Science.gov

Sample records for shear modes criticality

  1. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik; Shin, Chansun

    2016-03-01

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress-strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  2. Low-rise shear wall failure modes

    SciTech Connect

    Farrar, C.R. ); Hashimoto, P.S. ); Reed, J.W. and Associates, Inc., Mountain View, CA )

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs.

  3. Coupling of dust acoustic and shear mode through velocity shear in a strongly coupled dusty plasma

    SciTech Connect

    Garai, S. Janaki, M. S.; Chakrabarti, N.

    2015-07-15

    In the strongly coupled limit, the generalized hydrodynamic model shows that a dusty plasma, acquiring significant rigidity, is able to support a “shear” like mode. It is being demonstrated here that in presence of velocity shear gradient, this shear like mode gets coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperatures of the dust, electron, and ion fluids. In the local analysis, the dispersion relation shows that velocity shear gradient not only couples the two modes but is also responsible for the instabilities of that coupled mode which is confirmed by nonlocal analysis with numerical techniques.

  4. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  5. Shear Thinning Near the Critical Point of Xenon

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two

  6. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Astrophysics Data System (ADS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-06-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  7. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-01-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  8. Nonlinear Behavior of RC Dual Ductility Mode Shear Walls

    NASA Astrophysics Data System (ADS)

    Labafzadeh, M. S. R.; Ziyaeifar, M.

    2008-07-01

    Shear walls are among the most common lateral load resisting systems in medium height buildings. This is due, mostly, to their ability in providing the required level of lateral stiffness and strength for the structure (with simplicity and ease). However, shear walls are not considered as efficient structural component if ductility is the major concern. The fact is, in a tall shear wall, formation of plastic hinge happen only in a fraction of the height of the wall and ductility resources of the rest of the wall remains, mostly, untapped. The experiences with coupled shear walls have shown the potential of dispersion of inelastic behavior over the height of the wall, causing more desirable ductile behavior and a better crack pattern for the whole system. Intuitively, the same concept can be extended to the shear walls with openings. In such cases, both flexural and shear ductility capacity of the system over the height of the wall can be efficiently used to provide us with a dual ductility mode shear wall. This study focuses on the role of openings in ductile behavior of shear walls. The objective of this paper is comparing the nonlinear behavior of ordinary reinforced concrete shear wall with the ones with openings. To this end, the TNO DIANA finite element software is used to show the potential of dual ductility mode of behavior in shear walls with openings. In this regards a series of inelastic static analysis on a variety of shear walls have been carried out. The results of study in a wide variety of shear walls indicate that the potential of openings in the enhancement of ductility modes of such walls in comparison with those without openings.

  9. Longitudinal and Shear Mode Ultrasound Propagation in Human Skull Bone

    NASA Astrophysics Data System (ADS)

    White, P. J.; Hynynen, K.; Clement, G. T.

    2006-05-01

    Recent studies have attempted to dispel the idea of the longitudinal mode being the only significant mode of ultrasound energy transport through the skull bone. The inclusion of shear waves in propagation models has been largely ignored because of an assumption that shear mode conversions from the skull interfaces to the surrounding media rendered the resulting acoustic field insignificant in amplitude and overly distorted. Experimental investigations with isotropic phantom materials and ex vivo human skulls demonstrated that in certain cases, a shear mode propagation scenario not only can be less distorted, but at times allowed for a substantial (as much as 36% of the longitudinal pressure amplitude) transmission of energy. The phase speed of 1.0-MHz shear mode propagation through ex vivo human skull specimens has been measured to be nearly half of that of the longitudinal mode (shear sound speed = 1500±140 m/s, longitudinal sound speed = 2820±40 m/s), demonstrating that a closer match in impedance can be achieved between the skull and surrounding soft tissues with shear mode transmission. By comparing propagation model results with measurements of transcranial ultrasound transmission obtained by a radiation force method, the attenuation coefficients for the longitudinal mode of propagation was determined to between 14 Np/m and 70 Np/m for the frequency range studied while the same for shear waves were found to be between 94 Np/m and 213 Np/m. This study was performed within the frequency range of 0.2-0.9 MHz.

  10. Stabilization of ballooning modes with sheared toroidal rotation

    SciTech Connect

    Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.

    1994-11-01

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted-circle model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (d{Omega}/dq where {Omega} is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency {omega}{sub A} = V{sub A}/qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode.

  11. Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers

    NASA Astrophysics Data System (ADS)

    Cong, Chunxiao; Yu, Ting

    2014-08-01

    Few-layer graphene has attracted tremendous attention owing to its exceptional electronic properties inherited from single-layer graphene and new features led by introducing extra freedoms such as interlayer stacking sequences or rotations. Effectively probing interlayer shear modes are critical for unravelling mechanical and electrical properties of few-layer graphene and further developing its practical potential. Unfortunately, shear modes are extremely weak and almost fully blocked by a Rayleigh rejecter in Raman measurements. This greatly hinders investigations of shear modes in few-layer graphene. Here, we demonstrate enhancing of shear modes by properly folding few-layer graphene. As a direct benefit of the strong signal, enhancement mechanism, vibrational symmetry, anharmonicity and electron-phonon coupling of the shear modes are uncovered through studies of Raman mapping, polarization- and temperature-dependent Raman spectroscopy. This work complements Raman studies of graphene layers, and paves an efficient way to exploit low-frequency shear modes of few-layer graphene and other two-dimensional layered materials.

  12. Theory of semicollisional kinetic Alfven modes in sheared magnetic fields

    SciTech Connect

    Hahm, T.S.; Chen, L.

    1985-02-01

    The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum.

  13. Contained Modes In Mirrors With Sheared Rotation

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  14. Self-organized criticality of plastic shear bands in rocks

    SciTech Connect

    Poliakov, A.N.B.; Herrmann, H.J.

    1994-09-01

    We show that the shear bands that appear during the pure shear numerical simulations of rocks with a non-associated plastic flow rule form fractal networks. The system drives spontaneously into a state in which the length distribution of shear bands follows a power law (self-organized criticality) with exponent 2.07. The distribution of local gradients in deviatoric strain rate has different scaling exponents for each moment, in particular the geometrical fractal dimension is 1.7. Samples of granodiorite sheared under high confining pressure from the Pyrenees are analyzed and their properties compared with the numerical results.

  15. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  16. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect

    Mao, Aohua; Li, Jiquan; Liu, Jinyuan; Kishimoto, Yasuaki

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  17. Shear-mode grinding force criteria of Zerodur and Pyrex

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroshi; Imai, Kenichiro

    1995-08-01

    Experimental grinding of Zerodur and Pyrex demonstrated shear-mode grinding criteria (SM' GFC), which is a repeatable deterministic function of grinding conditions including materials and grinding wheels. Both criteria as with BK7 glass previously reported, are found to be the logarithmic function of removal rate.

  18. Breakup modes of fluid drops in confined shear flows

    NASA Astrophysics Data System (ADS)

    Barai, Nilkamal; Mandal, Nibir

    2016-07-01

    Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.

  19. Asymptotic persistence of collective modes in shear flows

    SciTech Connect

    Mahajan, S.M. |; Rogava, A.D. |

    1998-03-31

    A new nonasymptotic method is presented that reveals an unexpected richness in the spectrum of fluctuations sustained by a shear flow with nontrivial arbitrary mean kinematics. The vigor of the method is illustrated by analyzing a two-dimensional, compressible hydrodynamic shear flow. The temporal evolution of perturbations spans a wide range of nonexponential behavior from growth-cum oscillations to monotonic growth. The principal characteristic of the revealed exotic collective modes in their asymptotic persistence. {open_quotes}Echoing{close_quotes} as well as unstable (including parametrically-driven) solutions are displayed. Further areas of application, for both the method and the new physics, are outlined.

  20. The Critical Criterion on Runaway Shear Banding in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.

    2016-02-01

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.

  1. The Critical Criterion on Runaway Shear Banding in Metallic Glasses

    PubMed Central

    Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.

    2016-01-01

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. PMID:26893196

  2. Ideal ballooning modes, shear flow and the stable continuum

    NASA Astrophysics Data System (ADS)

    Taylor, J. B.

    2012-11-01

    There is a well-established theory of ballooning modes in a toroidal plasma. The cornerstone of this is a local eigenvalue λ on each magnetic surface—which also depends on the ballooning phase angle k. In stationary plasmas, λ(k) is required only near its maximum, but in rotating plasmas its average over k is required. Unfortunately in many cases λ(k) does not exist for some range of k, because the spectrum there contains only a stable continuum. This limits the application of the theory, and raises the important question of whether this ‘stable interval’ gives rise to significant damping. This question is re-examined using a new, simplified, model—which leads to the conclusion that there is no appreciable damping at small shear flow. In particular, therefore, a small shear flow should not affect ballooning mode stability boundaries.

  3. Critical scaling with strain rate in overdamped sheared disordered solids

    NASA Astrophysics Data System (ADS)

    Clemmer, Joel; Salerno, Kenneth; Robbins, Mark

    In the limit of quasistatic shear, disordered solids demonstrate non-equilibrium critical behavior including power-law distributions of avalanches. Using molecular dynamics simulations of 2D and 3D overdamped binary LJ glasses, we explore the critical behavior in the limit of finite strain rate. We use finite-size scaling to find the critical exponents characterizing shear stress, kinetic energy, and measures of temporal and spatial correlations. The shear stress of the system rises as a power β of the strain rate. Larger system size extends this power law to lower rates. This behavior is governed by a power law drop of the dynamic correlation length with increasing shear stress defined by the exponent ν. This finite-size effect also impacts the scaling of the RMS kinetic energy with strain rate as avalanches begin nucleating simultaneously leading to continuous deformation of the solid. As system size increases, avalanches begin overlapping at lower rates. The correlation function of non-affine displacement exhibits novel anisotropic power law scaling with the magnitude of the wave vector. Its strain rate dependence is used to determine the scaling of the dynamic correlation length. Support provided by: DMR-1006805; NSF IGERT-0801471; OCI-0963185; CMMI-0923018.

  4. Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash

    SciTech Connect

    Xi, P. W.; Xu, X. Q.; Wang, X. G.; Xia, T. Y.

    2012-09-15

    The E Multiplication-Sign B shear flow plays a dual role on peeling-ballooning modes and their subsequently triggered edge localized mode (ELM) crashes. On one hand, the flow shear can stabilize high-n modes and twist the mode in the poloidal direction, constraining the mode's radial extent and reducing the size of the corresponding ELM. On the other hand, the shear flow also introduces the Kelvin-Helmholtz drive, which can destabilize peeling-ballooning modes. The overall effect of equilibrium shear flow on peeling-ballooning modes and ELM crashes depends on the competition between these two effects. When the flow shear is either small or very large, it can reduce ELM size. However, for moderate values of flow shear, the destabilizing effect from the Kelvin-Helmholtz term is dominant and leads to larger ELM crashes.

  5. Relation between Turbulence Suppression and Flow Shear for Interchange Modes

    NASA Astrophysics Data System (ADS)

    Gentle, Kenneth; Rowan, William; Williams, Chad; Li, Bo

    2013-10-01

    The Helimak is an approximation to the infinite cylindrical slab with a size large compared with turbulence transverse scale lengths, but with open field lines of finite length. Interchange modes are the dominant instability. Radially-segmented isolated end plates allow application of radial electric fields. Above a threshold in applied voltage, the fractional turbulent amplitude is greatly reduced. Reductions are observed for both bias polarities over a broad range of collisionality and parallel connection length. Simultaneous measurements of the ion flow velocity profile are made by Doppler spectroscopy of the argon plasma ion. Turbulence reductions are weakly correlated with reductions in radial correlation length, but neither turbulence levels nor turbulence reductions are correlated with velocity flow shear. No evidence of zonal flows has been found. The turbulence - density and potential fluctuations, is compared with simulations from a two-fluid model for this geometry, which also show turbulence stabilization with bias without increased shear. Work supported by the Department of Energy OFES DE-FG02-04ER54766.

  6. Cloud point determination using a thickness shear mode resonator

    SciTech Connect

    Spates, J.J.; Martin, S.J.; Mansure, A.J.; Germer, J.W.

    1995-12-31

    Crude oils and crude oil products contain substantial amounts of petroleum waxes, consisting of a distribution of high molecular weight hydrocarbons. These waxes or paraffins have limited solubility in oil and tend to precipitate out at a temperature determined by the concentration and constituents of the wax. Precipitation and deposition of wax results in narrowing of pipelines, making crude oil recovery difficult. A parameter of practical importance is the wax precipitation temperature, traditionally known as the cloudpoint, at which visible crystallization occurs. Deposition problems arise in oil field operations at or below this temperature. Several techniques can be used to determine the cloud point: (1) visual observation, (2) viscosity measurement, (3) differential thermal analysis, and (4) pulsed nuclear magnetic resonance. This report describes a method for determination of cloud point with the use of a thickness shear mode resonator.

  7. Linear and nonlinear effect of sheared plasma flow on resistive tearing modes

    SciTech Connect

    Hu, Qiming Hu, Xiwei; Yu, Q.

