.820, 95 % CI 1.629-4.881), and the result of age-specific indicated that youngsters had a slightly larger risk to develop flood-related bacillary dysentery than older people at one shorter lagged day (OR = 2.000, 95 % CI 1.128-3.546 in youngsters at lag 2; OR = 1.879, 95 % CI 1.069-3.305 in older people at lag 3). Our study has confirmed that there is a positive association between flood and the risk of bacillary dysentery in selected study area. Males and youngsters may be the vulnerable and high-risk populations to develop the flood-related bacillary dysentery. Results from this study will provide recommendations to make available strategies for government to deal with negative health outcomes due to floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003765&hterms=signature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsignature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003765&hterms=signature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsignature"><span>Signatures of Steady Heating in Time Lag Analysis of Coronal Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Viall, Nicholeen M.; Klimchuk, James A.</p> <p>2016-01-01</p> <p>Among the multitude of methods used to investigate coronal heating, the time lag method of Viall Klimchuk is becoming increasingly prevalent as an analysis technique that is complementary to those that are traditionally used.The time lag method cross correlates light curves at a given spatial location obtained in spectral bands that sample different temperature plasmas. It has been used most extensively with data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We have previously applied the time lag method to entire active regions and surrounding the quiet Sun and created maps of the results. We find that the majority of time lags are consistent with the cooling of coronal plasma that has been impulsively heated. Additionally, a significant fraction of the map area has a time lag of zero. This does not indicate a lack of variability. Rather, strong variability must be present, and it must occur in phase between the different channels. We have previously shown that these zero time lags are consistent with the transition region response to coronal nanoflares, although other explanations are possible. A common misconception is that the zero time lag indicates steady emission resulting from steady heating. Using simulated and observed light curves, we demonstrate here that highly correlated light curves at zero time lag are not compatible with equilibrium solutions. Such light curves can only be created by evolution</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJB...87..168F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJB...87..168F"><span>Information-theoretic approach to lead-lag effect on financial markets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiedor, Paweł</p> <p>2014-08-01</p> <p>Recently the interest of researchers has shifted from the analysis of synchronous relationships of financial instruments to the analysis of more meaningful asynchronous relationships. Both types of analysis are concentrated mostly on Pearson's correlation coefficient and consequently intraday lead-lag relationships (where one of the variables in a pair is time-lagged) are also associated with them. Under the Efficient-Market Hypothesis such relationships are not possible as all information is embedded in the prices, but in real markets we find such dependencies. In this paper we analyse lead-lag relationships of financial instruments and extend known methodology by using mutual information instead of Pearson's correlation coefficient. Mutual information is not only a more general measure, sensitive to non-linear dependencies, but also can lead to a simpler procedure of statistical validation of links between financial instruments. We analyse lagged relationships using New York Stock Exchange 100 data not only on an intraday level, but also for daily stock returns, which have usually been ignored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081397','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081397"><span>A Comparison of Several Methods of Measuring Ignition Lag in a Compression-ignition Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spanogle, J A</p> <p>1934-01-01</p> <p>The ignition lag of a fuel oil in the combustion chamber of a high speed compression-ignition engine was measured by three different methods. The start of injection of the fuel as observed with a Stoborama was taken as the start of the period of ignition lag in all cases. The end of the period of ignition lag was determined by observation of the appearance of incandescence in the combustion chamber, by inspection of a pressure-time card for evidence of pressure rise, and by analysis of the indicator card for evidence of the combustion of a small but definite quantity of fuel. A comparison of the values for ignition lags obtained by these three methods indicates that the appearance of incandescence is later than other evidences of the start of combustion, that visual inspection of a pressure-time diagram gives consistent and usable values with a minimum requirement of time and/or apparatus, and that analysis of the indicator card is not worth while for ignition lag alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18329047','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18329047"><span>Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prats, Clara; Giró, Antoni; Ferrer, Jordi; López, Daniel; Vives-Rego, Josep</p> <p>2008-05-07</p> <p>The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071407&hterms=transverse+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtransverse%2Bstudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071407&hterms=transverse+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtransverse%2Bstudy"><span>Transverse cracking and stiffness reduction in composite laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuan, F. G.; Selek, M. C.</p> <p>1993-01-01</p> <p>A study of transverse cracking mechanism in composite laminates is presented using a singular hybrid finite element model. The model provides the global structural response as well as the precise local crack-tip stress fields. An elasticity basis for the problem is established by employing Lekhnitskii's complex variable potentials and method of eigenfunction expansion. Stress singularities associated with the transverse crack are obtained by decomposing the deformation into the symmetric and antisymmetric modes and proper boundary conditions. A singular hybrid element is thereby formulated based on the variational principle of a modified hybrid functional to incorporate local crack singularities. Axial stiffness reduction due to transverse cracking is studied. The results are shown to be in very good agreement with the existing experimental data. Comparison with simple shear lag analysis is also given. The effects of stress intensity factors and strain energy density on the increase of crack density are analyzed. The results reveal that the parameters approach definite limits when crack densities are saturated, an evidence of the existence of characteristic damage state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011Tectp.508...22E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011Tectp.508...22E"><span>The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.</p> <p>2011-07-01</p> <p>Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25798761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25798761"><span>Hemodynamic transition driven by stent porosity in sidewall aneurysms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes</p> <p>2015-05-01</p> <p>The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018542','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018542"><span>Crustal shear-wave splitting from local earthquakes in the Hengill triple junction, southwest Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Evans, J.R.; Foulger, G.R.; Julian, B.R.; Miller, A.D.</p> <p>1996-01-01</p> <p>The Hengill region in SW Iceland is an unstable ridge-ridge-transform triple junction between an active and a waning segment of the mid-Atlantic spreading center and a transform that is transgressing southward. The triple junction contains active and extinct spreading segments and a widespread geothermal area. We evaluated shear-wave birefringence for locally recorded upper-crustal earthquakes using an array of 30 three-component digital seismographs. Fast-polarization directions, ??, are mostly NE to NNE, subparallel to the spreading axis and probably caused by fissures and microcracks related to spreading. However, there is significant variability in ?? throughout the array. The lag from fast to slow S is not proportional to earthquake depth (ray length), being scattered at all depths. The average wave-speed difference between qS1 and qS2 in the upper 2-5 km of the crust is 2-5%. Our results suggest considerable heterogeneity or strong S scattering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356339-mode-transitions-limit-cycle-oscillations-from-mean-field-transport-equations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356339-mode-transitions-limit-cycle-oscillations-from-mean-field-transport-equations"><span>H-mode transitions and limit cycle oscillations from mean field transport equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Staebler, Gary M.; Groebner, Richard J.</p> <p>2014-11-28</p> <p>The mean field toroidal and parallel momentum transport equations will be shown to admit both onestep transitions to suppressed transport (L/H) and limit cycle oscillations (LCO). Both types of transitions are driven by the suppression of turbulence by the mean field ExB velocity shear. Using experimental data to evaluate the coefficients of a reduced transport model, the observed frequency of the LCO can be matched. The increase in the H-mode power threshold above and below a minimum density agrees with the trends in the model. Both leading and lagging phase relations between the turbulent density fluctuation amplitude and the ExBmore » velocity shear can occur depending on the evolution of the linear growth rate of the turbulence. As a result, the transport solutions match the initial phase of the L/H transition where the poloidal and ExB velocities are observed to change, and the density fluctuations drop, faster than the diamagnetic velocity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARC16005E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARC16005E"><span>An elastic dimpling instability with Kosterlitz-Thouless character and a precursor role in creasing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engstrom, Tyler; Paulsen, Joseph; Schwarz, Jennifer</p> <p></p> <p>Creasing instability, also known as sulcification, occurs in a variety of quasi-2d elastic systems subject to compressive plane strain, and has been proposed as a mechanism of brain folding. While the dynamics of pre-existing creases can be understood in terms of crack propagation, a detailed critical phenomena picture of the instability is lacking. We show that surface dimpling is an equilibrium phase transition, and can be described in a language of quasi-particle excitations conceptualized as ``ghost fibers'' within the shear lag model. Tension-compression pairs (dipoles) of ghost fibers are energetically favorable at low strains, and the pairs unbind at a critical compressive plane strain, analogously to vortices in the Kosterlitz-Thouless transition. This dimpling transition bears strong resemblance to the creasing instability. We argue that zero-length creases are ghost fibers, which are a special case of ``ghost slabs''. Critical strain of a ghost slab increases linearly with its length, and is independent of both shear modulus and system thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22700794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22700794"><span>Gαq/11-mediated intracellular calcium responses to retrograde flow in endothelial cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Melchior, Benoît; Frangos, John A</p> <p>2012-08-15</p> <p>Disturbed flow patterns, including reversal in flow direction, are key factors in the development of dysfunctional endothelial cells (ECs) and atherosclerotic lesions. An almost immediate response of ECs to fluid shear stress is the increase in cytosolic calcium concentration ([Ca(2+)](i)). Whether the source of [Ca(2+)](i) is extracellular, released from Ca(2+) intracellular stores, or both is still undefined, though it is likely dependent on the nature of forces involved. We have previously shown that a change in flow direction (retrograde flow) on a flow-adapted endothelial monolayer induces the remodeling of the cell-cell junction along with a dramatic [Ca(2+)](i) burst compared with cells exposed to unidirectional or orthograde flow. The heterotrimeric G protein-α q and 11 subunit (Gα(q/11)) is a likely candidate in effecting shear-induced increases in [Ca(2+)](i) since its expression is enriched at the junction and has been previously shown to be activated within seconds after onset of flow. In flow-adapted human ECs, we have investigated to what extent the Gα(q/11) pathway mediates calcium dynamics after reversal in flow direction. We observed that the elapsed time to peak [Ca(2+)](i) response to a 10 dyn/cm(2) retrograde shear stress was increased by 11 s in cells silenced with small interfering RNA directed against Gα(q/11). A similar lag in [Ca(2+)](i) transient was observed after cells were treated with the phospholipase C (PLC)-βγ inhibitor, U-73122, or the phosphatidylinositol-specific PLC inhibitor, edelfosine, compared with controls. Lower levels of inositol 1,4,5-trisphosphate accumulation seconds after the onset of flow correlated with the increased lag in [Ca(2+)](i) responses observed with the different treatments. In addition, inhibition of the inositol 1,4,5-trisphosphate receptor entirely abrogated flow-induced [Ca(2+)](i). Taken together, our results identify the Gα(q/11)-PLC pathway as the initial trigger for retrograde flow-induced endoplasmic reticulum calcium store release, thereby offering a novel approach to regulating EC dysfunctions in regions subjected to the reversal of blood flow.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5996329','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5996329"><span>A Time Series Analysis: Weather Factors, Human Migration and Malaria Cases in Endemic Area of Purworejo, Indonesia, 2005–2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>REJEKI, Dwi Sarwani Sri; NURHAYATI, Nunung; AJI, Budi; MURHANDARWATI, E. Elsa Herdiana; KUSNANTO, Hari</p> <p>2018-01-01</p> <p>Background: Climatic and weather factors become important determinants of vector-borne diseases transmission like malaria. This study aimed to prove relationships between weather factors with considering human migration and previous case findings and malaria cases in endemic areas in Purworejo during 2005–2014. Methods: This study employed ecological time series analysis by using monthly data. The independent variables were the maximum temperature, minimum temperature, maximum humidity, minimum humidity, precipitation, human migration, and previous malaria cases, while the dependent variable was positive malaria cases. Three models of count data regression analysis i.e. Poisson model, quasi-Poisson model, and negative binomial model were applied to measure the relationship. The least Akaike Information Criteria (AIC) value was also performed to find the best model. Negative binomial regression analysis was considered as the best model. Results: The model showed that humidity (lag 2), precipitation (lag 3), precipitation (lag 12), migration (lag1) and previous malaria cases (lag 12) had a significant relationship with malaria cases. Conclusion: Weather, migration and previous malaria cases factors need to be considered as prominent indicators for the increase of malaria case projection. PMID:29900134</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27538398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27538398"><span>Predicting depressed patients with suicidal ideation from ECG recordings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khandoker, A H; Luthra, V; Abouallaban, Y; Saha, S; Ahmed, K I; Mostafa, R; Chowdhury, N; Jelinek, H F</p> <p>2017-05-01</p> <p>Globally suicidal behavior is the third most common cause of death among patients with major depressive disorder (MDD). This study presents multi-lag tone-entropy (T-E) analysis of heart rate variability (HRV) as a screening tool for identifying MDD patients with suicidal ideation. Sixty-one ECG recordings (10 min) were acquired and analyzed from control subjects (29 CONT), 16 MDD subjects with (MDDSI+) and 16 without suicidal ideation (MDDSI-). After ECG preprocessing, tone and entropy values were calculated for multiple lags (m: 1-10). The MDDSI+ group was found to have a higher mean tone value compared to that of the MDDSI- group for lags 1-8, whereas the mean entropy value was lower in MDDSI+ than that in CONT group at all lags (1-10). Leave-one-out cross-validation tests, using a classification and regression tree (CART), obtained 94.83 % accuracy in predicting MDDSI+ subjects by using a combination of tone and entropy values at all lags and including demographic factors (age, BMI and waist circumference) compared to results with time and frequency domain HRV analysis. The results of this pilot study demonstrate the usefulness of multi-lag T-E analysis in identifying MDD patients with suicidal ideation and highlight the change in autonomic nervous system modulation of the heart rate associated with depression and suicidal ideation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950011075','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950011075"><span>Shear buckling analysis of a hat-stiffened panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ko, William L.; Jackson, Raymond H.</p> <p>1994-01-01</p> <p>A buckling analysis was performed on a hat-stiffened panel subjected to shear loading. Both local buckling and global buckling were analyzed. The global shear buckling load was found to be several times higher than the local shear buckling load. The classical shear buckling theory for a flat plate was found to be useful in predicting the local shear buckling load of the hat-stiffened panel, and the predicted local shear buckling loads thus obtained compare favorably with the results of finite element analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.3011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.3011S"><span>An analytical model of capped turbulent oscillatory bottom boundary layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimizu, Kenji</p> <p>2010-03-01</p> <p>An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61006&keyword=gravimetric+AND+methods&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61006&keyword=gravimetric+AND+methods&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>AIR POLLUTION EPIDEMIOLOGY: CAN INFORMATION BE OBTAINED FROM THE VARIATIONS IN SIGNIFICANCE AND RISK AS A FUNCTION OF DAYS AFTER EXPOSURE (LAG STRUCTURE)?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Determine if analysis of lag structure from time series epidemiology, using gases, particles, and source factor time series, can contribute to understanding the relationships among various air pollution indicators. Methods: Analyze lag structure from an epidemiologic study of ca...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4522236','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4522236"><span>Shear lag sutures: Improved suture repair through the use of adhesives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Linderman, Stephen W.; Kormpakis, Ioannis; Gelberman, Richard H.; Birman, Victor; Wegst, Ulrike G. K.; Genin, Guy M.; Thomopoulos, Stavros</p> <p>2015-01-01</p> <p>Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model. PMID:26022966</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3880331','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3880331"><span>Reproducible Biofilm Cultivation of Chemostat-Grown Escherichia coli and Investigation of Bacterial Adhesion on Biomaterials Using a Non-Constant-Depth Film Fermenter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lüdecke, Claudia; Jandt, Klaus D.; Siegismund, Daniel; Kujau, Marian J.; Zang, Emerson; Rettenmayr, Markus; Bossert, Jörg; Roth, Martin</p> <p>2014-01-01</p> <p>Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial-associated infections. PMID:24404192</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MAP...127...17C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MAP...127...17C"><span>The footprints of Saharan air layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Centeno Delgado, Diana C.; Chiao, Sen</p> <p>2015-02-01</p> <p>The roles of the Saharan Air Layer (SAL) and lightning during genesis of Tropical Depression (TD) 8 (2006) and TD 12 (2010) were investigated in relation to the interaction of the dust outbreaks with each system and their surrounding environment. This study applied data collected from the 2006 NASA African Monsoon Multidisciplinary Analysis and 2010 Genesis and Rapid Intensification Processes projects. Satellite observations from METEOSAT and Moderate Resolution Imaging Spectroradiometer (MODIS)—Aerosol Optical Depth (AOD) were also employed for the study of the dust content. Lightning activity data from the Met Office Arrival Time Difference (ATD) system were used as another parameter to correlate moist convective overturning and a sign of cyclone formation. The AOD and lightning analysis for TD 8 demonstrated the time-lag connection through their positive contribution to TC-genesis. TD 12 developed without strong dust outbreak, but with lower wind shear (2 m s-1) and an organized Mesoscale Convective System (MCS). Overall, the results from the combination of various data analyses in this study support the fact that both systems developed under either strong or weak dust conditions. From these two cases, the location (i.e., the target area) of strong versus weak dust outbreaks, in association with lightning, were essential interactions that impacted TC-genesis. While our dust footprints hypothesis applied under strong dust conditions (i.e., TD 8), other factors (e.g., vertical wind shear, pre-existing vortex and trough location, thermodynamics) need to be evaluated as well. The results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones (i.e., TD 8 and TD 12).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24760583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24760583"><span>Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kane, Patrick; Vopat, Bryan; Heard, Wendell; Thakur, Nikhil; Paller, David; Koruprolu, Sarath; Born, Christopher</p> <p>2014-08-01</p> <p>Intertrochanteric hip fractures pose a significant challenge for the orthopaedic community as optimal surgical treatment continues to be debated. Currently, varus collapse with lag screw cutout is the most common mode of failure. Multiple factors contribute to cutout. From a surgical technique perspective, a tip apex distance less than 25 mm has been suggested to decrease the risk of cutout. We hypothesized that a low-center lag screw position in the femoral head, with a tip apex distance greater than 25 mm will provide equal, if not superior, biomechanical stability compared with a center-center position with a tip apex distance less than 25 mm in an unstable intertrochanteric hip fracture stabilized with a long cephalomedullary nail. We attempted to examine the biomechanical characteristics of intertrochanteric fractures instrumented with long cephalomedullary nails with two separate lag screw positions, center-center and low-center. Our first research purpose was to examine if there was a difference between the center-center and low-center groups in cycles to failure and failure load. Second, we analyzed if there was a difference in fracture translation between the study groups during loading. Nine matched pairs of femurs were assigned to one of two treatment groups: low-center lag screw position and center-center lag screw position. Cephalomedullary nails were placed and tip apex distance was measured. A standard unstable four-part intertrochanteric fracture was created in all samples. The femurs were loaded dynamically until failure. Cycles to failure and load and displacement data were recorded, and three-dimensional (3-D) motion was recorded using an Optotrak(®) motion tracking system. There were no significant differences between the low-center and center-center treatment groups regarding the mean number of cycles to failure and mean failure load. The 3-D kinematic data showed significantly increased motion in the center-center group compared with the low-center group. At the time of failure, the magnitude of fracture translation was statistically significantly greater in the center-center group (20 ± 2.8 mm) compared with the low-center group (15 ± 3.4 mm; p = 0.004). Additionally, there was statistically significantly increased fracture gap distraction (center-center group, 13 ± 2.8 versus low-center group, 7 ± 4; p < 0.001) and shear fracture gap translation (center-center group, 12 ± 2.3 mm; low-center group, 6 ± 2.7 mm; p < 0.001). Positioning of the lag screw inferior in the head and neck was found to be at least as biomechanically stable as the center-center group although the tip apex distance was greater than 25 mm. Our findings challenge previously accepted principles of optimal lag screw placement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034418','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034418"><span>Response of spectral vegetation indices to soil moisture in grasslands and shrublands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, Li; Ji, Lei; Wylie, Bruce K.</p> <p>2011-01-01</p> <p>The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=marble&pg=4&id=EJ858317','ERIC'); return false;" href="https://eric.ed.gov/?q=marble&pg=4&id=EJ858317"><span>A Time Lag Analysis of Temporal Relations between Motivation, Academic Achievement, and Two Cognitive Abilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Greene, Monica R.; Pasnak, Robert; Romero, Sandy L.</p> <p>2009-01-01</p> <p>Research Findings: The present study employed a time lag design to assess temporal relationships between motivation, academic achievement, and cognitive development. Eighty-one children from 2 preschool programs were measured twice, with an 11-week time lag, on 2 measures of motivation (marble drop task, bean bag toss task), 2 measures of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=hypertension+AND+diabetes&pg=6&id=EJ487597','ERIC'); return false;" href="https://eric.ed.gov/?q=hypertension+AND+diabetes&pg=6&id=EJ487597"><span>Four-Year Cross-Lagged Associations between Physical and Mental Health in the Medical Outcomes Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hays, Ron D.; And Others</p> <p>1994-01-01</p> <p>Applied structural equation modeling to evaluation of cross-lagged panel models. Self-reports of physical and mental health at three time points spanning four-year interval were analyzed to illustrate cross-lagged analysis methodology. Data were analyzed from 856 patients with hypertension, diabetes, heart disease, or depression. Cross-lagged…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=early+AND+child&pg=7&id=EJ1061913','ERIC'); return false;" href="https://eric.ed.gov/?q=early+AND+child&pg=7&id=EJ1061913"><span>Behavioral Engagement and Reading Achievement in Elementary-School-Age Children: A Longitudinal Cross-Lagged Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Guo, Ying; Sun, Shuyan; Breit-Smith, Allison; Morrison, Frederick J.; Connor, Carol McDonald</p> <p>2015-01-01</p> <p>Using data from the National Institute of Child Health and Human Development's Study of Early Child Care and Youth Development, this study examined the cross-lagged relations between behavioral engagement and reading achievement in elementary school and whether these cross-lagged relations differed between low-socioeconomic status (SES) and mid-…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005563"><span>The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pan, Ning</p> <p>1992-01-01</p> <p>Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMPSo..76..193N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMPSo..76..193N"><span>Crack healing in cross-ply composites observed by dynamic mechanical analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nielsen, Christian; Nemat-Nasser, Sia</p> <p>2015-03-01</p> <p>Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.S51C1018M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.S51C1018M"><span>Characteristics of Tremor During the Entire July 2004 Cascadia Episodic Tremor and Slip event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCausland, W. A.; Malone, S.; La Rocca, M.; Creager, K.</p> <p>2005-12-01</p> <p>The July 2004 Cascadia episodic tremor and slip (ETS) event was recorded and analyzed using three geographically distributed small aperture seismic arrays (600m) located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. We analyzed the tremor sequence in the 1 to 6 Hz frequency band in overlapping windows (12s length)using zero-lag cross correlation and polarization analysis in order to obtain a continuous record of the back-azimuth, slowness, and particle motion of tremor sources throughout the ETS episode. During periods without tremor, the average interstation correlations for each array range between 0.2 and 0.4, and observed azimuths are randomly distributed. During periods of strong tremor, the average correlation for each array is typically between 0.5 and 0.8, and azimuths are stable over periods of minutes. Observed apparent velocities are greater than 4 km/s and polarization analysis indicates that the wave-field is composed primarily of SH-waves, both of which are consistent with a deep source of shear wave energy. Azimuths and slownesses are consistent with previously obtained hypocentral locations and apparent velocities calculated using the relative arrival times of energy bursts on Pacific Northwest Seismograph Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960003423','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960003423"><span>Quantitative characterization of the small-scale fracture patterns on the plains of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sammis, Charles G.; Bowman, David D.</p> <p>1995-01-01</p> <p>The objectives of this research project were to (1) compile a comprehensive database of the occurrence of regularly spaced kilometer scale lineations on the volcanic plains of Venus in an effort to verify the effectiveness of the shear-lag model developed by Banerdt and Sammis (1992), and (2) develop a model for the formation of irregular kilometer scale lineations such as typified in the gridded plains region of Guinevere Planitia. Attached to this report is the paper 'A Tectonic Model for the Formation of the Gridded Plains on Guinevere Planitia, Venus, and Implications for the Elastic Thickness of the Lithosphere'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920069387&hterms=Fractography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DFractography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920069387&hterms=Fractography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DFractography"><span>Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hillberry, B. M.; Johnson, W. S.</p> <p>1990-01-01</p> <p>In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910006006','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910006006"><span>Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hillberry, B. M.; Johnson, W. S.</p> <p>1990-01-01</p> <p>In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch a uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=creativity&pg=2&id=EJ1108880','ERIC'); return false;" href="https://eric.ed.gov/?q=creativity&pg=2&id=EJ1108880"><span>Mathematical Creativity and Mathematical Aptitude: A Cross-Lagged Panel Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tyagi, Tarun Kumar</p> <p>2016-01-01</p> <p>Cross-lagged panel correlation (CLPC) analysis has been used to identify causal relationships between mathematical creativity and mathematical aptitude. For this study, 480 8th standard students were selected through a random cluster technique from 9 intermediate and high schools of Varanasi, India. Mathematical creativity and mathematical…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27713111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27713111"><span>Air Pollution and Deaths among Elderly Residents of São Paulo, Brazil: An Analysis of Mortality Displacement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Costa, Amine Farias; Hoek, Gerard; Brunekreef, Bert; Ponce de Leon, Antônio C M</p> <p>2017-03-01</p> <p>Evaluation of short-term mortality displacement is essential to accurately estimate the impact of short-term air pollution exposure on public health. We quantified mortality displacement by estimating single-day lag effects and cumulative effects of air pollutants on mortality using distributed lag models. We performed a daily time series of nonaccidental and cause-specific mortality among elderly residents of São Paulo, Brazil, between 2000 and 2011. Effects of particulate matter smaller than 10 μm (PM 10 ), nitrogen dioxide (NO 2 ) and carbon monoxide (CO) were estimated in Poisson generalized additive models. Single-day lag effects of air pollutant exposure were estimated for 0-, 1- and 2-day lags. Distributed lag models with lags of 0-10, 0-20 and 0-30 days were used to assess mortality displacement and potential cumulative exposure effects. PM 10 , NO 2 and CO were significantly associated with nonaccidental and cause-specific deaths in both single-day lag and cumulative lag models. Cumulative effect estimates for 0-10 days were larger than estimates for single-day lags. Cumulative effect estimates for 0-30 days were essentially zero for nonaccidental and circulatory deaths but remained elevated for respiratory and cancer deaths. We found evidence of mortality displacement within 30 days for nonaccidental and circulatory deaths in elderly residents of São Paulo. We did not find evidence of mortality displacement within 30 days for respiratory or cancer deaths. Citation: Costa AF, Hoek G, Brunekreef B, Ponce de Leon AC. 2017. Air pollution and deaths among elderly residents of São Paulo, Brazil: an analysis of mortality displacement. Environ Health Perspect 125:349-354; http://dx.doi.org/10.1289/EHP98.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15968571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15968571"><span>Homozygous diploid deletion strains of Saccharomyces cerevisiae that determine lag phase and dehydration tolerance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>D'Elia, Riccardo; Allen, Patricia L; Johanson, Kelly; Nickerson, Cheryl A; Hammond, Timothy G</p> <p>2005-06-01</p> <p>This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes. Simple linear regression (R2 analysis) shows that there are over 500 genes for which > 70% of the variation can be explained by lag alone. In the genes with a positive correlation, such that the gene abundance increases with lag and hence the deletion strain is suitable for survival during prolonged storage, there is a strong predominance of nucleonic genes. In the genes with a negative correlation, such that the gene abundance decreases with lag and hence the strain may be critical for getting yeast out of the lag phase, there is a strong predominance of glycoproteins and transmembrane proteins. This study identifies yeast deletion strains with survival advantage on prolonged storage and amplifies our understanding of the genes critical for getting out of the lag phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050218722&hterms=yeast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dyeast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050218722&hterms=yeast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dyeast"><span>Homozygous diploid deletion strains of Saccharomyces cerevisiae that determine lag phase and dehydration tolerance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>D'Elia, Riccardo; Allen, Patricia L.; Johanson, Kelly; Nickerson, Cheryl A.; Hammond, Timothy G.</p> <p>2005-01-01</p> <p>This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes. Simple linear regression (R2 analysis) shows that there are over 500 genes for which > 70% of the variation can be explained by lag alone. In the genes with a positive correlation, such that the gene abundance increases with lag and hence the deletion strain is suitable for survival during prolonged storage, there is a strong predominance of nucleonic genes. In the genes with a negative correlation, such that the gene abundance decreases with lag and hence the strain may be critical for getting yeast out of the lag phase, there is a strong predominance of glycoproteins and transmembrane proteins. This study identifies yeast deletion strains with survival advantage on prolonged storage and amplifies our understanding of the genes critical for getting out of the lag phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28443571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28443571"><span>Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Konya, Mehmet Nuri; Verim, Özgür</p> <p>2017-09-29</p> <p>Proximal femoral fracture rates are increasing due to osteoporosis and traffic accidents. Proximal femoral nails are routinely used in the treatment of these fractures in the proximal femur. To compare various combinations and to determine the ideal proximal lag screw position in pertrochanteric fractures (Arbeitsgemeinschaft für Osteosynthesefragen classification 31-A1) of the femur by using optimized finite element analysis. Biomechanical study. Computed tomography images of patients' right femurs were processed with Mimics. Afterwards a solid femur model was created with SolidWorks 2015 and transferred to ANSYS Workbench 16.0 for response surface optimization analysis which was carried out according to anterior-posterior (-10°<anterior-posterior<10°), inferior-superior (-6°<inferior-superior<7°) and tip-apex distance (10 mm<tip-apex distance<30 mm) proximal lag screw positions in the fracture region. The optimum position of the proximal lag screw was determined based on the von Mises stress values occurring on the fracture line. Initial analysis of the system was realized under the surgeon's normal positioning conditions (anterior-posterior, inferior-superior=0°; tip-apex distance=12 mm). The maximum and minimum (compression) von Mises stresses were found to be 438 MPa and 0.003 MPa, respectively, and risky stresses for the system occurred in the regions where the proximal lag screw passes through the proximal femoral nail hole, the small diameter portion of stem joints with a large diameter and lag screw mounts to the stem. The most suitable position of the proximal lag screw was found at the middle position of the tip-apex distance (20 mm) and femoral neck (anterior-posterior, inferior-superior=0°), according to von Mises compression stress values occurring on the fracture line. In our study, we couldn't find any correlation between proximal lag screw movement and tip-apex distance on stresses of the fracture surfaces, but the proximal lag screw position in the inferior (inferior-superior<0)-superior (inferior-superior>0) and posterior-anterior directions of the femur neck significantly increased these stresses. The most suitable position of the proximal lag screw was confirmed as the middle of the femoral neck by using optimized finite element analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28860644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28860644"><span>Detecting PM2.5's Correlations between Neighboring Cities Using a Time-Lagged Cross-Correlation Coefficient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Fang; Wang, Lin; Chen, Yuming</p> <p>2017-08-31</p> <p>In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the time-lagged q-L dependent height crosscorrelation coefficient (denoted by p q (τ, L)), which incorporates the time-lag factor and the fluctuation amplitude information into the analogous height cross-correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed coefficient ρ q (τ, L) can be used to detect cross-correlations between two series with time lags and to identify different range of fluctuations at which two series possess cross-correlations. Applying the new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are significantly non-zero. These findings providenew scientific support on the view that air pollution in neighboring cities can affect one another not simultaneously but with a time lag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661159-analysis-quasi-periodic-oscillations-time-lag-ultraluminous-ray-sources-xmm-newton','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661159-analysis-quasi-periodic-oscillations-time-lag-ultraluminous-ray-sources-xmm-newton"><span>Analysis of Quasi-periodic Oscillations and Time Lag in Ultraluminous X-Ray Sources with XMM-Newton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Zi-Jian; Xiao, Guang-Cheng; Zhang, Shu</p> <p></p> <p>We investigated the power density spectrum (PDS) and time lag of ultraluminous X-ray sources (ULXs) observed by XMM-Newton . We determined the PDSs for each ULX and found that five of them show intrinsic variability due to obvious quasi-periodic oscillations (QPOs) of mHz–1 Hz, consistent with previous reports. We further investigated these five ULXs to determine their possible time lag. The ULX QPOs exhibit a soft time lag that is linearly related to the QPO frequency. We discuss the likelihood of the ULX QPOs being type-C QPO analogs, and the time lag models. The ULXs might harbor intermediate-mass black holesmore » if their QPOs are type-C QPO analogs. We suggest that the soft lag and the linearity may be due to reverberation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG41A0123P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG41A0123P"><span>A way around the Nyquist lag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penland, C.</p> <p>2017-12-01</p> <p>One way to test for the linearity of a multivariate system is to perform Linear Inverse Modeling (LIM) to a multivariate time series. LIM yields an estimated operator by combining a lagged covariance matrix with the contemporaneous covariance matrix. If the underlying dynamics is linear, the resulting dynamical description should not depend on the particular lag at which the lagged covariance matrix is estimated. This test is known as the "tau test." The tau test will be severely compromised if the lag at which the analysis is performed is approximately half the period of an internal oscillation frequency. In this case, the tau test will fail even though the dynamics are actually linear. Thus, until now, the tau test has only been possible for lags smaller than this "Nyquist lag." In this poster, we investigate the use of Hilbert transforms as a way to avoid the problems associated with Nyquist lags. By augmenting the data with dimensions orthogonal to those spanning the original system, information that would be inaccessible to LIM in its original form may be sampled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT.......108K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT.......108K"><span>A micromechanical model to explain the mechanical properties of bovine cortical bone in tension: In vitro fluoride ion effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotha, Shiva Prasad</p> <p></p> <p>Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Boys.+AND+sex&pg=5&id=EJ1171244','ERIC'); return false;" href="https://eric.ed.gov/?q=Boys.+AND+sex&pg=5&id=EJ1171244"><span>School Connectedness and Chinese Adolescents' Sleep Problems: A Cross-Lagged Panel Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bao, Zhenzhou; Chen, Chuansheng; Zhang, Wei; Jiang, Yanping; Zhu, Jianjun; Lai, Xuefen</p> <p>2018-01-01</p> <p>Background: Although previous research indicates an association between school connectedness and adolescents' sleep quality, its causal direction has not been determined. This study used a 2-wave cross-lagged panel analysis to explore the likely causal direction between these 2 constructs. Methods: Participants were 888 Chinese adolescents (43.80%…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SMaS...26h5034C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SMaS...26h5034C"><span>Deflection monitoring for a box girder based on a modified conjugate beam method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shi-Zhi; Wu, Gang; Xing, Tuo</p> <p>2017-08-01</p> <p>After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5617435','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5617435"><span>Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Zhi-Zhang; Kim, Hyo Jin; Villasboas, Jose C.; Chen, Ya-Ping; Price-Troska, Tammy; Jalali, Shahrzad; Wilson, Mara; Novak, Anne J.; Ansell, Stephen M.</p> <p>2017-01-01</p> <p>Exhausted T-cells in follicular lymphoma (FL) typically express PD-1, but expression of PD-1 is not limited to exhausted cells. Although expected to be functionally suppressed, we found that the population of intratumoral PD-1+ T cells were predominantly responsible for production of cytokines and granules. This surprising finding prompted us to explore the involvement of LAG-3 to specifically identify functionally exhausted T cells. We found that LAG-3 was expressed on a subset of intratumoral T cells from FL and LAG-3+ T cells almost exclusively came from PD-1+ population. CyTOF analysis revealed that intratumoral LAG-3+ T cells were phenotypically heterogeneous as LAG-3 was expressed on a variety of T cell subsets. In contrast to PD-1+LAG-3- cells, intratumoral PD-1+LAG-3+ T cells exhibited reduced capacity to produce cytokines and granules. LAG-3 expression could be substantially upregulated on CD4+ or CD8+ T cells by IL-12, a cytokine that has been shown to induce T-cell exhaustion and be increased in the serum of lymphoma patients. Furthermore, we found that blockade of both PD-1 and LAG-3 signaling enhanced the function of intratumoral CD8+ T cells resulting in increased IFN-γ and IL-2 production. Clinically, LAG-3 expression on intratumoral T cells correlated with a poor outcome in FL patients. Taken together, we find that LAG-3 expression is necessary to identify the population of intratumoral PD-1+ T cells that are functionally exhausted and, in contrast, find that PD-1+LAG-3- T cells are simply activated cells that are immunologically functional. These findings may have important implications for immune checkpoint therapy in FL. PMID:28977875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28399962','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28399962"><span>Time lag between immigration and tuberculosis rates in immigrants in the Netherlands: a time-series analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Aart, C; Boshuizen, H; Dekkers, A; Korthals Altes, H</p> <p>2017-05-01</p> <p>In low-incidence countries, most tuberculosis (TB) cases are foreign-born. We explored the temporal relationship between immigration and TB in first-generation immigrants between 1995 and 2012 to assess whether immigration can be a predictor for TB in immigrants from high-incidence countries. We obtained monthly data on immigrant TB cases and immigration for the three countries of origin most frequently represented among TB cases in the Netherlands: Morocco, Somalia and Turkey. The best-fit seasonal autoregressive integrated moving average (SARIMA) model to the immigration time-series was used to prewhiten the TB time series. The cross-correlation function (CCF) was then computed on the residual time series to detect time lags between immigration and TB rates. We identified a 17-month lag between Somali immigration and Somali immigrant TB cases, but no time lag for immigrants from Morocco and Turkey. The absence of a lag in the Moroccan and Turkish population may be attributed to the relatively low TB prevalence in the countries of origin and an increased likelihood of reactivation TB in an ageing immigrant population. Understanding the time lag between Somali immigration and TB disease would benefit from a closer epidemiological analysis of cohorts of Somali cases diagnosed within the first years after entry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Serotonin&pg=7&id=EJ944499','ERIC'); return false;" href="https://eric.ed.gov/?q=Serotonin&pg=7&id=EJ944499"><span>Time-Lag Bias in Trials of Pediatric Antidepressants: A Systematic Review and Meta-Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Reyes, Magdalena M.; Panza, Kaitlyn E.; Martin, Andres; Bloch, Michael H.</p> <p>2011-01-01</p> <p>Objective: To determine whether there is evidence of a time-lag bias in the publication of pediatric antidepressant trials. Method: We conducted a meta-analysis of published and unpublished randomized placebo-controlled trials of serotonin reuptake inhibitors (SRIs) in subjects less than 18 years of age with major depressive disorder. Our main…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=construction+AND+research+AND+topics&pg=2&id=EJ1076314','ERIC'); return false;" href="https://eric.ed.gov/?q=construction+AND+research+AND+topics&pg=2&id=EJ1076314"><span>How Cognitive Styles Affect the Learning Behaviors of Online Problem-Solving Based Discussion Activity: A Lag Sequential Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wu, Sheng-Yi; Hou, Huei-Tse</p> <p>2015-01-01</p> <p>Cognitive styles play an important role in influencing the learning process, but to date no relevant study has been conducted using lag sequential analysis to assess knowledge construction learning patterns based on different cognitive styles in computer-supported collaborative learning activities in online collaborative discussions. This study…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23365823','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23365823"><span>Identifying increased risk of post-infarct people with diabetes using multi-lag Tone-Entropy analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karmakar, Chandan; Jelinek, Herbert; Khandoker, Ahsan; Tulppo, Mikko; Makikallio, Timo; Kiviniemi, Antti; Huikuri, Heikki; Palaniswami, Marimuthu</p> <p>2012-01-01</p> <p>Diabetes mellitus is associated with multi-organ system dysfunction. One of the key causative factors is the increased blood sugar level that leads to an increase in free radical activity and organ damage including the cardiovascular and nervous system. Heart rhythm is extrinsically modulated by the autonomic nervous system and cardiac autonomic neuropathy or dysautonomia has been shown to lead to sudden cardiac death in people with diabetes due to the decrease in heart rate variability (HRV). Current algorithms for determining HRV describe only beat-to-beat variation and therefore do not consider the ability of a heart beat to influence a train of succeeding beats. Therefore mortality risk analysis based on HRV has often not been able to discern the presence of an increased risk. This study used a novel innovation of the tone-entropy algorithm by incorporating increased lag intervals and found that both the sympatho-vagal balance and total activity changed at larger lag intervals. Tone-Entropy was found to be better risk identifier of cardiac mortality in people with diabetes at lags higher than one and best at lag seven.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15987892','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15987892"><span>Mutagenic analysis of the nucleation propensity of oxidized Alzheimer's beta-amyloid peptide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christopeit, Tony; Hortschansky, Peter; Schroeckh, Volker; Gührs, Karlheinz; Zandomeneghi, Giorgia; Fändrich, Marcus</p> <p>2005-08-01</p> <p>The formation of polypeptide aggregates represents a nucleated polymerization reaction in which an initial nucleation event (lag phase) is followed by the extension of newly formed nuclei into larger aggregates, including fibrils (growth phase). The efficiencies of these reactions relate to the lag time (lag phase) and to the rate of aggregation (growth phase), which can be determined from experimental aggregation curves. Here we present a mutagenic analysis in which we replace valine 18 of the Alzheimer's Abeta (1-40) peptide with 17 different amino acids and determine its effect on the lag time, and therefore, on the propensity of nucleation. Comparison with various physico-chemical properties shows that nucleation is affected in a predictable manner depending on the beta-sheet propensity and hydrophobicity of residue 18. In addition, we observe a direct proportionality between the lag time and the rate of aggregation. These data imply that the two reactions, nucleation and polymerization, are governed by very similar physicochemical principles and that they involve the formation of the same types of noncovalent interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810009486&hterms=kevlar+laminates&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dkevlar%2Blaminates','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810009486&hterms=kevlar+laminates&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dkevlar%2Blaminates"><span>An assessment of buffer strips for improving damage tolerance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poe, C. C., Jr.; Kennedy, J. M.</p> <p>1981-01-01</p> <p>Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810039349&hterms=kevlar+laminates&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dkevlar%2Blaminates','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810039349&hterms=kevlar+laminates&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dkevlar%2Blaminates"><span>An assessment of buffer strips for improving damage tolerance of composite laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poe, C. C., Jr.; Kennedy, J. M.</p> <p>1980-01-01</p> <p>Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with (45/0/-45/90)2S and (45/0/-45/0)2S layups. The buffer strips were parallel to the loading direction. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-90/epoxy on either a one-for-one or a two-for-one basis. In a third case, 0 deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg plies and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different width and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those of plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layup, buffer material, buffer strip width and spacing, and the number of plies of buffer material</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020011011','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020011011"><span>The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pahr, D. H.; Arnold, S. M.</p> <p>2001-01-01</p> <p>The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020012434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020012434"><span>The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pahr, D. H.; Arnold, S. M.</p> <p>2001-01-01</p> <p>The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..330a2131B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..330a2131B"><span>Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya</p> <p>2018-03-01</p> <p>In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2695354','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2695354"><span>ANALYSES OF RESPONSE–STIMULUS SEQUENCES IN DESCRIPTIVE OBSERVATIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Samaha, Andrew L; Vollmer, Timothy R; Borrero, Carrie; Sloman, Kimberly; Pipkin, Claire St. Peter; Bourret, Jason</p> <p>2009-01-01</p> <p>Descriptive observations were conducted to record problem behavior displayed by participants and to record antecedents and consequences delivered by caregivers. Next, functional analyses were conducted to identify reinforcers for problem behavior. Then, using data from the descriptive observations, lag-sequential analyses were conducted to examine changes in the probability of environmental events across time in relation to occurrences of problem behavior. The results of the lag-sequential analyses were interpreted in light of the results of functional analyses. Results suggested that events identified as reinforcers in a functional analysis followed behavior in idiosyncratic ways: after a range of delays and frequencies. Thus, it is possible that naturally occurring reinforcement contingencies are arranged in ways different from those typically evaluated in applied research. Further, these complex response–stimulus relations can be represented by lag-sequential analyses. However, limitations to the lag-sequential analysis are evident. PMID:19949537</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ApCM...12..265Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ApCM...12..265Y"><span>An Investigation of Interfacial Fatigue in Fiber Reinforced Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yanhua, Chen; Zhifei, Shi</p> <p>2005-09-01</p> <p>Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JSMME...2..462O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JSMME...2..462O"><span>Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu</p> <p></p> <p>Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSG...112..131B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSG...112..131B"><span>A homogeneous 2D deformation of geological interest: Rotation shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bastida, Fernando; Bobillo-Ares, Nilo C.; Aller, Jesús; Lisle, Richard J.</p> <p>2018-07-01</p> <p>We define a simple two-dimensional deformation called "rotation shear". It has one line of no finite longitudinal strain with invariant direction and another one that rotates with the deformation. An analysis of this deformation is carried out. Rotation shear superficially resembles simple shear but the analysis reveals that the two deformations have very different properties. In general, lines deformed by simple shear show a more complex deformation history and undergo greater longitudinal strain, i.e. are more extended, than lines deformed by rotation shear. Rotation shear is used to explain the development of geological structures such as kink bands, ideal similar folds, crenulation and crenulation cleavage and shear zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........95A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........95A"><span>Aeromechanical stability augmentation using semi-active friction-based lead-lag damper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal, Sandeep</p> <p>2005-11-01</p> <p>Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a "dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27241207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27241207"><span>Short-term effects of floods on Japanese encephalitis in Nanchong, China, 2007-2012: A time-stratified case-crossover study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Feifei; Liu, Zhidong; Zhang, Caixia; Jiang, Baofa</p> <p>2016-09-01</p> <p>This time-stratified case-crossover study aimed to quantify the impact of floods on daily Japanese encephalitis (JE) cases from 2007 to 2012 in Nanchong city of Sichuan Province, China. Using conditional logistic regression analysis, we calculated the odds ratios (ORs) and 95% confidence intervals (CIs) at different lagged days, adjusting for daily average temperature (AT) and daily average relative humidity (ARH). A total of 370 JE cases were notified during the study period, with the median patient age being 4.2years. The seasonal pattern of JE cases clustered in July and August during the study period. Floods were significantly associated with an increased number of JE cases from lag 23 to lag 24, with the strongest lag effect at lag 23 (OR=2.00, 95% CI: 1.14-3.52). Similarly, AT and ARH were positively associated with daily JE cases from lag 0 to lag 8 and from lag 0 to lag 9, respectively. Floods, with AT and ARH, can be used to forecast JE outbreaks in the study area. Based on the results of this study, recommendations include undertaking control measures before the number of cases increases, especially for regions with similar geographic, climatic, and socio-economic conditions as those in the study area. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28269874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28269874"><span>Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levine, Matthew E; Albers, David J; Hripcsak, George</p> <p>2016-01-01</p> <p>Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..140a2069M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..140a2069M"><span>Determination of Shear Wave Velocity in Offshore Terengganu for Ground Response Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazlina, M.; Liew, M. S.; Adnan, A.; Harahap, I. S. H.; Hamid, N. A.</p> <p>2018-04-01</p> <p>Amount of vibration received in any location can be analysed by conducting ground response analysis. Even though there are three different methods available in this analysis, One Dimensional ground response analysis method has been widely used. Shear wave velocity is one of the key parameters in this analysis. A lot of correlations have been formulated to determine shear wave velocity with cone penetration test. In this study, correlations developed for Quaternary geological age have been selected. Six equations have been adopted comprise of all soil and soil type dependent correlations. Two platforms sites consist of clay and combination of clay and sand have been analysed. Shear velocity to be used in ground response analysis has been obtained. Results have been illustrated in graphs where shear velocity for each case has been plotted. In avoiding under or over predicting of shear wave velocity, the average of all soil and soil type dependent results will be used as final Vs value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA54A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA54A..01G"><span>Influence of Solar Variability on the North Atlantic / European Sector.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gray, L. J.</p> <p>2016-12-01</p> <p>The 11year solar cycle signal in December-January-February averaged mean-sea-level pressure and Atlantic/European blocking frequency is examined using multilinear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino - Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870-2010 (140 years; 13 solar cycles) that suggested a 3-4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660-2010 (350 years; 32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early- and late-winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0-2 year lags and one via the mixd-layer ocean that maximises in early winter at 3-4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at 1-year lag that originates promarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770016267','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770016267"><span>Analysis of shear test method for composite laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.</p> <p>1977-01-01</p> <p>An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1030161','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1030161"><span>Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-09-01</p> <p>are suitable. To model the behavior of the engine, an autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas... time series model of engine speed and exhaust gas temperature is derived. The lag length for ARDL is determined by whitening of residuals using the...15 B. REGRESSION ANALYSIS ....................................................................15 1. Time Series Analysis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29798','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29798"><span>Full-field local displacement analysis of two-sided paperboard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J.M. Considine; D.W. Vahey</p> <p>2007-01-01</p> <p>This report describes a method to examine full-field displacements of both sides of paperboard during tensile testing. Analysis showed out-of-plane shear behavior near the failures zones. The method was reliably used to examine out-of-plane shear in double notch shear specimens. Differences in shear behavior of machine direction and cross-machine direction specimens...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/117633-nonlinear-thermal-dynamic-analysis-graphit-aluminum-composite-plates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/117633-nonlinear-thermal-dynamic-analysis-graphit-aluminum-composite-plates"><span>Nonlinear thermal dynamic analysis of graphit/aluminum composite plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tenneti, R.; Chandrashekhara, K.</p> <p>1994-09-01</p> <p>Because of the increased application of composite materials in high-temperature environments, the thermoelastic analysis of laminated composite structures is important. Many researchers have applied the classical lamination theory to analyze laminated plates under thermomechanical loading, which neglects shear deformation effects. The transverse shear deformation effects are not negligible as the ratios of inplane elastic modulus to transverse shear modulus are relatively large for fiber-reinforced composite laminates. The application of first-order shear deformation theory for the thermoelastic analysis of laminated plates has been reported by only a few investigators. Reddy and Hsu have considered the thermal bending of laminated plates. Themore » analytical and finite element solutions for the thermal bucking of laminated plates have been reported by Tauchert and Chandrashekara, respectively. However, the first-order shear deformation theory, based on the assumption of constant distribution of transverse shear through the thickness, requires a shear correction factor to account for the parabolic shear strain distribution. Higher order theories have been proposed which eliminate the need for a shear correction factor. In the present work, nonlinear dynamic analysis of laminated plates subjected to rapid heating is investigated using a higher order shear deformation theory. A C(sup 0) finite element model with seven degrees of freedom per node is implmented and numerical results are presented for laminated graphite/aluminum plates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16035886','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16035886"><span>Lag and anticipating synchronization without time-delay coupling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D</p> <p>2005-06-01</p> <p>We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10449E..0XH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10449E..0XH"><span>Analysis on ultrashort-pulse laser ablation for nanoscale film of ceramics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ho, C. Y.; Tsai, Y. H.; Chiou, Y. J.</p> <p>2017-06-01</p> <p>This paper uses the dual-phase-lag model to study the ablation characteristics of femtosecond laser processing for nanometer-sized ceramic films. In ultrafast process and ultrasmall size where the two lags occur, a dual-phase-lag can be applied to analyse the ablation characteristics of femtosecond laser processing for materials. In this work, the ablation rates of nanometer-sized lead zirconate titanate (PZT) ceramics are investigated using a dual-phase-lag and the model is solved by Laplace transform method. The results obtained from this work are validated by the available experimental data. The effects of material thermal properties on the ablation characteristics of femtosecond laser processing for ceramics are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26948399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26948399"><span>In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L</p> <p>2016-03-21</p> <p>The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1052..137A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1052..137A"><span>A System Analysis Approach to Robot Gripper Control Using Phase Lag Compensator Bode Designs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aye, Khin Muyar; Lin, Htin; Tun, Hla Myo</p> <p>2008-10-01</p> <p>In this paper, we introduce the result comparisons that were developed for the phase lag compensator design using Bode Plots. The implementation of classical experiments as MATLAB m-files is described. Robot gripper control system can be designed to gain insight into a variety of concepts, including stabilization of unstable systems, compensation properties, Bode analysis and design. The analysis has resulted in a number of important conclusions for the design of a new generation of control support systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15545038','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15545038"><span>Climatological variables and the incidence of Dengue fever in Barbados.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Depradine, Colin; Lovell, Ernest</p> <p>2004-12-01</p> <p>A retrospective study to determine relationships between the incidence of dengue cases and climatological variables and to obtain a predictive equation was carried out for the relatively small Caribbean island of Barbados which is divided into 11 parishes. The study used the weekly dengue cases and precipitation data for the years (1995 - 2000) that occurred in the small area of a single parish. Other climatological data were obtained from the local meteorological offices. The study used primarily cross correlation analysis and found the strongest correlation with the vapour pressure at a lag of 6 weeks. A weaker correlation occurred at a lag of 7 weeks for the precipitation. The minimum temperature had its strongest correlation at a lag of 12 weeks and the maximum temperature a lag of 16 weeks. There was a negative correlation with the wind speed at a lag of 3 weeks. The predictive models showed a maximum explained variance of 35%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDM11005X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDM11005X"><span>Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team</p> <p>2014-11-01</p> <p>A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1821h0002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1821h0002B"><span>Ultrasound shear wave simulation based on nonlinear wave propagation and Wigner-Ville Distribution analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan</p> <p>2017-03-01</p> <p>This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29685359','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29685359"><span>Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Joo Hyung; Lee, Sun Hwa; Yun, Seong Jong; Ryu, Seokyong; Choi, Seung Woon; Kim, Hye Jin; Kang, Tae Kyung; Oh, Sung Chan; Cho, Suk Jin</p> <p>2018-04-14</p> <p>To investigate the impact of short-term exposure to air pollutants and meteorological variation on ED visits for primary spontaneous pneumothorax (PSP). We retrospectively identified PSP cases that presented at the ED of our tertiary center between January 2015 and September 2016. We classified the days into three types: no PSP day (0 case/day), sporadic days (1-2 cases/day), and cluster days (PSP, ≥3 cases/day). Association between the daily incidence of PSP with air pollutants and meteorological data were determined using Poisson generalized-linear-model to calculate incidence rate ratio (IRRs) and the use of time-series (lag-1 [the cumulative air pollution level on the previous day of PSP], lag-2 [two days ago], and lag-3 [three days ago]). Using multivariate logistic regression analysis, O 3 (p = 0.010), NO 2 (p = 0.047), particulate matters (PM) 10 (p = 0.021), and PM 2.5 (p = 0.008) were significant factors of PSP occurrence. When the concentration of O 3 , NO 2 , PM 10 , and PM 2.5 were increased, PSP IRRs increased approximately 15, 16, 3, and 5-fold, respectively. With the time-series analyses, atmospheric pressure in lag-3 was significantly lower and in lag-2, was significantly higher in PSP days compared with no PSP days. Among air pollutant concentrations, O 3 in lag-1 (p = 0.017) and lag-2 (p = 0.038), NO 2 in lag-1 (p = 0.015) and lag-2 (p = 0.009), PM 10 in lag-1 (p = 0.012), and PM 2.5 in lag-1 (p = 0.021) and lag-2 (p = 0.032) were significantly different between no PSP and PSP days. Increased concentrations of air pollutants and abrupt change in atmospheric pressure were significantly associated with increased IRR of PSP. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4175360','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4175360"><span>High-throughput Analysis of Ultrasonication-forced Amyloid Fibrillation Reveals the Mechanism Underlying the Large Fluctuation in the Lag Time*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Umemoto, Ayaka; Yagi, Hisashi; So, Masatomo; Goto, Yuji</p> <p>2014-01-01</p> <p>Amyloid fibrils form in supersaturated solutions of precursor proteins by a nucleation and growth mechanism characterized by a lag time. Although the lag time provides a clue to understanding the complexity of nucleation events, its long period and low reproducibility have been obstacles for exact analysis. Ultrasonication is known to effectively break supersaturation and force fibrillation. By constructing a Handai amyloid burst inducer, which combines a water bath-type ultrasonicator and a microplate reader, we examined the ultrasonication-forced fibrillation of several proteins, with a focus on the fluctuation in the lag time. Amyloid fibrillation of hen egg white lysozyme was examined at pH 2.0 in the presence of 1.0–5.0 M guanidine hydrochloride (GdnHCl), in which the dominant species varied from the native to denatured conformations. Although fibrillation occurred at various concentrations of GdnHCl, the lag time varied largely, with a minimum being observed at ∼3.0 m, the concentration at which GdnHCl-dependent denaturation ended. The coefficient of variation of the lag time did not depend significantly on the GdnHCl concentration and was 2-fold larger than that of the ultrasonication-dependent oxidation of iodide, a simple model reaction. These results suggest that the large fluctuation observed in the lag time for amyloid fibrillation originated from a process associated with a common amyloidogenic intermediate, which may have been a relatively compact denatured conformation. We also suggest that the Handai amyloid burst inducer system will be useful for studying the mechanism of crystallization of proteins because proteins form crystals by the same mechanism as amyloid fibrils under supersaturation. PMID:25118286</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27147221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27147221"><span>The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun</p> <p>2017-01-01</p> <p>To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MTDM..tmp...19G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MTDM..tmp...19G"><span>Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grover, D.; Seth, R. K.</p> <p>2018-05-01</p> <p>Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSMTE..02..011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSMTE..02..011S"><span>Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David</p> <p>2015-02-01</p> <p>Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3313454','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3313454"><span>IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Haofei; Cai, Mingchao; Yang, Chun; Zheng, Jie; Bach, Richard; Kural, Mehmet H.; Billiar, Kristen L.; Muccigrosso, David; Lu, Dongsi; Tang, Dalin</p> <p>2012-01-01</p> <p>Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high blood pressure on stress, strain, flow velocity and flow maximum principal shear stress was investigated. PMID:22428362</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27780490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27780490"><span>Evaluation of the limiting antigen avidity EIA (LAg) in people who inject drugs in Greece.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nikolopoulos, G K; Katsoulidou, A; Kantzanou, M; Rokka, C; Tsiara, C; Sypsa, V; Paraskevis, D; Psichogiou, M; Friedman, S; Hatzakis, A</p> <p>2017-01-01</p> <p>This analysis assessed the utility of the limiting antigen avidity assay (LAg). Samples of people who inject drugs (PWID) in Greece with documented duration of HIV-1 infection were tested by LAg. A LAg-normalized optical density (ODn) ⩽1·5 corresponds to a recency window period of 130 days. The proportion true recent (PTR) and proportion false recent (PFR) were estimated in 28 seroconverters and in 366 samples collected >6 months after HIV diagnosis, respectively. The association between LAg ODn and HIV RNA level was evaluated in 232 persons. The PTR was 85·7%. The PFR was 20·8% but fell to 5·9% in samples from treatment-naive individuals with long-standing infection (>1 year), and to 0 in samples with the circulating recombinant form CRF35 AD. A LAg-based algorithm with a PFR of 3·3% estimated a similar incidence trend to that calculated by analyses based on HIV-1 seroconversions. In recently infected persons indicated by LAg, the median log10 HIV RNA level was high (5·30, interquartile range 4·56-5·90). LAg can help identify highly infectious HIV(+) individuals as it accurately identifies recent infections and is correlated with the HIV RNA level. It can also produce reliable estimates of HIV-1 incidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25837976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25837976"><span>Recent trends for drug lag in clinical development of oncology drugs in Japan: does the oncology drug lag still exist in Japan?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maeda, Hideki; Kurokawa, Tatsuo</p> <p>2015-12-01</p> <p>This study exhaustively and historically investigated the status of drug lag for oncology drugs approved in Japan. We comprehensively investigated oncology drugs approved in Japan between April 2001 and July 2014, using publicly available information. We also examined changes in the status of drug lag between Japan and the United States, as well as factors influencing drug lag. This study included 120 applications for approval of oncology drugs in Japan. The median difference over a 13-year period in the approval date between the United States and Japan was 875 days (29.2 months). This figure peaked in 2002, and showed a tendency to decline gradually each year thereafter. In 2014, the median approval lag was 281 days (9.4 months). Multiple regression analysis identified the following potential factors that reduce drug lag: "Japan's participation in global clinical trials"; "bridging strategies"; "designation of priority review in Japan"; and "molecularly targeted drugs". From 2001 to 2014, molecularly targeted drugs emerged as the predominant oncology drug, and the method of development has changed from full development in Japan or bridging strategy to global simultaneous development by Japan's taking part in global clinical trials. In line with these changes, the drug lag between the United States and Japan has significantly reduced to less than 1 year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.8500L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.8500L"><span>A Lagging Model for Describing Drawdown Induced by a Constant-Rate Pumping in a Leaky Confined Aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Ye-Chen; Yeh, Hund-Der</p> <p>2017-10-01</p> <p>This study proposes a generalized Darcy's law with considering phase lags in both the water flux and drawdown gradient to develop a lagging flow model for describing drawdown induced by constant-rate pumping (CRP) in a leaky confined aquifer. The present model has a mathematical formulation similar to the dual-porosity model. The Laplace-domain solution of the model with the effect of wellbore storage is derived by the Laplace transform method. The time-domain solution for the case of neglecting the wellbore storage and well radius is developed by the use of Laplace transform and Weber transform. The results of sensitivity analysis based on the solution indicate that the drawdown is very sensitive to the change in each of the transmissivity and storativity. Also, a study for the lagging effect on the drawdown indicates that its influence is significant associated with the lag times. The present solution is also employed to analyze a data set taken from a CRP test conducted in a fractured aquifer in South Dakota, USA. The results show the prediction of this new solution with considering the phase lags has very good fit to the field data, especially at early pumping time. In addition, the phase lags seem to have a scale effect as indicated in the results. In other words, the lagging behavior is positively correlated with the observed distance in the Madison aquifer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3544986','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3544986"><span>High content evaluation of shear dependent platelet function in a microfluidic flow assay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hansen, Ryan R.; Wufsus, Adam R.; Barton, Steven T.; Onasoga, Abimbola A.; Johnson-Paben, Rebecca M.; Neeves, Keith B.</p> <p>2012-01-01</p> <p>The high blood volume requirements and low throughput of conventional flow assays for measuring platelet function are unsuitable for drug screening and clinical applications. In this study, we describe a microfluidic flow assay that uses 50 μL of whole blood to measure platelet function on ~300 micropatterned spots of collagen over a range of physiologic shear rates (50–920 s−1). Patterning of collagen thin films (CTF) was achieved using a novel hydrated microcontact stamping method. CTF spots of 20, 50, and 100 μm were defined on glass substrates and consisted of a dense mat of nanoscale collagen fibers (3.74 ± 0.75 nm). We found that a spot size of greater than 20 μm was necessary to support platelet adhesion under flow, suggesting a threshold injury is necessary for stable platelet adhesion. Integrating 50 μm CTF microspots into a multishear microfluidic device yielded a high content assay from which we extracted platelet accumulation metrics (lag time, growth rate, total accumulation) on the spots using Hoffman modulation contrast microscopy. This method has potential broad application in identifying platelet function defects and screening, monitoring and dosing antiplatelet agents. PMID:23001359</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040173184&hterms=Arginine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DArginine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040173184&hterms=Arginine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DArginine"><span>Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, D. L.; McAllister, T. N.; Frangos, J. A.</p> <p>1996-01-01</p> <p>Interstitial fluid flow may mediate skeletal remodeling in response to mechanical loading. Because nitric oxide (NO) has been shown to be an osteoblast mitogen and inhibitor of osteoclastic resorption, we investigated and characterized the role of fluid shear on the release of NO in osteoblasts. Rat calvarial cells in a stationary culture produced undetectable levels of NO. Fluid shear stress (6 dyn/cm2) rapidly increased NO release rate to 9.8 nmol.h-1.mg protein-1 and sustained this production for 12 h of exposure to flow. Cytokine treatment also induced NO synthesis after a 12-h lag phase of zero production, followed by a production rate of 0.6 nmol.h-1.mg protein-1. Flow-induced NO production was blocked by the NO synthase (NOS) inhibitor NG-amino-L-arginine, but not by dexamethasone, which suggests that the flow stimulated a constitutive NOS isoform. This is the first time that a functional constitutively present NOS isoform has been identified in osteoblasts. Moreover, fluid flow represents the most potent stimulus of NO release in osteoblasts reported to date. Fluid flow-induced NO production may therefore play a primary role in bone maintenance and remodeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDE16002M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDE16002M"><span>Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto</p> <p>2012-11-01</p> <p>Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002608','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002608"><span>Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1973-01-01</p> <p>System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TJSID..78..113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TJSID..78..113S"><span>The Model Experiments and Finite Element Analysis on Deformation and Failure by Excavation of Grounds in Foregoing-roof Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu</p> <p></p> <p>We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980008110','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980008110"><span>Novel Composites for Wing and Fuselage Applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharp, Dave; Sobel, Larry</p> <p>1997-01-01</p> <p>A simple and rapid analysis method, consisting of a number of modular, 'strength-of-materials-type' models, is presented for predicting the nonlinear response and stiffener separation of postbuckled, flat, composite, shear panels. The analysis determines the maximum principal tensile stress in the skin surface layer under to toe. Failure is said to occur when this stress reaches the mean transverse tensile strength of the layer. The analysis methodology consists of a number of closed-form equations that can easily be used in a 'hand analysis. For expediency, they have been programmed into a preliminary design code called SNAPPS (Speedy Nonlinear Analysis of Postbuckled Panels in Shear), which rapidly predicts postbuckling response of the panel for each value of the applied shear load. SNAPPS response and failure predictions were found to agree well with test results for three panels with widely different geometries, laminates and stiffnesses. Design guidelines are given for increasing the load-carrying capacity of stiffened, composite shear panels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..128a2007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..128a2007W"><span>Calculation and analysis of shear resistance of segment ring joint with shear pin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Shengzhi; Huang, Haibin; Wang, Mingnian; Xiao, Shihui; Liu, Dagang</p> <p>2018-03-01</p> <p>In order to get the effect of shear pins between segments on the shear resistance of segment girth joints. Take the Maliuzhou traffic tunnel project of Zhuhai which with super large diameter and Marine Composite strata as the research object, the longitudinal shear stiffness of tunnel shear considering the shear rigidity of shear pins was obtained through the finite element shear experiment of segment ring. By comparing the calculation results of shear pin and non shear pin between segment ring connections, the conclusion that shear pin setting can effectively decompose and transfer shear force and control the dislocation between segment ring blocks is obtained. The study can be used as reference for the design and construction of shield tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040129624','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040129624"><span>Quasibiennial Oscillation in Tropical Ozone as Revealed by Ozonesonde and Satellite Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Logan, J. A.; Jones, D. B. A.; Megretskaia, I. A.; Oltmans, S. J.; Johnson, B. J.; Voemel, H.; Randel, W. J.; Kimani, W.; Schmidlin, F. J.</p> <p>2003-01-01</p> <p>We present an analysis of the quasi-biennial oscillation (QBO) in tropical ozone using recent in situ measurements made by ozonesondes, supplemented by satellite profile and column data. The first in situ equatorial ozone profiles reveal the dramatic change in shape of the profile that accompanies the descent of the westerly shear zone. The partial pressure maximum in ozone increases by -25% in 5-6 months as it descends from 17.5 to 24 hPa. The amplitude of the QBO anomaly that extends from 15 to 80 hPa is found to exceed *20%, larger than indicated by earlier analyses of satellite data. The influence of the QBO on equatorial ozone is dominant between 10 and 45 hPa, but the seasonal cycle is more important below 50 hPa. The equatorial ozone anomalies are influenced by El Niiio-Southern Oscillation (ENSO) in the lowest part of the stratosphere. The ozone anomaly in the lower stratosphere at 20"s lags that at the equator by only a few months during the easterlies from 1994 to 1998, contrary to the previous picture of the subtropical and equatorial anomalies being out of phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/567453-multi-fracture-response-cross-ply-ceramic-composites','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/567453-multi-fracture-response-cross-ply-ceramic-composites"><span>Multi-fracture response of cross-ply ceramic composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erdman, D.L.; Weitsman, Y.J.</p> <p>1996-12-31</p> <p>Ceramic matrix composites are candidate materials for high temperature applications due to their ability to retain mechanical properties. However, in view of the relatively low transverse strength and ductility associated with unidirectional ceramic matrix lay-ups, it is necessary to consider multi-directional reinforcement for any practical structural application. The simplest laminate that would provide multi-directional toughness would be the cross-ply lay-up. Although there are numerous publications concerned with modeling of the stress-strain response of unidirectional ceramic matrix laminates, there are relatively few investigations in the current literature which deal with laminates such as the cross-ply lay-up. Additionally, the aforementioned publications aremore » often incomplete since they fail to address the failure mechanisms associated with this lay-up in a comprehensive manner and consequently have limited success in correlating experimental stress-strain response with mechanical test results. Furthermore, many current experimental investigations fail to report the details of damage evolution and stress-strain response which are required for correlation with analyses. This investigation presents a comprehensive extended shear-lag type analysis that considers transverse matrix cracking in the 90{degree} plies, the non-linearity of the 0{degree} plies, and slip at the 0/90 ply interface.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518477-integrated-model-production-ray-time-lags-quiescent-spectra-from-homogeneous-inhomogeneous-black-hole-accretion-coronae','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518477-integrated-model-production-ray-time-lags-quiescent-spectra-from-homogeneous-inhomogeneous-black-hole-accretion-coronae"><span>AN INTEGRATED MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS AND QUIESCENT SPECTRA FROM HOMOGENEOUS AND INHOMOGENEOUS BLACK HOLE ACCRETION CORONAE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu</p> <p>2016-04-20</p> <p>Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fouriermore » transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25558911','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25558911"><span>Optimization of hydraulic shear parameters and reactor configuration in the aerobic granular sludge process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang</p> <p>2015-01-01</p> <p>The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091338','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091338"><span>The Measurement of Pressure Through Tubes in Pressure Distribution Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hemke, Paul E</p> <p>1928-01-01</p> <p>The tests described in this report were made to determine the error caused by using small tubes to connect orifices on the surface of aircraft to central pressure capsules in making pressure distribution tests. Aluminum tubes of 3/16-inch inside diameter were used to determine this error. Lengths from 20 feet to 226 feet and pressures whose maxima varied from 2 inches to 140 inches of water were used. Single-pressure impulses for which the time of rise of pressure from zero to a maximum varied from 0.25 second to 3 seconds were investigated. The results show that the pressure recorded at the capsule on the far end of the tube lags behind the pressure at the orifice end and experiences also a change in magnitude. For the values used in these tests the time lag and pressure change vary principally with the time of rise of pressure from zero to a maximum and the tube length. Curves are constructed showing the time lag and pressure change. Empirical formulas are also given for computing the time lag. Analysis of pressure distribution tests made on airplanes in flight shows that the recorded pressures are slightly higher than the pressures at the orifice and that the time lag is negligible. The apparent increase in pressure is usually within the experimental error, but in the case of the modern pursuit type of airplane the pressure increase may be 5 per cent. For pressure-distribution tests on airships the analysis shows that the time lag and pressure change may be neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=burkholder&pg=2&id=EJ678466','ERIC'); return false;" href="https://eric.ed.gov/?q=burkholder&pg=2&id=EJ678466"><span>An Illustration of a Longitudinal Cross-Lagged Design for Larger Structural Equation Models. Teacher's Corner.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Burkholder, Gary J.; Harlow, Lisa L.</p> <p>2003-01-01</p> <p>Tested a model of HIV behavior risk, using a fully cross-lagged, longitudinal design to illustrate the analysis of larger structural equation models. Data from 527 women who completed a survey at three time points show excellent fit of the model to the data. (SLD)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830020904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830020904"><span>A theory of rotating stall of multistage axial compressors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, F. K.</p> <p>1983-01-01</p> <p>A theoretical analysis was made of rotating stall in axial compressors of many stages, finding conditions for a permanent, straight-through traveling disturbance, with the steady compressor characteristic assumed known, and with simple lag processes ascribed to the flows in the inlet, blade passages, and exit regions. For weak disturbances, predicted stall propagation speeds agree well with experimental results. For a locally-parabolic compressor characteristic, an exact nonlinear solution is found and discussed. For deep stall, the stall-zone boundary is most abrupt at the trailing edge, as expected. When a complete characteristic having unstalling and reverse-flow features is adopted, limit cycles governed by a Lienard's equation are found. Analysis of these cycles yields predictions of recovery from rotating stall; a relaxation oscillation is found at some limiting flow coefficient, above which no solution exists. Recovery is apparently independent of lag processes in the blade passages, but instead depends on the lags originating in the inlet and exit flows, and also on the shape of the given characteristic diagram. Small external lags and tall diagrams favor early recovery. Implications for future research are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10188129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10188129"><span>The self adapting washer for lag screw fixation of mandibular fractures: finite element analysis and preclinical evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terheyden, H; Mühlendyck, C; Feldmann, H; Ludwig, K; Härle, F</p> <p>1999-02-01</p> <p>Besides rigid fixation, lag screws have distinct advantages compared with plates in appropriate indications in mandibular fractures. However, in current lag screw systems, the relatively small area of the screw head has to transfer the tensile force which can exceed 1000 N in the symphysis, to the thin cortical bone plate. Countersinking, which is obligatory in most systems, will weaken the cortical plate. Finite element analysis (FEA) revealed that load in this situation can exceed the normal tensile strength of metal and bone. Consequently, a new washer was constructed which both increased the supporting surface and did not require countersinking. The washer is self adapting (SAW) to the cortical plate in a defined position, forming a ball and socket joint with the screw head. Using the FEA model, a ten-fold reduction in load on bone and metal was observed with the new washer. In a miniature pig mandibular symphysis fracture model, the clinical applicability and a favourable histological reaction were demonstrated, compared with conventional lag screw designs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23455724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23455724"><span>Durability of classification and action learning: differences revealed using ex-Gaussian distribution analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moutsopoulou, Karolina; Waszak, Florian</p> <p>2013-05-01</p> <p>It has been shown that in associative learning it is possible to disentangle the effects caused on behaviour by the associations between a stimulus and a classification (S-C) and the associations between a stimulus and the action performed towards it (S-A). Such evidence has been provided using ex-Gaussian distribution analysis to show that different parameters of the reaction time distribution reflect the different processes. Here, using this method, we investigate another difference between these two types of associations: What is the relative durability of these associations across time? Using a task-switching paradigm and by manipulating the lag between the point of the creation of the associations and the test phase, we show that S-A associations have stronger effects on behaviour when the lag between the two repetitions of a stimulus is short. However, classification learning affects behaviour not only in short-term lags but also (and equally so) when the lag between prime and probe is long and the same stimuli are repeatedly presented within a different classification task, demonstrating a remarkable durability of S-C associations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.474.3954K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.474.3954K"><span>On the linear stability of sheared and magnetized jets without current sheets - relativistic case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.