    2014-12-15

    The effect of sheared plasma flow on the m/n = 2/1 tearing mode is studied numerically (m and n are the poloidal and toroidal mode numbers). It is found that in the linear phase the plasma flow with a weak or moderate shear plays a stabilizing effect on tearing mode. However, the mode is driven to be more unstable by sufficiently strong sheared flow when approaching the shear Alfvén resonance (AR). In the nonlinear phase, a moderate (strong) sheared flow leads to a smaller (larger) saturated island width. The stabilization of tearing modes by moderate shear plasma flow is enhanced for a larger plasma viscosity and a lower Alfvén velocity. It is also found that in the nonlinear phase AR accelerates the plasma rotation around the 2/1 rational surface but decelerates it at the AR location, and the radial location satisfying AR spreads inwards towards the magnetic axis.

  8. A face-shear mode single crystal ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Shiyang; Jiang, Wenhua; Zheng, Limei; Cao, Wenwu

    2013-05-01

    We report a face-shear mode ultrasonic motor (USM) made of [011]c poled Zt ± 45° cut 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal, which takes advantage of the extremely large d36 = 2368 pC/N. This motor has a maximum no-load linear velocity of 182.5 mm/s and a maximum output force of 1.03 N under the drive of Vp = 50 V, f = 72 kHz. Compared with the k31 mode USM made of Pb(Zr,Ti)O3 (PZT), our USM has simpler structure, lower driving frequency, much higher electromechanical coupling factor, and twice power density. This USM can be used for low frequency operation as well as cryogenic actuation with a large torque.

  9. Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks

    NASA Astrophysics Data System (ADS)

    Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.

    2016-09-01

    A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.

  10. Interlayer breathing and shear modes in few-layer black phosphorus.

    PubMed

    Jiang, Jin-Wu; Wang, Bing-Shen; Park, Harold S

    2016-04-27

    The interlayer breathing and shear modes in few-layer black phosphorus are investigated for their symmetry and lattice dynamical properties. The symmetry groups for the even-layer and odd-layer few-layer black phosphorus are utilized to determine the irreducible representation and the infrared and Raman activity for the interlayer modes. The valence force field model is applied to calculate the eigenvectors and frequencies for the interlayer breathing and shear modes, which are explained using the atomic chain model. The anisotropic puckered configuration for black phosphorus leads to a highly anisotropic frequency for the two interlayer shear modes. More specifically, the frequency for the shear mode in the direction perpendicular to the pucker is less than half of the shear mode in the direction parallel with the pucker. We also report a set of specular interlayer modes having the same frequency for all few-layer black phosphorus with layer numbers N being a multiple of 3, because these modes manifest themselves as collective vibrations of atoms in specific layers. The optical activity of the collective modes enables possible experimental identification for these modes. PMID:26988113

  11. Interlayer breathing and shear modes in few-layer black phosphorus.

    PubMed

    Jiang, Jin-Wu; Wang, Bing-Shen; Park, Harold S

    2016-04-27

    The interlayer breathing and shear modes in few-layer black phosphorus are investigated for their symmetry and lattice dynamical properties. The symmetry groups for the even-layer and odd-layer few-layer black phosphorus are utilized to determine the irreducible representation and the infrared and Raman activity for the interlayer modes. The valence force field model is applied to calculate the eigenvectors and frequencies for the interlayer breathing and shear modes, which are explained using the atomic chain model. The anisotropic puckered configuration for black phosphorus leads to a highly anisotropic frequency for the two interlayer shear modes. More specifically, the frequency for the shear mode in the direction perpendicular to the pucker is less than half of the shear mode in the direction parallel with the pucker. We also report a set of specular interlayer modes having the same frequency for all few-layer black phosphorus with layer numbers N being a multiple of 3, because these modes manifest themselves as collective vibrations of atoms in specific layers. The optical activity of the collective modes enables possible experimental identification for these modes.

  12. Interlayer breathing and shear modes in few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu; Wang, Bing-Shen; Park, Harold S.

    2016-04-01

    The interlayer breathing and shear modes in few-layer black phosphorus are investigated for their symmetry and lattice dynamical properties. The symmetry groups for the even-layer and odd-layer few-layer black phosphorus are utilized to determine the irreducible representation and the infrared and Raman activity for the interlayer modes. The valence force field model is applied to calculate the eigenvectors and frequencies for the interlayer breathing and shear modes, which are explained using the atomic chain model. The anisotropic puckered configuration for black phosphorus leads to a highly anisotropic frequency for the two interlayer shear modes. More specifically, the frequency for the shear mode in the direction perpendicular to the pucker is less than half of the shear mode in the direction parallel with the pucker. We also report a set of specular interlayer modes having the same frequency for all few-layer black phosphorus with layer numbers N being a multiple of 3, because these modes manifest themselves as collective vibrations of atoms in specific layers. The optical activity of the collective modes enables possible experimental identification for these modes.

  13. Bingham and Response Characteristics of ER Fluids in Shear and Flow Modes

    NASA Astrophysics Data System (ADS)

    Lee, H. G.; Choi, S. B.; Han, S. S.; Kim, J. H.; Suh, M. S.

    This paper presents field-dependent Bingham and response characteristics of ER fluid under shear and flow modes. Two different types of electroviscometers are designed and manufactured for the shear mode and flow mode, respectively. An ER fluid consisting of soluble chemical starches (particles) and silicon oil is made and its field-dependent yield stress is experimentally distilled at two different temperatures using the electroviscometers. Time responses of the ER fluid to step electric fields are also evaluated under two operating modes. In addition, a cylindrical ER damper, which is operated under the flow mode, is adopted and its measured damping force is compared with predicted one obtained from Bingham model of the shear and flow mode, respectively.

  14. Cosmic shear E/B-mode estimation with binned correlation function data

    NASA Astrophysics Data System (ADS)

    Becker, Matthew R.

    2013-10-01

    In this work, I study the problem of E/B-mode separation with binned cosmic shear two-point correlation function data. Motivated by previous work on E/B-mode separation with shear two-point correlation functions and the practical considerations of data analysis, I consider E/B-mode estimators which are linear combinations of the binned shear correlation function data points. I argue that for most surveys, these estimators mix E and B modes and provide proof of this mixing for the simplest case. I, then, show how to define estimators which minimize this E/B-mode mixing and give practical recipes for their construction and use. Using these optimal estimators, I demonstrate that the vector space composed of the binned shear correlation function data points can be decomposed into approximately ambiguous-, E- and B-mode subspaces. With simple Fisher information estimates, I show that a non-trivial amount of information on typical cosmological parameters is contained in the ambiguous-mode subspace computed in this formalism. Next, I give two examples which apply these practical estimators and recipes to generic problems in cosmic shear data analysis: data compression and spatially locating B-mode contamination. In particular, by using wavelet-like estimators with the shear correlation functions directly, one can pinpoint B-mode contamination to specific angular scales and extract information on its shape. Finally, I discuss how these estimators can be used as part of blinded or closed-box cosmic shear data analyses in order to assess and find B-mode contamination at high precision while avoiding observer biases.

  15. The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.

    2016-05-01

    The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q  =  1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.

  16. Kinetic ballooning modes at the tokamak transport barrier with negative magnetic shear

    SciTech Connect

    Yamagiwa, M.; Hirose, A.; Elia, M.

    1997-11-01

    Stability of the kinetic ballooning modes is investigated for plasma parameters at the internal transport barrier in tokamak discharges with negative magnetic shear employing a kinetic shooting code with long shooting distance. It is found that the second stability regime with respect to the pressure gradient parameter, which was predicted for negative shear [A. Hirose and M. Elia, Phys. Rev. Lett. {bold 76}, 628 (1996)], can possibly disappear. The mode with comparatively low toroidal mode number and mode frequency below 100 kHz is found to be destabilized marginally only around the transport barrier characterized by steep pressure and density gradients. {copyright} {ital 1997 American Institute of Physics.}

  17. Mode selective generation of guided waves by systematic optimization of the interfacial shear stress profile

    NASA Astrophysics Data System (ADS)

    Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice

    2015-01-01

    Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile.

  18. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid.

    PubMed

    Chokshi, Paresh; Bhade, Piyush; Kumaran, V

    2015-02-01

    The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density ρ, viscosity η, relaxation time λ, and retardation time βλ flowing past a linear elastic solid medium of thickness HR, density ρ, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re(c) which scales as Σ(3/4), where Reynolds number Re=ρVR/η,V is the top-plate velocity, and dimensionless parameter Σ=ρGR(2)/η(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re(c)∼Σ(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in β-H parametric space, corresponding to very dilute polymer solution (0.9≲β<1) and thin solids (H≲1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing

  19. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid

    NASA Astrophysics Data System (ADS)

    Chokshi, Paresh; Bhade, Piyush; Kumaran, V.

    2015-02-01

    The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R , density ρ , viscosity η , relaxation time λ , and retardation time β λ flowing past a linear elastic solid medium of thickness H R , density ρ , and shear modulus G . The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Rec which scales as Σ3 /4, where Reynolds number Re =ρ V R /η ,V is the top-plate velocity, and dimensionless parameter Σ =ρ G R2/η2 characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Rec˜Σ3 /4 as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in β -H parametric space, corresponding to very dilute polymer solution (0.9 ≲β <1 ) and thin solids (H ≲1.1 ) , in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes

  20. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid.

    PubMed

    Chokshi, Paresh; Bhade, Piyush; Kumaran, V

    2015-02-01

    The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density ρ, viscosity η, relaxation time λ, and retardation time βλ flowing past a linear elastic solid medium of thickness HR, density ρ, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re(c) which scales as Σ(3/4), where Reynolds number Re=ρVR/η,V is the top-plate velocity, and dimensionless parameter Σ=ρGR(2)/η(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re(c)∼Σ(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in β-H parametric space, corresponding to very dilute polymer solution (0.9≲β<1) and thin solids (H≲1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing

  1. Dynamics of the longitudinal and transverse modes in presence of equilibrium shear flow in a strongly coupled dusty plasma

    SciTech Connect

    Garai, S.; Banerjee, D.; Janaki, M. S.; Chakrabarti, N.

    2014-02-11

    In strongly coupled limit the general hydrodynamic (GH) model shows that the dusty plasma, acquiring significant rigidity, is able to support the 'shear' like mode [P. K. Kaw and A. Sen, Phys. Plasmas 5, 3552 (1998)]. In presence of velocity shear, this shear like mode is coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperature of the dust, electron and ion fluids. Local dispersion shows the velocity shear is also responsible for the instabilities of the shear mode, acoustic mode, as well as the shear-acoustic coupled mode. The present work, carried out in GH visco-elastic formalism, also gives the clear insight of the instabilities of the coupled mode in non local regime with a hyperbolic tangent velocity shear profile over a finite width.

  2. Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Chen, S. Y.; Huang, J.; Xiong, Y. Y.; Tang, C. J.

    2016-04-01

    The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognized as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.

  3. Designing of a Testing Machine for Shear-Mode Fatigue Crack Growth

    NASA Astrophysics Data System (ADS)

    Kusaba, A.; Okazaki, S.; Endo, M.; Yanase, K.

    As recognized, flaking-type failure is one of the serious problems for railroad tracks and bearings. In essence, flaking-type failure is closely related to the growth of the shear-mode (Mode-II and Mode-III) fatigue crack. In our research group, it is demonstrated that a shear-mode fatigue crack can be reproduced for cylindrical specimens by applying the cyclic torsion in the presence of the static axial compressive stress. However, a biaxial servo-hydraulic fatigue testing machine is quite expensive to purchase and costly to maintain. The low testing speed (about 10Hz) of the testing machine further aggravates the situation. As a result, study on shear-mode fatigue crack growth is still in the nascent stage. To overcome the difficulties mentioned above, in this research activity, we developed a high-performance and cost-effective testing machine to reproduce the shear-mode fatigue crack growth by improving the available resonance-type torsion fatigue testing machine. The primary advantage of using the resonance-type torsion fatigue testing machine is cost-efficiency. In addition, the testing speed effectively can be improved, in comparison with that of a biaxial servo-hydraulic fatigue testing machine. By utilizing the newly-designed testing machine, we have demonstrated that we can successfully reproduce the shear-mode fatigue crack.

  4. Ideal MHD stability properties of pressure-driven modes in low shear tokamaks

    SciTech Connect

    Manickam, J.; Pomphrey, N.; Todd, A.M.M.

    1987-03-01

    The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs.

  5. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials.

    PubMed

    Wang, Ji; Yang, Jiashi; Li, Jiangyu

    2007-03-01

    Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.

  6. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    PubMed

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses. PMID:26203034

  7. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    SciTech Connect

    Amann, Christian P. Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  8. Observations of Reduced Electron Gyro-scale Fluctuations in National Spherical Torus Experiment H-mode Plasmas with Large E × B Flow Shear

    SciTech Connect

    Smith, D. R.; Kaye, S. M.; Lee, W.; Mazzucato, E.; Park, H. K.; Bell, R. E.; Domier, C. W.; LeBlanc, B. P.; Levinton, F. M.; Luhmann, Jr., N. C.; Menard, J. E.; Yu, H.