</p> <p>2018-03-01</p> <p>In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1349191','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1349191"><span>Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Spears, Robert Edward; Coleman, Justin Leigh</p> <p>2015-08-01</p> <p>Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22689265','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22689265"><span>Lagged segmented Poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voss, Andreas; Fischer, Claudia; Schroeder, Rico; Figulla, Hans R; Goernig, Matthias</p> <p>2012-07-01</p> <p>The objectives of this study were to introduce a new type of heart-rate variability analysis improving risk stratification in patients with idiopathic dilated cardiomyopathy (DCM) and to provide additional information about impaired heart beat generation in these patients. Beat-to-beat intervals (BBI) of 30-min ECGs recorded from 91 DCM patients and 21 healthy subjects were analyzed applying the lagged segmented Poincaré plot analysis (LSPPA) method. LSPPA includes the Poincaré plot reconstruction with lags of 1-100, rotating the cloud of points, its normalized segmentation adapted to their standard deviations, and finally, a frequency-dependent clustering. The lags were combined into eight different clusters representing specific frequency bands within 0.012-1.153 Hz. Statistical differences between low- and high-risk DCM could be found within the clusters II-VIII (e.g., cluster IV: 0.033-0.038 Hz; p = 0.0002; sensitivity = 85.7 %; specificity = 71.4 %). The multivariate statistics led to a sensitivity of 92.9 %, specificity of 85.7 % and an area under the curve of 92.1 % discriminating these patient groups. We introduced the LSPPA method to investigate time correlations in BBI time series. We found that LSPPA contributes considerably to risk stratification in DCM and yields the highest discriminant power in the low and very low-frequency bands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...826...70D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...826...70D"><span>The Reverberation Lag in the Low-mass X-ray Binary H1743-322</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Marco, Barbara; Ponti, Gabriele</p> <p>2016-07-01</p> <p>The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDG31009W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDG31009W"><span>An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wouden, Alex; Cimbala, John; Lewis, Bryan</p> <p>2014-11-01</p> <p>While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29505405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29505405"><span>Robust Short-Lag Spatial Coherence Imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nair, Arun Asokan; Tran, Trac Duy; Bell, Muyinatu A Lediju</p> <p>2018-03-01</p> <p>Short-lag spatial coherence (SLSC) imaging displays the spatial coherence between backscattered ultrasound echoes instead of their signal amplitudes and is more robust to noise and clutter artifacts when compared with traditional delay-and-sum (DAS) B-mode imaging. However, SLSC imaging does not consider the content of images formed with different lags, and thus does not exploit the differences in tissue texture at each short-lag value. Our proposed method improves SLSC imaging by weighting the addition of lag values (i.e., M-weighting) and by applying robust principal component analysis (RPCA) to search for a low-dimensional subspace for projecting coherence images created with different lag values. The RPCA-based projections are considered to be denoised versions of the originals that are then weighted and added across lags to yield a final robust SLSC (R-SLSC) image. Our approach was tested on simulation, phantom, and in vivo liver data. Relative to DAS B-mode images, the mean contrast, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) improvements with R-SLSC images are 21.22 dB, 2.54, and 2.36, respectively, when averaged over simulated, phantom, and in vivo data and over all lags considered, which corresponds to mean improvements of 96.4%, 121.2%, and 120.5%, respectively. When compared with SLSC images, the corresponding mean improvements with R-SLSC images were 7.38 dB, 1.52, and 1.30, respectively (i.e., mean improvements of 14.5%, 50.5%, and 43.2%, respectively). Results show great promise for smoothing out the tissue texture of SLSC images and enhancing anechoic or hypoechoic target visibility at higher lag values, which could be useful in clinical tasks such as breast cyst visualization, liver vessel tracking, and obese patient imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29660823','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29660823"><span>Radiographic morphology of intrabony defects in the first molars of patients with localized aggressive periodontitis: Comparison with health and chronic periodontitis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nibali, L; Tomlins, P; Akcalı, A</p> <p>2018-04-16</p> <p>The aim of this study was to describe the radiographic features of the first molars of patients with localized aggressive periodontitis (LAgP) and of their associated intrabony defects and to compare them with a control sample of chronic periodontitis cases and healthy subjects. Data from a total of 93 patients were included in this analysis. First, dental panoramic tomograms of 34 patients with LAgP (131 first molars) and 30 periodontally healthy patients (110 first molars) were compared. Then, periapical radiographs of the first molars of the same patients with LAgP and of 29 patients with chronic periodontitis affected by intrabony defects were analysed. Shorter root trunks were associated with the presence of intrabony defects in patients with LAgP (P = .002 at multilevel logistic regression), also when LAgP molars were compared with healthy subjects (P = .036). Although no difference in defect depth and angle was noted between LAgP and chronic periodontitis intrabony defects, LAgP intrabony defects appeared to be more frequently symmetrical and arch-shaped than in chronic periodontitis (P = .008), with positive predictive value and negative predictive value of for 'wide arch' defect of 87.3% (95% CI = 77.2%-93.3%) and 32.3% (95% CI = 27.7%-37.2%) respectively. First molars of patients with LAgP affected by intrabony defects may have some distinct radiographic anatomical characteristics to those of healthy subjects. The shape of intrabony defects seems to differ between LAgP and chronic periodontitis cases. Further studies need to confirm these features and investigate if they are related to the initiation and progression of periodontitis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23987441','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23987441"><span>Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo</p> <p>2013-10-15</p> <p>Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP11A1321W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP11A1321W"><span>Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.</p> <p>2014-12-01</p> <p>Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.7160E..14J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.7160E..14J"><span>Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo</p> <p>2008-12-01</p> <p>In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26742131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26742131"><span>Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W</p> <p>2016-02-01</p> <p>Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25565456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25565456"><span>A modification of Murray's law for shear-thinning rheology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGah, Patrick M; Capobianchi, Massimo</p> <p>2015-05-01</p> <p>This study reformulates Murray's well-known principle of minimum work as applied to the cardiovascular system to include the effects of the shear-thinning rheology of blood. The viscous behavior is described using the extended modified power law (EMPL), which is a time-independent, but shear-thinning rheological constitutive equation. The resulting minimization problem is solved numerically for typical parameter ranges. The non-Newtonian analysis still predicts the classical cubic diameter dependence of the volume flow rate and the cubic branching law. The current analysis also predicts a constant wall shear stress throughout the vascular tree, albeit with a numerical value about 15-25% higher than the Newtonian analysis. Thus, experimentally observed deviations from the cubic branching law or the predicted constant wall shear stress in the vasculature cannot likely be attributed to blood's shear-thinning behavior. Further differences between the predictions of the non-Newtonian and the Newtonian analyses are highlighted, and the limitations of the Newtonian analysis are discussed. Finally, the range and limits of applicability of the current results as applied to the human arterial tree are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081215','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081215"><span>Influence of several factors on ignition lag in a compression-ignition engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerrish, Harold C; Voss, Fred</p> <p>1932-01-01</p> <p>This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930007591','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930007591"><span>Prediction of thermal cycling induced matrix cracking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcmanus, Hugh L.</p> <p>1992-01-01</p> <p>Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27846267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27846267"><span>Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amaya, Ronny; Cancel, Limary M; Tarbell, John M</p> <p>2016-01-01</p> <p>Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5112904','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5112904"><span>Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.</p> <p>2016-01-01</p> <p>Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease. PMID:27846267</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=APICAL&pg=2&id=EJ158925','ERIC'); return false;" href="https://eric.ed.gov/?q=APICAL&pg=2&id=EJ158925"><span>A Voice Onset Time Analysis of Apical Stop Production in 3-Year-Olds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gilbert, John H. V.</p> <p>1977-01-01</p> <p>This paper reports data for voice onset time (VOT) for /d/ and /t/, from six children at average age 3;0. Values for /d/ clearly achieve the short voicing lag category of adults, reported previously. Values for /t/, however, are much more varied, although falling within the category long voicing lag. (CHK)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Self+AND+concept&pg=2&id=EJ1145396','ERIC'); return false;" href="https://eric.ed.gov/?q=Self+AND+concept&pg=2&id=EJ1145396"><span>Academic Self-Concept and Achievement in Polish Primary Schools: Cross-Lagged Modelling and Gender-Specific Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Grygiel, Pawel; Modzelewski, Michal; Pisarek, Jolanta</p> <p>2017-01-01</p> <p>This study reports relationships between general academic self-concept and achievement in grade 3 and grade 5. Gender-specific effects were investigated using a longitudinal, two-cycle, 3-year autoregressive cross-lagged panel design in a large, representative sample of Polish primary school pupils (N = 4,226). Analysis revealed (a) reciprocal…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012449','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012449"><span>Determination of the Shear Stress Distribution in a Laminate from the Applied Shear Resultant--A Simplified Shear Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.</p> <p>2007-01-01</p> <p>The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ..tmp..108N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ..tmp..108N"><span>Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazarieh, F.; Ansari, H.; Ziaei, A. N.; Izady, A.; Davari, K.; Brunner, P.</p> <p>2018-05-01</p> <p>The time required for deep percolating water to reach the water table can be considerable in areas with a thick vadose zone. Sustainable groundwater management, therefore, has to consider the spatial and temporal dynamics of groundwater recharge. The key parameters that control the lag time have been widely examined in soil physics using small-scale lysimeters and modeling studies. However, only a small number of studies have analyzed how deep-percolation rates affect groundwater recharge dynamics over large spatial scales. This study examined how the parameters influencing lag time affect groundwater recharge in a semi-arid catchment under irrigation (in northeastern Iran) using a numerical modeling approach. Flow simulations were performed by the MODFLOW-NWT code with the Vadose-Zone Flow (UZF) Package. Calibration of the groundwater model was based on data from 48 observation wells. Flow simulations showed that lag times vary from 1 to more than 100 months. A sensitivity analysis demonstrated that during drought conditions, the lag time was highly sensitive to the rate of deep percolation. The study illustrated two critical points: (1) the importance of providing estimates of the lag time as a basis for sustainable groundwater management, and (2) lag time not only depends on factors such as soil hydraulic conductivity or vadose zone depth but also depends on the deep-percolation rates and the antecedent soil-moisture condition. Therefore, estimates of the lag time have to be associated with specific percolation rates, in addition to depth to groundwater and soil properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..309a2077T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..309a2077T"><span>The effect of shear wall location in resisting earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarigan, J.; Manggala, J.; Sitorus, T.</p> <p>2018-02-01</p> <p>Shear wall is one of lateral resisting structure which is used commonly. Shear wall gives high stiffness to the structure so as the structure will be stable. Applying shear wall can effectively reduce the displacement and story-drift of the structure. This will reduce the destruction comes from lateral loads such as an earthquake. Earlier studies showed that shear wall gives different performance based on its position in structures. In this paper, seismic analysis has been performed using response spectrum method for different Model of structures; they are the open frame, the shear wall at core symmetrically, the shear wall at periphery symmetrically, and the shear wall at periphery asymmetrically. The results are observed by comparing the displacement and story-drift. Based on the analysis, the placement of shear wall at the core of structure symmetrically gives the best performance to reduce the displacement and story-drift. It can reduce the displacement up to 61.16% (X-dir) and 70.60% (Y-dir). The placement of shear wall at periphery symmetrically will reduce the displacement up to 53.85% (X-dir) and 47.87% (Y-dir) while the placement of shear wall at periphery asymmetrically reducing the displacement up to 59.42% (X-dir) and 66.99% (Y-dir).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28260331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28260331"><span>[The effects of exposure to ozone on sperm quality in Wuhan].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, X J; Wang, X C; Ye, B; Li, C L; Zhang, Y; Ma, L</p> <p>2017-03-06</p> <p>Objective: To evaluate the effects of exposure to ozone (O(3)) on sperm quality during different stages of spermatogenesis. Methods: All 1 780 subjects attending to the Reproductive Medicine Center in Renmin Hospital of Wuhan University were recruited from April, 4, 2013 to June, 30, 2015. The subjects were living in Wuhan more than 3 months before attending to the program, aged 20 to 40 years. Semen quality (sperm concentration and sperm count) were measured according to standardized protocols. Corresponding daily 8 hours average concentration of O(3), other polluted concentration, average temperature and relative humidity were collected in different time, including lag 0, 10, 70 and 90 d, and lag 0-9 d, lag 10-14 d, lag 70-90 d and lag 0-90 d. After controlling the age, BMI, education level and other confounders, generalized linear Model was used to investigate the association between O(3) and sperm quality during different stages of spermatogenesis. Results: Average daily concentration of O(3) during the study period was (114.20±74.88) μg/m(3) and the mean values of sperm concentration and count were (76.32±50.17) millions/ml and (164.77 ± 133.05) millions/sample, respectively. Exposure to O(3) was associated with decreasing sperm concentration and count. For every 1 μg/m(3) increase of O(3), the decrease of sperm concentration during lag 10, lag 0-9 and lag 10-14 days exposure windows were 0.040 (95% CI: 0.004-0.077) millions/ml, 0.081 (95% CI: 0.003-0.158) millions/ml and 0.059 (95% CI: 0.001-0.116) millions/ml, respectively. And the decrease of sperm count during lag 10, lag 0-9 days exposure windows were 0.105 (95% CI: 0.008-0.202) millions/sample and 0.221 (95% CI: 0.016-0.426) millions/sample. After stratification, in the ozone concentration <P (50) and ≥ P (50) groups, and the number of subjects in each exposure windows (lag 0-9, lag 10-14, lag 70-90, lag 0-90 days) were 887 and 893, 890 and 890, 895 and 885, 889 and 891, respectively. Compared with the high ozone concentration group, the effects of low group were more obvious. Furthermore, the effects of low concentration group was the most obvious during lag 10-14 days, for every 1 μg/m(3) increase of O(3), the decrease of sperm concentration was 0.249 (95% CI: 0.028-0.470) millions/ml. After sensitivity analysis, the effects of exposure to ozone on sperm concentration and sperm count remained relatively unchanged. Conclusion: Our study suggested that exposure to O(3) was significantly associated with decreasing semen quality in Wuhan. Moreover, the effects were more obvious during lag 0-9 and lag 10-14 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AtmEn..89..309L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AtmEn..89..309L"><span>Effect of Asian dust storms on mortality in three Asian cities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Hyewon; Honda, Yasushi; Lim, Youn-Hee; Guo, Yue Leon; Hashizume, Masahiro; Kim, Ho</p> <p>2014-06-01</p> <p>Asian dust storms (ADS) have affected several Asian countries and have been a major concern due to adverse effects on public health. The occurrence of ADS differs in each country based on geographical features and distance from the storms' origin. Many studies have reported significant associations between ADS and morbidity. However, regarding the association between ADS and mortality, only a few studies have found statistically significant ADS effects in Korea, Taiwan and Japan. Accordingly, this study aimed to examine the effects of ADS on daily mortality in three Asian cities (Seoul, South Korea; Taipei, Taiwan; and Kitakyushu, Japan) and to explore the differences in the extent of effects in each city. We performed time-series analyses using a generalized additive model (GAM) with Quasi-Poisson regressions. Deaths due to accidents or external causes were excluded. We used a dummy variable as an indicator of ADS and considered lag effects of ADS. Stratified analyses by disease and age and sensitivity analyses controlling for NO2, SO2, and PM10 were also conducted respectively. Additionally, influenza epidemics were adjusted for considering seasonal patterns, and a meta-analysis was performed. We reported results as excess mortality by percentage due to Asian dust storms. We found significant excess mortality in Seoul and Kitakyushu as follows. In Seoul, ADS showed adverse effects on mortality under 65 years old (lag 2: 4.44%, lag 3: 5%, lag 4: 4.39%). In Kitakyushu, ADS had adverse effects on respiratory mortality (lag 2: 18.82%). Contradictory to results in Seoul and Kitakyushu, ADS seemed to have a protective effect in Taipei: total non-accidental mortality (lag 0: -2.77%, lag 1: -3.24%), mortality over 65 years old (lag 0: -3.35%, lag 1: -3.29%) and respiratory mortality (lag 0: -10.62%, lag 1: -9.67%). Sensitivity analyses showed similar findings as the main results. Our findings suggest that ADS may affect mortality in several Asian cities, and that a dust storm warning system could help protect people from dust storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMPSo..81...41N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMPSo..81...41N"><span>Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui</p> <p>2015-08-01</p> <p>How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003706','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003706"><span>Fatigue Crack Growth and Crack Bridging in SCS-6/Ti-24-11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack</p> <p>1995-01-01</p> <p>Interfacial damage induced by relative fiber/matrix sliding was found to occur in the bridged zone of unidirectional SCS-6/Ti-24Al-11Nb intermetallic matrix composite specimens subjected to fatigue crack growth conditions. The degree of interfacial damage was not uniform along the bridged crack wake. Higher damage zones were observed near the machined notch in comparison to the crack tip. The interfacial friction shear strength tau(sub f) measured in the crack wake using pushout testing revealed lower values than the as-received interface. Interfacial wear also reduced the strength of the bridging fibers. The reduction in fiber strength is thought to be a function of the magnitude of relative fiber/matrix displacements ind the degree of interfacial damage. Furthermore, two different fiber bridging models were used to predict the influence of bridging on the fatigue crack driving force. The shear lag model required a variable tau(sub f) in the crack wake (reflecting the degradation of the interface) before its predictions agreed with trends exhibited by the experimental data. The fiber pressure model did an excellent job in predicting both the FCG data and the DeltaCOD in the bridged zone even though it does not require a knowledge of tau(sub f).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48437','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48437"><span>Analysis of inadvertent microprocessor lag time on eddy covariance results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Karl Zeller; Gary Zimmerman; Ted Hehn; Evgeny Donev; Diane Denny; Jeff Welker</p> <p>2001-01-01</p> <p>Researchers using the eddy covariance approach to measuring trace gas fluxes are often hoping to measure carbon dioxide and energy fluxes for ecosystem intercomparisons. This paper demonstrates a systematic microprocessor- caused lag of 20.1 to 20.2 s in a commercial sonic anemometer-analog-to-digital datapacker system operated at 10 Hz. The result of the inadvertent...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26936693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26936693"><span>Clinical introduction of image lag correction for a cone beam CT system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stankovic, Uros; Ploeger, Lennert S; Sonke, Jan-Jakob; van Herk, Marcel</p> <p>2016-03-01</p> <p>Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors' in-house developed clinical cbct reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to 15.5 ± 11.9 HU without the saturation handling and to 9.6 ± 12.1 HU with the saturation handling, depending on the date of the calibration. The image lag correction parameters were stable over a period of 3 months. The computational load was increased by approximately 10%, not endangering the fast in-line reconstruction. The lag correction was successfully implemented clinically and removed most image lag artifacts thus improving the image quality. Image lag correction parameters were stable for 3 months indicating low frequency of calibration requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11083132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11083132"><span>Do subjective symptoms predict our perception of jet-lag?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Waterhouse, J; Edwards, B; Nevill, A; Atkinson, G; Reilly, T; Davies, P; Godfrey, R</p> <p>2000-10-01</p> <p>A total of 39 subjects were studied after a flight from the UK to either Sydney or Brisbane (10 time-zones to the east). Subjects varied widely in their age, their athletic ability, whether or not they were taking melatonin, and in their objectives when in Australia. For the first 6 days after arrival, subjects scored their jet-lag five times per day and other subjective variables up to five times per day, using visual analogue scales. For jet-lag, the scale was labelled 0 = no jet-lag to 10 = very bad jet-lag; the extremes of the other scales were labelled - 5 and + 5, indicating marked changes compared with normal, and the centrepoint was labelled 0 indicating 'normal'. Mean daily values for jet-lag and fatigue were initially high (+ 3.65 +/- 0.35 and + 1.55 +/- 0.22 on day 1, respectively) and fell progressively on subsequent days, but were still raised significantly (p < 0.05) on day 5 (fatigue) or day 6 (jet-lag). In addition, times of waking were earlier on all days. By contrast, falls in concentration and motivation, and rises in irritability and nocturnal wakings, had recovered by day 4 or earlier, and bowel activity was less frequent, with harder stools, on days 1 and 2 only. Also, on day 1, there was a decrease in the ease of getting to sleep (- 1.33 +/- 0.55), but this changed to an increase from day 2 onwards (for example, + 0.75 +/- 0.25 on day 6). Stepwise regression analysis was used to investigate predictors of jet-lag. The severity of jet-lag at all the times that were measured was strongly predicted by fatigue ratings made at the same time. Its severity at 08:00 h was predicted by an earlier time of waking, by feeling less alert 30 min after waking and, marginally, by the number of waking episodes. Jet-lag at 12:00 and 16:00 h was strongly predicted by a fall of concentration at these times; jet-lag at mealtimes (12:00, 16:00 and 20:00 h) was predicted by the amount of feeling bloated. Such results complicate an exact interpretation that can be placed on an assessment of a global term such as jet-lag, particularly if the assessment is made only once per day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1016a2011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1016a2011C"><span>An improved measurement system for FOG pure lag time with no changing of FOG work status</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.</p> <p>2018-05-01</p> <p>The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156740','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156740"><span>Lag and seasonality considerations in evaluating AVHRR NDVI response to precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ji, Lei; Peters, Albert J.</p> <p>2005-01-01</p> <p>Assessment of the relationship between the normalized difference vegetation index (NDVI) and precipitation is important in understanding vegetation and climate interaction at a large scale. NDVI response to precipitation, however, is difficult to quantify due to the lag and seasonality effects, which will vary due to vegetation cover type, soils and climate. A time series analysis was performed on biweekly NDVI and precipitation around weather stations in the northern and central U.S. Great Plains. Regression models that incorporate lag and seasonality effects were used to quantify the relationship between NDVI and lagged precipitation in grasslands and croplands. It was found that the time lag was shorter in the early growing season, but longer in the mid- to late-growing season for most locations. The regression models with seasonal adjustment indicate that the relationship between NDVI and precipitation over the entire growing season was strong, with R2 values of 0.69 and 0.72 for grasslands and croplands, respectively. We conclude that vegetation greenness can be predicted using current and antecedent precipitation, if seasonal effects are taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3078030','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3078030"><span>Failure of the precedence effect with a noise-band vocoder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Seeber, Bernhard U.; Hafter, Ervin R.</p> <p>2011-01-01</p> <p>The precedence effect (PE) describes the ability to localize a direct, leading sound correctly when its delayed copy (lag) is present, though not separately audible. The relative contribution of binaural cues in the temporal fine structure (TFS) of lead–lag signals was compared to that of interaural level differences (ILDs) and interaural time differences (ITDs) carried in the envelope. In a localization dominance paradigm participants indicated the spatial location of lead–lag stimuli processed with a binaural noise-band vocoder whose noise carriers introduced random TFS. The PE appeared for noise bursts of 10 ms duration, indicating dominance of envelope information. However, for three test words the PE often failed even at short lead–lag delays, producing two images, one toward the lead and one toward the lag. When interaural correlation in the carrier was increased, the images appeared more centered, but often remained split. Although previous studies suggest dominance of TFS cues, no image is lateralized in accord with the ITD in the TFS. An interpretation in the context of auditory scene analysis is proposed: By replacing the TFS with that of noise the auditory system loses the ability to fuse lead and lag into one object, and thus to show the PE. PMID:21428515</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AtmEn..96..257S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AtmEn..96..257S"><span>A case-crossover analysis of forest fire haze events and mortality in Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahani, Mazrura; Zainon, Nurul Ashikin; Wan Mahiyuddin, Wan Rozita; Latif, Mohd Talib; Hod, Rozita; Khan, Md Firoz; Tahir, Norhayati Mohd; Chan, Chang-Chuan</p> <p>2014-10-01</p> <p>The Southeast Asian (SEA) haze events due to forest fires are recurrent and affect Malaysia, particularly the Klang Valley region. The aim of this study is to examine the risk of haze days due to biomass burning in Southeast Asia on daily mortality in the Klang Valley region between 2000 and 2007. We used a case-crossover study design to model the effect of haze based on PM10 concentration to the daily mortality. The time-stratified control sampling approach was used, adjusted for particulate matter (PM10) concentrations, time trends and meteorological influences. Based on time series analysis of PM10 and backward trajectory analysis, haze days were defined when daily PM10 concentration exceeded 100 μg/m3. The results showed a total of 88 haze days were identified in the Klang Valley region during the study period. A total of 126,822 cases of death were recorded for natural mortality where respiratory mortality represented 8.56% (N = 10,854). Haze events were found to be significantly associated with natural and respiratory mortality at various lags. For natural mortality, haze events at lagged 2 showed significant association with children less than 14 years old (Odd Ratio (OR) = 1.41; 95% Confidence Interval (CI) = 1.01-1.99). Respiratory mortality was significantly associated with haze events for all ages at lagged 0 (OR = 1.19; 95% CI = 1.02-1.40). Age-and-gender-specific analysis showed an incremental risk of respiratory mortality among all males and elderly males above 60 years old at lagged 0 (OR = 1.34; 95% CI = 1.09-1.64 and OR = 1.41; 95% CI = 1.09-1.84 respectively). Adult females aged 15-59 years old were found to be at highest risk of respiratory mortality at lagged 5 (OR = 1.66; 95% CI = 1.03-1.99). This study clearly indicates that exposure to haze events showed immediate and delayed effects on mortality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21360994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21360994"><span>[Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing</p> <p>2010-11-01</p> <p>By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21439596-correlated-optical-gamma-emission-from-grb','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21439596-correlated-optical-gamma-emission-from-grb"><span>A Correlated Optical and Gamma Emission from GRB 081126A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gendre, B.; Klotz, A.; CESR, Observatoire Midi-Pyrenees, CNRS, Universite de Toulouse, BP 4346, F-31028-Toulouse Cedex 04</p> <p>2010-10-15</p> <p>We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations couldmore » potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770021194','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770021194"><span>A theoretical analysis of airplane longitudinal stability and control as affected by wind shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sherman, W. L.</p> <p>1977-01-01</p> <p>The longitudinal equations of motion with wind shear terms were used to analyze the stability and motions of a jet transport. A positive wind shear gives a decreasing head wind or changes a head wind into a tail wind. A negative wind shear gives a decreasing tail wind or changes a tail wind into a head wind. It was found that wind shear had very little effect on the short period mode and that negative wind shear, although it affected the phugoid, did not cause stability problems. On the other hand, it was found that positive wind shear can cause the phugoid to become aperiodic and unstable. In this case, a stability boundary for the phugoid was found that is valid for most aircraft at all flight speeds. Calculations of aircraft motions confirmed the results of the stability analysis. It was found that a flight path control automatic pilot and an airspeed control system provide good control in all types of wind shear. Appendixes give equations of motion that include the effects of downdrafts and updrafts and extend the longitudinal equations of motion for shear to six degrees of freedom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...61a2145X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...61a2145X"><span>The experimental verification on the shear bearing capacity of exposed steel column foot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xijin, LIU</p> <p>2017-04-01</p> <p>In terms of the shear bearing capacity of the exposed steel column foot, there are many researches both home and abroad. However, the majority of the researches are limited to the theoretical analysis sector and few of them make the experimental analysis. In accordance with the prototype of an industrial plant in Beijing, this paper designs the experimental model. The experimental model is composed of six steel structural members in two groups, with three members without shear key and three members with shear key. The paper checks the shear bearing capacity of two groups respectively under different axial forces. The experiment shows: The anchor bolt of the exposed steel column foot features relatively large shear bearing capacity which could not be neglected. The results deducted through calculation methods proposed by this paper under two situations match the experimental results in terms of the shear bearing capacity of the steel column foot. Besides, it also proposed suggestions on revising the Code for Design of Steel Structure in the aspect of setting the shear key in the steel column foot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352630-space-telescope-optical-reverberation-mapping-project-optical-spectroscopic-campaign-emission-line-analysis-ngc','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352630-space-telescope-optical-reverberation-mapping-project-optical-spectroscopic-campaign-emission-line-analysis-ngc"><span>Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pei, L.; Fausnaugh, M. M.; Barth, A. J.; ...</p> <p>2017-03-10</p> <p>Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...837..131P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...837..131P"><span>Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.</p> <p>2017-03-01</p> <p>We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ˜50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ˜50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521884-tracing-reverberation-lag-hard-state-black-hole-ray-binaries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521884-tracing-reverberation-lag-hard-state-black-hole-ray-binaries"><span>TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>De Marco, B.; Ponti, G.; Nandra, K.</p> <p>2015-11-20</p> <p>We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1352630','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1352630"><span>Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pei, L.; Fausnaugh, M. M.; Barth, A. J.</p> <p></p> <p>Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764819','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764819"><span>Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosén, T; Einarsson, J; Nordmark, A; Aidun, C K; Lundell, F; Mehlig, B</p> <p>2015-12-01</p> <p>We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Re(a). As Re(a)→0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Re(a) for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio λ(c)≈0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the λ-Re(a) plane that reaches λ≈0.1275 at the smallest shear Reynolds number (Re(a)=1) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26613829','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26613829"><span>Application of continuous normal-lognormal bivariate density functions in a sensitivity analysis of municipal solid waste landfill.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Petrovic, Igor; Hip, Ivan; Fredlund, Murray D</p> <p>2016-09-01</p> <p>The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.125..541M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.125..541M"><span>Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid</p> <p>2016-08-01</p> <p>This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS in the climatic region of Birjand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...591A.113E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...591A.113E"><span>Statistical properties of Fourier-based time-lag estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Epitropakis, A.; Papadakis, I. E.</p> <p>2016-06-01</p> <p>Context. The study of X-ray time-lag spectra in active galactic nuclei (AGN) is currently an active research area, since it has the potential to illuminate the physics and geometry of the innermost region (I.e. close to the putative super-massive black hole) in these objects. To obtain reliable information from these studies, the statistical properties of time-lags estimated from data must be known as accurately as possible. Aims: We investigated the statistical properties of Fourier-based time-lag estimates (I.e. based on the cross-periodogram), using evenly sampled time series with no missing points. Our aim is to provide practical "guidelines" on estimating time-lags that are minimally biased (I.e. whose mean is close to their intrinsic value) and have known errors. Methods: Our investigation is based on both analytical work and extensive numerical simulations. The latter consisted of generating artificial time series with various signal-to-noise ratios and sampling patterns/durations similar to those offered by AGN observations with present and past X-ray satellites. We also considered a range of different model time-lag spectra commonly assumed in X-ray analyses of compact accreting systems. Results: Discrete sampling, binning and finite light curve duration cause the mean of the time-lag estimates to have a smaller magnitude than their intrinsic values. Smoothing (I.e. binning over consecutive frequencies) of the cross-periodogram can add extra bias at low frequencies. The use of light curves with low signal-to-noise ratio reduces the intrinsic coherence, and can introduce a bias to the sample coherence, time-lag estimates, and their predicted error. Conclusions: Our results have direct implications for X-ray time-lag studies in AGN, but can also be applied to similar studies in other research fields. We find that: a) time-lags should be estimated at frequencies lower than ≈ 1/2 the Nyquist frequency to minimise the effects of discrete binning of the observed time series; b) smoothing of the cross-periodogram should be avoided, as this may introduce significant bias to the time-lag estimates, which can be taken into account by assuming a model cross-spectrum (and not just a model time-lag spectrum); c) time-lags should be estimated by dividing observed time series into a number, say m, of shorter data segments and averaging the resulting cross-periodograms; d) if the data segments have a duration ≳ 20 ks, the time-lag bias is ≲15% of its intrinsic value for the model cross-spectra and power-spectra considered in this work. This bias should be estimated in practise (by considering possible intrinsic cross-spectra that may be applicable to the time-lag spectra at hand) to assess the reliability of any time-lag analysis; e) the effects of experimental noise can be minimised by only estimating time-lags in the frequency range where the sample coherence is larger than 1.2/(1 + 0.2m). In this range, the amplitude of noise variations caused by measurement errors is smaller than the amplitude of the signal's intrinsic variations. As long as m ≳ 20, time-lags estimated by averaging over individual data segments have analytical error estimates that are within 95% of the true scatter around their mean, and their distribution is similar, albeit not identical, to a Gaussian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..202..232A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..202..232A"><span>Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Azhikodan, Gubash; Yokoyama, Katsuhide</p> <p>2018-03-01</p> <p>The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028886','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028886"><span>Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gungle, B.; Krider, E.P.</p> <p>2006-01-01</p> <p>Relationships between cloud-to-ground (CG) lightning and surface rainfall have been examined in nine isolated, warm-season thunderstorms on the east coast of central Florida. CG flashes and the associated rain volumes were measured as a function of time in storm-centered reference frames that followed each storm over a network of rain gauges. Values of the storm-average rain volume per CG flash ranged from 0.70 ?? 104 to 6.4 ?? 104 m3/CG flash, with a mean (and standard deviation) of 2.6 ?? 104 ?? 2.1 ?? 104 m3/CG flash. Values of the rain volume concurrent with CG flashes ranged from 0.11 ?? 104 to 4.9 ?? 104 m3/CG flash with a mean of 2.1 ?? 104 ?? 2.0 ?? 104 m3/CG flash. The lag-time between the peak CG flash rate and the peak rainfall rate (using 5 min bins), and the results of a lag correlation analysis, show that surface rainfall tends to follow the lightning (positive lag) by up to 20 min in six storms. In one storm the rainfall preceded the lightning by 5 min, and two storms had nonsignificant lags. Values of the lagged rain volume concurrent with CG flashes ranged from 0.43 ?? 104 to 4.9 ?? 104 m3/CG flash, and the mean was 1.9 ?? 104 ?? 1.7 ?? 104 m3/CG flash. For the five storms that produced 12 or more flashes and had significant lags, a plot of the optimum lag time versus the total number of CG flashes shows a linear trend (R2 = 0.56). The number of storms is limited, but the lag results do indicate that large storms tend to have longer lags. A linear fit to the lagged rain volume vs. the number of concurrent CG flashes has a slope of 1.9 ?? 104 m3/CG flash (R2 = 0.83). We conclude that warm-season Florida thunderstorms produce a roughly constant rain volume per CG flash and that CG lightning can be used to estimate the location and intensity of convective rainfall in that weather regime. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27637863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27637863"><span>Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter</p> <p>2017-01-15</p> <p>Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800010153','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800010153"><span>Stress analysis and buckling of J-stiffened graphite-epoxy panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, R. C.</p> <p>1980-01-01</p> <p>A graphite epoxy shear panel with bonded on J stiffeners was investigated. The panel, loaded to buckling in a picture frame shear test is described. Two finite element models, each of which included the doubler material bonded to the panel skin under the stiffeners and at the panel edges, were used to make a stress analysis of the panel. The shear load distributions in the panel from two commonly used boundary conditions, applied shear load and applied displacement, were compared with the results from one of the finite element models that included the picture frame test fixture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20140004431&hterms=ply&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D.ply','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20140004431&hterms=ply&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D.ply"><span>Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>VanDerMeer, Frans P.; Davila, Carlos G.</p> <p>2013-01-01</p> <p>This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17184960','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17184960"><span>HIV incidence and CDC's HIV prevention budget: an exploratory correlational analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holtgrave, David R; Kates, Jennifer</p> <p>2007-01-01</p> <p>The central evaluative question about a national HIV prevention program is whether that program affects HIV incidence. Numerous factors may influence incidence, including public investment in HIV prevention. Few studies, however, have examined the relationship between public investment and the HIV epidemic in the United States. This 2006 exploratory analysis examined the period from 1978 through 2006 using a quantitative, lagged, correlational analysis to capture the relationship between national HIV incidence and Centers for Disease Control and Prevention's HIV prevention budget in the United States over time. The analyses suggest that early HIV incidence rose in advance of the nation's HIV prevention investment until the mid-1980s (1-year lag correlation, r=0.972, df=2, p <0.05). From that point on, it appears that the nation's investment in HIV prevention became a strong correlate of HIV incidence (1-year lag correlation, r=-0.905, df=18, p <0.05). This exploratory study provides correlational evidence of a relationship between U.S. HIV incidence and the federal HIV prevention budget over time, and calls for further analysis of the role of funding and other factors that may influence the direction of a nation's HIV epidemic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1259214','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1259214"><span>Fourier band-power E/B-mode estimators for cosmic shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Becker, Matthew R.; Rozo, Eduardo</p> <p></p> <p>We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compactmore » and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.T41A..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.T41A..03J"><span>The Amount and Preferred Orientation of Simple-shear in a Deformation Tensor: Implications for Detecting Shear Zones and Faults with GPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, A. M.; Griffiths, J. H.</p> <p>2007-05-01</p> <p>At the 2005 Fall Meeting of the American Geophysical Union, Griffiths and Johnson [2005] introduced a method of extracting from the deformation-gradient (and velocity-gradient) tensor the amount and preferred orientation of simple-shear associated with 2-D shear zones and faults. Noting the 2-D is important because the shear zones and faults in Griffiths and Johnson [2005] were assumed non-dilatant and infinitely long, ignoring the scissors- like action along strike associated with shear zones and faults of finite length. Because shear zones and faults can dilate (and contract) normal to their walls and can have a scissors-like action associated with twisting about an axis normal to their walls, the more general method of detecting simple-shear is introduced and called MODES "method of detecting simple-shear." MODES can thus extract from the deformation-gradient (and velocity- gradient) tensor the amount and preferred orientation of simple-shear associated with 3-D shear zones and faults near or far from the Earth's surface, providing improvements and extensions to existing analytical methods used in active tectonics studies, especially strain analysis and dislocation theory. The derivation of MODES is based on one definition and two assumptions: by definition, simple-shear deformation becomes localized in some way; by assumption, the twirl within the deformation-gradient (or the spin within the velocity-gradient) is due to a combination of simple-shear and twist, and coupled with the simple- shear and twist is a dilatation of the walls of shear zones and faults. The preferred orientation is thus the orientation of the plane containing the simple-shear and satisfying the mechanical and kinematical boundary conditions. Results from a MODES analysis are illustrated by means of a three-dimensional diagram, the cricket- ball, which is reminiscent of the seismologist's "beach ball." In this poster, we present the underlying theory of MODES and illustrate how it works by analyzing the three- dimensional displacements measured with the Global Positioning System across the 1999 Chi-Chi earthquake ground rupture in Taiwan. In contrast to the deformation zone in the upper several meters of the ground below the surface detected by Yu et al. [2001], MODES determines the orientation and direction of shift of a shear zone representing the earthquake fault within the upper several hundred or thousand meters of ground below the surface. Thus, one value of the MODES analysis in this case is to provide boundary conditions for dislocation solutions for the subsurface shape of the main rupture during the earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910065106&hterms=comparative+design&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcomparative%2Bdesign','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910065106&hterms=comparative+design&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcomparative%2Bdesign"><span>Robust Kalman filter design for predictive wind shear detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stratton, Alexander D.; Stengel, Robert F.</p> <p>1991-01-01</p> <p>Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BoLMe.134...41B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BoLMe.134...41B"><span>The Alignment of the Mean Wind and Stress Vectors in the Unstable Surface Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernardes, M.; Dias, N. L.</p> <p>2010-01-01</p> <p>A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the u- w component with instability. As a result, under more unstable conditions the u- w and the v- w components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the v- w component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin-Obukhov similarity theory hold: it is fair to assume that the v- w stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the u- w and the v- w components confirms this interpretation, with both shear and buoyant production of u- w decreasing with increasing instability. In the v- w budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around zero. As local free convection is approached, the turbulence becomes effectively axisymetrical, and a practical limit seems to exist beyond which it is not possible to measure the u- w component accurately.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29018925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29018925"><span>The diagnostic performance of shear-wave elastography for liver fibrosis in children and adolescents: A systematic review and diagnostic meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young</p> <p>2018-03-01</p> <p>To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28628225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28628225"><span>Utilization of the Bridging Strategy for the Development of New Drugs in Oncology to Avoid Drug Lag.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kogure, Seiji; Koyama, Nobuyuki; Hidaka, Shinji</p> <p>2017-11-01</p> <p>Global trial (GT) strategy and bridging (BG) strategy are currently the main clinical development strategies of oncology drugs in Japan, but the relationship between development style and drug lag and how the bridging strategy has contributed to the solution of drug lag have not been clear. We investigated the potential factors that influenced submission lag (SL), and also compared the differences in SL among early-initiation BG strategy, late-initiation BG strategy, and GT strategy. A stepwise linear regression analysis identified the potential factors that shorten SL: development start lag and development style. Comparison of the differences in SL among the strategies also indicated that the SL in the GT strategy and that in the early-initiation BG strategy were significantly shorter than that in the late-initiation BG strategy. The findings in our study suggest that the late-initiation BG strategy may not contribute to shortening drug lag. Because the number of late-initiation BG studies has not decreased, we propose first that pharmaceutical companies should initiate clinical development as early as possible in Japan so that they can choose the GT strategy as a first option at the next step, and second when they cannot choose the GT strategy after investigating differences in exposure between Japanese and non-Japanese in a phase 1 study, they should select the early BG strategy to avoid future drug lag. It is also important for the regulatory authorities to provide reasonable guidance to have a positive impact on strategic decisions, even for foreign-capital companies. © 2017, The American College of Clinical Pharmacology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29043628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29043628"><span>Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo</p> <p>2018-01-01</p> <p>DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29165405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29165405"><span>Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil</p> <p>2017-11-22</p> <p>Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..96b6003K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..96b6003K"><span>Notes on hyperscaling violating Lifshitz and shear diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.</p> <p>2017-07-01</p> <p>We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in Phys. Lett. B 760, 86 (2016), 10.1016/j.physletb.2016.06.046. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son, and Starinets for shear gravitational perturbations in the near horizon region given certain self-consistent approximations, leading to the shear diffusion constant on an appropriately defined stretched horizon. In theories containing a gauge field, some of the metric perturbations mix with some of the gauge field perturbations and the above analysis is somewhat more complicated. We find a similar near-horizon analysis can be obtained in terms of new field variables involving a linear combination of the metric and the gauge field perturbation resulting in a corresponding diffusion equation. Thereby as before, for theories with Lifshitz and hyperscaling violating exponents z , θ satisfying z <4 -θ in four bulk dimensions, our analysis here results in a similar expression for the shear diffusion constant with power-law scaling with temperature suggesting universal behavior in relation to the viscosity bound. For z =4 -θ , we find logarithmic behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..113...30H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..113...30H"><span>Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan</p> <p>2018-03-01</p> <p>While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22579868-clinical-introduction-image-lag-correction-cone-beam-ct-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22579868-clinical-introduction-image-lag-correction-cone-beam-ct-system"><span>Clinical introduction of image lag correction for a cone beam CT system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl</p> <p></p> <p>Purpose: Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate themore » effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Methods: Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors’ in-house developed clinical CBCT reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Results: Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to 15.5 ± 11.9 HU without the saturation handling and to 9.6 ± 12.1 HU with the saturation handling, depending on the date of the calibration. The image lag correction parameters were stable over a period of 3 months. The computational load was increased by approximately 10%, not endangering the fast in-line reconstruction. Conclusions: The lag correction was successfully implemented clinically and removed most image lag artifacts thus improving the image quality. Image lag correction parameters were stable for 3 months indicating low frequency of calibration requirements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930094814','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930094814"><span>Wrinkling of reinforced plates subjected to shear stresses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seydel, Edgar</p> <p>1931-01-01</p> <p>An analysis is made here of the problem of long plates with transverse stiffeners subject to shear. A typical example would be a long Wagner beam. The shear stress is calculated at which the web wrinkles and shear stress becomes a maximum. The equation is solved for both a condition of free support and rigidity of support on the edges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25470724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25470724"><span>Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes</p> <p>2014-01-01</p> <p>We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26203764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26203764"><span>Protein Z efficiently depletes thrombin generation in disseminated intravascular coagulation with poor prognosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Nuri; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Kim, Inho; Yoon, Sung-Soo; Park, Seonyang; Han, Kyou-Sup; Kim, Hyun Kyung</p> <p>2016-01-01</p> <p>Disseminated intravascular coagulation (DIC) is characterized by consumption of coagulation factors and anticoagulants. Thrombin generation assay (TGA) gives useful information about global hemostatic status. We developed a new TGA system that anticoagulant addition can deplete thrombin generation in plasma, which may reflect defective anticoagulant system in DIC. TGAs were measured on the calibrated automated thrombogram with and without thrombomodulin or protein Z in 152 patients who were suspected of having DIC, yielding four parameters including lag time, endogenous thrombin potential, peak thrombin and time-to-peak in each experiment. Nonsurvivors showed significantly prolonged lag time and time-to-peak in TGA-protein Z system, which was performed with added protein Z. In multivariate Cox regression analysis, lag time and time-to-peak in TGA system were significant independent prognostic factors. In TGA-protein Z system, lag time and time-to-peak were revealed as independent prognostic factors of DIC. Protein Z addition could potentiate its anticoagulant effect in DIC with poor prognosis, suggesting the presence of defective protein Z system. The prolonged lag time and time-to-peak in both TGA and TGA-protein Z systems are expected to be used as independent prognostic factors of DIC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13c4007M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13c4007M"><span>Changing response of the North Atlantic/European winter climate to the 11 year solar cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang</p> <p>2018-03-01</p> <p>Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21053032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21053032"><span>Molecular analysis of new isolates of Tomato leaf curl Philippines virus and an associated betasatellite occurring in the Philippines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sharma, Pradeep; Matsuda, N; Bajet, N B; Ikegami, M</p> <p>2011-02-01</p> <p>Three new begomovirus isolates and one betasatellite were obtained from a tomato plant exhibiting leaf curl symptom in Laguna, the Philippines. Typical begomovirus DNA components representing the three isolates (PH01, PH02 and PH03) were cloned, and their full-length sequences were determined to be 2754 to 2746 nucleotides. The genome organizations of these isolates were similar to those of other Old World monopartite begomoviruses. The sequence data indicated that PH01 and PH02 were variants of strain B of the species Tomato leaf curl Philippines virus, while PH03 was a variant of strain A of the species Tomato leaf curl Philippines virus. These isolates were designated ToLCPV-B[PH:Lag1:06], ToLCPV-B[PH:Lag2:06], and ToLCPV-A[PH:Lag3:06], respectively. Phylogenetic analysis revealed that the present isolates form a separate monophyletic cluster with indigenous begomoviruses reported earlier in the Philippines. A betasatellite isolated from same sample belongs to the betasatellite species Tomato leaf curl Philippines betasatellite and designated Tomato leaf curl Philippines betasatellite-[Philippines:Laguna1:2006], ToLCPHB-[PH:Lag1:06]. When co-inoculated with this betasatellite, tomato leaf curl Philippines virus induced severe symptoms in N. benthamiana and Solanum lycopersicum plants. Using a PVX-mediated transient assay, we found that the C4 and C2 proteins of tomato leaf curl Philippines virus and the βC1 protein of ToLCPHB-[PH:Lag1:06] function as a suppressor of RNA silencing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28343738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28343738"><span>Short-term association between road traffic noise and healthcare demand generated by Parkinson's disease in Madrid, Spain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Díaz, Julio; Martínez-Martín, Pablo; Rodríguez-Blázquez, Carmen; Vázquez, Blanca; Forjaz, Maria João; Ortiz, Cristina; Carmona, Rocío; Linares, Cristina</p> <p>2017-03-23</p> <p>To analyse whether there is a short-term association between road traffic noise in the city of Madrid and Parkinson's disease (PD)-related demand for healthcare. Time-series analysis (2008-2009) using variables of analysis linked to emergency and daily PD-related demand for healthcare (ICD-10: G20-G21), namely, PD-hospital admissions (HAs), PD-outpatient visits (OVs) and PD-emergency medical calls in Madrid. The noise pollution measurements used were Leqd, equivalent sound level for the daytime hours (from 8 a.m. to 10 p.m.), and Leqn, equivalent sound level for night time hours (from 10 p.m. to 8 a.m.) in dB(A). We controlled for temperature, pollution, trends and seasons, and used the Poisson regression model to calculate relative risk (RR). The association between Leqd and HAs was found to be linear. Leqd and Leqn at lag 0.1 and temperature at lags 1 and 5 were the only environmental variables associated with increased PD-related healthcare demand. The RR (lag 0) for Leqd and HA was 1.07 (1.04-1.09), the RR (lag 0) for Leqd and OV was 1.28 (1.12-1.45), and the RR (lags 0.1) for Leqn and emergency medical calls was 1.46 (1.06-2.01). The above results indicate that road traffic noise is a risk factor for PD exacerbation. Measures to reduce noise-exposure levels could result in a lower PD-related healthcare demand. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1909b0082K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1909b0082K"><span>Deformation structure analysis of material at fatigue on the basis of the vector field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.</p> <p>2017-12-01</p> <p>In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1214328-high-energy-density-counterpropagating-shear-experiment-turbulent-self-heating','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1214328-high-energy-density-counterpropagating-shear-experiment-turbulent-self-heating"><span>The high-energy-density counterpropagating shear experiment and turbulent self-heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Doss, F. W.; Fincke, J. R.; Loomis, E. N.; ...</p> <p>2013-12-06</p> <p>The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EL.....9117007P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EL.....9117007P"><span>Anderson localization of shear waves observed by magnetic resonance imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papazoglou, S.; Klatt, D.; Braun, J.; Sack, I.</p> <p>2010-07-01</p> <p>In this letter we present for the first time an experimental investigation of shear wave localization using motion-sensitive magnetic resonance imaging (MRI). Shear wave localization was studied in gel phantoms containing arrays of randomly positioned parallel glass rods. The phantoms were exposed to continuous harmonic vibrations in a frequency range from 25 to 175 Hz, yielding wavelengths on the order of the elastic mean free path, i.e. the Ioffe-Regel criterion of Anderson localization was satisfied. The experimental setup was further chosen such that purely shear horizontal waves were induced to avoid effects due to mode conversion and pressure waves. Analysis of the distribution of shear wave intensity in experiments and simulations revealed a significant deviation from Rayleigh statistics indicating that shear wave energy is localized. This observation is further supported by experiments on weakly scattering samples exhibiting Rayleigh statistics and an analysis of the multifractality of wave functions. Our results suggest that motion-sensitive MRI is a promising tool for studying Anderson localization of time-harmonic shear waves, which are increasingly used in dynamic elastography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..322d2034L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..322d2034L"><span>Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Shaolv; Wang, Zhihua; Wang, Hehui</p> <p>2018-03-01</p> <p>The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..179H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..179H"><span>Seasonality and mechanisms of tropical intraseasonal oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hazra, Abheera; Krishnamurthy, V.</p> <p>2018-01-01</p> <p>This study has compared the monsoon intraseasonal oscillation (MISO) during the boreal summer and Madden Julian Oscillation (MJO) during the boreal winter. Based on MISO and MJO in high-resolution three-dimensional diabatic heating, the possible mechanisms are discussed through observational analyses of dynamical and thermodynamical variables. The MISO and MJO are extracted as nonlinear oscillations during boreal summer and winter, respectively, by applying multi-channel singular spectrum analysis on daily anomalies of diabatic heating over the Indo-Pacific region. Lead and lag relations among moisture, temperature and surface fields relative to diabatic heating are analyzed to compare the mechanisms of MISO and MJO. While both the oscillations show eastward propagation, MISO has a strong northward propagation and MJO has a weak southward propagation as well. The analysis shows that MJO and MISO are essentially driven by the same mechanisms but with some difference in the meridional propagation. The westerly shear leads the diabatic heating, while the vorticity has weak correlation. Large-scale circulation creates positive moisture preconditioning before convection and negative moisture preconditioning before suppressed conditions. A positive lower level horizontal advection of temperature and upper level temperature tendencies lead the convective state while a negative lower level horizontal advection of temperature and upper level temperature tendencies lead the suppressed state. There is positive feedback from the SST to atmosphere. The difference in the meridional propagation of MISO and MJO is hypothesized to be because of the different differential heating meridionally during the two seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900010314','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900010314"><span>Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Engelstad, S. P.; Knight, N. F., Jr.; Reddy, J. N.</p> <p>1990-01-01</p> <p>The influence of shear flexibility on overall postbuckling response was assessed, and transverse shear stress distributions in relation to panel failure were examined. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented analytically substantiate the experimentally observed failure mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950008005','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950008005"><span>Higher harmonic control analysis for vibration reduction of helicopter rotor systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, Khanh Q.</p> <p>1994-01-01</p> <p>An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SHH....11..193K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SHH....11..193K"><span>An analysis of the characteristics of rough bed turbulent shear stresses in an open channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keshavarzy, A.; Ball, J. E.</p> <p>1997-06-01</p> <p>Entrainment of sediment particles from channel beds into the channel flow is influenced by the characteristics of the flow turbulence which produces stochastic shear stress fluctuations at the bed. Recent studies of the structure of turbulent flow has recognized the importance of bursting processes as important mechanisms for the transfer of momentum into the laminar boundary layer. Of these processes, the sweep event has been recognized as the most important bursting event for entrainment of sediment particles as it imposes forces in the direction of the flow resulting in movement of particles by rolling, sliding and occasionally saltating. Similarly, the ejection event has been recognized as important for sediment transport since these events maintain the sediment particles in suspension. In this study, the characteristics of bursting processes and, in particular, the sweep event were investigated in a flume with a rough bed. The instantaneous velocity fluctuations of the flow were measured in two-dimensions using a small electromagnetic velocity meter and the turbulent shear stresses were determined from these velocity fluctuations. It was found that the shear stress applied to the sediment particles on the bed resulting from sweep events depends on the magnitude of the turbulent shear stress and its probability distribution. A statistical analysis of the experimental data was undertaken and it was found necessary to apply a Box-Cox transformation to transform the data into a normally distributed sample. This enabled determination of the mean shear stress, angle of action and standard error of estimate for sweep and ejection events. These instantaneous shear stresses were found to be greater than the mean flow shear stress and for the sweep event to be approximately 40 percent greater near the channel bed. Results from this analysis suggest that the critical shear stress determined from Shield's diagram is not sufficient to predict the initiation of motion due to its use of the temporal mean shear stress. It is suggested that initiation of particle motion, but not continuous motion, can occur earlier than suggested by Shield's diagram due to the higher shear stresses imposed on the particles by the stochastic shear stresses resulting from turbulence within the flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JIEIA..97..273T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JIEIA..97..273T"><span>Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Job; Ramadass, S.</p> <p>2016-09-01</p> <p>Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999A%26A...345.1019R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999A%26A...345.1019R"><span>Solar oscillations: time analysis of the GOLF p-mode signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renaud, C.; Grec, G.; Boumier, P.; Gabriel, A. H.; Robillot, J. M.; Cortés, T. Roca; Turck-Chièze, S.; Ulrich, R. K.</p> <p>1999-05-01</p> <p>We determine the intrinsic phase lag of the GOLF data for the solar p-mode velocity deduced either from one of the narrow band photometers working alternatively on blue and red wing of the sodium lines. The timing of the ``blue wing'' velocity coming from the current GOLF data is given in respect to the ground-based observations. The phase lag for the ``blue'' velocity is 6 s in advance relatively to a velocity coming from a differential device. For individual p modes, the phase lag from the ``blue'' velocity to the ``red'' velocity are not in opposition of phase, as expected in a very simple solar model, but differs from 8(o) to 18(o) from the opposition, depending on the degree and the radial order of the acoustic mode. The measurement of the differential lag between the blue and red wings of the D lines may open a new way to monitor the temperature oscillations with the optical depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750029615&hterms=VISWANATHAN&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVISWANATHAN%252C%2BV.','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750029615&hterms=VISWANATHAN&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVISWANATHAN%252C%2BV."><span>Buckling analysis for anisotropic laminated plates under combined inplane loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.</p> <p>1974-01-01</p> <p>The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24767598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24767598"><span>Improving models of democracy: the example of lagged effects of economic development, education, and gender equality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Balaev, Mikhail</p> <p>2014-07-01</p> <p>The author examines how time delayed effects of economic development, education, and gender equality influence political democracy. Literature review shows inadequate understanding of lagged effects, which raises methodological and theoretical issues with the current quantitative studies of democracy. Using country-years as a unit of analysis, the author estimates a series of OLS PCSE models for each predictor with a systematic analysis of the distributions of the lagged effects. The second set of multiple OLS PCSE regressions are estimated including all three independent variables. The results show that economic development, education, and gender have three unique trajectories of the time-delayed effects: Economic development has long-term effects, education produces continuous effects regardless of the timing, and gender equality has the most prominent immediate and short term effects. The results call for the reassessment of model specifications and theoretical setups in the quantitative studies of democracy. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3597R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3597R"><span>Microstructures and kinematic vorticity analysis from the mylonites along the Karakoram Shear Zone, Pangong Mountains, Karakoram</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, P.</p> <p>2012-04-01</p> <p>The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading upto orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C' and C" antithetic shear bands, Type A σ-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300° C and 500° C in the upper greenschist facies. The mylonitic rocks of the KSZ provide an opportunity for the possible utilization of the deformational structures namely that of quartz and feldspar porphyroclast as well as, well developed shear bands for kinematic vorticity studies. Well developed quartz and feldspar porphyroclasts and synthetic and antithetic shear bands from six different mylonitic samples of the mylonitic Tangste granite has been used to estimate the bulk kinematic vorticity (Wk) involved in the overall deformation of the KSZ using the Porphyroclast Hyperbolic Distribution (PHD) method and Shear band (SB) analysis. The PHD method yields Wk values that range from Wk = 0.29 to Wk =0.43, where as the Shear bands yields values ranging from Wk = 0.45 to Wk =0.93, thus indicating distinct pure and simple shear regimes at different stages of the evolution of the KSZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T22D..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T22D..06T"><span>Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.</p> <p>2013-12-01</p> <p>The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96i4103T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96i4103T"><span>Strain gradient drives shear banding in metallic glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong</p> <p>2017-09-01</p> <p>Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730023044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730023044"><span>Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 3 Summary report: Shear web component testing and analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Laakso, J. H.; Straayer, J. W.</p> <p>1973-01-01</p> <p>Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25583871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25583871"><span>Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Myrent, Noah; Adams, Douglas E; Griffith, D Todd</p> <p>2015-02-28</p> <p>A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27490325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27490325"><span>Hyperventilation in Patients With Focal Epilepsy: Electromagnetic Tomography, Functional Connectivity and Graph Theory - A Possible Tool in Epilepsy Diagnosis?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mazzucchi, Edoardo; Vollono, Catello; Losurdo, Anna; Testani, Elisa; Gnoni, Valentina; Di Blasi, Chiara; Giannantoni, Nadia M; Lapenta, Leonardo; Brunetti, Valerio; Della Marca, Giacomo</p> <p>2017-01-01</p> <p>Hyperventilation (HV) is a commonly used electroencephalogram activation method. We analyzed EEG recordings in 22 normal subjects and 22 patients with focal epilepsy of unknown cause. We selected segments before (PRE), during (HYPER), and 5 minutes after (POST) HV. To analyze the neural generators of EEG signal, we used standard low-resolution electromagnetic tomography (sLORETA software). We then computed EEG lagged coherence, an index of functional connectivity, between 19 regions of interest. A weighted graph was built for each band in every subject, and characteristic path length (L) and clustering coefficient (C) have been computed. Statistical comparisons were performed by means of analysis of variance (Group X Condition X Band) for mean lagged coherence, L and C. Hyperventilation significantly increases EEG neural generators (P < 0.001); the effect is particularly evident in cingulate cortex. Functional connectivity was increased by HV in delta, theta, alpha, and beta bands in the Epileptic group (P < 0.01) and only in theta band in Control group. Intergroup analysis of mean lagged coherence, C and L, showed significant differences for Group (P < 0.001), Condition (P < 0.001), and Band (P < 0.001). Analysis of variance for L also showed significant interactions: Group X Condition (P = 0.003) and Group X Band (P < 0.001). In our relatively small group of epileptic patients, HV is associated with activation of cingulate cortex; moreover, it modifies brain connectivity. The significant differences in mean lagged coherence, path length, and clustering coefficient permit to hypothesize that this activation method leads to different brain connectivity patterns in patients with epilepsy when compared with normal subjects. If confirmed by other studies involving larger populations, this analysis could become a diagnostic tool in epilepsy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41D0429K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41D0429K"><span>A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.</p> <p>2017-12-01</p> <p>We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA093497','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA093497"><span>Spectral Processing Analysis System (SPANS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-11-01</p> <p>Approximately 750 pounds Temperature Range: 60 - 80 degrees Farenheit Humidity: 40 - 70 percent (relative) Duty Cycle: Continuous Power Requirements: 5 wire, 3...displayed per display frame, local or absolute scaling, number of display points per line and waveform av- A eraging. A typical display is shown in Figure 3...the waveform. In the case of white noise, a high degree of correlation is found at zero lag only with the remaining lags showing little correlation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29227961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29227961"><span>Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar</p> <p>2018-02-01</p> <p>This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930003231','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930003231"><span>Shear joint capability versus bolt clearance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, H. M.</p> <p>1992-01-01</p> <p>The results of a conservative analysis approach into the determination of shear joint strength capability for typical space-flight hardware as a function of the bolt-hole clearance specified in the design are presented. These joints are comprised of high-strength steel fasteners and abutments constructed of aluminum alloys familiar to the aerospace industry. A general analytical expression was first arrived at which relates bolt-hole clearance to the bolt shear load required to place all joint fasteners into a shear transferring position. Extension of this work allowed the analytical development of joint load capability as a function of the number of fasteners, shear strength of the bolt, bolt-hole clearance, and the desired factor of safety. Analysis results clearly indicate that a typical space-flight hardware joint can withstand significant loading when less than ideal bolt hole clearances are used in the design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28987464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28987464"><span>Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Diekman, Casey O; Bose, Amitabha</p> <p>2018-01-21</p> <p>The normal alignment of circadian rhythms with the 24-h light-dark cycle is disrupted after rapid travel between home and destination time zones, leading to sleep problems, indigestion, and other symptoms collectively known as jet lag. Using mathematical and computational analysis, we study the process of reentrainment to the light-dark cycle of the destination time zone in a model of the human circadian pacemaker. We calculate the reentrainment time for travel between any two points on the globe at any time of the day and year. We construct one-dimensional entrainment maps to explain several properties of jet lag, such as why most people experience worse jet lag after traveling east than west. We show that this east-west asymmetry depends on the endogenous period of the traveler's circadian clock as well as daylength. Thus the critical factor is not simply whether the endogenous period is greater than or less than 24 h as is commonly assumed. We show that the unstable fixed point of an entrainment map determines whether a traveler reentrains through phase advances or phase delays, providing an understanding of the threshold that separates orthodromic and antidromic modes of reentrainment. Contrary to the conventional wisdom that jet lag only occurs after east-west travel across multiple time zones, we predict that the change in daylength encountered during north-south travel can cause jet lag even when no time zones are crossed. Our techniques could be used to provide advice to travelers on how to minimize jet lag on trips involving multiple destinations and a combination of transmeridian and translatitudinal travel. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51B1369C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51B1369C"><span>Calibration of Watershed Lag Time Equation for Philippine Hydrology using RADARSAT Digital Elevation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cipriano, F. R.; Lagmay, A. M. A.; Horritt, M.; Mendoza, J.; Sabio, G.; Punay, K. N.; Taniza, H. J.; Uichanco, C.</p> <p>2015-12-01</p> <p>Widespread flooding is a major problem in the Philippines. The country experiences heavy amount of rainfall throughout the year and several areas are prone to flood hazards because of its unique topography. Human casualties and destruction of infrastructure are just some of the damages caused by flooding and the Philippine government has undertaken various efforts to mitigate these hazards. One of the solutions was to create flood hazard maps of different floodplains and use them to predict the possible catastrophic results of different rain scenarios. To produce these maps with accurate output, different input parameters were needed and one of those is calculating hydrological components from topographical data. This paper presents how a calibrated lag time (TL) equation was obtained using measurable catchment parameters. Lag time is an essential input in flood mapping and is defined as the duration between the peak rainfall and peak discharge of the watershed. The lag time equation involves three measurable parameters, namely, watershed length (L), maximum potential retention (S) derived from the curve number, and watershed slope (Y), all of which were available from RADARSAT Digital Elevation Models (DEM). This approach was based on a similar method developed by CH2M Hill and Horritt for Taiwan, which has a similar set of meteorological and hydrological parameters with the Philippines. Rainfall data from fourteen water level sensors covering 67 storms from all the regions in the country were used to estimate the actual lag time. These sensors were chosen by using a screening process that considers the distance of the sensors from the sea, the availability of recorded data, and the catchment size. The actual lag time values were plotted against the values obtained from the Natural Resource Conservation Management handbook lag time equation. Regression analysis was used to obtain the final calibrated equation that would be used to calculate the lag time specifically for rivers in the Philippine setting. The calculated lag time values could then be used as a parameter for modeling different flood scenarios in the country.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAESc..47..231L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAESc..47..231L"><span>The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen</p> <p>2012-03-01</p> <p>The structural geology, timing of shearing, and tectonic implications of the ASRR shear zone, one of the most striking lineaments in Southeast Asia, have been the topics of extensive studies over the past few decades. The Xuelong Shan (XLS), Diancang Shan (DCS), Ailao Shan (ALS) and Day Nui Con Voi (DNCV) metamorphic massifs along the shear zone have preserved important information on its structural and tectonic evolution. Our field structural analysis, detailed microstructural and fabric analysis, as well as the quartz, sillimanite and garnet fabric studies of the sheared rocks from the massifs demonstrate the dominant roles of three deformation episodes during Cenozoic tectonic evolution in the shear zone. Among the contrasting structural and microstructural associations in the shear zone, D2 structures, which were formed at the brittle to ductile transition during large-scale left-lateral shearing in the second deformation episode, predominate over the structural styles of the other two deformation episodes. Discrete micro-shear zones with intensive grain size reduction compose the characteristic structural style of D2 deformation. In addition, several types of folds (early shearing folds, F21, and late-shearing folds, F22) were formed in the sheared rocks, including discrete to distributed mylonitic foliation, stretching lineation and shear fabrics (e.g., mica fish, domino structures, as well as sigma and delta fabrics). A sequence of microstructures from syn-kinematic magmatic flow, high-temperature solid-state deformation, to brittle-ductile shearing is well-preserved in the syn-kinematic leucocratic intrusions. Deformation structures from the first episode (D1) are characterized by F1 folds and distributed foliations (S1) in rocks due to pure shearing at high temperatures. They are preserved in weakly sheared (D2) rocks along the eastern margin of the ALS belt or in certain low-strain tectonic enclaves within the shear zone. Furthermore, semi-brittle deformation structures, such as hot striae and discrete retrogression zones, are attributed to normal-slip shearing in the third deformation episode (D3), which was probably locally active, along the eastern flank of the DCS range, for example. There are four quartz c-axis fabric patterns in the mylonitic rocks, including type A point maxima, type B Y point maxima with crossed girdles superimposition, type C quadrant maxima, as well as type D point and quadrant maxima combination. They are consistent with microscopic observations of microstructures of high-temperature pure shearing, low-temperature simple shearing and their superimposition. Integrated microstructural analysis and fabric thermometer studies provide information on both high temperature (up to 750 °C) and dominant low-temperature (300-600 °C) deformations of quartz grains in different rock types. Sillimanite and garnet fabrics, especially the latter, were primarily formed at the peak metamorphism during high-temperature pure shearing. The above structural, microstructural and fabric associations were generated in the tectonic framework of the Indian-Eurasian collision. The low-temperature microstructures and fabrics are attributed to left-lateral shearing along the ASRR shear zone from 27 to 21 Ma during the southeastward extrusion of the Indochina block, which postdated high-temperature deformation at the peak metamorphism during the collision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21405170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21405170"><span>Molecular friction dissipation and mode coupling in organic monolayers and polymer films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knorr, Daniel B; Widjaja, Peggy; Acton, Orb; Overney, René M</p> <p>2011-03-14</p> <p>The impact of thermally active molecular rotational and translational relaxation modes on the friction dissipation process involving smooth nano-asperity contacts has been studied by atomic force microscopy, using the widely known Eyring analysis and a recently introduced method, dubbed intrinsic friction analysis. Two distinctly different model systems, i.e., monolayers of octadecyl-phosphonic acid (ODPA) and thin films of poly(tert-butyl acrylate) (PtBA) were investigated regarding shear-rate critical dissipation phenomena originating from diverging mode coupling behaviors between the external shear perturbation and the internal molecular modes of relaxation. Rapidly (ODPA) versus slowly (PtBA) relaxing systems, in comparison to the sliding rate, revealed monotonous logarithmic and nonmonotonous spectral shear rate dependences, respectively. Shear coupled, enthalpic activation energies of 46 kJ∕mol for ODPA and of 35 and ∼65 kJ∕mol for PtBA (below and above the glass transition) were found that could be attributed to intrinsic modes of relaxations. Also, entropic energies involved in the cooperative backbone mobility of PtBA could be quantified, dwarfing the activation energy by more than a factor of five. This study provides (i) a material specific understanding of the molecular scale dissipation process in shear compliant substances, (ii) analyses of material intrinsic shear-rate mode coupling, shear coordination and energetics, (iii) a verification of Eyring's model applied to tribological systems toward material intrinsic specificity, and (iv) a valuable extension of the Eyring analysis for complex macromolecular systems that are slowly relaxing, and thus, exhibit shear-rate mode coupling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910032175&hterms=Currently+Available+Methods+Characterization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DCurrently%2BAvailable%2BMethods%2BCharacterization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910032175&hterms=Currently+Available+Methods+Characterization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DCurrently%2BAvailable%2BMethods%2BCharacterization"><span>An improved shear beam method for the characterization of bonded composite joints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hiel, Clem C.; Brinson, Hal F.</p> <p>1989-01-01</p> <p>Closed-form analytical solutions, which govern the displacements and stresses in an adhesive shear beam, are discussed. The remarkable precision with which the shear stresses in the adhesive can be predicted forms the basis of the proposed characterization procedure. The shear modulus of the adhesive is obtained by means of a parameter estimation procedure which requires a symbiosis of theoretical and experimental stress analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5746567','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5746567"><span>Model-based image analysis of a tethered Brownian fibre for shear stress sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>The measurement of fluid dynamic shear stress acting on a biologically relevant surface is a challenging problem, particularly in the complex environment of, for example, the vasculature. While an experimental method for the direct detection of wall shear stress via the imaging of a synthetic biology nanorod has recently been developed, the data interpretation so far has been limited to phenomenological random walk modelling, small-angle approximation, and image analysis techniques which do not take into account the production of an image from a three-dimensional subject. In this report, we develop a mathematical and statistical framework to estimate shear stress from rapid imaging sequences based firstly on stochastic modelling of the dynamics of a tethered Brownian fibre in shear flow, and secondly on a novel model-based image analysis, which reconstructs fibre positions by solving the inverse problem of image formation. This framework is tested on experimental data, providing the first mechanistically rational analysis of the novel assay. What follows further develops the established theory for an untethered particle in a semi-dilute suspension, which is of relevance to, for example, the study of Brownian nanowires without flow, and presents new ideas in the field of multi-disciplinary image analysis. PMID:29212755</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30a6105H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30a6105H"><span>Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hau, Jan-Niklas; Müller, Björn</p> <p>2018-01-01</p> <p>We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.6934E..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.6934E..06J"><span>Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami</p> <p>2008-03-01</p> <p>Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042844','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042844"><span>Hydromechanical effects of continental glaciation on groundwater systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neuzil, C.E.</p> <p>2012-01-01</p> <p>Hydromechanical effects of continental ice sheets may involve considerably more than the widely recognized direct compression of overridden terrains by ice load. Lithospheric flexure, which lags ice advance and retreat, appears capable of causing comparable or greater stress changes. Together, direct and flexural loading may increase fluid pressures by tens of MPa in geologic units unable to drain. If so, fluid pressures in low-permeability formations subject to glaciation may have increased and decreased repeatedly during cycles of Pleistocene glaciation and can again in the future. Being asynchronous and normally oriented, direct and flexural loading presumably cause normal and shear stresses to evolve in a complex fashion through much or all of a glacial cycle. Simulations of fractured rock predict permeability might vary by two to three orders of magnitude under similar stress changes as fractures at different orientations are subjected to changing normal and shear stresses and some become critically stressed. Uncertainties surrounding these processes and their interactions, and the confounding influences of surface hydrologic changes, make it challenging to delineate their effects on groundwater flow and pressure regimes with any specificity. To date, evidence for hydromechanical changes caused by the last glaciation is sparse and inconclusive, comprising a few pressure anomalies attributed to the removal of direct ice load. This may change as more data are gathered, and understanding of relevant processes is refined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663968-spectral-timing-analysis-lower-khz-qpo-low-mass-ray-binary-aquila','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663968-spectral-timing-analysis-lower-khz-qpo-low-mass-ray-binary-aquila"><span>SPECTRAL-TIMING ANALYSIS OF THE LOWER kHz QPO IN THE LOW-MASS X-RAY BINARY AQUILA X-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Troyer, Jon S.; Cackett, Edward M., E-mail: jon.troyer@wayne.edu</p> <p>2017-01-10</p> <p>Spectral-timing products of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binary (LMXB) systems, including energy- and frequency-dependent lags, have been analyzed previously in 4U 1608-52, 4U 1636-53, and 4U 1728-34. Here, we study the spectral-timing properties of the lower kHz QPO of the neutron star LMXB Aquila X-1 for the first time. We compute broadband energy lags as well as energy-dependent lags and the covariance spectrum using data from the Rossi X-ray Timing Explorer . We find characteristics similar to those of previously studied systems, including soft lags of ∼30 μ s between the 3.0–8.0 keV and 8.0–20.0 keVmore » energy bands at the average QPO frequency. We also find lags that show a nearly monotonic trend with energy, with the highest-energy photons arriving first. The covariance spectrum of the lower kHz QPO is well fit by a thermal Comptonization model, though we find a seed photon temperature higher than that of the mean spectrum, which was also seen in Peille et al. and indicates the possibility of a composite boundary layer emitting region. Lastly, we see in one set of observations an Fe K component in the covariance spectrum at 2.4- σ confidence, which may raise questions about the role of reverberation in the production of lags.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800012104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800012104"><span>Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bair, S.; Winer, W. O.</p> <p>1980-01-01</p> <p>Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d7104T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d7104T"><span>Pulsatile pressure driven rarefied gas flow in long rectangular ducts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsimpoukis, Alexandros; Valougeorgis, Dimitris</p> <p>2018-04-01</p> <p>The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930050101&hterms=paper+planes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpaper%2Bplanes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930050101&hterms=paper+planes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpaper%2Bplanes"><span>Shear and compression buckling analysis for anisotropic panels with centrally located elliptical cutouts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Britt, V. O.</p> <p>1993-01-01</p> <p>An approximate analysis for buckling of biaxial- and shear-loaded anisotropic panels with centrally located elliptical cutouts is presented in the present paper. The analysis is composed of two parts, a prebuckling analysis and a buckling analysis. The prebuckling solution is determined using Lekhnitskii's complex variable equations of plane elastostatics combined with a Laurent series approximation and a boundary collocation method. The buckling solution is obtained using the principle of minimum potential energy. A by-product of the minimum potential energy equation is an integral equation which is solved using Gaussian quadrature. Comparisons with documented experimental results and finite element analyses indicate that the approximate analysis accurately predicts the buckling loads of square biaxial- and shear-loaded panels having elliptical cutouts with major axes up to sixty percent of the panel width. Results of a parametric study are presented for shear- and compression-loaded rectangular anisotropic panels with elliptical cutouts. The effects of panel aspect ratio, cutout shape, cutout size, cutout orientation, laminate anisotropy, and combined loading on the buckling load are examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........75D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........75D"><span>Environmental and internal controls of tropical cyclone intensity change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desflots, Melicie</p> <p></p> <p>Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010057067','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010057067"><span>Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.