    2009-02-13

    Electron gyro-scale fluctuation measurements in National Spherical Torus Experiment (NSTX) H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temper- ature gradient (ETG) turbulence. Large toroidal rotation in NSTX plasmas with neutral beam injection generates E × B flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the E × B flow shear rate exceeds ETG linear growth rates. The observations indicate E × B flow shear can be an effective suppression mechanism for ETG turbulence.

  9. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  10. Effect of density gradients in confined supersonic shear layers. Part 2: 3-D modes

    NASA Technical Reports Server (NTRS)

    Peroomian, Oshin; Kelly, R. E.

    1994-01-01

    The effect of basic flow density gradients on the supersonic wall modes were investigated in Part 1 of this analysis. In that investigation only the 2-D modes were studied. Tam and Hu investigated the 3-D modes in a confined vortex sheet and reported that the first 2-D Class A mode (A01) had the highest growth rate compared to all other 2-D and 3-D modes present in the vortex sheet for that particular set of flow patterns. They also showed that this result also held true for finite thickness shear layers with delta(sub w) less than 0.125. For free shear layers, Sandham and Reynolds showed that the 3-D K-H mode became the dominant mode for M(sub c) greater than 0.6. Jackson and Grosch investigated the effect of crossflow and obliqueness on the slow and fast odes present in a M(sub c) greater than 1 environment and showed that for certain combination of crossflow and wave angles the growth rates could be increased by up to a factor of 2 with respect to the 2-D case. The case studied here is a confined shear layer shown in Part 1. All solution procedures and basic low profiles are the same as in Part 1. The effect of density gradients on the 3-D modes present in the density ratios considered in Part 1 are investigated.

  11. Shear resonance mode decoupling to determine the characteristic matrix of piezoceramics for 3-D modeling.

    PubMed

    Pardo, Lorena; García, Alvaro; de Espinosa, Francisco Montero; Brebøl, Klaus

    2011-03-01

    The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.

  12. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates

    NASA Astrophysics Data System (ADS)

    Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.

    2015-10-01

    Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.

  13. Non-resonant fishbone-like modes in tokamak plasmas with reversed magnetic shear

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Qu; Wang, Xiao-Gang

    2016-03-01

    Energetic ion excited non-resonant fishbone-like modes (FLMs) of m / n  >  1 is investigated for reversed magnetic shear configurations. It is found that the mode can be destabilized by trapped fast ions with a similar excitation mechanism as m / n  =  1 fishbones but with a local interchange-like mode structure, which is in agreement with previous experiments (Toi et al 1999 Nucl. Fusion 39 1929). The dispersion relation of the mode is derived for m / n  >  1. The radial mode structure is then studied by numerically solving the eigenvalue equation. Effects of on/off-axis heating, the width of the particle distribution, the beam energy and the energy distribution on the mode are discussed in detail. Nonlinear analysis of the mode is also carried out by a modified predator-prey model.

  14. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  15. A current-driven electromagnetic mode in sheared and toroidal configurations

    NASA Astrophysics Data System (ADS)

    Pusztai, István; Catto, Peter J.; Parra, Felix I.; Barnes, Michael

    2014-03-01

    The induced electric field in a tokamak drives a parallel electron current flow. In an inhomogeneous, finite beta plasma, when this electron flow is comparable to the ion thermal speed, the Alfvén mode wave solutions of the electromagnetic gyrokinetic equation can become nearly purely growing kink modes. Using the new ‘low-flow’ version of the gyrokinetic code GS2 developed for momentum transport studies (Barnes et al 2013 Phys. Rev. Lett. 111 055005), we are able to model the effect of the induced parallel electric field on the electron distribution to study the destabilizing influence of current on stability. We identify high mode number kink modes in GS2 simulations and make comparisons to analytical theory in sheared magnetic geometry. We demonstrate reassuring agreement with analytical results both in terms of parametric dependences of mode frequencies and growth rates, and regarding the radial mode structure.

  16. Estimation of the shear force in transverse dynamic force microscopy using a sliding mode observer

    NASA Astrophysics Data System (ADS)

    Nguyen, Thang; Hatano, Toshiaki; Khan, Said G.; Zhang, Kaiqiang; Edwards, Christopher; Harniman, Robert; Burgess, Stuart C.; Antognozzi, Massimo; Miles, Mervyn; Herrmann, Guido

    2015-09-01

    In this paper, the problem of estimating the shear force affecting the tip of the cantilever in a Transverse Dynamic Force Microscope (TDFM) using a real-time implementable sliding mode observer is addressed. The behaviour of a vertically oriented oscillated cantilever, in close proximity to a specimen surface, facilitates the imaging of the specimen at nano-metre scale. Distance changes between the cantilever tip and the specimen can be inferred from the oscillation amplitudes, but also from the shear force acting at the tip. Thus, the problem of accurately estimating the shear force is of significance when specimen images and mechanical properties need to be obtained at submolecular precision. A low order dynamic model of the cantilever is derived using the method of lines, for the purpose of estimating the shear force. Based on this model, an estimator using sliding mode techniques is presented to reconstruct the unknown shear force, from only tip position measurements and knowledge of the excitation signal applied to the top of the cantilever. Comparisons to methods assuming a quasi-static harmonic balance are made.

  17. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    SciTech Connect

    J Squire, A Bhattacharjee

    2014-07-01

    We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).

  18. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    USGS Publications Warehouse

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  19. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  20. Disconnections kinks and competing modes in shear-coupled grain boundary migration

    NASA Astrophysics Data System (ADS)

    Combe, N.; Mompiou, F.; Legros, M.

    2016-01-01

    The response of small-grained metals to mechanical stress is investigated by a theoretical study of the elementary mechanisms occurring during the shear-coupled migration of grain boundaries (GB). Investigating a model Σ 17 (410 ) GB in a copper bicrystal, both <110 > and <100 > GB migration modes are studied focusing on both the structural and energetic characteristics. The minimum energy paths of these shear-coupled GB migrations are computed using the nudge elastic band method. For both modes, the GB migration occurs through the nucleation and motion of disconnections. However, the atomic mechanisms of both modes qualitatively differ: While the <110 > mode presents no metastable state, the <100 > mode shows multiple metastable states, some of them evidencing some kinks along the disconnection lines. Disconnection kinks nucleation and motion activation energies are evaluated. Besides, the activation energies of the <100 > mode are smaller than those of the <110 > one except for very high stresses. These results significantly improve our knowledge of the GB migration mechanisms and the conditions under which they occur.

  1. Effects of a sheared ion velocity on the linear stability of ITG modes

    NASA Astrophysics Data System (ADS)

    Lontano, M.; Varischetti, M. C.; Lazzaro, E.

    2006-11-01

    The linear dispersion of the ion temperature gradient (ITG) modes, in the presence of a non uniform background ion velocity U∥ = U∥(x) ez, in the direction of the sheared equilibrium magnetic field B0 = B0(x) ez, has been studied in the frame of the two-fluid guiding center approximation, in slab geometry. Generally speaking, the presence of an ion flow destabilizes the oscillations. The role of the excited K-H instability is discussed.

  2. Comparison of shear flow formation between resonant and non-resonant resistive interchange modes

    NASA Astrophysics Data System (ADS)

    Unemura, T.; Hamaguchi, S.; Wakatani, M.

    1999-11-01

    It is known that the poloidal shear flow is produced from the nonlinear resistive interchange modes(A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59) 1581 (1987)(B.A. Carreras and V. E. Lynch, Phys. Fluids B 5) 1795 (1993). Since the non-resonant resistive modes also become unstable(K. Ichiguchi, Y. Nakamura and M. Wakatani, Nucl. Fusion 31) 2073 (1991), the nonlinear behavior is compared between the resonant and non-resonant modes from the point of view of poloidal flow formation. For understanding the difference, we studied single helicity (m,n)=(3,2) mode in a cylindrical geometry.Rotational transform profile, ι(r), was changed. First, we assumed ι(r)=0.51+0.39r^2, and increased ι(0). This change represents a finite beta effect in currentless stellarators. When the resonant surface exists with ι(r_s)=2/3, the poloidal flow are created near the resonant surface. And, in the case when no resonant surface exists but ι_min ~ 2/3, the non-resonant (3,2) mode grows and poloidal shear flow is also generated; however, the magnitude decreases sharply with the increase of ι_min.

  3. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    SciTech Connect

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-{eta}{sub i}mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub i} mode suggests that the large core {bold E x B} flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {Beta}{sub N} {lt} 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity.

  4. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  5. Kelvin Modes with Nonlinear Critical Layers on a Vortex with a Continuous Velocity Profile

    NASA Astrophysics Data System (ADS)

    Maslowe, Sherwin

    2005-11-01

    The short wave cooperative instability mechanism is of interest both scientifically and because of its pertinence to the aircraft trailing vortex problem. In the first quantitative investigation of this mechanism [Tsai & Widnall (1976)], the discontinuous Rankine vortex was employed. Recently, Sipp & Jacquin [Phys. Fluids (2003)] have shown, however, that for a continuous velocity profile the modes required for the ``Widnall instabilities'' would be damped. The damping is a consequence of viscosity being used to deal with the singular critical point that occurs in the linear, inviscid theory. An alternative approach that is, in fact, more appropriate at high Reynolds numbers is to restore nonlinear terms in a thin critical layer centered on the singular point. With such a nonlinear critical layer, we show that neutral modes exist that would be damped in the linear viscous theory. These modes are non-axisymmetric and the theory is similar mathematically to that for stratified shear flows, where it has been shown that nonlinear modes, not permitted in linear theory, can occur at Richardson numbers larger than 1/4.

  6. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  7. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    NASA Astrophysics Data System (ADS)

    Yao, Xingan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates.

  8. High-order face-shear modes of relaxor-PbTiO3 crystals for piezoelectric motor applications

    NASA Astrophysics Data System (ADS)

    Ci, Penghong; Liu, Guoxi; Chen, Zhijiang; Zhang, Shujun; Dong, Shuxiang

    2014-06-01

    The face-shear vibration modes of [011] poled Zt ± 45° cut relaxor-PT crystals and their applications for linear piezoelectric motors were investigated. Unlike piezoelectric ceramics, the rotated crystal was found to exhibit asymmetric face-shear deformations, and its two high-order face-shear modes degraded into two non-isomorphic modes. As an application example, a standing wave ultrasonic linear motor (10 × 10 × 2 mm3) operating in high-order face-shear vibration modes was developed. The motor exhibits a large driving force (1.5 N) under a low driving voltage (22 Vpp). These findings could provide guidance for design of crystal resonance devices.

  9. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2.

    PubMed

    Zhao, Yanyuan; Luo, Xin; Li, Hai; Zhang, Jun; Araujo, Paulo T; Gan, Chee Kwan; Wu, Jumiati; Zhang, Hua; Quek, Su Ying; Dresselhaus, Mildred S; Xiong, Qihua

    2013-03-13

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently attracted tremendous interest as potential valleytronic and nanoelectronic materials, in addition to being well-known as excellent lubricants in the bulk. The interlayer van der Waals (vdW) coupling and low-frequency phonon modes and how they evolve with the number of layers are important for both the mechanical and the electrical properties of 2D TMDs. Here we uncover the ultralow frequency interlayer breathing and shear modes in few-layer MoS2 and WSe2, prototypical layered TMDs, using both Raman spectroscopy and first principles calculations. Remarkably, the frequencies of these modes can be perfectly described using a simple linear chain model with only nearest-neighbor interactions. We show that the derived in-plane (shear) and out-of-plane (breathing) force constants from experiment remain the same from two-layer 2D crystals to the bulk materials, suggesting that the nanoscale interlayer frictional characteristics of these excellent lubricants should be independent of the number of layers.