</p> <p>2001-01-01</p> <p>A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29397996','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29397996"><span>Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan</p> <p>2018-03-01</p> <p>Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29643111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29643111"><span>Cardiovascular and Cerebrovascular Emergency Department Visits Associated With Wildfire Smoke Exposure in California in 2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wettstein, Zachary S; Hoshiko, Sumi; Fahimi, Jahan; Harrison, Robert J; Cascio, Wayne E; Rappold, Ana G</p> <p>2018-04-11</p> <p>Wildfire smoke is known to exacerbate respiratory conditions; however, evidence for cardiovascular and cerebrovascular events has been inconsistent, despite biological plausibility. A population-based epidemiologic analysis was conducted for daily cardiovascular and cerebrovascular emergency department (ED) visits and wildfire smoke exposure in 2015 among adults in 8 California air basins. A quasi-Poisson regression model was used for zip code-level counts of ED visits, adjusting for heat index, day of week, seasonality, and population. Satellite-imaged smoke plumes were classified as light, medium, or dense based on model-estimated concentrations of fine particulate matter. Relative risk was determined for smoky days for lag days 0 to 4. Rates of ED visits by age- and sex-stratified groups were also examined. Rates of all-cause cardiovascular ED visits were elevated across all lags, with the greatest increase on dense smoke days and among those aged ≥65 years at lag 0 (relative risk 1.15, 95% confidence interval [1.09, 1.22]). All-cause cerebrovascular visits were associated with smoke, especially among those 65 years and older, (1.22 [1.00, 1.49], dense smoke, lag 1). Respiratory conditions were also increased, as anticipated (1.18 [1.08, 1.28], adults >65 years, dense smoke, lag 1). No association was found for the control condition, acute appendicitis. Elevated risks for individual diagnoses included myocardial infarction, ischemic heart disease, heart failure, dysrhythmia, pulmonary embolism, ischemic stroke, and transient ischemic attack. Analysis of an extensive wildfire season found smoke exposure to be associated with cardiovascular and cerebrovascular ED visits for all adults, particularly for those over aged 65 years. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.471.4436W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.471.4436W"><span>Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkins, D. R.; Gallo, L. C.; Silva, C. V.; Costantini, E.; Brandt, W. N.; Kriss, G. A.</p> <p>2017-11-01</p> <p>X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow-line Seyfert 1 galaxy I Zwicky 1 taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0 keV energy and continuum-dominated 1.0-4.0 keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3 × 10-4-1.2 × 10-3 Hz a lag of 160 s is measured, but the lag shortens to (59 ± 4) s above 1.2 × 10-3 Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low-frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc, while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power-law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24923469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24923469"><span>Standard operating procedures for antibiotic therapy and the occurrence of acute kidney injury: a prospective, clinical, non-interventional, observational study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nachtigall, Irit; Tafelski, Sascha; Günzel, Karsten; Uhrig, Alexander; Powollik, Robert; Tamarkin, Andrey; Wernecke, Klaus D; Spies, Claudia</p> <p>2014-06-12</p> <p>Acute kidney injury (AKI) occurs in 7% of hospitalized and 66% of Intensive Care Unit (ICU) patients. It increases mortality, hospital length of stay, and costs. The aim of this study was to investigate, whether there is an association between adherence to guidelines (standard operating procedures (SOP)) for potentially nephrotoxic antibiotics and the occurrence of AKI. This study was carried out as a prospective, clinical, non-interventional, observational study. Data collection was performed over a total of 170 days in three ICUs at Charité - Universitaetsmedizin Berlin. A total of 675 patients were included; 163 of these had therapy with vancomycin, gentamicin, or tobramycin; were >18 years; and treated in the ICU for >24 hours. Patients with an adherence to SOP >70% were classified into the high adherence group (HAG) and patients with an adherence of <70% into the low adherence group (LAG). AKI was defined according to RIFLE criteria. Adherence to SOPs was evaluated by retrospective expert audit. Development of AKI was compared between groups with exact Chi2-test and multivariate logistic regression analysis (two-sided P <0.05). LAG consisted of 75 patients (46%) versus 88 HAG patients (54%). AKI occurred significantly more often in LAG with 36% versus 21% in HAG (P = 0.035). Basic characteristics were comparable, except an increased rate of soft tissue infections in LAG. Multivariate analysis revealed an odds ratio of 2.5-fold for LAG to develop AKI compared with HAG (95% confidence interval 1.195 to 5.124, P = 0.039). Low adherence to SOPs for potentially nephrotoxic antibiotics was associated with a higher occurrence of AKI. Current Controlled Trials ISRCTN54598675. Registered 17 August 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095670','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095670"><span>Standard operating procedures for antibiotic therapy and the occurrence of acute kidney injury: a prospective, clinical, non-interventional, observational study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Introduction Acute kidney injury (AKI) occurs in 7% of hospitalized and 66% of Intensive Care Unit (ICU) patients. It increases mortality, hospital length of stay, and costs. The aim of this study was to investigate, whether there is an association between adherence to guidelines (standard operating procedures (SOP)) for potentially nephrotoxic antibiotics and the occurrence of AKI. Methods This study was carried out as a prospective, clinical, non-interventional, observational study. Data collection was performed over a total of 170 days in three ICUs at Charité – Universitaetsmedizin Berlin. A total of 675 patients were included; 163 of these had therapy with vancomycin, gentamicin, or tobramycin; were >18 years; and treated in the ICU for >24 hours. Patients with an adherence to SOP >70% were classified into the high adherence group (HAG) and patients with an adherence of <70% into the low adherence group (LAG). AKI was defined according to RIFLE criteria. Adherence to SOPs was evaluated by retrospective expert audit. Development of AKI was compared between groups with exact Chi2-test and multivariate logistic regression analysis (two-sided P <0.05). Results LAG consisted of 75 patients (46%) versus 88 HAG patients (54%). AKI occurred significantly more often in LAG with 36% versus 21% in HAG (P = 0.035). Basic characteristics were comparable, except an increased rate of soft tissue infections in LAG. Multivariate analysis revealed an odds ratio of 2.5-fold for LAG to develop AKI compared with HAG (95% confidence interval 1.195 to 5.124, P = 0.039). Conclusion Low adherence to SOPs for potentially nephrotoxic antibiotics was associated with a higher occurrence of AKI. Trial registration Current Controlled Trials ISRCTN54598675. Registered 17 August 2007. PMID:24923469</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3645909','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3645909"><span>Time-Lag Bias in Trials of Pediatric Antidepressants: A Systematic Review and Meta-Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reyes, Magdalena M.; Panza, Kaitlyn E.; Martin, Andrés; Bloch, Michael H.</p> <p>2013-01-01</p> <p>Objective To determine if there is evidence of a time-lag bias in the publication of pediatric antidepressant trials. Method We conducted a meta-analysis of published and unpublished randomized, placebo-controlled trials of serotonin reuptake inhibitors (SRIs) in subjects less than 18 years old with major depressive disorder. Our main outcomes were (1) time to publication of positive versus negative trials, and (2) proportion of treatment responders in trials with standard (< 3 years after study completion) versus delayed publication. Results We identified 15 randomized, placebo-controlled trials of SRIs for pediatric depression. Trials with negative findings had a significantly longer time to publication (median years ± standard deviation = 4.2 ±1.9) than trials with positive findings (2.2 ±0.9; log-rank χ2 = 4.35, p = 0.037). The estimated efficacy in trials with standard publication time (number needed to treat = 7, 95% CI: 5 – 11) was significantly greater than those with delayed publication (17, 95% CI: 9 – ∞; χ2 = 4.98, p = 0.025). The inflation-adjusted impact factor of journals for published trials with positive (15.33 ±11.01) and negative results (7.54 ±7.90) did not statistically differ (t = 1.4, df = 10, p = 0.17). Conclusions Despite a small number of trials of SRIs for pediatric antidepressants we found a significant evidence of time-lag bias in the publication of findings. This time-lag bias altered the perceived efficacy of pediatric antidepressants in the medical literature. Time-lag bias is not unique to child psychiatry and reflects a larger problem in scientific publishing. PMID:21156271</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940024878','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940024878"><span>An alternative assessment of second-order closure models in turbulent shear flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Speziale, Charles G.; Gatski, Thomas B.</p> <p>1994-01-01</p> <p>The performance of three recently proposed second-order closure models is tested in benchmark turbulent shear flows. Both homogeneous shear flow and the log-layer of an equilibrium turbulent boundary layer are considered for this purpose. An objective analysis of the results leads to an assessment of these models that stands in contrast to that recently published by other authors. A variety of pitfalls in the formulation and testing of second-order closure models are uncovered by this analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApCM...22..733L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApCM...22..733L"><span>Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Longbiao, Li</p> <p>2015-12-01</p> <p>The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP43A0953M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP43A0953M"><span>Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, R. L.; Kok, J. F.; Chamecki, M.</p> <p>2015-12-01</p> <p>The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApCM...24..691L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApCM...24..691L"><span>Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Longbiao, Li</p> <p>2017-06-01</p> <p>In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930051981&hterms=composite+rotor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcomposite%2Brotor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930051981&hterms=composite+rotor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcomposite%2Brotor"><span>Aeroelastic behavior of composite rotor blades with swept tips</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur</p> <p>1992-01-01</p> <p>This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920051790&hterms=composite+rotor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcomposite%2Brotor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920051790&hterms=composite+rotor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcomposite%2Brotor"><span>A new aeroelastic model for composite rotor blades with straight and swept tips</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur</p> <p>1992-01-01</p> <p>An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..330a2115L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..330a2115L"><span>Analysis and design of composite slab by varying different parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lambe, Kedar; Siddh, Sharda</p> <p>2018-03-01</p> <p>Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24630614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24630614"><span>Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hattori, Koji; Munehira, Yoichi; Kobayashi, Hideki; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki</p> <p>2014-09-01</p> <p>We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm(2) in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 10(5)) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm(2). Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm(2). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27325576','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27325576"><span>Quantifying the effect of water activity and storage temperature on single spore lag times of three moulds isolated from spoiled bakery products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dagnas, Stéphane; Gougouli, Maria; Onno, Bernard; Koutsoumanis, Konstantinos P; Membré, Jeanne-Marie</p> <p>2017-01-02</p> <p>The inhibitory effect of water activity (a w ) and storage temperature on single spore lag times of Aspergillus niger, Eurotium repens (Aspergillus pseudoglaucus) and Penicillium corylophilum strains isolated from spoiled bakery products, was quantified. A full factorial design was set up for each strain. Data were collected at levels of a w varying from 0.80 to 0.98 and temperature from 15 to 35°C. Experiments were performed on malt agar, at pH5.5. When growth was observed, ca 20 individual growth kinetics per condition were recorded up to 35days. Radius of the colony vs time was then fitted with the Buchanan primary model. For each experimental condition, a lag time variability was observed, it was characterized by its mean, standard deviation (sd) and 5 th percentile, after a Normal distribution fit. As the environmental conditions became stressful (e.g. storage temperature and a w lower), mean and sd of single spore lag time distribution increased, indicating longer lag times and higher variability. The relationship between mean and sd followed a monotonous but not linear pattern, identical whatever the species. Next, secondary models were deployed to estimate the cardinal values (minimal, optimal and maximal temperatures, minimal water activity where no growth is observed anymore) for the three species. That enabled to confirm the observation made based on raw data analysis: concerning the temperature effect, A. niger behaviour was significantly different from E. repens and P. corylophilum: T opt of 37.4°C (standard deviation 1.4°C) instead of 27.1°C (1.4°C) and 25.2°C (1.2°C), respectively. Concerning the a w effect, from the three mould species, E. repens was the species able to grow at the lowest a w (aw min estimated to 0.74 (0.02)). Finally, results obtained with single spores were compared to findings from a previous study carried out at the population level (Dagnas et al., 2014). For short lag times (≤5days), there was no difference between lag time of the population (ca 2000 spores inoculated in one spot) and mean (nor 5 th percentile) of single spore lag time distribution. In contrast, when lag time was longer, i.e. under more stressful conditions, there was a discrepancy between individual and population lag times (population lag times shorter than 5 th percentiles of single spore lag time distribution), confirming a stochastic process. Finally, the temperature cardinal values estimated with single spores were found to be similar to those obtained at the population level, whatever the species. All these findings will be used to describe better mould spore lag time variability and then to predict more accurately bakery product shelf-life. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16803106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16803106"><span>Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R</p> <p>2006-05-19</p> <p>An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900046255&hterms=stress+effects&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstress%2Beffects','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900046255&hterms=stress+effects&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstress%2Beffects"><span>Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Engelstad, S. P.; Reddy, J. N.; Knight, N. F., Jr.</p> <p>1990-01-01</p> <p>The objectives of the study are to assess the influence of shear flexibility on overall postbuckling response, and to examine transverse shear stress distributions in relation to panel failure. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented in this paper analytically substantiate the experimentally observed failure mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJBm...60.1135Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJBm...60.1135Y"><span>Daily ambient temperature and renal colic incidence in Guangzhou, China: a time-series analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Changyuan; Chen, Xinyu; Chen, Renjie; Cai, Jing; Meng, Xia; Wan, Yue; Kan, Haidong</p> <p>2016-08-01</p> <p>Few previous studies have examined the association between temperature and renal colic in developing regions, especially in China, the largest developing country in the world. We collected daily emergency ambulance dispatches (EADs) for renal colic from Guangzhou Emergency Center from 1 January 2008 to 31 December 2012. We used a distributed-lag nonlinear model in addition to the over-dispersed generalized additive model to investigate the association between daily ambient temperature and renal colic incidence after controlling for seasonality, humidity, public holidays, and day of the week. We identified 3158 EADs for renal colic during the study period. This exposure-response curve was almost flat when the temperature was low and moderate and elevated when the temperature increased over 21 °C. For heat-related effects, the significant risk occurred on the concurrent day and diminished until lag day 7. The cumulative relative risk of hot temperatures (90th percentile) and extremely hot temperatures (99th percentile) over lag days 0-7 was 1.92 (95 % confidence interval, 1.21, 3.05) and 2.45 (95 % confidence interval, 1.50, 3.99) compared with the reference temperature of 21 °C. This time-series analysis in Guangzhou, China, suggested a nonlinear and lagged association between high outdoor temperatures and daily EADs for renal colic. Our findings might have important public health significance to prevent renal colic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AJ....133.1763N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AJ....133.1763N"><span>Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakajima, Reiko; Bernstein, Gary</p> <p>2007-04-01</p> <p>We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PEPI..240...82J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PEPI..240...82J"><span>Degradation of the mechanical properties imaged by seismic tomography during an EGS creation at The Geysers (California) and geomechanical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeanne, Pierre; Rutqvist, Jonny; Hutchings, Lawrence; Singh, Ankit; Dobson, Patrick F.; Walters, Mark; Hartline, Craig; Garcia, Julio</p> <p>2015-03-01</p> <p>Using coupled thermal-hydro-mechanical (THM) modeling, we evaluated new seismic tomography results associated with stimulation injection at an EGS demonstration project at the Northwest Geysers geothermal steam field, California. We studied high resolution seismic tomography images built from data recorded during three time periods: a period of two months prior to injection and during two consecutive one month periods after injection started in October 2011. Our analysis shows that seismic velocity decreases in areas of most intense induced microseismicity and this is also correlated with the spatial distribution of calculated steam pressure changes. A detailed analysis showed that shear wave velocity decreases with pressure in areas where pressure is sufficiently high to cause shear reactivation of pre-existing fractures. The analysis also indicates that cooling in a liquid zone around the injection well contributes to reduced shear wave velocity. A trend of reducing compressional wave velocity with fluid pressure was also found, but at pressures much above the pressure required for shear reactivation. We attribute the reduction in shear wave velocity to softening in the rock mass shear modulus associated with shear dislocations and associated changes in fracture surface properties. Also, as the rock mass become more fractured and more deformable this favors reservoir expansion caused by the pressure increase, and so the fracture porosity increases leading to a decrease in bulk density, a decrease in Young modulus and finally a decrease in Vp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27274702','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27274702"><span>Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duncan, Christopher A J; Heymans, Catherine; Heavens, Alan F; Joachimi, Benjamin</p> <p>2016-03-21</p> <p>We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010016113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010016113"><span>In-plane and Interlaminar Shear Strength of a Unidirectional Hi-nicalon Fiber-reinforced Celsian Matrix Composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Uenal, O.; Bansal, N. P.</p> <p>2000-01-01</p> <p>In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ExFl...38..222K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ExFl...38..222K"><span>High shear microfluidics and its application in rheological measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kang, Kai; Lee, L. James; Koelling, Kurt W.</p> <p>2005-02-01</p> <p>High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16774354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16774354"><span>Bond-orientational analysis of hard-disk and hard-sphere structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Senthil Kumar, V; Kumaran, V</p> <p>2006-05-28</p> <p>We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1001a2019K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1001a2019K"><span>Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio</p> <p>2018-04-01</p> <p>Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720022240','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720022240"><span>Vibration and damping of laminated, composite-material plates including thickness-shear effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bert, C. W.; Siu, C. C.</p> <p>1972-01-01</p> <p>An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600088-effect-sheared-toroidal-rotation-pressure-driven-magnetic-islands-toroidal-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600088-effect-sheared-toroidal-rotation-pressure-driven-magnetic-islands-toroidal-plasmas"><span>The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hegna, C. C.</p> <p>2016-05-15</p> <p>The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11460669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11460669"><span>Turbulence modeling in simulation of gas-turbine flow and heat transfer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brereton, G; Shih, T I</p> <p>2001-05-01</p> <p>The popular k-epsilon type two-equation turbulence models, which are calibrated by experimental data from simple shear flows, are analyzed for their ability to predict flows involving shear and an extra strain--flow with shear and rotation and flow with shear and streamline curvature. The analysis is based on comparisons between model predictions and those from measurements and large-eddy simulations of homogenous flows involving shear and an extra strain, either from rotation or from streamline curvature. Parameters are identified, which show the conditions under which performance of k-epsilon type models can be expected to be poor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920013038','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920013038"><span>Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naik, Rajiv A.; Crews, John H., Jr.</p> <p>1992-01-01</p> <p>Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28g4107G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28g4107G"><span>The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffiths, P. T.; Gallagher, M. T.; Stephen, S. O.</p> <p>2016-07-01</p> <p>We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860043989&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dorder%2Bmixed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860043989&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dorder%2Bmixed"><span>A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Putcha, N. S.; Reddy, J. N.</p> <p>1986-01-01</p> <p>The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413986H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413986H"><span>Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.</p> <p>2012-04-01</p> <p>Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830005226','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830005226"><span>Geometrically nonlinear analysis of adhesively bonded joints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.</p> <p>1982-01-01</p> <p>A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23004740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23004740"><span>Nanoscale simple-fluid behavior under steady shear.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yong, Xin; Zhang, Lucy T</p> <p>2012-05-01</p> <p>In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JLTP..191..153W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JLTP..191..153W"><span>Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo</p> <p>2018-05-01</p> <p>This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20443742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20443742"><span>Procedures in the 13C octanoic acid breath test for measurement of gastric emptying: analysis using Bland-Altman methods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clegg, Miriam E; Shafat, Amir</p> <p>2010-08-01</p> <p>The (13)C octanoic acid breath test (OBT) was first developed as an alternative method of measuring gastric emptying (GE) to scintigraphy. There has been much debate about the test duration and how often measurements need to be taken. This study aims to address these issues. For 78 GE tests using the (13)C OBT, GE lag phase (T(lag)) was calculated while sampling more frequently than the recommended every 15 min. Comparisons between T(lag) were completed using Bland-Altman plots. Similarly, 4 or 6 h test durations were assessed to establish if they yield the same GE half time (T(half)). From one volunteer, samples were taken every 1 min for the first 30 min and then every 15 min until 6 h. GE times were then calculated using different combinations of sampling times. Evidence of a visible T(lag) was also explored from this data. Findings indicated that taking samples every 5 min for the first 30 min instead of every 15 min did not change the GE T(lag) based on Bland-Altman plots. The correlation between these two methods was also high (r(2) = 0.9957). The findings showed that the difference between the two sampling durations 4 and 6 h was large and the correlation between the methods was low (r(2) = 0.8335). Samples taken at a rate of one breath per min indicated lack of a visible T(lag). Sampling for the (13)C OBT should be completed every 15 min for 6 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5551163','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5551163"><span>Associations of PM2.5 and Black Carbon with Hospital Emergency Room Visits during Heavy Haze Events: A Case Study in Beijing, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liang, Fengchao; Tian, Lin; Guo, Qun; Westerdahl, Dane; Jin, Xiaobin; Li, Guoxing; Pan, Xiaochuan</p> <p>2017-01-01</p> <p>In January 2013, severe haze events over northeastern China sparked substantial health concerns. This study explores the associations of fine particulate matter less than 2.5 μm (PM2.5) and black carbon (BC) with hospital emergency room visits (ERVs) during a haze season in Beijing. During that period, daily counts of ERVs for respiratory, cardiovascular and ocular diseases were obtained from a Level-3A hospital in Beijing from 1 December 2012 to 28 February 2013, and associations of which with PM2.5 and BC were estimated by time-stratified case-crossover analysis in single- and two-pollutant models. We found a 27.5% (95% confidence interval (CI): 13.0, 43.9%) increase in respiratory ERV (lag02), a 19.4% (95% CI: 2.5, 39.0%) increase in cardiovascular ERV (lag0), and a 12.6% (95% CI: 0.0, 26.7%) increase in ocular ERV (lag0) along with an interquartile range (IQR) increase in the PM2.5. An IQR increase of BC was associated with 27.6% (95% CI: 9.6, 48.6%) (lag02), 18.8% (95% CI: 1.4, 39.2%) (lag0) and 11.8% (95% CI: −1.4, 26.8%) (lag0) increases for changes in these same health outcomes respectively. Estimated associations were consistent after adjusting SO2 or NO2 in two-pollutant models. This study provides evidence that improving air quality and reducing haze days would greatly benefit the population health. PMID:28678202</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28678202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28678202"><span>Associations of PM2.5 and Black Carbon with Hospital Emergency Room Visits during Heavy Haze Events: A Case Study in Beijing, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Fengchao; Tian, Lin; Guo, Qun; Westerdahl, Dane; Liu, Yang; Jin, Xiaobin; Li, Guoxing; Pan, Xiaochuan</p> <p>2017-07-05</p> <p>In January 2013, severe haze events over northeastern China sparked substantial health concerns. This study explores the associations of fine particulate matter less than 2.5 μm (PM 2.5 ) and black carbon (BC) with hospital emergency room visits (ERVs) during a haze season in Beijing. During that period, daily counts of ERVs for respiratory, cardiovascular and ocular diseases were obtained from a Level-3A hospital in Beijing from 1 December 2012 to 28 February 2013, and associations of which with PM 2.5 and BC were estimated by time-stratified case-crossover analysis in single- and two-pollutant models. We found a 27.5% (95% confidence interval (CI): 13.0, 43.9%) increase in respiratory ERV (lag02), a 19.4% (95% CI: 2.5, 39.0%) increase in cardiovascular ERV (lag0), and a 12.6% (95% CI: 0.0, 26.7%) increase in ocular ERV (lag0) along with an interquartile range (IQR) increase in the PM 2.5 . An IQR increase of BC was associated with 27.6% (95% CI: 9.6, 48.6%) (lag02), 18.8% (95% CI: 1.4, 39.2%) (lag0) and 11.8% (95% CI: -1.4, 26.8%) (lag0) increases for changes in these same health outcomes respectively. Estimated associations were consistent after adjusting SO₂ or NO₂ in two-pollutant models. This study provides evidence that improving air quality and reducing haze days would greatly benefit the population health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667442-temporal-variability-from-two-component-advective-flow-solution-its-observational-evidence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667442-temporal-variability-from-two-component-advective-flow-solution-its-observational-evidence"><span>TEMPORAL VARIABILITY FROM THE TWO-COMPONENT ADVECTIVE FLOW SOLUTION AND ITS OBSERVATIONAL EVIDENCE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dutta, Broja G.; Chakrabarti, Sandip K.</p> <p>2016-09-10</p> <p>In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclinationmore » black hole source GX 339-4 during its 2006–07 outburst using RXTE /PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν {sub c}) of ∼3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24342024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24342024"><span>Alcohol and drug treatment involvement, 12-step attendance and abstinence: 9-year cross-lagged analysis of adults in an integrated health plan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Witbrodt, Jane; Ye, Yu; Bond, Jason; Chi, Felicia; Weisner, Constance; Mertens, Jennifer</p> <p>2014-04-01</p> <p>This study explored causal relationships between post-treatment 12-step attendance and abstinence at multiple data waves and examined indirect paths leading from treatment initiation to abstinence 9-years later. Adults (N = 1945) seeking help for alcohol or drug use disorders from integrated healthcare organization outpatient treatment programs were followed at 1-, 5-, 7- and 9-years. Path modeling with cross-lagged partial regression coefficients was used to test causal relationships. Cross-lagged paths indicated greater 12-step attendance during years 1 and 5 and were casually related to past-30-day abstinence at years 5 and 7 respectfully, suggesting 12-step attendance leads to abstinence (but not vice versa) well into the post-treatment period. Some gender differences were found in these relationships. Three significant time-lagged, indirect paths emerged linking treatment duration to year-9 abstinence. Conclusions are discussed in the context of other studies using longitudinal designs. For outpatient clients, results reinforce the value of lengthier treatment duration and 12-step attendance in year 1. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870014183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870014183"><span>High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whitmore, Stephen A.; Heeg, Jennifer; Larson, Terry J.; Ehernberger, L. J.; Hagen, Floyd W.; Deleo, Richard V.</p> <p>1987-01-01</p> <p>As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......105B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......105B"><span>High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becnel, Andrew C.</p> <p></p> <p>This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter crew seat. Characterization tests were carried out on the LMEAS using a 40 vol% MRF used in the previous magnetorheometer tests. These were analyzed using both flow curves and apparent viscosity vs. Mason number diagrams. The nondimensionalized Mason number analysis resulted in data for all conditions of temperature, fluid composition, and shear rate, to collapse onto a single characteristic or master curve. Significantly, the temperature corrected Mason number results from both the bench top magnetorheometer and full scale rotary vane MREA collapse to the same master curve. This enhances the ability of designers of MRFs and MREAs to safely and effectively apply characterization data collected in low shear rate, controlled temperature environments to operational environments that may be completely different. Finally, the Searle cell magnetorheometer was modified with an enforced eccentricity to work in both squeeze and shear modes simultaneously to achieve so called squeeze strengthening of the working MRF, thereby increasing the apparent yield stress and the specific energy absorption. By squeezing the active MR fluid, particles undergo compression-assisted aggregation into stronger, more robust columns which resist shear better than single chains. A hybrid model describing the squeeze strengthening behavior is developed, and recommendations are made for using squeeze strengthening to improve practical MREA devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006399','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006399"><span>CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ferlemann, Paul G.</p> <p>2014-01-01</p> <p>This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29671649','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29671649"><span>LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing</p> <p>2018-04-19</p> <p>The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15182988','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15182988"><span>Intramedullary nails with two lag screws.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, C J; Wang, C J; Yettram, A L; Procter, P</p> <p>2004-06-01</p> <p>To investigate the structural integrity of intramedullary nails with two lag screws, and to give guidance to orthopaedic surgeons in the choice of appropriate devices. Alternative designs of the construct are considered, and the use of a slotted upper lag screw insertion hole is analysed. Intramedullary fixation devices with a single lag screw have been known to fail at the lag screw insertion hole. Using two lag screws is considered. It has also been proposed to use a slot in the nail for the upper lag screw to prevent the upper lag screw from sticking. Bending and torsion load cases are analysed using finite element method. Consideration of both load conditions is essential. The results present the overall stiffness of the assembly, the load sharing between lag screws, and the possibility for cut-out to occur. While the slot for the upper lag screw might be advantageous with regard to the stresses in the lag screws, it could be detrimental for cut-out occurring adjacent to the lag screws. Comparative analyses demonstrate that two lag screws may be advantageous in patients whose cancellous bone quality is good and who impose large loads on the lag screw/nail interface. However, the use of two screws might pre-dispose to failure by cut-out of the lag screws. The addition of a slotted hole for the upper lag screw appears to do nothing significant to reduce the risk of such a failure. Copyright 2004 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JFM...523..277A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JFM...523..277A"><span>Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.</p> <p>2005-01-01</p> <p>Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27788159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27788159"><span>Effect of Environmental Factors on Low Weight in Non-Premature Births: A Time Series Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Díaz, Julio; Arroyo, Virginia; Ortiz, Cristina; Carmona, Rocío; Linares, Cristina</p> <p>2016-01-01</p> <p>Exposure to pollutants during pregnancy has been related to adverse birth outcomes. LBW can give rise to lifelong impairments. Prematurity is the leading cause of LBW, yet few studies have attempted to analyse how environmental factors can influence LBW in infants who are not premature. This study therefore sought to analyse the influence of air pollution, noise levels and temperature on LBW in non-premature births in Madrid during the period 2001-2009. Ecological time-series study to assess the impact of PM2.5, NO2 and O3 concentrations, noise levels, and temperatures on LBW among non-premature infants across the period 2001-2009. Our analysis extended to infants having birth weights of 1,500 g to 2,500 g (VLBW) and less than 1,500 g (ELBW). Environmental variables were lagged until 37 weeks with respect to the date of birth, and cross-correlation functions were used to identify explaining lags. Results were quantified using Poisson regression models. Across the study period 298,705 births were registered in Madrid, 3,290 of which had LBW; of this latter total, 1,492 were non-premature. PM2.5 was the only pollutant to show an association with the three variables of LBW in non-premature births. This association occurred at around the third month of gestation for LBW and VLBW (LBW: lag 23 and VLBW: lag 25), and at around the eighth month of gestation for ELBW (lag 6). Leqd was linked to LBW at lag zero. The RR of PM2.5 on LBW was 1.01 (1.00 1.03). The RR of Leqd on LBW was 1.09 (0.99 1.19)(p<0.1). The results obtained indicate that PM2.5 had influence on LBW. The adoption of measures aimed at reducing the number of vehicles would serve to lower pregnant women's exposure. In the case of noise should be limited the exposure to high levels during the final weeks of pregnancy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28468072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28468072"><span>[Impact of daily mean temperature, cold spells, and heat waves on stroke mortality a multivariable Meta-analysis from 12 counties of Hubei province, China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Y Q; Yu, C H; Bao, J Z</p> <p>2017-04-10</p> <p>Objective: To assess the acute effects of daily mean temperature, cold spells, and heat waves on stroke mortality in 12 counties across Hubei province, China. Methods: Data related to daily mortality from stroke and meteorology in 12 counties across Hubei province during 2009-2012, were gathered. Distributed lag nonlinear model (DLNM) was first used, to estimate the county-specific associations between daily mean temperature, cold spells, heat waves and stroke mortality. Multivariate Meta-analysis was then applied to pool the community-specific relationships between temperature and stroke mortality (exposure-response relationship) as well as both cold- and- heat-associated risks on mortality at different lag days (lag-response relationship). Results: During 2009-2012, a total population of 6.7 million was included in this study with 42 739 persons died of stroke. An average of 2.7 (from 0.5 to 6.0) stroke deaths occurred daily in each county, with annual average mean temperature as 16.6 ℃ (from 14.7 ℃ to 17.4 ℃) during the study period. An inverse J-shaped association between temperature and stroke mortality was observed at the provincial level. Pooled mortality effect of cold spells showed a 2-3-day delay and lasted about 10 days, while effect of heat waves appeared acute but attenuated within a few days. The mortality risks on cold-spell days ranged from 0.968 to 1.523 in 12 counties at lag 3-14, with pooled effect as 1.180 (95 %CI: 1.043-1.336). The pooled mortality risk (ranged from 0.675 to 2.066) on heat-wave days at lag 0-2 was 1.114 (95 %CI: 1.012-1.227). Conclusions: An inverse J-shaped association between temperature and stroke mortality was observed in Hubei province, China. Both cold spells and heat waves were associated with increased stroke mortality, while different lag patterns were observed in the mortality effects of heat waves and cold spells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29058578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29058578"><span>Temporal dynamic of malaria in a suburban area along the Niger River.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sissoko, Mahamadou Soumana; Sissoko, Kourane; Kamate, Bourama; Samake, Yacouba; Goita, Siaka; Dabo, Abdoulaye; Yena, Mama; Dessay, Nadine; Piarroux, Renaud; Doumbo, Ogobara K; Gaudart, Jean</p> <p>2017-10-23</p> <p>Even if rainfall and temperature are factors classically associated to malaria, little is known about other meteorological factors, their variability and combinations related to malaria, in association with river height variations. Furthermore, in suburban area, urbanization and growing population density should be assessed in relation to these environmental factors. The aim of this study was to assess the impact of combined environmental, meteorological and hydrological factors on malaria incidence through time in the context of urbanization. Population observational data were prospectively collected. Clinical malaria was defined as the presence of parasites in addition to clinical symptoms. Meteorological and hydrological factors were measured daily. For each factors variation indices were estimated. Urbanization was yearly estimated assessing satellite imaging and field investigations. Principal component analysis was used for dimension reduction and factors combination. Lags between malaria incidences and the main components were assessed by cross-correlation functions. Generalized additive model was used to assess relative impact of different environmental components, taking into account lags, and modelling non-linear relationships. Change-point analysis was used to determine transmission periods within years. Malaria incidences were dominated by annual periodicity and varied through time without modification of the dynamic, with no impact of the urbanization. The main meteorological factor associated with malaria was a combination of evaporation, humidity and rainfall, with a lag of 3 months. The relationship between combined temperature factors showed a linear impact until reaching high temperatures limiting malaria incidence, with a lag 3.25 months. Height and variation of the river were related to malaria incidence (respectively 6 week lag and no lag). The study emphasizes no decreasing trend of malaria incidence despite accurate access to care and control strategies in accordance to international recommendations. Furthermore, no decreasing trend was showed despite the urbanization of the area. Malaria transmission remain increase 3 months after the beginning of the dry season. Addition to evaporation versus humidity/rainfall, nonlinear relationship for temperature and river height and variations have to be taken into account when implementing malaria control programmes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28463729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28463729"><span>Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Çapraz, Özkan; Deniz, Ali; Doğan, Nida</p> <p>2017-08-01</p> <p>We examined the associations between the daily variations of air pollutants and hospital admissions for respiratory diseases in İstanbul, the largest city of Turkey. A time series analysis of counts of daily hospital admissions and outdoor air pollutants was performed using single-pollutant Poisson generalized linear model (GLM) while controlling for time trends and meteorological factors over a 3-year period (2013-2015) at different time lags (0-9 days). Effects of the pollutants (Excess Risk, ER) on current-day (lag 0) hospital admissions to the first ten days (lag 9) were determined. Data on hospital admissions, daily mean concentrations of air pollutants of PM 10 , PM 2.5 and NO 2 and daily mean concentrations of temperature and humidity of İstanbul were used in the study. The analysis was conducted among people of all ages, but also focused on different sexes and different age groups including children (0-14 years), adults (35-44 years) and elderly (≥65 years). We found significant associations between air pollution and respiratory related hospital admissions in the city. Our findings showed that the relative magnitude of risks for an association of the pollutants with the total respiratory hospital admissions was in the order of: PM 2.5 , NO 2 , and PM 10 . The highest association of each pollutant with total hospital admission was observed with PM 2.5 at lag 4 (ER = 1.50; 95% CI = 1.09-1.99), NO 2 at lag 4 (ER = 1.27; 95% CI = 1.02-1.53) and PM 10 at lag 0 (ER = 0.61; 95% CI = 0.33-0.89) for an increase of 10 μg/m3 in concentrations of the pollutants. In conclusion, our study showed that short-term exposure to air pollution was positively associated with increased respiratory hospital admissions in İstanbul during 2013-2015. As the first air pollution hospital admission study using GLM in İstanbul, these findings may have implications for local environmental and social policies. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790025303','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790025303"><span>Surface temperatures and glassy state investigations in tribology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bair, S.; Winer, W. O.</p> <p>1979-01-01</p> <p>The limiting shear stress shear rheological model was applied to property measurements pursuant to the use of the constitutive equation and the application of the constitutive equation to elastrohydrodynamic (EHD) traction. Experimental techniques were developed to subject materials to isothermal compression which is similar to the history the materials were subjected to in EHD contacts. In addition, an apparatus was developed for measuring the shear stress-strain behavior of solid lubricating materials. Four commercially available materials were examined under pressure. They exhibit elastic and limiting shear stress behavior similar to that of liquid lubricants. The application of the limiting shear stress model to traction predictions was extended employing the primary materials properties measured in the laboratory. The shear rheological model was also applied to a Grubin-like EHD inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25927794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25927794"><span>Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping</p> <p>2015-05-01</p> <p>We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860004451','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860004451"><span>Computer program for post-flight evaluation of the control surface response for an attitude controlled missile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knauber, R. N.</p> <p>1982-01-01</p> <p>A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26454952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26454952"><span>[Relationship between sulfur dioxide pollution and upper respiratory outpatients in Jiangbei, Ningbo].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Yifeng; Zhao, Fengmin; Qian, Xujun; Xu, Guozhang; He, Tianfeng; Shen, Yueping; Cai, Yibiao</p> <p>2015-07-01</p> <p>To describe the daily average concentration of sulfur dioxide (SO2) in Ningbo, and to analysis the health impacts it caused in upper respiratory disease. With outpatients log and air pollutants monitoring data matched in 2011-2013, the distributed lag non-linear models were used to analysis the relative risk of the number of upper respiratory patients associated with SO2, and also excessive risk, and the inferred number of patients due to SO2 pollution. The daily average concentration of SO2 didn't exceed the limit value of second class area. The coefficient of upper respiratory outpatient number and daily average concentration of SO2 matched was 0.44,with the excessive risk was 10% to 18%, the lag of most SO2 concentrations was 4 to 6 days. It could be estimated that about 30% of total upper respiratory outpatients were caused by SO2 pollution. Although the daily average concentration of SO2 didn't exceed the standard in 3 years, the health impacts still be caused with lag effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720006232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720006232"><span>Theoretical study of corrugated plates: Shearing of a trapezoidally corrugated plate with trough lines permitted to curve</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, C.; Libove, C.