  10. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications. PMID:27214895

  11. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture

    PubMed Central

    Lei, Xianqi; Li, Congling; Shi, Xinghua; Xu, Xianghong; Wei, Yujie

    2015-01-01

    It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility, and brittle ceramics, we observed strengthening in aluminum alloys and metallic glasses: Tensile strength of the net section in circumferentially notched cylinders increases with the constraint quantified by the ratio of notch depth over notch root radius; in contrast, the ceramic exhibit notch weakening. The strengthening in the former two is due to resultant deformation transition: Shear failure occurs in intact samples while samples with deep notches break in normal mode fracture. No such deformation transition was observed in the ceramic, and stress concentration leads to its notch weakening. The experimental results are confirmed by theoretical analyses and numerical simulation. The results reported here suggest that the conventional criterion to use brittleness and/or ductility to differentiate notch strengthening or weakening is not physically sound. Notch strengthening or weakening relies on the existence of failure mode transition and materials exhibiting shear failure while subjected to tension will notch strengthen. PMID:26022892

  12. Shear bond strength, failure modes, and confocal microscopy of bonded amalgam restorations.

    PubMed

    Cianconi, Luigi; Conte, Gabriele; Mancini, Manuele

    2011-01-01

    This study evaluated the shear bond strength, failure modes, and confocal microscopy of two different amalgam alloy restorations lined with five adhesive systems. Two regular-set high-copper dental amalgam alloys, Amalcap Plus and Valiant Ph.D, and five commercially available adhesive systems were selected. One hundred and twenty freshly-extracted human third molars were used for the study. The results were statistically evaluated using two-factor analysis of variance (ANOVA). The shear bond strength (SBS) of amalgam to dentin was significantly affected by both the adhesive (p<0.0001) and amalgam alloy (p<0.0002). Regarding mode of failure (MF), among samples restored with Valiant Ph.D, 31 of 50 exhibited adhesive failure, and 19 displayed mixed failure. Laser optical microscopy (OM) of the bonded interface revealed the presence of a good hybrid layer was evident in all experimental groups. Higher bond strengths were measured for four of the five adhesives when used in combination with the spherical alloy. PMID:21383518

  13. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study

    NASA Astrophysics Data System (ADS)

    Pichardo, Samuel; Hynynen, Kullervo

    2007-12-01

    Shear mode transmission through the skull has been previously proposed as a new trans-skull propagation technique for noninvasive therapeutic ultrasound (Clement 2004 J. Acoust. Soc. Am. 115 1356-64). The main advantage of choosing shear over longitudinal mode resides on the fact that there is less wavefront distortion with the former. In the present study, the regions of the brain suitable for shear-mode transmission were established for a simple focused ultrasound device. The device consists of a spherically curved transducer that has a focal length of 10 cm, an aperture between 30° and 60° and operates at 0.74 MHz. The regions suitable for shear-mode transmission were determined by the shear wave acoustic windows that matched the shape of the device acoustic field. The acoustic windows were calculated using segmentation and triangulation of outer and inner faces of skull from 3D-MRI head datasets. Nine heads of healthy adults were analyzed. The surface considered for the calculations was the head region found above the supra-orbital margin. For every inspected point in the brain volume, the axis of the device was determined by the vector between this inspection point and a point located in the center of the brain. Numerical predictions of the acoustic field, where shear-mode conversion through the skull was considered, were obtained and compared to the case of water-only conditions. The brain tissue that is close to the skull showed suitable acoustic windows for shear waves. The central region of the brain seems to be unreachable using shear-mode. Analysis of the acoustic fields showed a proportional relation between the acoustic window for shear mode and the effective degree of focusing. However, this relation showed significant differences among specimens. In general, highly focused fields were obtained when the acoustic window for shear waves (ASW) intersected more than 67% of the entering acoustic window (ATX) of the device. The average depth from the

  14. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    NASA Astrophysics Data System (ADS)

    Aiba, N.; Tokuda, S.; Furukawa, M.; Oyama, N.; Ozeki, T.

    2009-06-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  15. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  16. Field measurement of critical shear stress for erosion and deposition of fine muddy sediments

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Strom, K. B.; Field Study

    2010-12-01

    The movement of muddy sediment from one region to another is linked to the fate and transport of pollutants that can be attached to this sediment. Important in understanding this movement is the need to know the critical conditions for erosion and deposition of the fine muddy sediment. For non-cohesion sediment, such as sands and gravels, reasonable estimates for the critical conditions can often be made theoretically without in situ measurements of the critical fluid condition or sediment transport rate. However, the shear stress needed for the incipient motion of the mud (cohesive sediments) is inherently difficult to calculate theoretically or in research flumes due to the influence of (1) flow history; (2) local sediment composition; (3) biological activity within the bed; (4) water content of the bed; and (5) salinity of the water column. The complexity of the combination of these factors makes the field measurement necessary. A field experiment was conducted under tidal flow in the region surrounding the Houston Ship Channel (near Houston, TX) to determine these conditions. Observations were made using single point, simultaneous, in situ measurement of turbulent flow and suspended sediment concentration within bottom boundary layer. Measurements were primarily made with a 6 MHz Nortek Vector velocimeter (ADV). The ADV was programmed to record 3-minute turbulent velocity with 32 Hz frequency every 10 minute. The suspended sediment concentration (SSC) was measured using the calibration of acoustic backscatter recorded by ADV against sample derived SSC. Different methods such as turbulent kinetic energy (TKE), TKEw and direct covariance method (COV) are compared together. TKE showed much more reasonable estimation on bed shear stress. Combination of time varying SSC, distance from the bed to the sampling volume recorded by ADV and calculation of shear stress made the determination of critical conditions for erosion and deposition possible.

  17. Interlayer breathing and shear modes in NbSe2 atomic layers

    NASA Astrophysics Data System (ADS)

    He, Rui; van Baren, Jeremiah; Yan, Jia-An; Xi, Xiaoxiang; Ye, Zhipeng; Ye, Gaihua; Lu, I.-Hsi; Leong, S. M.; Lui, C. H.

    2016-09-01

    Atomically thin NbSe2 is a metallic layered transition metal dichalcogenide with novel charge-density-wave (CDW) and superconductive phases. Properties of NbSe2 atomic layers are sensitive to interlayer coupling. Here we investigate the interlayer phonons of few-layer NbSe2 by ultralow-frequency Raman spectroscopy. We observe both the interlayer breathing modes and shear modes at frequencies below 40 cm‑1 for samples of 2–15 layers. Their frequency, Raman activity, and environmental instability depend systematically on the layer number. We account for these results by a combination of linear-chain model, group theory and first-principles calculations. We find that, although NbSe2 has different stacking order from MoS2, MoSe2, WS2 and WSe2, they share the same crystal symmetry groups and exhibit similar Raman selection rules for interlayer phonons. In addition, the interlayer phonon modes evolve smoothly from T = 300 to 8 K, with no observable response to the CDW formation in NbSe2. This finding indicates that the atomic registry between adjacent NbSe2 layers is well preserved in the CDW transition.

  18. Interlayer breathing and shear modes in NbSe2 atomic layers

    NASA Astrophysics Data System (ADS)

    He, Rui; van Baren, Jeremiah; Yan, Jia-An; Xi, Xiaoxiang; Ye, Zhipeng; Ye, Gaihua; Lu, I.-Hsi; Leong, S. M.; Lui, C. H.

    2016-09-01

    Atomically thin NbSe2 is a metallic layered transition metal dichalcogenide with novel charge-density-wave (CDW) and superconductive phases. Properties of NbSe2 atomic layers are sensitive to interlayer coupling. Here we investigate the interlayer phonons of few-layer NbSe2 by ultralow-frequency Raman spectroscopy. We observe both the interlayer breathing modes and shear modes at frequencies below 40 cm-1 for samples of 2-15 layers. Their frequency, Raman activity, and environmental instability depend systematically on the layer number. We account for these results by a combination of linear-chain model, group theory and first-principles calculations. We find that, although NbSe2 has different stacking order from MoS2, MoSe2, WS2 and WSe2, they share the same crystal symmetry groups and exhibit similar Raman selection rules for interlayer phonons. In addition, the interlayer phonon modes evolve smoothly from T = 300 to 8 K, with no observable response to the CDW formation in NbSe2. This finding indicates that the atomic registry between adjacent NbSe2 layers is well preserved in the CDW transition.

  19. Shear mode bulk acoustic wave resonator based on c-axis oriented AlN thin film

    NASA Astrophysics Data System (ADS)

    Milyutin, Evgeny; Gentil, Sandrine; Muralt, Paul

    2008-10-01

    A shear mode resonator based on bulk waves trapped in c-axis oriented AlN thin films was fabricated, simulated, and tested. The active 1.55 μm thick AlN layer was deposited on top of an acoustic Bragg reflector composed of SiO2/AlN λ /4 layer pairs. The resonance was excited by means of interdigitated electrodes consisting of 150 nm thick Al lines. Analytical and simulation calculations show that the in-plane electric field excites bulk acoustic wave shear modes that are trapped in such an AlN film slab. The experimental frequency corresponds well to the theoretical one. The evaluated resonance of the fundamental shear mode at 1.86 GHz revealed a coupling of 0.15% and Q-factor of 870 in air and 260 in silicon oil.

  20. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    NASA Astrophysics Data System (ADS)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  1. Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter.

    PubMed

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin; Yang, Jiashi

    2015-04-01

    We studied thickness-shear and thickness-twist vibrations of a monolithic, two-pole crystal filter made from a plate of AT-cut quartz. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded quartz plates were employed which are valid for both the fundamental and the overtone modes. Exact solutions for the free vibration resonant frequencies and modes were obtained from the equations. For a structurally symmetric filter, the modes can be separated into symmetric and antisymmetric ones. Trapped modes with vibrations mainly under the electrodes were found. The effect of the distance between the two pairs of electrodes was examined.

  2. Real-Time Monitoring of Platelet Activation Using Quartz Thickness-Shear Mode Resonator Sensors.

    PubMed

    Wu, Huiyan; Zhao, Guangyi; Zu, Hongfei; Wang, James H-C; Wang, Qing-Ming

    2016-02-01

    In this study, quartz thickness-shear mode (TSM) resonator sensors were adopted to monitor the process of platelet activation. Resting platelets adhering to fibrinogen-coated electrodes were activated by different concentrations of thrombin (1, 10, and 100 U/mL), and the corresponding electrical admittance spectra of TSM resonators during this process were recorded. Based on a bilayer-loading transmission line model of TSM resonators, the complex shear modulus (G' + jG″) and the average thickness (hPL) of the platelet monolayer at a series of time points were obtained. Decrease in thrombin concentration from 100 to 1 U/mL shifted all peaks and plateaus in G', G″, and hPL to higher time points, which could be attributed to the partial activation of platelets by low concentrations of thrombin. The peak value of hPL was acquired when platelets presented their typical spherical shape as the first transformation in activation process. The G' peak appeared 10 ∼ 20 min after hPL peak, when some filopods were observed along the periphery of platelets but without obvious cell spreading. As platelet spreading began and continued, G', G″, and hPL decreased, leading to a steady rise of resonance frequency shift of TSM resonator sensors. The results show high reliability and stability of TSM resonator sensors in monitoring the process of platelet activation, revealing an effective method to measure platelet activities in real-time under multiple experimental conditions. The G', G″, and hPL values could provide useful quantitative measures on platelet structure variations in activation process, indicating potential of TSM resonators in characterization of cells during their transformation. PMID:26840731

  3. Estimation of critical shear stress for erosion in the Changjiang Estuary: A synergy research of observation, GOCI sensing and modeling

    NASA Astrophysics Data System (ADS)

    Ge, Jianzhong; Shen, Fang; Guo, Wenyun; Chen, Changsheng; Ding, Pingxing

    2015-12-01

    Simulating the sediment transport in a high-turbidity region with spatially varying bed properties is challenging. A comprehensive strategy that integrates multiple methods is applied here to retrieve the critical shear stress for erosion, which plays a major role in suspended sediment dynamics in the Changjiang Estuary (CE). Time-series of sea surface suspended sediment concentration (SSC) were retrieved from the Geostationary Ocean Color Imager (GOCI) satellite data at hourly intervals (for 8 h each day) and combined with hydrodynamic modeling of high-resolution CE Finite-Volume Community Ocean Model (CE-FVCOM) to estimate the near-bed critical shear stress in the clay-dominated bed region (plasticity index > 7%). An experimental algorithm to determine the in situ critical shear stress via the plasticity index method was also used to verify the GOCI-derived critical shear stress. Implemented with this new critical shear stress, the sediment transport model significantly improved the simulation of the distribution and spatial variability of the SSC during the spring and neap tidal cycles in the CE. The results suggest that a significant lateral water exchange between channels and shoals occurred during the spring flood tide, which led to a broader high-SSC area in the CE throughout the water column.

  4. Critical shear stress for incipient motion of sand/gravel streambeds

    NASA Astrophysics Data System (ADS)

    Shvidchenko, Audrey B.; Pender, Gareth; Hoey, Trevor B.

    2001-08-01

    Results of an experimental study of the incipient motion of streambeds composed of sand/gravel sediment mixtures are reported and compared with the earlier findings for uniform sediments. The experiments were conducted in an 8 m long by 0.30 m wide glass-walled tilting flume and an 18 m long by 0.80-1.10 m wide trapezoidal concrete channel. A reference transport method is used to define the beginning of bed material movement. The experiments demonstrate that the incipient motion of individual size fractions within a mixture is controlled by their relative size with respect to median size (intergranular effects), mixture standard deviation (effect of the shape of grain-size distribution), absolute value of median size (absolute size effect), and bed slope (effect of relative depth on overall flow resistance). The shear stress at incipient motion of median-sized grains in mixtures is found to be the same as for uniform sediment of this size. The present findings are consistent with available flume and field data. A technique for calculating the critical shear stress of different grain sizes in coarse uniform sediments and unimodal/weakly bimodal sediment mixtures is proposed.

  5. Observation and Analysis of Resistive Instabilities in Negative Central Shear in DIII-D Discharges with L-Mode Edge

    SciTech Connect

    Jayakumar, R.J.; Austin, M.E.; Brennan, D.P.; Chu, M.S.; Luce, T.C.; Strait, E.J.; Turnbull, A.D.

    2002-07-01

    In DIII-D plasmas with L-mode edge and negative central shear (q{sub axis}-q{sub min} {approx}0.3 to 0.5), an interchange-like instability has been observed [1]. The instability and a subsequent tearing mode cause reduction of the core electron temperature and plasma rotation, and therefore the instability affects discharge evolution and the desired high performance is not achieved. Stability analyses indicate robust ideal stability, while the Resistive Interchange Mode criterion is marginal and the instability appears to be localized initially. Based on this, we believe that the mode is, most likely, a Resistive Interchange Mode. The amplitude of the instability is correlated with the location of the q{sub min} surface and inversely with the fast-ion pressure. There is indication that the interchange-like instability may be ''seeding'' the tearing mode that sometimes follows the interchange-like instability.

  6. Opening-mode fracture patterns and their shearing: an assessment of the state of knowledge and prediction capability

    NASA Astrophysics Data System (ADS)

    Aydin, A.

    2012-12-01

    Two common opening-mode fracture patterns include those comprising one set (Figure 1a) and two orthogonal sets (Figure 1b). It is also possible to have three mutually orthogonal opening-mode fractures, but this situation is rare. The prediction of the orientation and dimensional attributes of these simple systems requires a basic knowledge of the medium in which they occur (lithology, bedding, shape and distribution of initial flaws, elastic modulus, subcritical index and other environmental conditions) and the driving stresses or strains responsible for their formation. The issues related to fracture patterns become more complex when initial patterns of predominantly opening-mode fractures were later subjected to shearing. Shearing of a single set of opening-mode fractures (Figure 1c) produces splay fractures whose orientations and lengths show a significant variation. Given the attributes of the initial set and the orientation and relative magnitudes of the new stress components responsible for the shearing, and the mechanical behavoir of the fractures, it is possible to constrain the splay geometry. It turns out that the natural progression of the system is such that the new splays are sheared in a sequential manner to form remarkably consistent fracture domain patterns, which may be called "apparent conjugate." Well-documented case studies, some of which will be used in this presentation as templates, indicate that these fracture domain patterns can be visualized, but mapping their variation (local orientation and geometry of the individual components) is not a trivial task and may require knowledge both of some of the parameters referred to above and of the stress distribution about larger regional structures such as folds and faults. The shearing of orthogonal arrays of opening-mode fractures produces splay fractures diagonal to both orthogonal sets (Figure 1d). New through-going shear fractures, again in apparent conjugate patterns, utilize both members of

  7. Role of the geodesic acoustic mode shearing feedback loop in transport bifurcations and turbulence spreading

    SciTech Connect

    Miki, K.; Diamond, P. H.

    2010-03-15

    A theory of the effect of the geodesic acoustic mode (GAM) on turbulence is presented. Two synergistic issues are elucidated: namely, the physics of the zonal flow modulation and its role in the L-H transition, and the role of the GAM wave group propagation in turbulence spreading. Using a wavekinetic modulational analysis, the response of the turbulence intensity field to the GAM is calculated. This analysis differs from previous studies of zero-frequency zonal flows since it accounts for resonance between the drift wave group speed and the GAM strain field, which induces secularity. This mechanism is referred to as secular stochastic shearing. Finite real frequency and radial group velocity are intrinsic to the GAM, so its propagation can induce nonlocal phenomena at the edge and pedestal regions. To understand the effect of the GAM on turbulence and transition dynamics, a predator-prey model incorporating the dynamics of both turbulence and the GAMs is constructed and analyzed for stability around fixed points. Three possible states are identified, namely, an L-modelike stationary state, a reduced turbulence state, and a GAM limit-cycle state. The system is attracted to the state with the minimum turbulence level.

  8. Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Hillman, A.R.

    1997-08-01

    Both a transmission-line model and its simpler variant, a lumped-element model, can be used to predict the responses of a thickness-shear-mode quartz resonator sensor. Relative deviations in the parameters computed by the two models (shifts in resonant frequency and motional resistance) do not exceed 3% for most practical sensor configurations operating at the fundamental resonance. If the ratio of the load surface mechanical impedance to the quartz shear characteristic impedance does not exceed 0.1, the lumped-element model always predicts responses within 1% of those for the transmission-line model.

  9. Development of an apparent face-shear mode (d36) piezoelectric transducer for excitation and reception of shear horizontal waves via two-dimensional antiparallel poling

    NASA Astrophysics Data System (ADS)

    Li, Faxin; Miao, Hongchen

    2016-10-01

    The non-dispersive fundamental shear horizontal (SH0) wave is extremely useful in guided-wave-based inspection techniques. However, the generation or reception of the SH0 wave by using a piezoelectric transducer is always a challenge. In this work, first, we realized the apparent face-shear (d36) mode in PbZr1-xTixO3 (PZT) ceramics via two-dimensional antiparallel poling. Then, we demonstrated via finite element simulations that the apparent d36 mode PZT wafer can behave as both a SH0 wave actuator and a SH0 wave sensor. Next, by using the apparent d36 PZT wafer as an actuator and a face-shear d36 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] crystal as the sensor, almost a pure SH0 wave with a high signal-to-noise ratio was successfully excited in an aluminum plate from 180 kHz to 200 kHz. Later, experiments showed that the proposed apparent d36 PZT wafer can also serve as a sensor to detect the SH0 wave over a wide frequency range (160 kHz to 230 kHz). Finally, the amplitude directivity of the SH0 wave generated by the apparent d36 PZT wafer was also investigated. The wave amplitude reaches its maxima at the main direction (0° and 90°) and then decreases monotonically when the propagation direction deviates from the main directions, with the symmetric axis along the 45° direction. The proposed apparent d36 PZT wafer is very suitable for severing as SH0 wave actuators and sensors in structural health monitoring systems.

  10. Sensing Characteristics of Shear-Mode AlN Solidly Mounted Resonators with a Silicone Microfluidic System in Viscous Media

    NASA Astrophysics Data System (ADS)

    Xiong, Juan; Guo, Peng; Sun, Xi-Liang; Wang, Sheng-Fu; Hu, Ming-Zhe; Gu, Hao-Shuang

    2014-02-01

    AlN solidly mounted resonators with silicone microfluidic systems vibrating in shear mode are fabricated and characterized. The fabrication process is compatible with integrated circuits and the c-axis tilted AlN films are deposited, which allow in-liquid operation through excitation of the shear mode. The silicone microfluidic system is mounted on top of the sensor chip to transport the analyses and confine the flow to the active area. The properties of sensor operation in air, deionized water, ethanol, isopropanol, 80% glycol aqueous solution, glycol, and olive oil are characterized. The effects of different viscosities on the resonance frequency shift and Q-factor of the sensor have been discussed. The sensitivity and Q value in glycol of the sensor are 1.52 MHz cm2/μg and around 60, respectively. The results indicate the potential of a highly sensitive microfluidic sensor system for the applications in viscous media.

  11. A technique for predicting mode I energy release rates using a first-order shear deformable plate theory

    NASA Technical Reports Server (NTRS)

    Davidson, B. D.; Schapery, R. A.

    1990-01-01

    Utilizing a first order shear deformable plate theory, a technique is described for predicting the distribution of the energy release rate along a curved or straight mode I planar crack in the plane of a plate (such as a delamination crack). Accuracy of the technique is assessed by comparing the distributions of energy release rate with those predicted by two- and three-dimensional finite element analyses of double cantilever beam specimens with straight crack fronts.

  12. Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation.

    PubMed

    Jenei, Csaba; Balogh, Emília; Szabó, Gábor Tamás; Dézsi, Csaba András; Kőszegi, Zsolt

    2016-01-01

    The average wall shear stress (WSS) is in 1 Pa range in coronary arteries, while the stretching effect of an implanted coronary stent can generate up to 3 × 105 times higher circumferential stress in the vessel wall. It is widely accepted that WSS plays a critical role in the development of restenosis after coronary stent implantation, but relevant clinical endpoint studies are lack-ing. Fluid dynamics modeling suggests an association between WSS and intimal hyperplasia, however, such an association is not established when the compensating healing process becomes an overshoot phenomenon. This review summarizes available clinical results and concepts of potential clinical importance. PMID:27439365

  13. Critical transition for the edge shear layer formation: Comparison of model and experiment

    SciTech Connect

    Carreras, B. A.; Garcia, L.; Pedrosa, M. A.; Hidalgo, C.

    2006-12-15

    The experimental results for the emergence of the plasma edge shear flow layer in TJ-II [C. Alehaldre et al.Fusion Technol. 17, 131 (1990)] can be explained using a simple model for a second-order transition based on the sheared flow amplification by Reynolds stress and turbulence suppression by shearing. In the dynamics of the model, the resistive interchange instability is used. This model gives power dependence on density gradients before and after the transition, consistent with experiment.

  14. Radially anisotropic 3-D shear wave structure of the Australian lithosphere and asthenosphere from multi-mode surface waves

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.

    2014-10-01

    A new radially anisotropic shear wave speed model for the Australasian region is constructed from multi-mode phase dispersion of Love and Rayleigh waves. An automated waveform fitting technique based on a global optimization with the Neighbourhood Algorithm allows the exploitation of large numbers of three-component broad-band seismograms to extract path-specific dispersion curves covering the entire continent. A 3-D shear wave model is constructed including radial anisotropy from a set of multi-mode phase speed maps for both Love and Rayleigh waves. These maps are derived from an iterative inversion scheme incorporating the effects of ray-path bending due to lateral heterogeneity, as well as the finite frequency of the surface waves for each mode. The new S wave speed model exhibits major tectonic features of this region that are in good agreement with earlier shear wave models derived primarily from Rayleigh waves. The lateral variations of depth and thickness of the lithosphere-asthenosphere transition (LAT) are estimated from the isotropic (Voigt average) S wave speed model and its vertical gradient, which reveals correlations between the lateral variations of the LAT and radial anisotropy. The thickness of the LAT is very large beneath the Archean cratons in western Australia, whereas that in south Australia is thinner. The radial anisotropy model shows faster SH wave speed than SV beneath eastern Australia and the Coral Sea at the lithospheric depth. The faster SH anomaly in the lithosphere is also seen in the suture zone between the three cratonic blocks of Australia. One of the most conspicuous features of fast SH anisotropy is found in the asthenosphere beneath the central Australia, suggesting anisotropy induced by shear flow in the asthenosphere beneath the fast drifting Australian continent.

  15. Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2014-12-10

    We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region of space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.

  16. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    NASA Astrophysics Data System (ADS)

    Squire, J.; Bhattacharjee, A.

    2014-12-01

    We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region of space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.

  17. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes.

    PubMed

    Sommer, Gerhard; Sherifova, Selda; Oberwalder, Peter J; Dapunt, Otto E; Ursomanno, Patricia A; DeAnda, Abe; Griffith, Boyce E; Holzapfel, Gerhard A

    2016-08-16

    Rupture of aneurysms and acute dissection of the thoracic aorta are life-threatening events which affect tens of thousands of people per year. The underlying mechanisms remain unclear and the aortic wall is known to lose its structural integrity, which in turn affects its mechanical response to the loading conditions. Hence, research on such aortic diseases is an important area in biomechanics. The present study investigates the mechanical properties of aneurysmatic and dissected human thoracic aortas via triaxial shear and uniaxial tensile testing with a focus on the former. In particular, ultimate stress values from triaxial shear tests in different orientations regarding the aorta׳s orthotropic microstructure, and from uniaxial tensile tests in radial, circumferential and longitudinal directions were determined. In total, 16 human thoracic aortas were investigated from which it is evident that the aortic media has much stronger resistance to rupture under 'out-of-plane' than under 'in-plane' shear loadings. Under different shear loadings the aortic tissues revealed anisotropic failure properties with higher ultimate shear stresses and amounts of shear in the longitudinal than in the circumferential direction. Furthermore, the aortic media decreased its tensile strength as follows: circumferential direction >longitudinaldirection> radial direction. Anisotropic and nonlinear tissue properties are apparent from the experimental data. The results clearly showed interspecimen differences influenced by the anamnesis of the donors such as aortic diseases or connective tissue disorders, e.g., dissected specimens exhibited on average a markedly lower mechanical strength than aneurysmatic specimens. The rupture data based on the combination of triaxial shear and uniaxial extension testing are unique and build a good basis for developing a 3D failure criterion of diseased human thoracic aortic media. This is a step forward to more realistic modeling of mechanically

  18. Critical modes due to Archimedean buoyancy and dielectrophoretic force in a dielectric liquid in cylindrical annulus

    NASA Astrophysics Data System (ADS)

    Meyer, Antoine; Yoshikawa, Harunori; Crumeyrolle, Olivier; Mutabazi, Innocent

    2015-11-01

    An incompressible dielectric fluid is confined in a cylindrical annulus maintained at two different temperatures and an electric tension in Earth gravity. The coupling between the electric field and the thermal variation of the permittivity leads to a dilectrophoretic force that acts as a buoyancy force to induce convective flows. We have performed the linear stability analysis to determine the critical parameters and the nature of critical modes for different values of the control parameters. Four types of modes were found: For weak values of the electric tension, the critical modes are either hydrodynamic or thermal modes depending on the Prandtl number and for large values of electric tension lead to electric modes. For its intermediate values, critical modes are columnal vortices, similar to those observed in simulations of the convection in a cylindrical annulus with a radial gravity. Work supported by the CNES-France

  19. VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE

    SciTech Connect

    Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com

    2013-06-01

    We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

  20. Analysis of the nonlinear behavior of shear-Alfvén modes in tokamaks based on Hamiltonian mapping techniques

    NASA Astrophysics Data System (ADS)

    Briguglio, S.; Wang, X.; Zonca, F.; Vlad, G.; Fogaccia, G.; Di Troia, C.; Fusco, V.