</p> <p>1971-01-01</p> <p>A theoretical analysis is presented of the elastic shearing of a trapezoidally corrugated plate with discrete attachments at the ends of the corrugations. Numerical results on effective shear stiffness, stresses, and displacements are presented for selected geometries and end-attachment conditions. It is shown that the frame-like deformation of the cross-sections, which results from the absence of continuous end attachments, can lead to large transverse bending stresses and large reductions in shearing stiffness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033572','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033572"><span>An autocorrelation method to detect low frequency earthquakes within tremor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, J.R.; Beroza, G.C.; Shelly, D.R.</p> <p>2008-01-01</p> <p>Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27160403','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27160403"><span>Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aoki, Tomohiro; Yamamoto, Kimiko; Fukuda, Miyuki; Shimogonya, Yuji; Fukuda, Shunichi; Narumiya, Shuh</p> <p>2016-05-09</p> <p>Enlargement of a pre-existing intracranial aneurysm is a well-established risk factor of rupture. Excessive low wall shear stress concomitant with turbulent flow in the dome of an aneurysm may contribute to progression and rupture. However, how stress conditions regulate enlargement of a pre-existing aneurysm remains to be elucidated. Wall shear stress was calculated with 3D-computational fluid dynamics simulation using three cases of unruptured intracranial aneurysm. The resulting value, 0.017 Pa at the dome, was much lower than that in the parent artery. We loaded wall shear stress corresponding to the value and also turbulent flow to the primary culture of endothelial cells. We then obtained gene expression profiles by RNA sequence analysis. RNA sequence analysis detected hundreds of differentially expressed genes among groups. Gene ontology and pathway analysis identified signaling related with cell division/proliferation as overrepresented in the low wall shear stress-loaded group, which was further augmented by the addition of turbulent flow. Moreover, expression of some chemoattractants for inflammatory cells, including MCP-1, was upregulated under low wall shear stress with concomitant turbulent flow. We further examined the temporal sequence of expressions of factors identified in an in vitro study using a rat model. No proliferative cells were detected, but MCP-1 expression was induced and sustained in the endothelial cell layer. Low wall shear stress concomitant with turbulent flow contributes to sustained expression of MCP-1 in endothelial cells and presumably plays a role in facilitating macrophage infiltration and exacerbating inflammation, which leads to enlargement or rupture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28069326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28069326"><span>Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia-A generalised linear model with break-point analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alkhaldy, Ibrahim</p> <p>2017-04-01</p> <p>The aim of this study was to examine the role of environmental factors in the temporal distribution of dengue fever in Jeddah, Saudi Arabia. The relationship between dengue fever cases and climatic factors such as relative humidity and temperature was investigated during 2006-2009 to determine whether there is any relationship between dengue fever cases and climatic parameters in Jeddah City, Saudi Arabia. A generalised linear model (GLM) with a break-point was used to determine how different levels of temperature and relative humidity affected the distribution of the number of cases of dengue fever. Break-point analysis was performed to modelled the effect before and after a break-point (change point) in the explanatory parameters under various scenarios. Akaike information criterion (AIC) and cross validation (CV) were used to assess the performance of the models. The results showed that maximum temperature and mean relative humidity are most probably the better predictors of the number of dengue fever cases in Jeddah. In this study three scenarios were modelled: no time lag, 1-week lag and 2-weeks lag. Among these scenarios, the 1-week lag model using mean relative humidity as an explanatory variable showed better performance. This study showed a clear relationship between the meteorological variables and the number of dengue fever cases in Jeddah. The results also demonstrated that meteorological variables can be successfully used to estimate the number of dengue fever cases for a given period of time. Break-point analysis provides further insight into the association between meteorological parameters and dengue fever cases by dividing the meteorological parameters into certain break-points. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26481124','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26481124"><span>Comparison of tip apex distance and cut-out complications between helical blades and lag screws in intertrochanteric fractures among the elderly: a meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shuang; Chang, Shi-Min; Niu, Wen-Xin; Ma, Hui</p> <p>2015-11-01</p> <p>To investigate whether helical blade implant systems have advantages in terms of tip apex distance (TAD) and cut-out rate in comparison to conventional lag screws for intertrochanteric fractures in a geriatric population. Methods: Relevant articles were sourced from the MEDLINE, Embase, Ovid and Cochrane Library databases from inception through March 2015. All randomized controlled trials (RCTs) comparing outcomes between helical blade and lag screw implant systems were selected. Mean TAD values and reported cut-out complications were noted. Each author independently assessed the relevance of the enrolled studies and the quality of the extracted data. Data were analyzed using R software. Ten studies including 1831 patients were eligible for this review, seven of which were included in a combined analysis of dichotomous outcomes and five in a combined analysis of continuous outcomes. The results revealed that, compared with lag screw implantations, the use of helical blades led to a lower rate of cut-out complications (95 % CI: 0.28–0.96, P = 0.036). Patients who experienced cut-out complications had a significantly greater tip apex distance (95 % CI: 0.68–1.34, P < 0.001). However, the actual tip apex distances were similar between the screw group and blade group (95 % CI: −0.44–0.79, P = 0.58). No difference in TAD values was found between blades and screws. In addition, the cut-out risk in the blade-design group was lower than that of the screw group. Therefore, TAD is not an accurate predictor of cut-out risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28279427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28279427"><span>Finite element analysis of the three different posterior malleolus fixation strategies in relation to different fracture sizes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anwar, Adeel; Lv, Decheng; Zhao, Zhi; Zhang, Zhen; Lu, Ming; Nazir, Muhammad Umar; Qasim, Wasim</p> <p>2017-04-01</p> <p>Appropriate fixation method for the posterior malleolar fractures (PMF) according to the fracture size is still not clear. Aim of this study was to evaluate the outcomes of the different fixation methods used for fixation of PMF by finite element analysis (FEA) and to compare the effect of fixation constructs on the size of the fracture computationally. Three dimensional model of the tibia was reconstructed from computed tomography (CT) images. PMF of 30%, 40% and 50% fragment sizes were simulated through computational processing. Two antero-posterior (AP) lag screws, two postero-anterior (PA) lag screws and posterior buttress plate were analysed for three different fracture volumes. The simulated loads of 350N and 700N were applied to the proximal tibial end. Models were fixed distally in all degrees of freedom. In single limb standing condition, the posterior plate group produced the lowest relative displacement (RD) among all the groups (0.01, 0.03 and 0.06mm). Further nodal analysis of the highest RD fracture group showed a higher mean displacement of 4.77mm and 4.23mm in AP and PA lag screws model (p=0.000). The amounts of stress subjected to these implants, 134.36MPa and 140.75MPa were also significantly lower (p=0.000). There was a negative correlation (p=0.021) between implant stress and the displacement which signifies a less stable fixation using AP and PA lag screws. Progressively increasing fracture size demands more stable fixation construct because RD increases significantly. Posterior buttress plate produces superior stability and lowest RD in PMF models irrespective of the fragment size. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11867494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11867494"><span>Identifying some determinants of "jet lag" and its symptoms: a study of athletes and other travellers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Waterhouse, J; Edwards, B; Nevill, A; Carvalho, S; Atkinson, G; Buckley, P; Reilly, T; Godfrey, R; Ramsay, R</p> <p>2002-02-01</p> <p>Travelling across multiple time zones disrupts normal circadian rhythms and induces "jet lag". Possible effects of this on training and performance in athletes were concerns before the Sydney Olympic Games. To identify some determinants of jet lag and its symptoms. A mixture of athletes, their coaches, and academics attending a conference (n = 85) was studied during their flights from the United Kingdom to Australia (two flights with a one hour stopover in Singapore), and for the first six days in Australia. Subjects differed in age, sex, chronotype, flexibility of sleeping habits, feelings of languor, fitness, time of arrival in Australia, and whether or not they had previous experience of travel to Australia. These variables and whether the body clock adjusted to new local time by phase advance or delay were tested as predictors for jet lag and some of its symptoms by stepwise multiple regression analyses. The amount of sleep in the first flight was significantly greater in those who had left the United Kingdom in the evening than the morning (medians of 5.5 hours and 1.5 hours respectively; p = 0.0002, Mann-Whitney), whereas there was no significant difference on the second flight (2.5 hours v 2.8 hours; p = 0.72). Only the severity of jet lag and assessments of sleep and fatigue were commonly predicted significantly (p<0.05) by regression analysis, and then by only some of the variables. Thus increasing age and a later time of arrival in Australia were associated with less jet lag and fatigue, and previous experience of travel to Australia was associated with an earlier time of getting to sleep. Subjects who had adjusted by phase advance suffered worse jet lag during the 5th and 6th days in Australia. These results indicate the importance of an appropriate choice of itinerary and lifestyle for reducing the negative effects of jet lag in athletes and others who wish to perform optimally in the new time zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMPSo.115...54R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMPSo.115...54R"><span>The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean</p> <p>2018-06-01</p> <p>A Thermo-Hydro-Mechanical (THM) model for Cosserat continua is developed to explore the influence of frictional heating and thermal pore fluid pressurization on the strain localization phenomenon. A general framework is presented to conduct a bifurcation analysis for elasto-plastic Cosserat continua with THM couplings and predict the onset of instability. The presence of internal lengths in Cosserat continua enables to estimate the thickness of the localization zone. This is done by performing a linear stability analysis of the system and looking for the selected wavelength corresponding to the instability mode with fastest finite growth coefficient. These concepts are applied to the study of fault zones under fast shearing. For doing so, we consider a model of a sheared saturated infinite granular layer. The influence of THM couplings on the bifurcation state and the shear band width is investigated. Taking representative parameters for a centroidal fault gouge, the evolution of the thickness of the localized zone under continuous shear is studied. Furthermore, the effect of grain crushing inside the shear band is explored by varying the internal length of the constitutive law.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27995133','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27995133"><span>Comparison of the Lag Screw Placements for the Treatment of Stable and Unstable Intertrochanteric Femoral Fractures regarding Trabecular Bone Failure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Celik, Talip; Mutlu, Ibrahim; Ozkan, Arif; Kisioglu, Yasin</p> <p>2016-01-01</p> <p>Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28699055','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28699055"><span>Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Ping; Hu, Sijung; Yu, Hongliu</p> <p>2018-02-01</p> <p>The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870052703&hterms=active+site&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dactive%2Bsite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870052703&hterms=active+site&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dactive%2Bsite"><span>Measurement and interpretation of magnetic shear in solar active regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hagyard, M. J.; Rabin, D. M.</p> <p>1986-01-01</p> <p>In this paper a summary and synthesis are presented for results on the role of magnetic shear in the flare process that have been derived from the series of Flare Buildup Study Workshops in the Solar Maximum Analysis program. With emphasis on observations, the mechanisms that seem to produce the sheared magnetic configurations observed in flaring active regions are discussed. The spatial and temporal correlations of this shear with the onset of solar flares are determined from quantitative analyses of measurements of the vector magnetic field. The question of why some areas of sheared magnetic fields are the sites of flares and others are not is investigated observationally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900049599&hterms=gain+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgain%2Bfunction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900049599&hterms=gain+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgain%2Bfunction"><span>Particle acceleration in step function shear flows - A microscopic analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jokipii, J. R.; Morfill, G. E.</p> <p>1990-01-01</p> <p>The transport of energetic particles in a moving, scattering fluid, which has a large shear in its velocity over a distance small compared with the scattering mean free path is discussed. The analysis is complementary to an earlier paper by Earl, Jokipii, and Morfill (1988), which considered effects of more-gradual shear in the diffusion approximation. The case in which the scattering fluid undergoes a step function change in velocity, in the direction normal to the flow is considered. An analytical, approximate calculation and a Monte Carlo analysis of particle motion are presented. It is found that particles gain energy at a rate proportional to the square of the magnitude of the velocity change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28545595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28545595"><span>Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferrão, João Luís; Mendes, Jorge M; Painho, Marco</p> <p>2017-05-25</p> <p>Mozambique was recently ranked fifth in the African continent for the number of cases of malaria. In Chimoio municipality cases of malaria are increasing annually, contrary to the decreasing trend in Africa. As malaria transmission is influenced to a large extent by climatic conditions, modelling this relationship can provide useful insights for designing precision health measures for malaria control. There is a scarcity of information on the association between climatic variability and malaria transmission risk in Mozambique in general, and in Chimoio in particular. Therefore, the aim of this study is to model the association between climatic variables and malaria cases on a weekly basis, to help policy makers find adequate measures for malaria control and eradication. Time series analysis was conducted using data on weekly climatic variables and weekly malaria cases (counts) in Chimoio municipality, from 2006 to 2014. All data were analysed using SPSS-20, R 3.3.2 and BioEstat 5.0. Cross-correlation analysis, linear processes, namely ARIMA models and regression modelling, were used to develop the final model. Between 2006 and 2014, 490,561 cases of malaria were recorded in Chimoio. Both malaria and climatic data exhibit weekly and yearly systematic fluctuations. Cross-correlation analysis showed that mean temperature and precipitation present significantly lagged correlations with malaria cases. An ARIMA model (2,1,0) (2,1,1) 52 , and a regression model for a Box-Cox transformed number of malaria cases with lags 1, 2 and 3 of weekly malaria cases and lags 6 and 7 of weekly mean temperature and lags 12 of precipitation were fitted. Although, both produced similar widths for prediction intervals, the last was able to anticipate malaria outbreak more accurately. The Chimoio climate seems ideal for malaria occurrence. Malaria occurrence peaks during January to March in Chimoio. As the lag effect between climatic events and malaria occurrence is important for the prediction of malaria cases, this can be used for designing public precision health measures. The model can be used for planning specific measures for Chimoio municipality. Prospective and multidisciplinary research involving researchers from different fields is welcomed to improve the effect of climatic factors and other factors in malaria cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..153e2013H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..153e2013H"><span>Analysis of Slab-column Shearwall Structure of 6000 Tons Cold Storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Dongqing; Song, Pengwei; Jie, Pengyu</p> <p>2018-05-01</p> <p>Combining with the functional requirements, the site conditions and the 6000 tons load characteristics of cold storage, so determine its structure system for the slab-column-shear wall structure. The paper recommends the design of foundation, the settings of column cap, the arrangement of shear wall, the punching shear of floor slab and the analysis and calculation results of main structure. By addition shear wall in slab-column structure to increase the overall stiffness of structure and improve the seismic performance of structure. Take the detached form between the main structure and the external wall insulation, while set anchorage beam between in the main floor and the ring beam along the axis of the column grid to enhance the overall stability of the external wall insulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18923110','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18923110"><span>Examining the lag time between state-level income inequality and individual disabilities: a multilevel analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gadalla, Tahany M; Fuller-Thomson, Esme</p> <p>2008-12-01</p> <p>State-level income inequality has been found to have an effect on individual health outcomes, even when controlled for important individual-level variables such as income, education, age, and gender. The effect of income inequality on health may not be immediate and may, in fact, have a substantial lag time between exposure to inequality and eventual health outcome. We used the 2006 American Community Survey to examine the association of state-level income inequality and 2 types of physical disabilities. We used 6 different lag times, ranging between 0 and 25 years, on the total sample and on those who resided in their state of birth. Income inequality in 1986 had the strongest correlation with 2006 disability levels. Odds ratios were consistently 10% higher for those born in the same state compared with the total population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nco.ncep.noaa.gov/pmb/products/sref/sref.t03z.pgrb212_SPC.prob_3hrly.grib2.shtml','SCIGOVWS'); return false;" href="http://www.nco.ncep.noaa.gov/pmb/products/sref/sref.t03z.pgrb212_SPC.prob_3hrly.grib2.shtml"><span>Inventory of File sref.t03z.pgrb212_SPC.prob_3hrly.gri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>-GWD analysis Zonal Flux of Gravity Wave Stress [prob] prob =1 002 entire atmosphere (considered as <em>a</em> as <em>a</em> single layer) VUCSH analysis Vertical U-Component Shear [prob] prob =2 004 entire atmosphere (considered as <em>a</em> single layer) VUCSH analysis Vertical U-Component Shear [prob] prob =3 005 surface APCP 0-3</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nco.ncep.noaa.gov/pmb/products/sref/sref.t03z.pgrb216_SPC.prob_3hrly.grib2.shtml','SCIGOVWS'); return false;" href="http://www.nco.ncep.noaa.gov/pmb/products/sref/sref.t03z.pgrb216_SPC.prob_3hrly.grib2.shtml"><span>Inventory of File sref.t03z.pgrb216_SPC.prob_3hrly.gri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>-GWD analysis Zonal Flux of Gravity Wave Stress [prob] prob =1 002 entire atmosphere (considered as <em>a</em> as <em>a</em> single layer) VUCSH analysis Vertical U-Component Shear [prob] prob =2 004 entire atmosphere (considered as <em>a</em> single layer) VUCSH analysis Vertical U-Component Shear [prob] prob =3 005 surface APCP 0-3</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nco.ncep.noaa.gov/pmb/products/sref/sref.t03z.pgrb243_SPC.prob_3hrly.grib2.shtml','SCIGOVWS'); return false;" href="http://www.nco.ncep.noaa.gov/pmb/products/sref/sref.t03z.pgrb243_SPC.prob_3hrly.grib2.shtml"><span>Inventory of File sref.t03z.pgrb243_SPC.prob_3hrly.gri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>-GWD analysis Zonal Flux of Gravity Wave Stress [prob] prob =1 002 entire atmosphere (considered as <em>a</em> as <em>a</em> single layer) VUCSH analysis Vertical U-Component Shear [prob] prob =2 004 entire atmosphere (considered as <em>a</em> single layer) VUCSH analysis Vertical U-Component Shear [prob] prob =3 005 surface APCP 0-3</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014928','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014928"><span>A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander</p> <p>2013-01-01</p> <p>The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AMT.....8.4197L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AMT.....8.4197L"><span>Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.</p> <p>2015-10-01</p> <p>All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AMTD....8.2913L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AMTD....8.2913L"><span>Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.</p> <p>2015-03-01</p> <p>All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5860770','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5860770"><span>Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thomsen, Maria; Rosenkilde, Mette Marie</p> <p>2018-01-01</p> <p>Insulin is a vital part of diabetes treatment, whereas glucagon is primarily used to treat insulin-induced hypoglycemia. However, glucagon is suggested to have a central role in the regulation of body weight, which would be beneficial for diabetic patients. Since the glucagon effect on blood glucose is known to be transient, it is relevant to investigate the pharmacodynamics of glucagon after repeated dosing. In the present study, we used telemetry to continuously measure blood glucose in streptozotocin induced diabetic Sprague-Dawley rats. This allowed for a more detailed analysis of glucose regulation compared to intermittent blood sampling. In particular, we evaluated the blood glucose-lowering effect of different insulin doses alone, and in combination with a long acting glucagon analog (LAG). We showed how the effect of the LAG accumulated and persisted over time. Furthermore, we found that addition of the LAG decreased body weight without affecting food intake. In a subsequent study, we focused on the glucagon effect on body weight and food intake during equal glycemic control. In order to obtain comparable maximum blood glucose lowering effect to insulin alone, the insulin dose had to be increased four times in combination with 1 nmol/kg of the LAG. In this set-up the LAG prevented further increase in body weight despite the four times higher insulin-dose. However, the body composition was changed. The insulin group increased both lean and fat mass, whereas the group receiving four times insulin in combination with the LAG only significantly increased the fat mass. No differences were observed in food intake, suggesting a direct effect on energy expenditure by glucagon. Surprisingly, we observed decreased levels of FGF21 in plasma compared to insulin treatment alone. With the combination of insulin and the LAG the blood glucose-lowering effect of insulin was prolonged, which could potentially be beneficial in diabetes treatment. PMID:29558502</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25774032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25774032"><span>A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, P; Kumar, Dinesh; Rai, K N</p> <p>2015-01-01</p> <p>The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22608566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22608566"><span>Incidence and risk factors of AIDS-defining cancers in a cohort of HIV-positive adults: Importance of the definition of incident cases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suárez-García, Inés; Jarrín, Inmaculada; Iribarren, José Antonio; López-Cortés, Luis Fernando; Lacruz-Rodrigo, José; Masiá, Mar; Gómez-Sirvent, Juan Luis; Hernández-Quero, José; Vidal, Francesc; Alejos-Ferreras, Belén; Moreno, Santiago; Del Amo, Julia</p> <p>2013-05-01</p> <p>The aim of this study was to investigate the incidence and risk factors for the development of AIDS-defining cancers (ADCs); and to investigate the effect of making different assumptions on the definition of incident cases. A multicentre cohort study was designed. Poisson regression was used to assess incidence and risk factors. To account for misclassification, incident cases were defined using lag-times of 0, 14 and 30 days after enrolment. A total of 6393 HIV-positive subjects were included in the study. The incidences of ADCs changed as the lag periods were varied from 0 to 30 days. Different risk factors emerged as the definition of incident cases was changed. For a lag time of 0, the risk of Kaposi sarcoma [KS] and non-Hodgkin lymphoma [NHL] increased at CD4 counts <200/ml. HAART was associated with lower risk of NHL and KS. Men who had sex with men had a higher risk of KS. KS and NHL were not associated with viral load, gender, or hepatitis B or C. The results were similar for a lag-time of 14 and 30 days; however, hepatitis C was significantly associated with NHL. This analysis shows the importance of the definition of incident cases in cohort studies. Alternative definitions gave different incidence estimates, and may have implications for the analysis of risk factors. Copyright © 2011 Elsevier España, S.L. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28796834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28796834"><span>Impact of meteorological factors on the incidence of bacillary dysentery in Beijing, China: A time series analysis (1970-2012).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Long; Wang, Hong; Zhang, Xuan; Li, Ming-Yue; He, Juan</p> <p>2017-01-01</p> <p>Influence of meteorological variables on the transmission of bacillary dysentery (BD) is under investigated topic and effective forecasting models as public health tool are lacking. This paper aimed to quantify the relationship between meteorological variables and BD cases in Beijing and to establish an effective forecasting model. A time series analysis was conducted in the Beijing area based upon monthly data on weather variables (i.e. temperature, rainfall, relative humidity, vapor pressure, and wind speed) and on the number of BD cases during the period 1970-2012. Autoregressive integrated moving average models with explanatory variables (ARIMAX) were built based on the data from 1970 to 2004. Prediction of monthly BD cases from 2005 to 2012 was made using the established models. The prediction accuracy was evaluated by the mean square error (MSE). Firstly, temperature with 2-month and 7-month lags and rainfall with 12-month lag were found positively correlated with the number of BD cases in Beijing. Secondly, ARIMAX model with covariates of temperature with 7-month lag (β = 0.021, 95% confidence interval(CI): 0.004-0.038) and rainfall with 12-month lag (β = 0.023, 95% CI: 0.009-0.037) displayed the highest prediction accuracy. The ARIMAX model developed in this study showed an accurate goodness of fit and precise prediction accuracy in the short term, which would be beneficial for government departments to take early public health measures to prevent and control possible BD popularity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26C....23...83M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26C....23...83M"><span>Estimation of error on the cross-correlation, phase and time lag between evenly sampled light curves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Misra, R.; Bora, A.; Dewangan, G.</p> <p>2018-04-01</p> <p>Temporal analysis of radiation from Astrophysical sources like Active Galactic Nuclei, X-ray Binaries and Gamma-ray bursts provides information on the geometry and sizes of the emitting regions. Establishing that two light-curves in different energy bands are correlated, and measuring the phase and time-lag between them is an important and frequently used temporal diagnostic. Generally the estimates are done by dividing the light-curves into large number of adjacent intervals to find the variance or by using numerically expensive simulations. In this work we have presented alternative expressions for estimate of the errors on the cross-correlation, phase and time-lag between two shorter light-curves when they cannot be divided into segments. Thus the estimates presented here allow for analysis of light-curves with relatively small number of points, as well as to obtain information on the longest time-scales available. The expressions have been tested using 200 light curves simulated from both white and 1 / f stochastic processes with measurement errors. We also present an application to the XMM-Newton light-curves of the Active Galactic Nucleus, Akn 564. The example shows that the estimates presented here allow for analysis of light-curves with relatively small (∼ 1000) number of points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880013027','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880013027"><span>Continuous fiber ceramic matrix composites for heat engine components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tripp, David E.</p> <p>1988-01-01</p> <p>High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5115676','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5115676"><span>Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Bingyu; Chen, Jiang; Zhang, Yiping</p> <p>2016-01-01</p> <p>In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio. PMID:27861493</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28347964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28347964"><span>Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D</p> <p>2017-06-01</p> <p>Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21230473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21230473"><span>Origins of the anomalous stress behavior in charged colloidal suspensions under shear.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Amit; Higdon, Jonathan J L</p> <p>2010-11-01</p> <p>Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5139115','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5139115"><span>Effect of magnetic shear on dissipative drift instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guzdar, P.N.; Chen, L.; Kaw, P.K.</p> <p>1978-03-01</p> <p>In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPJCE..10...22K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPJCE..10...22K"><span>Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna</p> <p>2015-11-01</p> <p>This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1329121-instability-analysis-free-volume-simulations-shear-band-directions-arrangements-notched-metallic-glasses','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1329121-instability-analysis-free-volume-simulations-shear-band-directions-arrangements-notched-metallic-glasses"><span>Instability analysis and free volume simulations of shear band directions and arrangements in notched metallic glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, Weidong; Gao, Yanfei; Bei, Hongbin</p> <p>2016-10-10</p> <p>As a commonly used method to enhance the ductility in bulk metallic glasses (BMGs), the introduction of geometric constraints blocks and confines the propagation of the shear bands, reduces the degree of plastic strain on each shear band so that the catastrophic failure is prevented or delayed, and promotes the formation of multiple shear bands. The clustering of multiple shear bands near notches is often interpreted as the reason for improved ductility. Experimental works on the shear band arrangements in notched metallic glasses have been extensively carried out, but a systematic theoretical study is lacking. Using instability theory that predictsmore » the onset of strain localization and the free-volume- based nite element simulations that predict the evolution of shear bands, this work reveals various categories of shear band arrangements in double edge notched BMGs with respect to the mode mixity of the applied stress fields. In conclusion, a mechanistic explanation is thus provided to a number of related experiments and especially the correlation between various types of shear bands and the stress state.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850002827','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850002827"><span>Deformation measurements of composite multi-span beam shear specimens by Moire interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Post, D.; Czarnek, R.; Joh, D.; Wood, J.</p> <p>1984-01-01</p> <p>Experimental analyses were performed for determination of in plane deformations and shear strains in unidirectional and quasi-isotropic graphite-epoxy beams. Forty-eight ply beams were subjected to 5 point and 3 point flexure. Whole field measurements were recorded at load levels from about 20% to more than 90% of failure loads. Contour maps of U and W displacement fields were obtained by moire interferometry, using reference gratings of 2400 lines/mm. Clearly defined fringes with fringe orders exceeding 1000 were obtained. Whole field contour maps of shear strains were obtained by a method developed for these tests. Various anomalous effects were detected in the displacement fields. Their analysis indicated excess shear strains in resin rich zones in regions of shear tractions; free edge shear strains in quasi-isotropic specimens in regions of normal stresses; and shear stresses associated with cyclic shear compliances of quasi-isotropic plies in regions of shear tractions. Their contributions could occur independently or in superposition. Qualitative analyses addressed questions of relaxation; influence of contact stress distribution; specimen failure; effect of specimen overhang; nonlinearity; and qualities of 5 and 3 point flexure tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5793574','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5793574"><span>Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Pengwan</p> <p>2018-01-01</p> <p>To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively. PMID:29303988</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119c6101W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119c6101W"><span>Measuring Interlayer Shear Stress in Bilayer Graphene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Guorui; Dai, Zhaohe; Wang, Yanlei; Tan, PingHeng; Liu, Luqi; Xu, Zhiping; Wei, Yueguang; Huang, Rui; Zhang, Zhong</p> <p>2017-07-01</p> <p>Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22690179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22690179"><span>Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo</p> <p>2012-03-01</p> <p>Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3367293','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3367293"><span>Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo</p> <p>2012-01-01</p> <p>Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/304190','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/304190"><span>E x B shearing rate in quasi-symmetric plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hahm, T.S.</p> <p>1997-06-20</p> <p>The suppression of turbulence by the E x B shear is studied in systems with quasi-symmetry using the nonlinear analysis of eddy decorrelation previously utilized in finite aspect ratio tokamak plasmas. The analytically derived E x B shearing rate which contains the relevant geometric dependence can be used for quantitative assessment of the fluctuation suppression in stellarators with quasi-symmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJMPB..22.5603K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJMPB..22.5603K"><span>Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo</p> <p></p> <p>This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5226/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5226/"><span>Estimates of Shear Stress and Measurements of Water Levels in the Lower Fox River near Green Bay, Wisconsin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Westenbroek, Stephen M.</p> <p>2006-01-01</p> <p>Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780038949&hterms=Currently+Available+Methods+Characterization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCurrently%2BAvailable%2BMethods%2BCharacterization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780038949&hterms=Currently+Available+Methods+Characterization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCurrently%2BAvailable%2BMethods%2BCharacterization"><span>A comparison of simple shear characterization methods for composite laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yeow, Y. T.; Brinson, H. F.</p> <p>1978-01-01</p> <p>Various methods for the shear stress/strain characterization of composite laminates are examined and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the (+/- 45 deg)s tensile test method and the (0/90 deg)s symmetric rail shear test method. It is shown that the first technique indicates the shear properties of the graphite/epoxy laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that these laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress/strain curves utilizing the various different shear behaviour methods as input information are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770016262','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770016262"><span>A comparison of simple shear characterization methods for composite laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yeow, Y. T.; Brinson, H. F.</p> <p>1977-01-01</p> <p>Various methods for the shear stress-strain characterization of composite laminates are examined, and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the + or - 45 degs tensile test method and the 0 deg/90 degs symmetric rail shear test method. It is shown that the first technique indicates that the shear properties of the G/E laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that the G/E laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress-strain curves utilizing the various different shear behavior methods as input information are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040173181&hterms=young+adult&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dyoung%2Badult','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040173181&hterms=young+adult&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dyoung%2Badult"><span>The dynamic contributions of the otolith organs to human ocular torsion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Merfeld, D. M.; Teiwes, W.; Clarke, A. H.; Scherer, H.; Young, L. R.</p> <p>1996-01-01</p> <p>We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P < 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P < 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as in Z-RED stimulation).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23115311Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23115311Y"><span>Cosmological parameter constraints with the Deep Lens Survey using galaxy-shear correlations and galaxy clustering properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, Mijin; Jee, Myungkook James; Tyson, Tony</p> <p>2018-01-01</p> <p>The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1967d0003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1967d0003M"><span>Stability numerical analysis of soil cave in karst area to drawdown of underground water level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei</p> <p>2018-05-01</p> <p>With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27845658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27845658"><span>Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki</p> <p>2017-02-01</p> <p>Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27404323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27404323"><span>A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phung, Dung; Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Chu, Cordia</p> <p>2016-10-01</p> <p>To develop a prediction score scheme useful for prevention practitioners and authorities to implement dengue preparedness and controls in the Mekong Delta region (MDR). We applied a spatial scan statistic to identify high-risk dengue clusters in the MDR and used generalised linear-distributed lag models to examine climate-dengue associations using dengue case records and meteorological data from 2003 to 2013. The significant predictors were collapsed into categorical scales, and the β-coefficients of predictors were converted to prediction scores. The score scheme was validated for predicting dengue outbreaks using ROC analysis. The north-eastern MDR was identified as the high-risk cluster. A 1 °C increase in temperature at lag 1-4 and 5-8 weeks increased the dengue risk 11% (95% CI, 9-13) and 7% (95% CI, 6-8), respectively. A 1% rise in humidity increased dengue risk 0.9% (95% CI, 0.2-1.4) at lag 1-4 and 0.8% (95% CI, 0.2-1.4) at lag 5-8 weeks. Similarly, a 1-mm increase in rainfall increased dengue risk 0.1% (95% CI, 0.05-0.16) at lag 1-4 and 0.11% (95% CI, 0.07-0.16) at lag 5-8 weeks. The predicted scores performed with high accuracy in diagnosing the dengue outbreaks (96.3%). This study demonstrates the potential usefulness of a dengue prediction score scheme derived from complex statistical models for high-risk dengue clusters. We recommend a further study to examine the possibility of incorporating such a score scheme into the dengue early warning system in similar climate settings. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvX...7b1049H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvX...7b1049H"><span>Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Himeoka, Yusuke; Kaneko, Kunihiko</p> <p>2017-04-01</p> <p>The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4264846','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4264846"><span>The Cardiopulmonary Effects of Ambient Air Pollution and Mechanistic Pathways: A Comparative Hierarchical Pathway Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thomas, Duncan C.; Zhang, Junfeng; Kipen, Howard M.; Rich, David Q.; Zhu, Tong; Huang, Wei; Hu, Min; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott R.; Eckel, Sandrah P.</p> <p>2014-01-01</p> <p>Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system. PMID:25502951</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=163525','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=163525"><span>Simultaneous pharmacodynamic analysis of the lag and bactericidal phases exhibited by beta-lactams against Escherichia coli.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, R C</p> <p>1996-01-01</p> <p>Antibiotic-bacterium interactions are complex in nature. In many cases, bacterial killing does not commence immediately after the addition of an antibiotic, and a lag period is observed. Antibiotic permeation and/or the intermediate steps that exist between antibiotic-receptor binding and expression of cell death are two major possible causes for such lag period. This study was primarily designed to determine the relationship, if any, between antibiotic concentrations and the lag periods by a modeling approach. Short-term time-kill studies were conducted for amoxicillin, ampicillin, penicillin-G, oxacillin, and dicloxacillin against Escherichia coli. In conjunction with the use of a saturable rate model to describe the concentration-dependent killing process, a first-order induction (initiation) rate constant was used to characterize the delay in bacterial killing during the lag period. For all of the beta-lactams tested, parameters describing the bactericidal effect suggest that amoxicillin and ampicillin were much more potent than oxacillin and dicloxacillin. The induction rate constant estimates for both ampicillin and amoxicillin were found to relate linearly to concentrations. Nevertheless, these induction rate constant estimates were lower for penicillin-G, oxacillin, and dicloxacillin and increased nonlinearly with concentrations until an apparent plateau was observed. These findings support the hypothesis that the permeation process is potentially a rate-limiting step for the rapid bactericidal beta-lactams such as ampicillin and amoxicillin. However, as suggested by previous observations of the various morphological changes induced by beta-lactams, the contribution of the steps following antibiotic-receptor complex formation to the lag period might be significant for the less bactericidal antibiotics such as oxacillin and dicloxacillin. Findings from the present modeling approach can potentially be used to guide future bench experimentation. PMID:8891135</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000499"><span>Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Del Genio, Anthony D.; Wu, Jingbo; Chen, Yonghua</p> <p>2013-01-01</p> <p>Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5-6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5-6 h under humid active monsoon conditions but by only 1-2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0-2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613703B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613703B"><span>The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf</p> <p>2014-05-01</p> <p>Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.723..149M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.723..149M"><span>Evolution of fabric in Chitradurga granite (south India) - A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and vorticity analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mondal, Tridib Kumar</p> <p>2018-01-01</p> <p>In this paper, the fabric in massive granite ( 2.6 Ga) from the Chitradurga region (Western Dharwar Craton, south India) is analyzed using microstructure, anisotropy of magnetic susceptibility (AMS) study and kinematic vorticity analysis. The microstructural investigation on the granite shows a progressive textural overprint from magmatic, through high-T to low-T solid-state deformation textures. The mean magnetic foliation in the rocks of the region is dominantly NW-SE striking which have developed during regional D1/D2 deformation on account of NE-SW shortening. The plunge of the magnetic lineation varies from NW to vertical to SE, and interpreted to be a consequence of regional D3 deformation on account of NW-SE to E-W shortening. The vorticity analysis from magnetic fabric in the region reveals that the NW-SE oriented fabric formed under pure shear condition during D1/D2 regional deformation. However, some parts of the region particularly close to the adjacent Chitradurga Shear Zone show that the magnetic fabrics are oblique to the foliation as well as shear zone orientation and inferred to be controlled by simple shearing during D3 regional deformation. The shape preferred orientation (SPO) analysis from oriented thin sections suggest that the shape of the recrystallized quartz grains define the magnetic fabric in Chitradurga granite and the degree of the SPO reduces away from the Chitradurga Shear Zone. It is interpreted that the change in magnetic fabrics in some parts of the granite in the region are dominantly controlled by the late stage sinistral shearing which occurred during the development of Chitradurga Shear Zone. Anisotropy of magnetic susceptibility (AMS) data of granite from the Chitradurga region (West Dharwar Craton, southern India). Km = Mean susceptibility; Pj = corrected degree of magnetic anisotropy; T = shape parameter. K1 and K3 are the maximum and minimum principal axes of the AMS ellipsoid, respectively. dec = Declination; inc = Inclination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840063207&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dorder%2Bmixed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840063207&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dorder%2Bmixed"><span>A mixed shear flexible finite element for the analysis of laminated plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Putcha, N. S.; Reddy, J. N.</p> <p>1984-01-01</p> <p>A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750013601','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750013601"><span>Analysis of bonded joints. [shear stress and stress-strain diagrams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Srinivas, S.