    2014-11-01

    We present a series of numerical simulation experiments set up to illustrate the fundamental physics processes underlying the nonlinear dynamics of Alfvénic modes resonantly excited by energetic particles in tokamak plasmas and of the ensuing energetic particle transports. These phenomena are investigated by following the evolution of a test particle population in the electromagnetic fields computed in self-consistent MHD-particle simulation performed by the HMGC code. Hamiltonian mapping techniques are used to extract and illustrate several features of wave-particle dynamics. The universal structure of resonant particle phase space near an isolated resonance is recovered and analyzed, showing that bounded orbits and untrapped trajectories, divided by the instantaneous separatrix, form phase space zonal structures, whose characteristic non-adiabatic evolution time is the same as the nonlinear time of the underlying fluctuations. Bounded orbits correspond to a net outward resonant particle flux, which produces a flattening and/or gradient inversion of the fast ion density profile around the peak of the linear wave-particle resonance. The connection of this phenomenon to the mode saturation is analyzed with reference to two different cases: a Toroidal Alfvén eigenmode in a low shear magnetic equilibrium and a weakly unstable energetic particle mode for stronger magnetic shear. It is shown that, in the former case, saturation is reached because of radial decoupling (resonant particle redistribution matching the mode radial width) and is characterized by a weak dependence of the mode amplitude on the growth rate. In the latter case, saturation is due to resonance detuning (resonant particle redistribution matching the resonance width) with a stronger dependence of the mode amplitude on the growth rate.

  1. Analysis of the nonlinear behavior of shear-Alfvén modes in tokamaks based on Hamiltonian mapping techniques

    SciTech Connect

    Briguglio, S. Vlad, G.; Fogaccia, G.; Di Troia, C.; Fusco, V.; Wang, X.; Zonca, F.

    2014-11-15

    We present a series of numerical simulation experiments set up to illustrate the fundamental physics processes underlying the nonlinear dynamics of Alfvénic modes resonantly excited by energetic particles in tokamak plasmas and of the ensuing energetic particle transports. These phenomena are investigated by following the evolution of a test particle population in the electromagnetic fields computed in self-consistent MHD-particle simulation performed by the HMGC code. Hamiltonian mapping techniques are used to extract and illustrate several features of wave-particle dynamics. The universal structure of resonant particle phase space near an isolated resonance is recovered and analyzed, showing that bounded orbits and untrapped trajectories, divided by the instantaneous separatrix, form phase space zonal structures, whose characteristic non-adiabatic evolution time is the same as the nonlinear time of the underlying fluctuations. Bounded orbits correspond to a net outward resonant particle flux, which produces a flattening and/or gradient inversion of the fast ion density profile around the peak of the linear wave-particle resonance. The connection of this phenomenon to the mode saturation is analyzed with reference to two different cases: a Toroidal Alfvén eigenmode in a low shear magnetic equilibrium and a weakly unstable energetic particle mode for stronger magnetic shear. It is shown that, in the former case, saturation is reached because of radial decoupling (resonant particle redistribution matching the mode radial width) and is characterized by a weak dependence of the mode amplitude on the growth rate. In the latter case, saturation is due to resonance detuning (resonant particle redistribution matching the resonance width) with a stronger dependence of the mode amplitude on the growth rate.

  2. A critical review of the experimental data for developed free turbulent shear layers

    NASA Technical Reports Server (NTRS)

    Birch, S. F.; Eggers, J. M.

    1973-01-01

    Experimental shear layer data are reviewed and the results are compared to numerical predictions for three test cases. It was concluded from the study that many, if not most, of the apparent inconsistencies which exist in the interpretation of the experimental data for free shear layers result from confusing data taken in developed turbulent flows with those taken in transitional or developing flows. Other conclusions drawn from the study include the following: (1) The effects of Mach number are more uncertain primarily because of limited data and the absence of any turbulence measurements for supersonic shear layers. (2) The data available for heterogeneous shear layers are not sufficient to clearly establish the effect of density ratio on mixing rate.

  3. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    SciTech Connect

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose and supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.

  4. Effect of Radius of Loading Nose and Supports in Short Beam Test Fixture on Fracture Mode and Interlaminar Shear Strength of Gfrp at 77 K

    NASA Astrophysics Data System (ADS)

    Nishimura, A.

    2008-03-01

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose and supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.

  5. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII–D

    SciTech Connect

    Rost, J. C.; Porkolab, M.; Dorris, J.; Burrell, K. H.

    2014-06-15

    A region of turbulence with large radial wavenumber (k{sub r}ρ{sub s}>1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII–D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E{sub r} well, the turbulence exhibits large amplitude n{sup ~}/n∼40%, with large radial wavenumber |k{sup ¯}{sub r}/k{sup ¯}{sub θ}|∼11 and short radial correlation length L{sub r}/ρ{sub i}∼0.2. The turbulence inside the E{sub r} well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocity shear. The PCI diagnostic provides a line-integrated measurement of density fluctuations, so data are taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k{sub r}/k{sub θ}. Analysis of the Doppler shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface, outside the minimum of the E{sub r} well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. These PCI observations, made in QH-mode, are qualitatively similar to those made in standard edge localized modes (ELM)-free H-mode and between ELMs, suggesting a similar role for large k{sub r} turbulence there.

  6. Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet

    NASA Astrophysics Data System (ADS)

    Huang, Rong F.; Lan, Jen

    2005-03-01

    Characteristics and evolution processes of the traveling coherent flow structure in the shear layer of an elevated round jet in crossflow are studied experimentally in an open-loop wind tunnel. Streak pictures of the smoke flow patterns illuminated by the laser-light sheet in the median and horizontal planes are recorded with a high speed digital camera. Time histories of the instantaneous velocity of the vortical flows in the shear layer are digitized by a hot-wire anemometer through a high-speed data acquisition system. By analyzing the streak pictures of the smoke flow visualization, five characteristic flow structures, mixing-layer type vortices, backward-rolling vortices, forward-rolling vortices, swing-induced mushroom vortices, and jet-type vortices, are identified in the shear layer evolving from the up-wind edge of the jet exit. The behaviors and mechanisms of the vortical flow structure in the bent shear layer are prominently distinct in different flow regimes. The frequency characteristics, Strouhal number, power-spectrum density functions, autocorrelation coefficient, as well as the time and length scales of the coherent structure and the Lagrangian integral scales are obtained by processing the measured instantaneous velocity data. The Strouhal number is found to decay exponentially with the increase of the jet-to-crossflow momentum flux ratio. The autocorrelation coefficients provide the information for calculating the statistical time scales of the coherent structure and the integral time scales of turbulence fluctuations. The corresponding length scales of the vortical structure and the integral length scales of turbulence in the shear layer are therefore obtained and discussed.

  7. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.

  8. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    NASA Astrophysics Data System (ADS)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  9. Effects of unequal electrode pairs on an x-strip thickness-shear mode multi-channel quartz crystal microbalance.

    PubMed

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-12-01

    We study the thickness-shear vibrations of an x-strip monolithic piezoelectric plate made from AT-cut quartz crystals with two unequal electrode pairs. The Tiersten-Smythe scalar differential equations for electroded and unelectroded quartz plates are separately employed, resulting in free vibration distributions and frequencies of operating modes. The vibrations of these operating modes are mainly trapped in the electroded regions. The loss of the structural symmetry can lead to a weak vibration interaction between two electroded regions. The influences of electrode difference on the vibration and frequency interference between two adjacent resonators are investigated in detail. The obtained results provide a fundamental reference to the design and optimization of multi-channel quartz crystal microbalance. PMID:27484997

  10. Effects of unequal electrode pairs on an x-strip thickness-shear mode multi-channel quartz crystal microbalance.

    PubMed

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-12-01

    We study the thickness-shear vibrations of an x-strip monolithic piezoelectric plate made from AT-cut quartz crystals with two unequal electrode pairs. The Tiersten-Smythe scalar differential equations for electroded and unelectroded quartz plates are separately employed, resulting in free vibration distributions and frequencies of operating modes. The vibrations of these operating modes are mainly trapped in the electroded regions. The loss of the structural symmetry can lead to a weak vibration interaction between two electroded regions. The influences of electrode difference on the vibration and frequency interference between two adjacent resonators are investigated in detail. The obtained results provide a fundamental reference to the design and optimization of multi-channel quartz crystal microbalance.

  11. On a common critical state in localized and diffuse failure modes

    NASA Astrophysics Data System (ADS)

    Zhu, Huaxiang; Nguyen, Hien N. G.; Nicot, François; Darve, Félix

    2016-10-01

    Accurately modeling the critical state mechanical behavior of granular material largely relies on a better understanding and characterizing the critical state fabric in different failure modes, i.e. localized and diffuse failure modes. In this paper, a mesoscopic scale is introduced, in which the organization of force-transmission paths (force-chains) and cells encompassed by contacts (meso-loops) can be taken into account. Numerical drained biaxial tests using a discrete element method are performed with different initial void ratios, in order to investigate the critical state fabric on the meso-scale in both localized and diffuse failure modes. According to the displacement and strain fields extracted from tests, the failure mode and failure area of each specimen are determined. Then convergent critical state void ratios are observed in failure area of specimens. Different mechanical features of two kinds of meso-structures (force-chains and meso-loops) are investigated, to clarify whether there exists a convergent meso-structure inside the failure area of granular material, as the signature of critical state. Numerical results support a positive answer. Failure area of both localized and diffuse failure modes therefore exhibits the same fabric in critical state. Hence, these two failure modes prove to be homological with respect to the concept of the critical state.

  12. Micropattern of antibodies imaged by shear force microscopy: comparison between classical and jumping modes.

    PubMed

    González, L; Otero, J; Agusil, J P; Samitier, J; Adan, J; Mitjans, F; Puig-Vidal, M

    2014-01-01

    Quartz tuning fork devices are increasingly being used as nanosensors in Scanning Probe Microscopy. They offer some benefits with respect to standard microfabricated cantilevers in certain experimental setups including the study of biomolecules under physiological conditions. In this work, we compare three different working modes for imaging micropatterned antibodies with quartz tuning fork sensors: apart from the classical amplitude and frequency modulation strategies, for first time the jumping mode is implemented using tuning forks. Our results show that the molecules suffer less degradation when working in the jumping mode, due to the reduction of the interaction forces.

  13. Critical Delocalization of Chiral Zero Energy Modes in Graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Mucciolo, Eduardo

    Graphene subjected to chiral-symmetric disorder is believed to host zero energy modes (ZEMs) resilient to localization, as suggested by the renormalization group analysis of the underlying nonlinear sigma model. We report accurate quantum transport calculations in honeycomb lattices with in excess of 109sites and fine meV resolutions. The Kubo dc conductivity of ZEMs induced by vacancy defects (chiral BDI class) is found to match 4e2 / (πh) within 1 % accuracy, over a parametrically wide window of energy level broadenings and vacancy concentrations. Our results disclose an unprecedentedly robust metallic regime in graphene, providing strong evidence that the early field-theoretical picture for the BDI class is valid well beyond its controlled weak-coupling regime. A.F. acknowledges the financial support of the Royal Society, UK.

  14. Pressure Distribution and Critical Exponent in Statically Jammed and Shear-Driven Frictionless Disks

    NASA Astrophysics Data System (ADS)

    Teitel, Stephen; Vågberg, Daniel; Wu, Yegang; Olsson, Peter

    2014-03-01

    We numerically study the distributions of global pressure that are found in ensembles of statically jammed and quasistatically sheared systems of bidisperse, frictionless, disks at fixed packing fraction ϕ in two dimensions. We use these distributions to address the question of how pressure increases as ϕ increases above the jamming point ϕJ, p ~ | ϕ - ϕJ|y . For statically jammed ensembles, our results are consistent with the exponent y being simply related to the power law of the interparticle soft-core interaction. For sheared systems, however, the value of y is consistent with a non-trivial value, as found previously in rheological simulations. Supported by NSF grant DMR-1205800 and Swedish Research Council grant 2010-3725. Resources provided by Swedish National Infrastructure for Computing (SNIC) at PDC and HPC2N, and Center for Integrated Ressearch Computing (CIRC) at the Univ of Rochester.

  15. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    NASA Astrophysics Data System (ADS)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program

  16. a Global Shear Velocity Model of the Upper Mantle from New Fundamental and Higher Rayleigh Mode Measurements

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Ricard, Y. R.

    2011-12-01

    We present a global SV-wave tomographic model of the upper mantle, built from a new dataset of fundamental and higher mode Rayleigh waveforms. We use an extension of the automated waveform inversion approach of Debayle (1999) designed to improve the extraction of fundamental and higher mode information from a single surface wave seismogram. The improvement is shown to be significant in the transition zone structure which is constrained by the higher modes. The new approach is fully automated and can be run on a Beowulf computer to process massive surface wave dataset. It has been used to match successfully over 350 000 fundamental and higher mode Rayleigh waveforms, corresponding to about 20 millions of new measurements extracted from the seismograms. For each seismogram, we obtain a path average shear velocity and quality factor model, and a set of fundamental and higher mode dispersion and attenuation curves compatible with the recorded waveform. The set of dispersion curves provides a global database for future finite frequency inversion. Our new 3D SV-wave tomographic model takes into account the effect of azimuthal anisotropy and is constrained with a lateral resolution of several hundred kilometers and a vertical resolution of a few tens of kilometers. In the uppermost 200 km, our model shows a very strong correlation with surface tectonics. The slow velocity signature of mid-oceanic ridges extend down to ~100 km depth while the high velocity signature of cratons vanishes below 200 km depth. At depth greater than 400 km, the pattern of seismic velocities appear relatively homogeneous at large scale, except for high velocity slabs which produce broad high velocity regions within the transition zone. Although resolution is still good, the region between 200 and 400 km is associated with a complex pattern of seismic heterogeneities showing no simple correlation with the shallower or deeper structure.

  17. Critical Thinking and EFL Learners' Performance on Different Writing Modes

    ERIC Educational Resources Information Center

    Golpour, Farhad

    2014-01-01

    The essential function of critical thinking in education is obvious by many studies done in this field. The main purpose of this article is to find the relationship between critical thinking levels of Iranian EFL learners and their performance on different modes of writing. The sample of the study selected among those who studying English at the…

  18. Localized stability criterion for kink modes in systems with small shear

    SciTech Connect

    Hastie, R.J.; Johnson, J.L.

    1986-02-01

    A localized magnetohydrodynamic stability criterion for ideal kink instabilities is determined for systems where the safety factor has a local minimum on a rational surface with no pressure gradient. These modes are stable in the cylindrical limit, but toroidal effects can make them unstable. They could provide a partial explanation for the rapid current penetration observed in tokamaks. 7 refs.

  19. Ball shear strength and fracture modes of lead-free solder joints prepared using nickel nanoparticle doped flux

    NASA Astrophysics Data System (ADS)

    Sujan, G. K.; Haseeb, A. S. M. A.; Amalina, M. A.; Nishikawa, Hiroshi

    2015-05-01

    Miniaturization and the need for the replacement of lead (Pb) based solders in microelectronic devices raise concerns over their reliability in the recent years. Particularly, the rapid growth of interfacial intermetallic compound (IMC) layers in Pb free solders can lead to brittle fracture. A novel nanoparticle doped fluxing method was used to prepare ball grid array solder joints between Sn-3.0Ag-0.5Cu solder balls and Cu pads. In this method, nickel nanoparticles were mixed with a water soluble flux prior to its use. The shear strength and fracture modes of the resulting solder joints were investigated as a function of aging time. Results showed that IMC layer growth was suppressed in solder joints prepared with 0.1 wt.% Ni doped flux. The average shear strength was marginally higher for solder joints prepared using 0.1 wt. % Ni doped flux compared with the joints prepared with undoped flux. Samples prepared using Ni doped flux showed a better resistant against brittle fracture for up to 30 days of aging.[Figure not available: see fulltext.

  20. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave

  1. Shear flow instabilities induced by trapped ion modes in collisionless temperature gradient turbulence

    SciTech Connect

    Palermo, F.; Garbet, X.; Cartier-Michaud, T.; Ghendrih, P.; Grandgirard, V.; Sarazin, Y.; Ghizzo, A.

    2015-04-15

    One important issue in turbulence self-organization is the interplay between the Kelvin–Helmholtz (KH) instability and streamers and/or zonal flows. This question has been debated for a long time. The effects of the KH instability and its position in the sequence of events between streamers, turbulence, and zonal flows have been investigated with a reduced gyro-bounce averaged kinetic code devoted to study the primary ion temperature gradient (ITG) instability linked to trapped ion modes (TIM). In toroidal geometry, the specific dynamics of TIM linked to trapped particles becomes important when the frequency of ITG modes falls below the ion bounce frequency, allowing one to average on both the cyclotron and bounce motion fast time scales. This reduction of the number of degrees of freedom leads to a strong reduction of computer resources (memory and computation time). Bounce-averaged gyrokinetic code can be considered as a toy model able to describe basic structures of turbulent transport in tokamak devices. In particular, by means of this code, we have observed that the energy injected in the system by the TIM instability is exchanged between streamers and zonal flows by means of KH vortices that grow along these structures in the nonlinear phase. The energy transfer occurs throughout the relaxation phase of the streamer growth leading to a modification of the KH modes and to the generation of the zonal flows.

  2. Piezoceramic omnidirectional transduction of the fundamental shear horizontal guide wave mode

    NASA Astrophysics Data System (ADS)

    Belanger, Pierre; Boivin, Guillaume

    2016-04-01

    Ultrasonic guided waves are now routinely used in non-destructive evaluation. In plate-like structures, three fundamental modes can propagate, namely A0, S0 and SH0. Most of the guided wave literature has thus far focused on the use of A0 and/or S0 because these modes are easy to generate in plate-like structures using standard piezoceramic transducers. Yet, at low frequency, A0 and S0 are dispersive. The consequence of dispersion is that signal processing becomes complex for long propagation distances. SH0, on the other hand, has the particularity of being the only non-dispersive guided wave mode. Omnidirectional transduction of SH0 requires a rotational surface stress which cannot be easily generated using standard piezoceramic transducers. This paper presents a transducer concept based on piezoceramic patches assembled to form a discretized circle. The external diameter of the discretized circle was chosen to be half the SH0 wavelength at the desired centre frequency. Finite element simulations using the Comsol Multiphysics environment showed that in a 1.6 mm aluminium plate the modal selectivity of the transducer was more than 25 dB at 100 kHz. A full transducer was built for experimental validation. The experimental modal selectivity was in the region of 20 dB.

  3. Baroclinic Critical Layers and the Zombie Vortex Instability (ZVI) in Stratified, Rotating Shear Flows: Where They Form and Why

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Huerre, Patrick; Jiang, Chung-Hsiang; Pei, Suyang; Rui, Maryann; Marcus, Philip

    2015-11-01

    It has been found recently that baroclinic critical layers are responsible for a new finite-amplitude instability, called the Zombie Vortex Instability (ZVI), in stratified (with Brunt-Väisälä frequency N) flows, rotating with angular velocity Ω and shear σ. ZVI occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Those vortices excite new baroclinic critical layers, which form new generations of vortices, resulting in ``vortex self-replication'' that fills the fluid with turbulent vortices. To understand the role of baroclinic critical layers in ZVI, we analyze their structures with matched asymptotic expansions, assuming viscosity determines the magnitude and thickness of the critical layer. We verify our analytically obtained leading order inner and outer layer solutions with numerical simulations. In addition, maps of the control parameter space (Reynolds number, N/ Ω and σ/ Ω) are presented that show two regimes where ZVI occurs, and the physics that determines the boundaries of the two regimes is interpreted. The parameter map and its underlying physics provide guidance for designing practical laboratory experiments in which ZVI could be observed.

  4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.

    PubMed

    Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C

    2016-02-01

    elastography, pSWE and 2D-SWE), leading to a bidimensional assessment of liver stiffness in real time up to 5 Hz and in larger regions; thus this technique is also termed real-time 2 D SWE. It has been available on the market for a few years 19 20, and many articles have been published showing stiffness values quite similar to those of Fibroscan(®) 21; likewise, defined thresholds based on histological findings have appeared in several articles 19 20 21.After this brief summary of the technological state of the art we would like to mention the following critical issues that we believe every user should note prior to providing liver stiffness reports. · The thresholds obtained from the "oldest" techniques for the various fibrosis stages based on hundreds of patients with histology as reference standard cannot be straightforwardly applied to the new ultrasound elastography techniques, even if based on the same principle (e. g. pSWE). In fact, the different manufacturers apply proprietary patented calculation modes, which might result in slightly to moderately different values. It should be kept in mind that the range for intermediate fibrosis stages (F1 to F3) is quite narrow, in the order of 2 - 3 kilopascal (over a total range spanning 2 to 75 kPa with Fibroscan), so that slightly different differences in outputs could shift the assessment of patients from one stage to another. Comparative studies using phantoms and healthy volunteers, as well as patients, are eagerly awaited. In fact, the equipment might not produce linear correlations of measurements at different degrees of severity of fibrosis. As a theoretical example, some equipment might well correlate in their values with an older technique, such as transient elastography, at low levels of liver fibrosis, but not as well in cases of more advanced fibrosis or vice versa. Consequentely, when elastography data are included in a report, the equipment utilized for the measurement should be clearly specified, and

  5. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.

    PubMed

    Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C

    2016-02-01

    elastography, pSWE and 2D-SWE), leading to a bidimensional assessment of liver stiffness in real time up to 5 Hz and in larger regions; thus this technique is also termed real-time 2 D SWE. It has been available on the market for a few years 19 20, and many articles have been published showing stiffness values quite similar to those of Fibroscan(®) 21; likewise, defined thresholds based on histological findings have appeared in several articles 19 20 21.After this brief summary of the technological state of the art we would like to mention the following critical issues that we believe every user should note prior to providing liver stiffness reports. · The thresholds obtained from the "oldest" techniques for the various fibrosis stages based on hundreds of patients with histology as reference standard cannot be straightforwardly applied to the new ultrasound elastography techniques, even if based on the same principle (e. g. pSWE). In fact, the different manufacturers apply proprietary patented calculation modes, which might result in slightly to moderately different values. It should be kept in mind that the range for intermediate fibrosis stages (F1 to F3) is quite narrow, in the order of 2 - 3 kilopascal (over a total range spanning 2 to 75 kPa with Fibroscan), so that slightly different differences in outputs could shift the assessment of patients from one stage to another. Comparative studies using phantoms and healthy volunteers, as well as patients, are eagerly awaited. In fact, the equipment might not produce linear correlations of measurements at different degrees of severity of fibrosis. As a theoretical example, some equipment might well correlate in their values with an older technique, such as transient elastography, at low levels of liver fibrosis, but not as well in cases of more advanced fibrosis or vice versa. Consequentely, when elastography data are included in a report, the equipment utilized for the measurement should be clearly specified, and

  6. Effect of inertia on sheared disordered solids: critical scaling of avalanches in two and three dimensions.

    PubMed

    Salerno, K Michael; Robbins, Mark O

    2013-12-01

    Molecular dynamics simulations with varying damping are used to examine the effects of inertia and spatial dimension on sheared disordered solids in the athermal quasistatic limit. In all cases the distribution of avalanche sizes follows a power law over at least three orders of magnitude in dissipated energy or stress drop. Scaling exponents are determined using finite-size scaling for systems with 10(3)-10(6) particles. Three distinct universality classes are identified corresponding to overdamped and underdamped limits, as well as a crossover damping that separates the two regimes. For each universality class, the exponent describing the avalanche distributions is the same in two and three dimensions. The spatial extent of plastic deformation is proportional to the energy dissipated in an avalanche. Both rise much more rapidly with system size in the underdamped limit where inertia is important. Inertia also lowers the mean energy of configurations sampled by the system and leads to an excess of large events like that seen in earthquake distributions for individual faults. The distribution of stress values during shear narrows to zero with increasing system size and may provide useful information about the size of elemental events in experimental systems. For overdamped and crossover systems the stress variation scales inversely with the square root of the system size. For underdamped systems the variation is determined by the size of the largest events.

  7. Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Teng; Chen, Xiao-Song

    2016-09-01

    Complex systems consisting of N agents can be investigated from the aspect of principal fluctuation modes of agents. From the correlations between agents, an N × N correlation matrix C can be obtained. The principal fluctuation modes are defined by the eigenvectors of C. Near the critical point of a complex system, we anticipate that the principal fluctuation modes have the critical behaviors similar to that of the susceptibity. With the Ising model on a two-dimensional square lattice as an example, the critical behaviors of principal fluctuation modes have been studied. The eigenvalues of the first 9 principal fluctuation modes have been invesitigated. Our Monte Carlo data demonstrate that these eigenvalues of the system with size L and the reduced temperature t follow a finite-size scaling form λn (L, t) = Lγ/ν fn(tL1/ν), where γ is critical exponent of susceptibility and ν is the critical exponent of the correlation length. Using eigenvalues λ1, λ2 and λ6, we get the finite-size scaling form of the second moment correlation length ξ (L, t) &equals L\\tilde ξ (tL1/ν ). It is shown that the second moment correlation length in the two-dimensional square lattice is anisotropic. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384

  8. Communication: Slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies.

    PubMed

    Adrjanowicz, K; Jakobsen, B; Hecksher, T; Kaminski, K; Dulski, M; Paluch, M; Niss, K

    2015-11-14

    In this paper, we present results of dielectric and shear-mechanical studies for amine (2-ethyl-1-hexylamine) and thiol (2-ethyl-1-hexanethiol) derivatives of the monohydroxy alcohol, 2-ethyl-1-hexanol. The amine and thiol can form hydrogen bonds weaker in strength than those of the alcohol. The combination of dielectric and shear-mechanical data enables us to reveal the presence of a relaxation mode slower than the α-relaxation. This mode is analogous to the Debye mode seen in monohydroxy alcohols and demonstrates that supramolecular structures are present for systems with lower hydrogen bonding strength. We report some key features accompanying the decrease in the strength of the hydrogen bonding interactions on the relaxation dynamics close to the glass-transition. This includes changes (i) in the amplitude of the Debye and α-relaxations and (ii) the separation between primary and secondary modes.