</p> <p>1975-01-01</p> <p>A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370039-magnetorotational-instability-nonmodal-growth-relationship-global-modes-shearing-box','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370039-magnetorotational-instability-nonmodal-growth-relationship-global-modes-shearing-box"><span>Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Squire, J.; Bhattacharjee, A.</p> <p>2014-12-10</p> <p>We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25570875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25570875"><span>Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine</p> <p>2014-01-01</p> <p>The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.467.1627F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.467.1627F"><span>Calibration of weak-lensing shear in the Kilo-Degree Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fenech Conti, I.; Herbonnet, R.; Hoekstra, H.; Merten, J.; Miller, L.; Viola, M.</p> <p>2017-05-01</p> <p>We describe and test the pipeline used to measure the weak-lensing shear signal from the Kilo-Degree Survey (KiDS). It includes a novel method of 'self-calibration' that partially corrects for the effect of noise bias. We also discuss the 'weight bias' that may arise in optimally weighted measurements, and present a scheme to mitigate that bias. To study the residual biases arising from both galaxy selection and shear measurement, and to derive an empirical correction to reduce the shear biases to ≲1 per cent, we create a suite of simulated images whose properties are close to those of the KiDS survey observations. We find that the use of 'self-calibration' reduces the additive and multiplicative shear biases significantly, although further correction via a calibration scheme is required, which also corrects for a dependence of the bias on galaxy properties. We find that the calibration relation itself is biased by the use of noisy, measured galaxy properties, which may limit the final accuracy that can be achieved. We assess the accuracy of the calibration in the tomographic bins used for the KiDS cosmic shear analysis, testing in particular the effect of possible variations in the uncertain distributions of galaxy size, magnitude and ellipticity, and conclude that the calibration procedure is accurate at the level of multiplicative bias ≲1 per cent required for the KiDS cosmic shear analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000063376','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000063376"><span>Fuzzy Current-Mode Control and Stability Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kopasakis, George</p> <p>2000-01-01</p> <p>In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3605755','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3605755"><span>Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dimitrakopoulos, P.</p> <p>2013-01-01</p> <p>Despite research spanning several decades, the exact value of the shear modulus Gs of the erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based on micropipette aspirations, ektacytometry systems and other flow chambers, and optical tweezers as well as application of several models have found different average values in the range 2–10 µN/m. Our study shows that different methodologies have predicted the correct shear modulus for the specific membrane modeling employed, i.e. the variation in the shear modulus determination results from the specific membrane modeling. Available experimental findings from ektacytometry systems and optical tweezers suggest that the dynamics of the erythrocyte membrane is strain-hardening at both moderate and large deformations. Thus the erythrocyte shear modulus cannot be determined accurately using strain-softening models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models (such as the Yeoh law) which overestimate the erythrocyte shear modulus. According to our analysis, the only available strain-hardening constitutive law, the Skalak et al. law, is able to match well both deformation-shear rate data from ektacytometry and force-extension data from optical tweezers at moderate and large strains, using an average value of the shear modulus of Gs = 2.4–2.75 µN/m, i.e. very close to that found in the linear regime of deformations via force-extension data from optical tweezers, Gs = 2.5±0.4 µN/m. In addition, our analysis suggests that a standard deviation in Gs of 0.4–0.5 µN/m (owing to the inherent differences between erythrocytes within a large population) describes well the findings from optical tweezers at small and large strains as well as from micro-pipette aspirations. PMID:22680508</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3903521','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3903521"><span>Role of Lymphocyte Activation Gene-3 (Lag-3) in Conventional and Regulatory T Cell Function in Allogeneic Transplantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sega, Emanuela I.; Leveson-Gower, Dennis B.; Florek, Mareike; Schneidawind, Dominik; Luong, Richard H.; Negrin, Robert S.</p> <p>2014-01-01</p> <p>Lag-3 has emerged as an important molecule in T cell biology. We investigated the role of Lag-3 in conventional T cell (Tcon) and regulatory T cell (Treg) function in murine GVHD with the hypothesis that Lag-3 engagement diminishes alloreactive T cell responses after bone marrow transplantation. We demonstrate that Lag-3 deficient Tcon (Lag-3−/− Tcon) induce significantly more severe GVHD than wild type (WT) Tcon and that the absence of Lag-3 on CD4 but not CD8 T cells is responsible for exacerbating GVHD. Lag-3−/− Tcon exhibited increased activation and proliferation as indicated by CFSE and bioluminescence imaging analyses and higher levels of activation markers such as CD69, CD107a, granzyme B, and Ki-67 as well as production of IL-10 and IFN-g early after transplantation. Lag-3−/− Tcon were less responsive to suppression by WT Treg as compared to WT Tcon. The absence of Lag-3, however, did not impair Treg function as both Lag-3−/− and WT Treg equally suppress the proliferation of Tcon in vitro and in vivo and protect against GVHD. Further, we demonstrate that allogeneic Treg acquire recipient MHC class II molecules through a process termed trogocytosis. As MHC class II is a ligand for Lag-3, we propose a novel suppression mechanism employed by Treg involving the acquisition of host MHC-II followed by the engagement of Lag-3 on T cells. These studies demonstrate for the first time the biologic function of Lag-3 expression on conventional and regulatory T cells in GVHD and identify Lag-3 as an important regulatory molecule involved in alloreactive T cell proliferation and activation after bone marrow transplantation. PMID:24475140</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27903363','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27903363"><span>[Acute effect of daily mean temperature on ischemic heart disease mortality: a multivariable meta-analysis from 12 counties across Hubei Province, China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Y Q; Yu, C H; Bao, J Z</p> <p>2016-11-06</p> <p>Objective: To evaluate the acute effects of daily mean temperature on ischemic heart disease (IHD) mortality in 12 counties across Hubei Province, China. Methods: We obtained the daily IHD mortality data and meteorological data of the 12 counties for 2009-2012. The distributed lag nonlinear model (DLNM) was used to estimate the community-specific association between mean temperature and IHD mortality. A multivariate meta-analysis was then applied to pool the community-specific relationship between temperature and IHD mortality, and the effects of cold and heat on mortality risk. Results: In 2009-2012, of the 6 702 012 people included in this study, 19 688 died of IHD. A daily average of 1.2 IHD deaths occurred in each community. The annual average mean temperature was 16.6 ℃ during the study period. A nonlinear temperature-IHD mortality relationship was observed for different cumulative lag days at the provincial level. The pooled heat effect was acute but attenuated within 2 days. In contrast, the cold effect was delayed and persisted for more than 2 weeks. Compared with a reference temperature (25 th percentile of mean temperature during the study period, P 25 ), the cold effect for P 10 of mean temperature was associated with IHD mortality, the RR (95% CI ) was 1.084 (1.008-1.167) at lag 0-14, and 1.149 (1.053-1.253) at lag 0-21. For the P 1 cold temperature, the mortality RR (95% CI ) values were 1.116 (0.975-1.276) and 1.220 (1.04-1.428), respectively. We found no significant association between high temperatures and IHD mortality in the present study at different lag days. Conclusion: In Hubei Province, low temperature was associated with increased IHD mortality risk, and cold effects lasted for several days; no significant effect of high temperature was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28888569','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28888569"><span>A Biomechanical Analysis of 2 Constructs for Metacarpal Spiral Fracture Fixation in a Cadaver Model: 2 Large Screws Versus 3 Small Screws.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey</p> <p>2017-12-01</p> <p>Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21224515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21224515"><span>[Urban air pollution and children respiratory hospital admissions in Pisa (Italy): a time series and a case-crossover approach].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vigotti, Maria Angela; Serinelli, Maria; Marchini, Laura</p> <p>2010-01-01</p> <p>we evaluated the association of daily pollutants' concentrations with daily hospital admissions for respiratory causes in children residents in Pisa during 1998-2002. We compared the results obtained with two methods of statistical analyses. A total of 657 children under ten years and admitted to local hospitals for respiratory diseases (ICD 9: 460-469, 480- 519) were included in the study. both time-series and case-crossover analysis were applied, controlling for temperature, holidays, influenza epidemics,rain and relative humidity. Pollutants' effects are expressed as percentage increase (and 95% CI) of hospital admissions for an increase of 10 μg/m³ of pollutants (1 mg/m³ for CO). with both analyses, children's hospital admissions for respiratory conditions were significantly associated to increasing daily levels of PM10 and CO at different time lags, while no association was found for NO₂ and O₃. In the case-crossover analysis, for a daily increase of 10 μg/m³ in PM10, a significant increment of 8.5% (CI 95% 0.02; 17.6) in children respiratory admissions was observed at lag 0-3. Results were stronger for males and during the warm season. A 1 mg/m³ increment in daily CO levels was associated with an increase of respiratory admissions at lag 0 (20.2%, CI 95% 5.3; 37.2) and at all cumulative lags: the maximum value was observed at lag 0-3 (32.6%, CI 95%8.3; 62.2). Time series analyses provides similar results, although the estimates were lower than with the other method, in terms of percentage increment and length of confidence intervals. this study indicates adverse effects of air pollution on respiratory health of children living in urban environment. The results of both analyses were consistent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..322d2013W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..322d2013W"><span>Study on Shear Performance of Cold-formed Steel Composite Wall with New Type of stud</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Chungang; Yue, Sizhe; Liu, Hong; Zhang, Zhuangnan</p> <p>2018-03-01</p> <p>The shear resistance of single oriented-strand board wall and single gypsum board wall can be improved in different degrees by increasing strength of steel. The experimental data of literatures were used, and the test specimens had been simulated and validated by ABAQUS finite element analysis. According to the research, it showed that the compressive bearing capacity of the new stud composite wall was much better than the common stud composite wall, so the establishment and research of all models had been based on the new section stud. The analysis results show that when using new type of stud the shear resistance of the single oriented-strand board wall can be improved efficiently by increasing strength of steel, but the shear resistance of the single gypsum wall can be increased little.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661258-elongation-flare-ribbons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661258-elongation-flare-ribbons"><span>Elongation of Flare Ribbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.</p> <p>2017-03-20</p> <p>We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, whichmore » may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21077419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21077419"><span>Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S</p> <p>2010-09-01</p> <p>The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19411219','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19411219"><span>Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Limei; Zhang, Ying; Fan, Hui; Hu, Junhui; Yang, Jiashi</p> <p>2009-03-01</p> <p>We perform a theoretical analysis on a ceramic plate piezoelectric transformer operating with thickness-shear modes. Mindlin's first-order theory of piezoelectric plates is employed, and a forced vibration solution is obtained. Transforming ratio, resonant frequencies, and vibration mode shapes are calculated, and the effects of plate thickness and electrode dimension are examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8230','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8230"><span>Evaluating wood failure in plywood shear by optical image analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charles W. McMillin</p> <p>1984-01-01</p> <p>This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=328420','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=328420"><span>Effect of the wooden breast condition on shear force and texture profile analysis of raw and cooked broiler pectoralis major</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The objective was to characterize texture properties of raw and cooked broiler fillets (Pectoralis major) with the wooden breast condition (WBC) using the instrumental texture techniques of Meullenet-Owens Razor Shear (MORS) and Texture Profile Analysis (TPA). Deboned (3 h post-mortem) broiler fille...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24012722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24012722"><span>Why does lag affect the durability of memory-based automaticity: loss of memory strength or interference?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilkins, Nicolas J; Rawson, Katherine A</p> <p>2013-10-01</p> <p>In Rickard, Lau, and Pashler's (2008) investigation of the lag effect on memory-based automaticity, response times were faster and proportion of trials retrieved was higher at the end of practice for short lag items than for long lag items. However, during testing after a delay, response times were slower and proportion of trials retrieved was lower for short lag items than for long lag items. The current study investigated the extent to which the lag effect on the durability of memory-based automaticity is due to interference or to the loss of memory strength with time. Participants repeatedly practiced alphabet subtraction items in short lag and long lag conditions. After practice, half of the participants were immediately tested and the other half were tested after a 7-day delay. Results indicate that the lag effect on the durability of memory-based automaticity is primarily due to interference. We discuss potential modification of current memory-based processing theories to account for these effects. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.2255C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.2255C"><span>Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.</p> <p>2018-04-01</p> <p>Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24158487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24158487"><span>Vicious circle of perceived stigma, enacted stigma and depressive symptoms among children affected by HIV/AIDS in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chi, Peilian; Li, Xiaoming; Zhao, Junfeng; Zhao, Guoxiang</p> <p>2014-06-01</p> <p>Previous research has found a deleterious impact of stigma on the mental health of children affected by HIV/AIDS. Little is known about the longitudinal relationship of stigma and children's mental health. This study explores the longitudinal reciprocal effects of depressive symptoms and stigma, specifically enacted stigma and perceived stigma, among children affected by HIV/AIDS aged 6-12. Longitudinal data were collected from 272 children orphaned by AIDS and 249 children of HIV-positive parents in rural China. Cross-lagged panel analysis was conducted in the study. Results showed that the autoregressive effects were stable for depressive symptoms, perceived stigma and enacted stigma suggesting the substantially stable individual differences over time. The cross-lagged effects indicated a vicious circle among the three variables in an order of enacted stigma → depressive symptom → perceived stigma → enacted stigma. The possibility of employing equal constraints on cross-lagged paths suggested that the cross-lagged effects were repeatable over time. The dynamic interplay of enacted stigma, perceived stigma and depressive symptoms suggests the need of a multilevel intervention in stigma reduction programming to promote mental health of children affected by HIV/AIDS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1240510','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1240510"><span>Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tong, S; Hu, W</p> <p>2001-01-01</p> <p>In this study we assessed the impact of climate variability on the Ross River virus (RRv) transmission and validated an epidemic-forecasting model in Cairns, Australia. Data on the RRv cases recorded between 1985 and 1996 were obtained from the Queensland Department of Health. Climate and population data were supplied by the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. The cross-correlation function (CCF) showed that maximum temperature in the current month and rainfall and relative humidity at a lag of 2 months were positively and significantly associated with the monthly incidence of RRv, whereas relative humidity at a lag of 5 months was inversely associated with the RRv transmission. We developed autoregressive integrated moving average (ARIMA) models on the data collected between 1985 to 1994, and then validated the models using the data collected between 1995 and 1996. The results show that the relative humidity at a lag of 5 months (p < 0.001) and the rainfall at a lag of 2 months (p < 0.05) appeared to play significant roles in the transmission of RRv disease in Cairns. Furthermore, the regressive forecast curves were consistent with the pattern of actual values. PMID:11748035</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17517303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17517303"><span>Lag screw fixation of anterior mandibular fractures: a retrospective analysis of intraoperative and postoperative complications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tiwana, Paul S; Kushner, George M; Alpert, Brian</p> <p>2007-06-01</p> <p>To review, retrospectively, the outcomes of 102 patients who underwent lag screw technique fixation of fractures of the anterior mandible. A total of 102 consecutive, skeletally mature patients who have undergone open reduction internal fixation for fractures of the anterior mandible utilizing the lag screw technique were reviewed. All patients had a clinically mobile fracture between the mental foramina of the mandible. The patients were followed at usual postoperative intervals with shortest long-term follow-up of 2 months. Intraoperative and long-term postoperative outcomes including status of union, infection, and intraoperative surgical misadventure were recorded. Data from the 102 patients showed that there was 1 fixation failure due to inappropriate patient selection, 1 nonunion requiring bone grafting, 1 with infected screws but with union, 1 with an infected screw and delayed union treated conservatively, and 6 with broken drills from intraoperative surgical misadventures. Lag screw osteosynthesis of anterior mandibular fractures is a sensitive, facile, predictable, and relatively inexpensive method for internal fixation of indicated fractures. As with all methods of rigid internal fixation, most failures or complications are the result of operator judgment or technique.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4000575','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4000575"><span>Vicious Circle of Perceived Stigma, Enacted Stigma and Depressive Symptoms among Children affected by HIV/AIDS in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chi, Peilian; Li, Xiaoming; Zhao, Junfeng; Zhao, Guoxiang</p> <p>2013-01-01</p> <p>Previous research has found a deleterious impact of stigma on the mental health of children affected by HIV/AIDS. Little is known about the longitudinal relationship of stigma and children’s mental health. This study explores the longitudinal reciprocal effects of depressive symptoms and stigma, specifically enacted stigma and perceived stigma, among children affected by HIV/AIDS aged 6 to 12. Longitudinal data were collected from 272 children orphaned by AIDS and 249 children of HIV-positive parents in rural China. Cross-lagged panel analysis was conducted in the study. Results showed that the autoregressive effects were stable for depressive symptoms, perceived stigma and enacted stigma suggesting the substantially stable individual differences over time. The cross-lagged effects indicated a vicious circle among the three variables in an order of enacted stigma→depressive symptom→perceived stigma→enacted stigma. The possibility of employing equal constraints on cross-lagged paths suggested that the cross-lagged effects were repeatable over time. The dynamic interplay of enacted stigma, perceived stigma and depressive symptoms suggests the need of a multilevel intervention in stigma reduction programming to promote mental health of children affected by HIV/AIDS. PMID:24158487</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17383231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17383231"><span>Climate and cholera in KwaZulu-Natal, South Africa: the role of environmental factors and implications for epidemic preparedness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mendelsohn, Joshua; Dawson, Terry</p> <p>2008-03-01</p> <p>A cholera epidemic that took place in KwaZulu-Natal, South Africa (2000-2001) was employed to investigate the impact of climatic and environmental drivers on cholera dynamics. Precipitation (PRE), sea surface temperature (SST) and chlorophyll-a (CHL-a) data acquired from publicly available satellite and ground measurements were analysed together with disease incidence in an effort to assess the environmental contribution to the outbreak. SST (r(2)=0.749, lag=0 months) and PRE (r(2)=0.744, lag=2 months) showed strong associations with incidence. CHL-a showed a moderately strong (r(2)=0.656, lag=6 months) association with incidence while sea surface height (SSH) demonstrated a weak relationship with incidence (r(2)=0.326, lag=5 months). Our analysis tentatively supports a coastal transmission hypothesis, heavily influenced by localized PRE extremes. The role of SSH is likely attenuated by local coastal topography. Future work should clarify the mechanism linking coastal cholera reservoirs and the regional climate system to outbreaks in this region. Finally, we discuss benefits of further research in this area using extended remotely sensed and epidemiological datasets towards the development of early-warning systems and enhanced epidemic preparedness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4951071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4951071"><span>Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Guo; Glasmeier, Amy K.; Zhang, Min; Shao, Yang</p> <p>2016-01-01</p> <p>This paper investigates the potential causal relationship(s) between China’s urbanization and income inequality since the start of the economic reform. Based on the economic theory of urbanization and income distribution, we analyze the annual time series of China’s urbanization rate and Gini index from 1978 to 2014. The results show that urbanization has an immediate alleviating effect on income inequality, as indicated by the negative relationship between the two time series at the same year (lag = 0). However, urbanization also seems to have a lagged aggravating effect on income inequality, as indicated by positive relationship between urbanization and the Gini index series at lag 1. Although the link between urbanization and income inequality is not surprising, the lagged aggravating effect of urbanization on the Gini index challenges the popular belief that urbanization in post-reform China generally helps reduce income inequality. At deeper levels, our results suggest an urgent need to focus on the social dimension of urbanization as China transitions to the next stage of modernization. Comprehensive social reforms must be prioritized to avoid a long-term economic dichotomy and permanent social segregation. PMID:27433966</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27433966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27433966"><span>Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Guo; Glasmeier, Amy K; Zhang, Min; Shao, Yang</p> <p>2016-01-01</p> <p>This paper investigates the potential causal relationship(s) between China's urbanization and income inequality since the start of the economic reform. Based on the economic theory of urbanization and income distribution, we analyze the annual time series of China's urbanization rate and Gini index from 1978 to 2014. The results show that urbanization has an immediate alleviating effect on income inequality, as indicated by the negative relationship between the two time series at the same year (lag = 0). However, urbanization also seems to have a lagged aggravating effect on income inequality, as indicated by positive relationship between urbanization and the Gini index series at lag 1. Although the link between urbanization and income inequality is not surprising, the lagged aggravating effect of urbanization on the Gini index challenges the popular belief that urbanization in post-reform China generally helps reduce income inequality. At deeper levels, our results suggest an urgent need to focus on the social dimension of urbanization as China transitions to the next stage of modernization. Comprehensive social reforms must be prioritized to avoid a long-term economic dichotomy and permanent social segregation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29744865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29744865"><span>A comparison of analysis methods to estimate contingency strength.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lloyd, Blair P; Staubitz, Johanna L; Tapp, Jon T</p> <p>2018-05-09</p> <p>To date, several data analysis methods have been used to estimate contingency strength, yet few studies have compared these methods directly. To compare the relative precision and sensitivity of four analysis methods (i.e., exhaustive event-based, nonexhaustive event-based, concurrent interval, concurrent+lag interval), we applied all methods to a simulated data set in which several response-dependent and response-independent schedules of reinforcement were programmed. We evaluated the degree to which contingency strength estimates produced from each method (a) corresponded with expected values for response-dependent schedules and (b) showed sensitivity to parametric manipulations of response-independent reinforcement. Results indicated both event-based methods produced contingency strength estimates that aligned with expected values for response-dependent schedules, but differed in sensitivity to response-independent reinforcement. The precision of interval-based methods varied by analysis method (concurrent vs. concurrent+lag) and schedule type (continuous vs. partial), and showed similar sensitivities to response-independent reinforcement. Recommendations and considerations for measuring contingencies are identified. © 2018 Society for the Experimental Analysis of Behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44..268S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44..268S"><span>Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stange, P.; Bach, L. T.; Le Moigne, F. A. C.; Taucher, J.; Boxhammer, T.; Riebesell, U.</p> <p>2017-01-01</p> <p>The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18712557','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18712557"><span>Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Do, Hyojin; Lim, Juntaek; Shin, Seung Gu; Wu, Yi-Ju; Ahn, Johng-Hwa; Hwang, Seokhwan</p> <p>2008-11-01</p> <p>For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN-) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN- and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18612833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18612833"><span>Statistical models and time series forecasting of sulfur dioxide: a case study Tehran.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hassanzadeh, S; Hosseinibalam, F; Alizadeh, R</p> <p>2009-08-01</p> <p>This study performed a time-series analysis, frequency distribution and prediction of SO(2) levels for five stations (Pardisan, Vila, Azadi, Gholhak and Bahman) in Tehran for the period of 2000-2005. Most sites show a quite similar characteristic with highest pollution in autumn-winter time and least pollution in spring-summer. The frequency distributions show higher peaks at two residential sites. The potential for SO(2) problems is high because of high emissions and the close geographical proximity of the major industrial and urban centers. The ACF and PACF are nonzero for several lags, indicating a mixed (ARMA) model, then at Bahman station an ARMA model was used for forecasting SO(2). The partial autocorrelations become close to 0 after about 5 lags while the autocorrelations remain strong through all the lags shown. The results proved that ARMA (2,2) model can provides reliable, satisfactory predictions for time series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SMaS...27f5008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SMaS...27f5008W"><span>Study of low-velocity impact response of sandwich panels with shear-thickening gel cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu</p> <p>2018-06-01</p> <p>The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JSV...126..183V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JSV...126..183V"><span>Application of ply level analysis to flexural wave propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valisetty, R. R.; Rehfield, L. W.</p> <p>1988-10-01</p> <p>A brief survey is presented of the shear deformation theories of laminated plates. It indicates that there are certain non-classical influences that affect bending-related behavior in the same way as do the transverse shear stresses. They include bending- and stretching-related section warping and the concomitant non-classical surface parallel stress contributions and the transverse normal stress. A bending theory gives significantly improved performance if these non-classical affects are incorporated. The heterogeneous shear deformations that are characteristic of laminates with highly dissimilar materials, however, require that attention be paid to the modeling of local rotations. In this paper, it is shown that a ply level analysis can be used to model such disparate shear deformations. Here, equilibrium of each layer is analyzed separately. Earlier applications of this analysis include free-edge laminate stresses. It is now extended to the study of flexural wave propagation in laminates. A recently developed homogeneous plate theory is used as a ply level model. Due consideration is given to the non-classical influences and no shear correction factors are introduced extraneously in this theory. The results for the lowest flexural mode of travelling planar harmonic waves indicate that this approach is competitive and yields better results for certain laminates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24733034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24733034"><span>The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Jixia; Wang, Jinfeng; Yu, Weiwei</p> <p>2014-04-11</p> <p>This research quantifies the lag effects and vulnerabilities of temperature effects on cardiovascular disease in Changsha--a subtropical climate zone of China. A Poisson regression model within a distributed lag nonlinear models framework was used to examine the lag effects of cold- and heat-related CVD mortality. The lag effect for heat-related CVD mortality was just 0-3 days. In contrast, we observed a statistically significant association with 10-25 lag days for cold-related CVD mortality. Low temperatures with 0-2 lag days increased the mortality risk for those ≥65 years and females. For all ages, the cumulative effects of cold-related CVD mortality was 6.6% (95% CI: 5.2%-8.2%) for 30 lag days while that of heat-related CVD mortality was 4.9% (95% CI: 2.0%-7.9%) for 3 lag days. We found that in Changsha city, the lag effect of hot temperatures is short while the lag effect of cold temperatures is long. Females and older people were more sensitive to extreme hot and cold temperatures than males and younger people.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5662018','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5662018"><span>LAG-3 confers a competitive disadvantage upon antiviral CD8+ T cell responses1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cook, Kevin D.; Whitmire, Jason K.</p> <p>2016-01-01</p> <p>Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8+ T cells during chronic virus infection and anti-tumor responses. However, the T cell response in LAG-3 deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8+ T cell responses. Our results indicate that LAG-3 expression by CD8+ T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison to LAG-3 deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8+ T cell responses. PMID:27206765</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27206765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27206765"><span>LAG-3 Confers a Competitive Disadvantage upon Antiviral CD8+ T Cell Responses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cook, Kevin D; Whitmire, Jason K</p> <p>2016-07-01</p> <p>Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8(+) T cells during chronic virus infection and antitumor responses. However, the T cell response in LAG-3-deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8(+) T cell responses. Our results indicate that LAG-3 expression by CD8(+) T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison with LAG-3-deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8(+) T cell responses. Copyright © 2016 by The American Association of Immunologists, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28877204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28877204"><span>Examining lag effects between industrial land development and regional economic changes: The Netherlands experience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ustaoglu, Eda; Lavalle, Carlo</p> <p>2017-01-01</p> <p>In most empirical applications, forecasting models for the analysis of industrial land focus on the relationship between current values of economic parameters and industrial land use. This paper aims to test this assumption by focusing on the dynamic relationship between current and lagged values of the 'economic fundamentals' and industrial land development. Not much effort has yet been attributed to develop land forecasting models to predict the demand for industrial land except those applying static regressions or other statistical measures. In this research, we estimated a dynamic panel data model across 40 regions from 2000 to 2008 for the Netherlands to uncover the relationship between current and lagged values of economic parameters and industrial land development. Land-use regulations such as land zoning policies, and other land-use restrictions like natural protection areas, geographical limitations in the form of water bodies or sludge areas are expected to affect supply of land, which will in turn be reflected in industrial land market outcomes. Our results suggest that gross domestic product (GDP), industrial employment, gross value added (GVA), property price, and other parameters representing demand and supply conditions in the industrial market explain industrial land developments with high significance levels. It is also shown that contrary to the current values, lagged values of the economic parameters have more sound relationships with the industrial developments in the Netherlands. The findings suggest use of lags between selected economic parameters and industrial land use in land forecasting applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJBm..tmp...84I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJBm..tmp...84I"><span>Mean air temperature as a risk factor for stroke mortality in São Paulo, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikefuti, Priscilla V.; Barrozo, Ligia V.; Braga, Alfésio L. F.</p> <p>2018-05-01</p> <p>In Brazil, chronic diseases account for the largest percentage of all deaths among men and women. Among the cardiovascular diseases, stroke is the leading cause of death, accounting for 10% of all deaths. We evaluated associations between stroke and mean air temperature using recorded mortality data and meteorological station data from 2002 to 2011. A time series analysis was applied to 55,633 mortality cases. Ischemic and hemorrhagic strokes (IS and HS, respectively) were divided to test different impact on which subgroup. Poisson regression with distributed lag non-linear model was used and adjusted for seasonality, pollutants, humidity, and days of the week. HS mortality was associated with low mean temperatures for men relative risk (RR) = 2.43 (95% CI, 1.12-5.28) and women RR = 1.39 (95% CI, 1.03-1.86). RR of IS mortality was not significant using a 21-day lag window. Analyzing the lag response separately, we observed that the effect of temperature is acute in stroke mortality (higher risk among lags 0-5). However, for IS, higher mean temperatures were significant for this subtype with more than 15-day lag. Our findings showed that mean air temperature is associated with stroke mortality in the city of São Paulo for men and women and IS and HS may have different triggers. Further studies are needed to evaluate physiologic differences between these two subtypes of stroke.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...799...61Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...799...61Z"><span>Investigating Disk-halo Flows and Accretion: A Kinematic and Morphological Analysis of Extraplanar H I in NGC 3044 and NGC 4302</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zschaechner, Laura K.; Rand, Richard J.; Walterbos, Rene</p> <p>2015-01-01</p> <p>To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H I in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H I are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R 25. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H I kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R 25 and R 25, suggesting internal processes are important in dictating extra-planar kinematics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5587288','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5587288"><span>Examining lag effects between industrial land development and regional economic changes: The Netherlands experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ustaoglu, Eda; Lavalle, Carlo</p> <p>2017-01-01</p> <p>In most empirical applications, forecasting models for the analysis of industrial land focus on the relationship between current values of economic parameters and industrial land use. This paper aims to test this assumption by focusing on the dynamic relationship between current and lagged values of the ‘economic fundamentals’ and industrial land development. Not much effort has yet been attributed to develop land forecasting models to predict the demand for industrial land except those applying static regressions or other statistical measures. In this research, we estimated a dynamic panel data model across 40 regions from 2000 to 2008 for the Netherlands to uncover the relationship between current and lagged values of economic parameters and industrial land development. Land-use regulations such as land zoning policies, and other land-use restrictions like natural protection areas, geographical limitations in the form of water bodies or sludge areas are expected to affect supply of land, which will in turn be reflected in industrial land market outcomes. Our results suggest that gross domestic product (GDP), industrial employment, gross value added (GVA), property price, and other parameters representing demand and supply conditions in the industrial market explain industrial land developments with high significance levels. It is also shown that contrary to the current values, lagged values of the economic parameters have more sound relationships with the industrial developments in the Netherlands. The findings suggest use of lags between selected economic parameters and industrial land use in land forecasting applications. PMID:28877204</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5138482','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5138482"><span>Comparison of the Lag Screw Placements for the Treatment of Stable and Unstable Intertrochanteric Femoral Fractures regarding Trabecular Bone Failure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mutlu, Ibrahim; Ozkan, Arif; Kisioglu, Yasin</p> <p>2016-01-01</p> <p>Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk. PMID:27995133</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28409432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28409432"><span>Short-term effects of air pollution on daily hospital admissions for cardiovascular diseases in western China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Yuxia; Zhang, Haipeng; Zhao, Yuxin; Zhou, Jianding; Yang, Sixu; Zheng, Xiaodong; Wang, Shigong</p> <p>2017-06-01</p> <p>Controlling the confounding factors on cardiovascular diseases, such as long-time trend, calendar effect, and meteorological factors, a generalized additive model (GAM) was used to investigate the short-term effects of air pollutants (PM 10 , SO 2 , and NO 2 ) on daily cardiovascular admissions from March 1st to May 31st during 2007 to 2011 in Lanzhou, a heavily polluted city in western China. The influences of air pollutants were examined with different lag structures, and the potential effect modification by dust storm in spring was also investigated. Significant associations were found between air pollutants and hospital admissions for cardiovascular diseases both on dust event days and non-dust event days in spring. Air pollutants had lag effects on different age and gender groups. Relative risks (RRs) and their 95% confidence intervals (CIs) associated with a 10 μg/m 3 increase were 1.14 (1.04~1.26) on lag1 for PM 10 , 1.31 (1.21~1.51) on lag01 for SO 2 , and 1.96 (1.49~2.57) on lag02 for NO 2 on dust days. Stronger effects of air pollutants were observed for females and the elderly (≥60 years). Our analysis concluded that the effects of air pollutants on cardiovascular admissions on dust days were significantly stronger than non-dust days. The current study strengthens the evidence of effects of air pollution on health and dust-exacerbated cardiovascular admissions in Lanzhou.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26974589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26974589"><span>A cross-lagged model of the reciprocal associations of loneliness and memory functioning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ayalon, Liat; Shiovitz-Ezra, Sharon; Roziner, Ilan</p> <p>2016-05-01</p> <p>The study was designed to evaluate the reciprocal associations of loneliness and memory functioning using a cross-lagged model. The study was based on the psychosocial questionnaire of the Health and Retirement Study, which is a U.S. nationally representative survey of individuals over the age of 50 and their spouses of any age. A total of 1,225 respondents had complete data on the loneliness measure in 2004 and at least in 1 of the subsequent waves (e.g., 2008, 2012) and were maintained for analysis. A cross-lagged model was estimated to examine the reciprocal associations of loneliness and memory functioning, controlling for age, gender, education, depressive symptoms, number of medical conditions, and the number of close social relationships. The model had adequate fit indices: χ2(860, N = 1,225) = 1,401.54, p < .001, Tucker-Lewis index = .957, comparative fit index = .963, and root mean square error of approximation = .023 (90% confidence interval [.021, .025]). The lagged effect of loneliness on memory functioning was nonsignificant, B(SE) = -.11(.08), p = .15, whereas the lagged effect of memory functioning on loneliness was significant, B(SE) = -.06(.02), p = .01, indicating that lower levels of memory functioning precede higher levels of loneliness 4 years afterward. Further research is required to better understand the mechanisms responsible for the temporal association between reduced memory functioning and increased loneliness. (PsycINFO Database Record (c) 2016 APA, all rights reserved).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30c4103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30c4103P"><span>Effects of planar shear on the three-dimensional instability in flow past a circular cylinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Doohyun; Yang, Kyung-Soo</p> <p>2018-03-01</p> <p>A Floquet stability analysis has been carried out in order to investigate how a planar shear in wake flow affects the three-dimensional (3D) instability in the near-wake region. We consider a circular cylinder immersed in a freestream with planar shear. The cylinder was implemented in a Cartesian grid system by means of an immersed boundary method. Planar shear tends to promote the primary instability, known as Hopf bifurcation where steady flow bifurcates into time-periodic flow, in the sense that its critical Reynolds number decreases with increasing planar shear. The effects of planar shear on the 3D instability are different depending on the type of 3D instability. The flow asymmetry caused by the planar shear suppresses a QP-type mode but generates a C-type mode. The conventional A and B modes are stabilized by the planar shear, whereas mode C is intensified with increasing shear. The criticality of each 3D mode is discussed, and the neutral stability curves for each 3D mode are presented. The current Floquet results have been validated by using direct numerical simulation for some selected cases of flow parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12563690','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12563690"><span>Intermittent hydrostatic pressure inhibits shear stress-induced nitric oxide release in human osteoarthritic chondrocytes in vitro.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Mel S; Trindade, Michael C D; Ikenoue, Takashi; Schurman, David J; Goodman, Stuart B; Smith, R Lane</p> <p>2003-02-01</p> <p>To test the effects of intermittent hydrostatic pressure (IHP) on nitric oxide (NO) release induced by shear stress and matrix macromolecule gene expression in human osteoarthritic chondrocytes in vitro. Chondrocytes isolated from cartilage samples from 9 patients with osteoarthritis were cultured and exposed to either shear stress or an NO donor. Nitrite concentration was measured using the Griess reaction. Matrix macromolecule mRNA signal levels were determined using reverse-transcriptase polymerase chain reaction and quantified by imaging analysis software. Exposure to shear stress upregulated NO release in a dose and time-dependent manner. Application of IHP inhibited shear stress induced NO release but did not alter NO release from chondrocytes not exposed to shear stress. Shear stress induced NO or addition of an NO donor (sodium nitroprusside) was associated with decreased mRNA signal levels for the cartilage matrix proteins, aggrecan, and type II collagen. Intermittent hydrostatic pressure blocked the inhibitory effects of sodium nitroprusside but did not alter the inhibitory effects of shear stress on cartilage macromolecule gene expression. Our data show that shear stress and IHP differentially alter chondrocyte metabolism and suggest that a balance of effects between different loading forces preserve cartilage extracellular matrix in vivo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29733281','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29733281"><span>Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rouze, Ned C; Deng, Yufeng; Trutna, Courtney A; Palmeri, Mark L; Nightingale, Kathryn R</p> <p>2018-05-01</p> <p>Recent investigations of viscoelastic properties of materials have been performed by observing shear wave propagation following localized, impulsive excitations, and Fourier decomposing the shear wave signal to parameterize the frequency-dependent phase velocity using a material model. This paper describes a new method to characterize viscoelastic materials using group shear wave speeds , , and determined from the shear wave displacement, velocity, and acceleration signals, respectively. Materials are modeled using a two-parameter linear attenuation model with phase velocity and dispersion slope at a reference frequency of 200 Hz. Analytically calculated lookup tables are used to determine the two material parameters from pairs of measured group shear wave speeds. Green's function calculations are used to validate the analytic model. Results are reported for measurements in viscoelastic and approximately elastic phantoms and demonstrate good agreement with phase velocities measured using Fourier analysis of the measured shear wave signals. The calculated lookup tables are relatively insensitive to the excitation configuration. While many commercial shear wave elasticity imaging systems report group shear wave speeds as the measures of material stiffness, this paper demonstrates that differences , , and of group speeds are first-order measures of the viscous properties of materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5141/pdf/SIR13-5141.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5141/pdf/SIR13-5141.pdf"><span>Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, Myung W.</p> <p>2013-01-01</p> <p>Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112500&hterms=degradation+Human&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddegradation%2BHuman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112500&hterms=degradation+Human&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddegradation%2BHuman"><span>Shear stress reduces protease activated receptor-1 expression in human endothelial cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.</p> <p>2001-01-01</p> <p>Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22270952-nustar-detection-hard-ray-phase-lags-from-accreting-pulsar-gs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22270952-nustar-detection-hard-ray-phase-lags-from-accreting-pulsar-gs"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix</p> <p></p> <p>The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29more » s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28728375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28728375"><span>Dynamics of shearing force and its correlations with chemical compositions and in vitro dry matter digestibility of stylo (Stylosanthes guianensis) stem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin</p> <p>2017-12-01</p> <p>The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897694','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897694"><span>Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.</p> <p>2016-01-01</p> <p>Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..415A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..415A"><span>Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein</p> <p>2018-02-01</p> <p>In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..293a2007P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..293a2007P"><span>Finite element simulation and comparison of a shear strain and equivalent strain during ECAP and asymmetric rolling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pesin, A.; Pustovoytov, D.; Shveyova, T.; Vafin, R.</p> <p>2017-12-01</p> <p>The level of a shear strain and equivalent strain plays a key role in terms of the possibility of using the asymmetric rolling process as a method of severe plastic deformation. Strain mode (pure shear or simple shear) can affect very strongly on the equivalent strain and the grain refinement of the material. This paper presents the results of FEM simulations and comparison of the equivalent strain in the aluminium alloy 5083 processed by a single-pass equal channel angular pressing (simple shear), symmetric rolling (pure shear) and asymmetric rolling (simultaneous pure and simple shear). The nonlinear effect of rolls speed ratio on the deformation characteristics during asymmetric rolling was found. Extremely high equivalent strain up to e=4.2 was reached during a single-pass asymmetric rolling. The influence of the shear strain on the level of equivalent strain is discussed. Finite element analysis of the deformation characteristics, presented in this study, can be used for optimization of the asymmetric rolling process as a method of severe plastic deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4620721','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4620721"><span>A Comparison of Different Methods for Evaluating Diet, Physical Activity, and Long-Term Weight Gain in 3 Prospective Cohort Studies123</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Jessica D; Hou, Tao; Hu, Frank B; Rimm, Eric B; Spiegelman, Donna; Willett, Walter C; Mozaffarian, Dariush</p> <p>2015-01-01</p> <p>Background: The insidious pace of long-term weight gain (∼1 lb/y or 0.45 kg/y) makes it difficult to study in trials; long-term prospective cohorts provide crucial evidence on its key contributors. Most previous studies have evaluated how prevalent lifestyle habits relate to future weight gain rather than to lifestyle changes, which may be more temporally and physiologically relevant. Objective: Our objective was to evaluate and compare different methodological approaches for investigating diet, physical activity (PA), and long-term weight gain. Methods: In 3 prospective cohorts (total n = 117,992), we assessed how lifestyle relates to long-term weight change (up to 24 y of follow-up) in 4-y periods by comparing 3 analytic approaches: 1) prevalent diet and PA and 4-y weight change (prevalent analysis); 2) 4-y changes in diet and PA with a 4-y weight change (change analysis); and 3) 4-y change in diet and PA with weight change in the subsequent 4 y (lagged-change analysis). We compared these approaches and evaluated the consistency across cohorts, magnitudes of associations, and biological plausibility of findings. Results: Across the 3 methods, consistent, robust, and biologically plausible associations were seen only for the change analysis. Results for prevalent or lagged-change analyses were less consistent across cohorts, smaller in magnitude, and biologically implausible. For example, for each serving of a sugar-sweetened beverage, the observed weight gain was 0.01 lb (95% CI: −0.08, 0.10) [0.005 kg (95% CI: −0.04, 0.05)] based on prevalent analysis; 0.99 lb (95% CI: 0.83, 1.16) [0.45 kg (95% CI: 0.38, 0.53)] based on change analysis; and 0.05 lb (95% CI: −0.10, 0.21) [0.02 kg (95% CI: −0.05, 0.10)] based on lagged-change analysis. Findings were similar for other foods and PA. Conclusions: Robust, consistent, and biologically plausible relations between lifestyle and long-term weight gain are seen when evaluating lifestyle changes and weight changes in discrete periods rather than in prevalent lifestyle or lagged changes. These findings inform the optimal methods for evaluating lifestyle and long-term weight gain and the potential for bias when other methods are used. PMID:26377763</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26377763','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26377763"><span>A Comparison of Different Methods for Evaluating Diet, Physical Activity, and Long-Term Weight Gain in 3 Prospective Cohort Studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Jessica D; Hou, Tao; Hu, Frank B; Rimm, Eric B; Spiegelman, Donna; Willett, Walter C; Mozaffarian, Dariush</p> <p>2015-11-01</p> <p>The insidious pace of long-term weight gain (∼ 1 lb/y or 0.45 kg/y) makes it difficult to study in trials; long-term prospective cohorts provide crucial evidence on its key contributors. Most previous studies have evaluated how prevalent lifestyle habits relate to future weight gain rather than to lifestyle changes, which may be more temporally and physiologically relevant. Our objective was to evaluate and compare different methodological approaches for investigating diet, physical activity (PA), and long-term weight gain. In 3 prospective cohorts (total n = 117,992), we assessed how lifestyle relates to long-term weight change (up to 24 y of follow-up) in 4-y periods by comparing 3 analytic approaches: 1) prevalent diet and PA and 4-y weight change (prevalent analysis); 2) 4-y changes in diet and PA with a 4-y weight change (change analysis); and 3) 4-y change in diet and PA with weight change in the subsequent 4 y (lagged-change analysis). We compared these approaches and evaluated the consistency across cohorts, magnitudes of associations, and biological plausibility of findings. Across the 3 methods, consistent, robust, and biologically plausible associations were seen only for the change analysis. Results for prevalent or lagged-change analyses were less consistent across cohorts, smaller in magnitude, and biologically implausible. For example, for each serving of a sugar-sweetened beverage, the observed weight gain was 0.01 lb (95% CI: -0.08, 0.10) [0.005 kg (95% CI: -0.04, 0.05)] based on prevalent analysis; 0.99 lb (95% CI: 0.83, 1.16) [0.45 kg (95% CI: 0.38, 0.53)] based on change analysis; and 0.05 lb (95% CI: -0.10, 0.21) [0.02 kg (95% CI: -0.05, 0.10)] based on lagged-change analysis. Findings were similar for other foods and PA. Robust, consistent, and biologically plausible relations between lifestyle and long-term weight gain are seen when evaluating lifestyle changes and weight changes in discrete periods rather than in prevalent lifestyle or lagged changes. These findings inform the optimal methods for evaluating lifestyle and long-term weight gain and the potential for bias when other methods are used. © 2015 American Society for Nutrition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMPSo.112..472G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMPSo.112..472G"><span>The dynamics of a shear band</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giarola, Diana; Capuani, Domenico; Bigoni, Davide</p> <p>2018-03-01</p> <p>A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30e3604W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30e3604W"><span>Boundary layers at the interface of two different shear flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weidman, Patrick D.; Wang, C. Y.</p> <p>2018-05-01</p> <p>We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720009941','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720009941"><span>Theoretical study of corrugated plates: Shear stiffness of a trapezoidally corrugated plate with discrete attachments to a rigid flange at the ends of the corrugations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hsiao, C.; Libove, C.</p> <p>1972-01-01</p> <p>Analysis and numerical results are presented for the elastic shear stiffness of a corrugated shear web with a certain type of discrete attachments at the ends of the trough lines of the corrugations, namely point attachments to a rigid flange which interferes with the deformations of the end cross sections by preventing downward movement but permitting upward (lifting off) movement. The analysis is based on certain assumed modes of deformation of the cross sections in conjunction with the method of minimum total potential energy and the calculus of variations in order to obtain equations for the manner in which the assumed modes of deformation vary along the length of the corrugation. The numerical results are restricted to the case of equal-width crests and troughs but otherwise apply to a wide variety of geometries. They are in the form of graphs which give the overall shear stiffness as a fraction of the overall shear stiffness that could be obtained by having continuous attachment at the ends of the corrugations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010004242&hterms=Thermo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DThermo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010004242&hterms=Thermo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DThermo"><span>Analysis of Composite Panels Subjected to Thermo-Mechanical Loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Noor, Ahmed K.; Peters, Jeanne M.</p> <p>1999-01-01</p> <p>The results of a detailed study of the effect of cutout on the nonlinear response of curved unstiffened panels are presented. The panels are subjected to combined temperature gradient through-the-thickness combined with pressure loading and edge shortening or edge shear. The analysis is based on a first-order, shear deformation, Sanders-Budiansky-type shell theory with the effects of large displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, as well as in the material properties of the individual layers. Numerical results are presented for cylindrical panels and show the effects of variations in the loading and the size of the cutout on the global and local response quantities as well as their sensitivity to changes in the various panel, layer, and micromechanical parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930061746&hterms=discrete+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddiscrete%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930061746&hterms=discrete+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddiscrete%2Bstructure"><span>Analysis of passive damping in thick composite structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saravanos, D. A.</p> <p>1993-01-01</p> <p>Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20688729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20688729"><span>The effect of bifocal add on accommodative lag in myopic children with high accommodative lag.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berntsen, David A; Mutti, Donald O; Zadnik, Karla</p> <p>2010-12-01</p> <p>To determine the effect of a bifocal add and manifest correction on accommodative lag in myopic children with high accommodative lag, who have been reported to have the greatest reduction in myopia progression with progressive addition lenses (PALs). Monocular accommodative lag to a 4-D Badal stimulus was measured on two occasions 6 months apart in 83 children (mean ± SD age, 9.9 ± 1.3 years) with high lag randomized to wearing single-vision lenses (SVLs) or PALs. Accommodative lag was measured with the following corrections: habitual, manifest, manifest with +2.00-D add, and habitual with +2.00-D add (6-month visit only). At baseline, accommodative lag was higher (1.72 ± 0.37 D; mean ± SD) when measured with manifest correction than with habitual correction (1.51 ± 0.50; P < 0.05). This higher lag with manifest correction correlated with a larger amount of habitual undercorrection at baseline (r = -0.29, P = 0.009). A +2.00-D add over the manifest correction reduced lag by 0.45 ± 0.34 D at baseline and 0.33 ± 0.38 D at the 6-month visit. Lag results at 6 months were not different between PAL and SVL wearers (P = 0.92). A +2.00-D bifocal add did not eliminate accommodative lag and reduced lag by less than 25% of the bifocal power, indicating that children mainly responded to a bifocal by decreasing accommodation. If myopic progression is substantial, measuring lag with full correction can overestimate the hyperopic retinal blur that a child most recently experienced. (ClinicalTrials.gov number, NCT00335049.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3055747','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3055747"><span>The Effect of Bifocal Add on Accommodative Lag in Myopic Children with High Accommodative Lag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mutti, Donald O.; Zadnik, Karla</p> <p>2010-01-01</p> <p>Purpose. To determine the effect of a bifocal add and manifest correction on accommodative lag in myopic children with high accommodative lag, who have been reported to have the greatest reduction in myopia progression with progressive addition lenses (PALs). Methods. Monocular accommodative lag to a 4-D Badal stimulus was measured on two occasions 6 months apart in 83 children (mean ± SD age, 9.9 ± 1.3 years) with high lag randomized to wearing single-vision lenses (SVLs) or PALs. Accommodative lag was measured with the following corrections: habitual, manifest, manifest with +2.00-D add, and habitual with +2.00-D add (6-month visit only). Results. At baseline, accommodative lag was higher (1.72 ± 0.37 D; mean ± SD) when measured with manifest correction than with habitual correction (1.51 ± 0.50; P < 0.05). This higher lag with manifest correction correlated with a larger amount of habitual undercorrection at baseline (r = −0.29, P = 0.009). A +2.00-D add over the manifest correction reduced lag by 0.45 ± 0.34 D at baseline and 0.33 ± 0.38 D at the 6-month visit. Lag results at 6 months were not different between PAL and SVL wearers (P = 0.92). Conclusions. A +2.00-D bifocal add did not eliminate accommodative lag and reduced lag by less than 25% of the bifocal power, indicating that children mainly responded to a bifocal by decreasing accommodation. If myopic progression is substantial, measuring lag with full correction can overestimate the hyperopic retinal blur that a child most recently experienced. (ClinicalTrials.gov number, NCT00335049.) PMID:20688729</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4798962','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4798962"><span>Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger</p> <p>2016-01-01</p> <p>Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSV...333.2359A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSV...333.2359A"><span>Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Attar, M.; Karrech, A.; Regenauer-Lieb, K.</p> <p>2014-05-01</p> <p>The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24658144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24658144"><span>Shear wave speed and dispersion measurements using crawling wave chirps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J</p> <p>2014-10-01</p> <p>This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28799383','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28799383"><span>Focus: Nucleation kinetics of shear bands in metallic glass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, J Q; Perepezko, J H</p> <p>2016-12-07</p> <p>The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...122l5108Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...122l5108Q"><span>Interlayer shear behaviors of graphene-carbon nanotube network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Huasong; Liu, Yilun</p> <p>2017-09-01</p> <p>The interlayer shear resistance plays an important role in graphene related applications, and different mechanisms have been proposed to enhance its interlayer load capacity. In this work, we performed molecular dynamics (MD) simulations and theoretical analysis to study interlayer shear behaviors of three dimensional graphene-carbon (3D-GC) nanotube networks. The shear mechanical properties of carbon nanotubes (CNTs) crosslink with different diameters are obtained which is one order of magnitude larger than that of other types of crosslinks. Under shear loading, 3D-GC exhibits two failure modes, i.e., fracture of graphene sheet and failure of CNT crosslink, determined by the diameter of CNT crosslink, crosslink density, and length of 3D-GC. A modified tension-shear chain model is proposed to predict the shear mechanical properties and failure mode of 3D-GC, which agrees well with MD simulation results. The results presented in this work may provide useful insights for future development of high-performance 3D-GC materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29749633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29749633"><span>Responses to positive affect, life satisfaction and self-esteem: A cross-lagged panel analysis during middle adolescence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomez-Baya, Diego; Mendoza, Ramon; Gaspar, Tania; Gomes, Paulo</p> <p>2018-05-11</p> <p>During middle adolescence, elevated stress and a greater presence of psychological disorders have been documented. The research has paid little attention to the regulation of positive affective states. Fredrickson's broaden-and-build theory suggests that cultivating positive emotions helps to build resources that boost well-being. The current research aimed to examine the longitudinal associations between responses to positive affect (emotion-focused positive rumination, self-focused positive rumination, and dampening) and psychological adjustment (self-esteem and life satisfaction) during middle adolescence. A longitudinal study with two waves separated by one year was conducted, assessing 977 adolescents (M = 13.81, SD = 0.79; 51.5% boys) with self-report measures. A cross-lagged panel analysis was performed by including within the same model the relationships between all of the variables in the two assessment points. The results indicated cross-lagged positive relationships of self-focused positive rumination with both self-esteem and life satisfaction, while dampening showed a negative cross-lagged relationship with self-esteem. Moreover, higher self-esteem predicted more emotion-focused positive rumination, and more dampening predicted lower life satisfaction. Thus, the use of adaptive responses to positive affect and a better psychological adjustment were found to be prospectively interrelated at the one-year follow-up during middle adolescence. The discussion argues for the need to implement programmes to promote more adaptive responses to positive affect to enhance psychological adjustment in the adolescent transition to adulthood. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29295030','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29295030"><span>Intimate Partner Aggression and Marital Satisfaction: A Cross-Lagged Panel Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hammett, Julia F; Lavner, Justin A; Karney, Benjamin R; Bradbury, Thomas N</p> <p>2017-12-01</p> <p>Intimate partner aggression is common in dissatisfied relationships, yet it remains unclear whether intimate partner aggression is a correlate of relationship satisfaction, whether it predicts or follows from relationship satisfaction over time, or whether longitudinal associations are in fact bidirectional in nature. The present study evaluates these perspectives by examining self-reports of aggressive behaviors in relation to corresponding self-reports of relationship satisfaction among a sample of 431 low-income, ethnically diverse (76% Hispanic, 12% African American, 12% Caucasian) newlywed couples. Using a cross-lagged panel analysis, we examined associations between aggression and satisfaction across four time points, spaced by 9-month intervals, during the first 2.5 years of marriage. Cross-sectionally, less satisfied couples reported higher levels of intimate partner aggression. Longitudinally, aggression was a more consistent predictor of satisfaction than vice versa, though neither pathway was particularly robust: Intimate partner aggression was a significant predictor of relationship satisfaction at 4 of the 12 tested lags, whereas relationship satisfaction was a significant predictor of intimate partner aggression at only one of 12 lags. Because all effects were relatively weak and inconsistent, more specificity is needed to clarify circumstances under which aggression does and does not predict satisfaction, including whether the predictive power of the aggression-to-satisfaction association varies based on the severity of aggression or other individual (e.g., personality) or external (e.g., stress and environmental context) factors. Together, results indicate that dissatisfied couples are more likely to engage in intimate partner aggression, but being dissatisfied is unlikely to increase the level of aggression a couple engages in over time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26177358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26177358"><span>Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo</p> <p>2016-05-01</p> <p>To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001APS..OSS.C1023Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001APS..OSS.C1023Z"><span>Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zalewski, Daniel; Jodoin, Vincent</p> <p>2001-04-01</p> <p>Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033710','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033710"><span>The role of shear and tensile failure in dynamically triggered landslides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.</p> <p>2008-01-01</p> <p>Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780019150','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780019150"><span>Wind shear modeling for aircraft hazard definition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frost, W.; Camp, D. W.; Wang, S. T.</p> <p>1978-01-01</p> <p>Mathematical models of wind profiles were developed for use in fast time and manned flight simulation studies aimed at defining and eliminating these wind shear hazards. A set of wind profiles and associated wind shear characteristics for stable and neutral boundary layers, thunderstorms, and frontal winds potentially encounterable by aircraft in the terminal area are given. Engineering models of wind shear for direct hazard analysis are presented in mathematical formulae, graphs, tables, and computer lookup routines. The wind profile data utilized to establish the models are described as to location, how obtained, time of observation and number of data points up to 500 m. Recommendations, engineering interpretations and guidelines for use of the data are given and the range of applicability of the wind shear models is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JSMET..58..436K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JSMET..58..436K"><span>Analysis of shear buckling of cylindrical shells. II - Effects of combined loadings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kokubo, Kunio; Nagashima, Hideaki; Takayanagi, Masaaki; Madokoro, Manabu; Mochizuki, Akira; Ikeuchi, Hisaaki</p> <p>1992-03-01</p> <p>Cylindrical shells subjected to lateral loads buckle in shear or bending buckling modes. The effects of combined loadings are investigated by developing a special-purpose FEM program using the 8-node isoparametric shell element. Three types of loading, lateral and axial loads, and pure bending moments are considered. For short cylindrical shells, shear buckling modes are dominant, but elephant-foot bulges take place with an increase in bending moments. Effects of axial loads on shear buckling and the elephant-foot bulge are investigated. In the case of shear buckling the axial load affects the buckling mode as well as the buckling load. For bending bucklings, the axial loads have a great effect on the buckling load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24341555','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24341555"><span>Impact of climate variability on Plasmodium vivax and Plasmodium falciparum malaria in Yunnan Province, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bi, Yan; Yu, Weiwei; Hu, Wenbiao; Lin, Hualiang; Guo, Yuming; Zhou, Xiao-Nong; Tong, Shilu</p> <p>2013-12-17</p> <p>Malaria remains a public health problem in the remote and poor area of Yunnan Province, China. Yunnan faces an increasing risk of imported malaria infections from Mekong river neighboring countries. This study aimed to identify the high risk area of malaria transmission in Yunnan Province, and to estimate the effects of climatic variability on the transmission of Plasmodium vivax and Plasmodium falciparum in the identified area. We identified spatial clusters of malaria cases using spatial cluster analysis at a county level in Yunnan Province, 2005-2010, and estimated the weekly effects of climatic factors on P. vivax and P. falciparum based on a dataset of daily malaria cases and climatic variables. A distributed lag nonlinear model was used to estimate the impact of temperature, relative humidity and rainfall up to 10-week lags on both types of malaria parasite after adjusting for seasonal and long-term effects. The primary cluster area was identified along the China-Myanmar border in western Yunnan. A 1°C increase in minimum temperature was associated with a lag 4 to 9 weeks relative risk (RR), with the highest effect at lag 7 weeks for P. vivax (RR = 1.03; 95% CI, 1.01, 1.05) and 6 weeks for P. falciparum (RR = 1.07; 95% CI, 1.04, 1.11); a 10-mm increment in rainfall was associated with RRs of lags 2-4 weeks and 9-10 weeks, with the highest effect at 3 weeks for both P. vivax (RR = 1.03; 95% CI, 1.01, 1.04) and P. falciparum (RR = 1.04; 95% CI, 1.01, 1.06); and the RRs with a 10% rise in relative humidity were significant from lag 3 to 8 weeks with the highest RR of 1.24 (95% CI, 1.10, 1.41) for P. vivax at 5-week lag. Our findings suggest that the China-Myanmar border is a high risk area for malaria transmission. Climatic factors appeared to be among major determinants of malaria transmission in this area. The estimated lag effects for the association between temperature and malaria are consistent with the life cycles of both mosquito vector and malaria parasite. These findings will be useful for malaria surveillance-response systems in the Mekong river region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......310C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......310C"><span>The enso signal in the lower stratosphere: propagation via rossby waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvo, N.; Garcia Herrera, R.; Garcia, R.; Gallego, D.; Gimeno, L.; Hernandez, E.; Ribera, P.</p> <p>2003-04-01</p> <p>The ENSO signal on the lower stratosphere has been analyzed through the study of the relationship between SST in the Tropical Pacific and lower stratospheric temperatures from the Microwave Sounding Unit (MSU) using the t4 channel, which is sensitive to lower stratospheric temperature. Lagged point correlations have been calculated between the Niño3.4 index and MSU t4 monthly anomaly series at each grid point for the whole globe from January 1979 through December 2000. Correlation values are very similar in both tropics and extratropics, but their signs are opposite: positive in extratropical regions and negative in the tropics. Moreover, the significant correlation signal is longer lasting at middle latitudes, from lag 9 to lag 6, and much shorter in the Tropics, where it is significant only at lags 0 and 3. In the extratropical area, four regions are significant: Eurasia, the Southern Indian Ocean, and the North and South Pacific Oceans. The signal in Eurasia is the first to be observed (at lag 9) and it could be considered as a predictor of extreme ENSO events. The Pacific Ocean shows the PNA and PSA patterns. There, the signal appears earlier in the Southern Hemisphere (lag 6) because wind conditions at boreal summer (usually lag 6) do not favour the propagation of Rossby waves into the stratosphere. Further, the shape of the correlation patterns suggests that only planetary waves are able to propagate the ENSO signal into the stratosphere. In the tropics, the ENSO signal takes the form of a pair of Rossby gyres, observed in the Pacific Ocean at lags 0 and 3 as two regions of significant correlation located symmetricaly north and south of the Equator. The same analysis has been carried out for a period without any extreme events (SST anomalies in the Niño3.4 region smaller than 1 standard desviation), in which case no signal is observed in the lower stratosphere. This suggests that only strong ENSO (defined by anomalies larger than 1 standard desviation in the Niño3.4 area) produce a signal in the stratosphere. On the other hand, the signal does not appear to show any influence from the QBO. Taken together, all these results show that Rossby waves play a central role in the propagation of the ENSO signal into the stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29806363','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29806363"><span>[A clinical study on the relationship of the tail femur distance and the lag screw migration or cutting-out after the third generation of Gamma nail fixation of intertrochanteric fracture].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Yu; Yao, Qi; Zhang, Gen'ai; Ding, Lixiang</p> <p>2018-01-01</p> <p>To confirm the association between tail femur distance (TFD) and lag screw migration or cutting-out in the treatment of intertrochanteric fracture with the third generation of Gamma nail (TGN). The clinical data of 124 cases of intertrochanteric fracture treated with TGN internal fixation and followed up more than 18 months between January 2012 and December 2015 were reviewed and analyzed. There were 52 males and 72 females, with an age of 46-93 years (mean, 78.5 years). According to AO/Association for the Study of Internal Fixation (AO/ASIF) classification, 43 cases were type 31-A1, 69 cases were type 31-A2, and 12 cases were type 31-A3. The time from injury to operation was 1-10 days (mean, 2.9 days). According to the fracture healing of the patients, the patients were divided into the healing group and failure group. The age, gender, height, bone mineral density (BMD), fracture AO/ASIF classification, the time from injury to operation, and the TFD value at 1 day after operation were recorded and compared. The risk factors for the migration or cutting-out of lag screw were analyzed by logistic regression. There were 111 cases in healing group, the healing time was 80-110 days (mean, 95.5 days). There were 13 cases in failure group, including 2 cases of lag screw cutting-out and 11 cases of significant migration. Except for the TFD value at 1 day after operation in failure group was significantly higher than that in the healing group( t =5.14, P =0.00), there was no significant difference in gender, age, height, BMD, fracture of AO/ASIF classification, and the time from injury to operation ( P >0.05) between 2 groups. logistic regression analysis showed that TFD value was a risk factor for the migration or cutting-out of lag screw (B=1.22, standardized coefficient=0.32, Wald χ 2 =14.66, P =0.00, OR=3.37). The patients with higher TFD value had higher risk of postoperative lag screw migration or cutting-out. This result indicates that the appropriate length of the lag screw is helpful to reduce TFD value and prevent postoperative lag screw migration or cutting-out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750025355','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750025355"><span>Experimental evaluation of two 36 inch by 47 inch graphite/epoxy sandwich shear webs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bush, H. G.</p> <p>1975-01-01</p> <p>The design is described and test of two large (36 in. x 47 in.) graphite/epoxy sandwich shear webs. One sandwich web was designed to exhibit strength failure of the facings at a shear load of 7638 lbs/in., which is a characteristic loading for the space shuttle orbiter main engine thrust beam structure. The second sandwich web was designed to exhibit general instability failure at a shear load of 5000 lbs/in., to identify problem areas of stability critical sandwich webs and to assess the adequacy of contemporary analysis techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrMat...4...25B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrMat...4...25B"><span>Indentation-Induced Shear Band Formation in Thin-Film Multilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bigelow, Shannon; Shen, Yu-Lin</p> <p>2017-08-01</p> <p>We report an exploratory investigation into the cause of shear band formation in multilayer thin-films subject to nanoindentation. The material system considered here is composed of alternating aluminum (Al) and silicon carbide (SiC) nanolayers, atop a silicon (Si) substrate. Finite element models are developed in an attempt to reproduce the shear banding phenomenon observed experimentally. By introducing strain softening into the material model for the hard SiC layers, shear bands can be seen to emerge from the indentation site in the finite element analysis. Broad implications, along with possible directions for future work, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHEAp..18...15C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHEAp..18...15C"><span>Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava</p> <p>2018-06-01</p> <p>The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4310078S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4310078S"><span>The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir</p> <p>2016-10-01</p> <p>Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930066400&hterms=metal+matrix&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmetal%2Bmatrix','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930066400&hterms=metal+matrix&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmetal%2Bmatrix"><span>Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ko, William L.; Jackson, Raymond H.</p> <p>1993-01-01</p> <p>Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..308a2048T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..308a2048T"><span>Shear rate analysis of water dynamic in the continuous stirred tank</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.</p> <p>2018-02-01</p> <p>Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.995a2108A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.995a2108A"><span>Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.</p> <p>2018-04-01</p> <p>Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730019438','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730019438"><span>An integral turbulent kinetic energy analysis of free shear flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peters, C. E.; Phares, W. J.</p> <p>1973-01-01</p> <p>Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990069976','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990069976"><span>Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McGowan, David M.</p> <p>1999-01-01</p> <p>The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......284L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......284L"><span>The effect of control and display lag on unmanned air system internal pilot manual landing performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lloyd, Marshall Everett</p> <p></p> <p>An important characteristic of UASs is lag because it can become a considerable challenge to successful human-in-the-loop control. As such, UASs are designed and configured to minimize system lag, though this can increase acquisition and operation costs considerably. In an effort to cut costs, an organization may choose to accept greater risk and deploy a UAS with high system lag. Before this risk can be responsibly accepted, it must be quantified. While many studies have examined system lag, very few have been able to quantify the risk that various levels of lag pose to an internally piloted, manually landed UAS. This study attempted to do so by evaluating pilot landing performance in a simulator with 0 ms, 240 ms, and 1000 ms of additional lag. Various measures were used, including a novel coding technique. Results indicated that 1000 ms of lag was unsafe by all measures. They also indicate that 240 ms of lag degrades performance, but participants were able to successfully land the simulated aircraft. This study showed the utility of using several measures to evaluate the effect of lag on landing performance and it helped demonstrate that while 1000 ms poses a high risk, 240 ms of lag may be a much more manageable risk. Future research suggested by this research includes: investigating lag between 240 ms and 1000 ms, introducing different weather phenomena, developing system lag training techniques for operators, and investigating the effect of aides such as predictive displays and autopilot-assisted recovery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1362160-inference-from-small-scales-cosmic-shear-current-future-dark-energy-survey-data','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1362160-inference-from-small-scales-cosmic-shear-current-future-dark-energy-survey-data"><span>Inference from the small scales of cosmic shear with current and future Dark Energy Survey data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>MacCrann, N.; Aleksić, J.; Amara, A.; ...</p> <p>2016-11-05</p> <p>Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model tomore » account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1179780','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1179780"><span>Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>J Squire, A Bhattacharjee</p> <p></p> <p>We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900062046&hterms=winglet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwinglet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900062046&hterms=winglet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwinglet"><span>Parametric analysis of swept-wing geometry with sheared wing tips</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.</p> <p>1990-01-01</p> <p>A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23261418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23261418"><span>Improving the effectiveness of an interruption lag by inducing a memory-based strategy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morgan, Phillip L; Patrick, John; Tiley, Leyanne</p> <p>2013-01-01</p> <p>The memory for goals model (Altmann & Trafton, 2002) posits the importance of a short delay (the 'interruption lag') before an interrupting task to encode suspended goals for retrieval post-interruption. Two experiments used the theory of soft constraints (Gray, Simms, Fu & Schoelles, 2006) to investigate whether the efficacy of an interruption lag could be improved by increasing goal-state access cost to induce a more memory-based encoding strategy. Both experiments used a copying task with three access cost conditions (Low, Medium, and High) and a 5-s interruption lag with a no lag control condition. Experiment 1 found that the participants in the High access cost condition resumed more interrupted trials and executed more actions correctly from memory when coupled with an interruption lag. Experiment 2 used a prospective memory test post-interruption and an eyetracker recorded gaze activity during the interruption lag. The participants in the High access cost condition with an interruption lag were best at encoding target information during the interruption lag, evidenced by higher scores on the prospective memory measure and more gaze activity on the goal-state during the interruption lag. Theoretical and practical issues regarding the use of goal-state access cost and an interruption lag are discussed. Copyright © 2012. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786775','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786775"><span>Stratified coastal ocean interactions with tropical cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.</p> <p>2016-01-01</p> <p>Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800012968','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800012968"><span>Effects of moisture, residual thermal curing stresses and mechanical load on the damage development in quasi-isotropic laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kriz, R. D.; Stinchcomb, W. W.; Tenney, D. R.</p> <p>1980-01-01</p> <p>Classical laminate theory and a finite element model were used to predict stress states prior to the first formation of damage in laminates fabricated from T/300/5208. Crack patterns characteristic of the laminate in a wet or dry condition were also predicted using a shear lag model. Development of edge damage was recorded and observed during the test by transferring an image of the damage from the edge surface on to a thin acetate sheet such that the damage imprinted could be immediately viewed on a microfiche card reader. Moisture was shown to significantly alter the interior and edge dry stress states due to swelling and a reduction of elastic properties and to reduce the transverse strength in 90 deg plies. A model was developed in order to predict changes in first ply failure laminate loads due to differences in stacking sequence together with a wet or dry environmental condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910015346','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910015346"><span>Modeling of crack bridging in a unidirectional metal matrix composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack</p> <p>1991-01-01</p> <p>The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.2388G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.2388G"><span>Rapid response to coastal upwelling in a semienclosed bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gilcoto, Miguel; Largier, John L.; Barton, Eric D.; Piedracoba, Silvia; Torres, Ricardo; Graña, Rocío.; Alonso-Pérez, Fernando; Villacieros-Robineau, Nicolás.; de la Granda, Francisco</p> <p>2017-03-01</p> <p>Bays/estuaries forced by local wind show bidirectional exchange flow. When forced by remote wind, they exhibit unidirectional flow adjustment to coastal sea level. Acoustic Doppler Current Profiler observations over 1 year show that the Ria de Vigo (Iberian Upwelling) responds to coastal wind events with bidirectional exchange flow. The duration of the upwelling and downwelling events, estimated from the current variability, was 3.3 days and 2.6 days, respectively. Vectorial correlations reveal a rapid response to upwelling/downwelling, in which currents lag local wind by <6 h and remote wind by <14 h, less than the Ekman spinup (17.8 h). This rapidity arises from the ria's narrowness (nonrotational local response), equatorward orientation (additive remote and local wind responses), depth greater than the Ekman depth (penetration of shelf circulation into the interior), and vertical stratification (shear reinforcing shelf circulation). Similar rapid responses are expected in other narrow bays where local and remote winds act together and stratification enhances bidirectional flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920060461&hterms=metal+matrix&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmetal%2Bmatrix','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920060461&hterms=metal+matrix&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmetal%2Bmatrix"><span>Modeling of crack bridging in a unidirectional metal matrix composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack</p> <p>1992-01-01</p> <p>The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20102769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20102769"><span>Bioinspired assembly of surface-roughened nanoplatelets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Tzung-Hua; Huang, Wei-Han; Jun, In-Kook; Jiang, Peng</p> <p>2010-04-15</p> <p>Here we report a novel electrophoretic deposition technology for assembling surface-roughened inorganic nanoplatelets into ordered multilayers that mimic the brick-and-mortar nanostructure found in the nacreous layer of mollusk shells. A thin layer of sol-gel silica is coated on smooth gibbsite nanoplatelets in order to increase the surface roughness to mimic the asperity of aragonite platelets found in nacres. To avoid the severe cracking caused by the shrinkage of sol-gel silica during drying, polyelectrolyte polyethyleneimine is used to reverse the surface charge of silica-coated-gibbsite nanoplatelets and increase the adherence and strength of the electrodeposited films. Polymer nanocomposites can then be made by infiltrating the interstitials of the aligned nanoplatelet multilayers with photocurable monomer followed by photopolymerization. The resulting self-standing films are highly transparent and exhibit nearly three times higher tensile strength and one-order-of-magnitude higher toughness than those of pure polymer. The measured tensile strength agrees with that predicted by a simple shear lag model. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011997"><span>Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Der Meer, Frans P.; Davila, Carlos G.</p> <p>2012-01-01</p> <p>The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApCM..tmp...32Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApCM..tmp...32Z"><span>In Situ Strength Model for Continuous Fibers and Multi-Scale Modeling the Fracture of C/SiC Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Sheng; Gao, Xiguang; Song, Yingdong</p> <p>2018-04-01</p> <p>A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999SPIE.3672..264M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999SPIE.3672..264M"><span>Steady-state sinusoidal behavior of elastomeric dampers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madhavan, Vijay; Wereley, Norman M.; Sieg, Thierry</p> <p>1999-06-01</p> <p>This paper presents an experimental and analytical investigation of an elastomeric damping material and assesses its potential application to stability augmentation of hingeless and bearingless helicopter rotors. Double lap shear specimens were tested on a servo-hydraulic testing machine. Single frequency sinusoidal tests were conducted over a strain amplitude range of 0 - 30% at three frequencies (lag/rev, 1/rev and a lower harmonic of the rotor). The frequencies were chosen such that the effect of the damper in mitigating instability phenomena, like ground and air resonance, could be analyzed. The effects of frequency, amplitude, pre-load and material self-heating were studied. A three-element mechanisms-based damper model was developed that accurately captures the energy dissipation and hysteresis behavior of the damper. The model incorporates a linear stiffness, viscous damping and a non-linear slip element that are placed in parallel to each other. The parameters of the model were identified using an LMS technique. The model was validated by reconstructing measured hysteresis cycles using these parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title46-vol1/pdf/CFR-2010-title46-vol1-sec36-30-1.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title46-vol1/pdf/CFR-2010-title46-vol1-sec36-30-1.pdf"><span>46 CFR 36.30-1 - Lagged tanks-TB/ALL.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 46 Shipping 1 2010-10-01 2010-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title46-vol1/pdf/CFR-2012-title46-vol1-sec36-30-1.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title46-vol1/pdf/CFR-2012-title46-vol1-sec36-30-1.pdf"><span>46 CFR 36.30-1 - Lagged tanks-TB/ALL.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 46 Shipping 1 2012-10-01 2012-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title46-vol1/pdf/CFR-2014-title46-vol1-sec36-30-1.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title46-vol1/pdf/CFR-2014-title46-vol1-sec36-30-1.pdf"><span>46 CFR 36.30-1 - Lagged tanks-TB/ALL.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... 46 Shipping 1 2014-10-01 2014-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>