  9. Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes

    PubMed Central

    Otero, Jorge; Gonzalez, Laura; Puig-Vidal, Manel

    2012-01-01

    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation. PMID:22666059

  10. Specific Energy as an Index to Identify the Critical Failure Mode Transition Depth in Rock Cutting

    NASA Astrophysics Data System (ADS)

    He, Xianqun; Xu, Chaoshui

    2016-04-01

    Rock cutting typically involves driving a rigid cutter across the rock surface at certain depth of cut and is used to remove rock material in various engineering applications. It has been established that there exist two distinct failure modes in rock cutting, i.e. ductile mode and brittle mode. The ductile mode takes precedence when the cut is shallow and the increase in the depth of cut leads to rock failure gradually shifted to brittle-dominant mode. The threshold depth or the critical transition depth, at which rock failure under cutting changes from the ductile to the brittle mode, is associated with not only the rock properties but also the cutting operational parameters and the understanding of this threshold is important to optimise the tool design and operational parameters. In this study, a new method termed the specific cutting energy transition model is proposed from an energy perspective which is demonstrated to be much more effective in identifying the critical transition depth compared with existing approaches. In the ductile failure cutting mode, the specific cutting energy is found to be independent of the depth of cut; but in the brittle failure cutting mode, the specific cutting energy is found to be dependent on the depth of cut following a power-law relationship. The critical transition depth is identified as the intersection point between these two relationships. Experimental tests on two types of rocks with different combinations of cutting velocity, depth of cut and back rake angle are conducted and the application of the proposed model on these cutting datasets has demonstrated that the model can provide a very effective tool to analyse the cutting mechanism and to identify the critical transition depth.

  11. Totem-Pole Power-Factor-Correction Converter under Critical-Conduction-Mode Interleaved Operation

    NASA Astrophysics Data System (ADS)

    Firmansyah, Eka; Tomioka, Satoshi; Abe, Seiya; Shoyama, Masahito; Ninomiya, Tamotsu

    This paper proposes a new power-factor-correction (PFC) topology, and explains its operation principle, its control mechanism, related application problems followed by experimental results. In this proposed topology, critical-conduction-mode (CRM) interleaved technique is applied to a bridgeless PFC in order to achieve high efficiency by combining benefits of each topology. This application is targeted toward low to middle power applications that normally employs continuous-conduction-mode boost converter.

  12. A strategy for minimizing common mode human error in executing critical functions and tasks

    SciTech Connect

    Beltracchi, L. ); Lindsay, R.W. )

    1992-01-01

    Human error in execution of critical functions and tasks can be costly. The Three Mile Island and the Chernobyl Accidents are examples of results from human error in the nuclear industry. There are similar errors that could no doubt be cited from other industries. This paper discusses a strategy to minimize common mode human error in the execution of critical functions and tasks. The strategy consists of the use of human redundancy, and also diversity in human cognitive behavior: skill-, rule-, and knowledge-based behavior. The authors contend that the use of diversity in human cognitive behavior is possible, and it minimizes common mode error.

  13. A strategy for minimizing common mode human error in executing critical functions and tasks

    SciTech Connect

    Beltracchi, L.; Lindsay, R.W.

    1992-05-01

    Human error in execution of critical functions and tasks can be costly. The Three Mile Island and the Chernobyl Accidents are examples of results from human error in the nuclear industry. There are similar errors that could no doubt be cited from other industries. This paper discusses a strategy to minimize common mode human error in the execution of critical functions and tasks. The strategy consists of the use of human redundancy, and also diversity in human cognitive behavior: skill-, rule-, and knowledge-based behavior. The authors contend that the use of diversity in human cognitive behavior is possible, and it minimizes common mode error.

  14. Functional renormalization group analysis of the soft mode at the QCD critical point

    NASA Astrophysics Data System (ADS)

    Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji

    2016-07-01

    We make an intensive investigation of the soft mode at the quantum chromodynamics (QCD) critical point on the basis of the functional renormalization group (FRG) method in the local potential approximation. We calculate the spectral functions ρ_{σ, π}(ω, p) in the scalar (σ) and pseudoscalar (π) channels beyond the random phase approximation in the quark-meson model. At finite baryon chemical potential μ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the σ channel has a support not only in the time-like (ω > p) but also in the space-like (ω < p) regions, which correspond to the mesonic and the particle-hole phonon excitations, respectively. We find that the energy of the peak position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the soft mode associated with the second-order transition at the QCD critical point, as has been suggested by some authors. Moreover, our extensive calculation of the spectral function in the (ω, p) plane enables us to see that the mesonic and phonon modes have the respective definite dispersion relations ω_{σ.ph}(p), and it turns out that ω_{σ}(p) crosses the light-cone line into the space-like region, and then eventually merges into the phonon mode as the system approaches the critical point more closely. This implies that the sigma-mesonic mode also becomes soft at the critical point. We also provide numerical stability conditions that are necessary for obtaining the accurate effective potential from the flow equation.

  15. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  16. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  17. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Q. Q.; Xu, G. S.; Zhong, F. C.; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Jia, M. N.; Li, Y. L.; Liu, J. B.

    2015-06-01

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E × B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E × B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  18. Feedback-independent Pt nanoelectrodes for shear force-based constant-distance mode scanning electrochemical microscopy.

    PubMed

    Etienne, Mathieu; Anderson, Emily C; Evans, Stephanie R; Schuhmann, Wolfgang; Fritsch, Ingrid

    2006-10-15

    A new generation of platinum nanoelectrodes for constant-distance mode scanning electrochemical microscopy (CD-SECM) has been prepared, characterized, and used for high spatial resolution electrochemical measurements and visualization of electrochemically induced concentration gradients in microcavities. The probes have long (1-2 cm), narrow quartz tips that were conically polished and have a Pt nanoelectrode that is slightly offset from center. Because of the size and location of the electrode on the probe, it does not exhibit SECM feedback while approaching the analyzed sample surfaces even to distances within a few hundred nanometers. The probe was positioned near the surface while scanning and performing electrochemical measurements through use of nonoptical shear force control of the tip-to-sample distance. Test structures consisted of cylindrically shaped microcavities that are 50 microm in diameter with three individually addressable electrodes: a gold disk at 8-microm depth, a crescent-shaped gold ring at 4-microm depth along the wall, and a top gold electrode at the rim. Different electrodes within the microcavity were used to reduce and oxidize redox species in 250 microL of a solution of 5 mM hexaamineruthenium(III) chloride and 0.1 M potassium chloride, protected from evaporation by mineral oil, while the SECM tip followed the topography of the structures and monitored the current from the oxidation of [Ru(NH3)6]2+. Electrochemically generated concentration profiles were obtained from these complex test structures that are not possible with any other SECM technology at this time.

  19. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials--A general bond polarizability model.

    PubMed

    Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Quek, Su Ying

    2015-01-01

    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical z(xx)z configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials. PMID:26469313

  20. Flow and shear behavior in the edge and scrape-off layer of L-mode plasmas in National Spherical Torus Experiment

    DOE PAGES

    Sechrest, Y.; Munsat, T.; D’Ippolito, D. A.; Maqueda, R. J.; Myra, J. R.; Russell, D.; Zweben, S. J.

    2011-01-01

    Fluctuations in the edge and scrape-off layer (SOL) of L-mode plasmas in the National Spherical Torus Experiment (NSTX) as observed by the gas puff imaging (GPI) diagnostic are studied. Calculation of local, time resolved velocity maps using the Hybrid Optical Flow and Pattern Matching Velocimetry (HOP-V) code enables analysis of turbulent flow and shear behavior. Periodic reversals in the direction of the poloidal flow near the separatrix are observed. Also, poloidal velocities and their radial shearing rate are found to be well correlated with the fraction of Dα light contained in the SOL, which acts as a measure of turbulentmore » bursts. The spectra of GPI intensity and poloidal velocity both have a strong feature near 3 kHz, which appears to correspond with turbulent bursts. This mode exhibits a poloidal structure with poloidal wavenumber of 7.7 m-1 for GPI intensity and 3.4 m-1 for poloidal velocity, and the poloidal velocity fluctuations near 3 kHz remain coherent over length scales in excess of the turbulent scales. Furthermore, recent SOL Turbulence (SOLT) simulations find a parameter regime that exhibits periodic bursty transport and shares many qualitative similarities with the experimental data. Strong correlations between the shearing rate and the turbulent bursts are observed for time periods of ~ 2 ms, but the relationship is complicated by several factors. Finally, measurements of the radial profiles of the Reynolds shear stresses are reported. These radial profiles exhibit many similarities for several shots, and a region with positive radial gradient is seen to be coincident with local flow shear.« less

  1. Flow and shear behavior in the edge and scrape-off layer of L-mode plasmas in National Spherical Torus Experiment

    SciTech Connect

    Sechrest, Y.; Munsat, T.; D’Ippolito, D. A.; Maqueda, R. J.; Myra, J. R.; Russell, D.; Zweben, S. J.

    2011-01-01

    Fluctuations in the edge and scrape-off layer (SOL) of L-mode plasmas in the National Spherical Torus Experiment (NSTX) as observed by the gas puff imaging (GPI) diagnostic are studied. Calculation of local, time resolved velocity maps using the Hybrid Optical Flow and Pattern Matching Velocimetry (HOP-V) code enables analysis of turbulent flow and shear behavior. Periodic reversals in the direction of the poloidal flow near the separatrix are observed. Also, poloidal velocities and their radial shearing rate are found to be well correlated with the fraction of Dα light contained in the SOL, which acts as a measure of turbulent bursts. The spectra of GPI intensity and poloidal velocity both have a strong feature near 3 kHz, which appears to correspond with turbulent bursts. This mode exhibits a poloidal structure with poloidal wavenumber of 7.7 m-1 for GPI intensity and 3.4 m-1 for poloidal velocity, and the poloidal velocity fluctuations near 3 kHz remain coherent over length scales in excess of the turbulent scales. Furthermore, recent SOL Turbulence (SOLT) simulations find a parameter regime that exhibits periodic bursty transport and shares many qualitative similarities with the experimental data. Strong correlations between the shearing rate and the turbulent bursts are observed for time periods of ~ 2 ms, but the relationship is complicated by several factors. Finally, measurements of the radial profiles of the Reynolds shear stresses are reported. These radial profiles exhibit many similarities for several shots, and a region with positive radial gradient is seen to be coincident with local flow shear.

  2. Intermittent Transport Associated with the Geodesic Acoustic Mode near the Critical Gradient Regime

    SciTech Connect

    Miki, K.; Kishimoto, Y.; Li, J. Q.; Miyato, N.

    2007-10-05

    Turbulent transport near the critical gradient in toroidal plasmas is studied based on global Landau-fluid simulations and an extended predator-prey theoretical model of ion temperature gradient turbulence. A new type of intermittent transport associated with the emission and propagation of a geodesic acoustic mode (GAM) is found near the critical gradient regime, which is referred to as GAM intermittency. The intermittency is characterized by new time scales of trigger, damping, and recursion due to GAM damping. During the recursion of intermittent bursts, stationary zonal flow increases with a slow time scale due to the accumulation of undamped residues and eventually quenches the turbulence, suggesting that a nonlinear upshift of the critical gradient, i.e., Dimits shift, is established through such a dynamical process.

  3. A Global Horizontal Shear Velocity Model of the Upper Mantle from multi-mode Love Wave Measurements

    NASA Astrophysics Data System (ADS)

    Ho, Tak; Priestley, Keith; Debayle, Eric

    2016-08-01

    Surface wave studies in the 1960s provided the first indication that the upper mantle was radially anisotropic. Resolving the anisotropic structure is important because it may yield information on deformation and flow patterns in the upper mantle. The existing radially anisotropic models are in poor agreement. Rayleigh waves have been studied extensively and recent models show general agreement. Less work has focused on Love waves and the models that do exist are less well-constrained than are Rayleigh wave models, suggesting it is the Love wave models that are responsible for the poor agreement in the radially anisotropic structure of the upper mantle. We have adapted the waveform inversion procedure of Debayle & Ricard (2012) to extract propagation information for the fundamental mode and up to the fifth overtone from Love waveforms in the 50-250 s period range. We have tomographically inverted these results for a mantle horizontal shear wavespeed model (βh(z)) to transition zone depths. We include azimuthal anisotropy (2θ and 4θ terms) in the tomography, but in this paper we discuss only the isotropic βh(z) structure. The data set is significantly larger, almost 500,000 Love waveforms, than previously published Love wave data sets and provides ˜17,000,000 constraints on the upper mantle βh(z) structure. Sensitivity and resolution tests show that the horizontal resolution of the model is on the order of 800-1000 km to transition zone depths. The high wavespeed roots beneath the oldest parts of the continents appear to extend deeper for βh(z) than for βv(z) as in previous βh(z) models, but the resolution tests indicate that at least parts of these features could be artifacts. The low wavespeeds beneath the mid-ocean ridges fade by ˜150 km depth except for the upper mantle beneath the East Pacific Rise which remains slow to ˜250 km depth. The resolution tests suggest that the low wavespeeds at deeper depths beneath the East Pacific Rise are not solely

  4. A theoretical interpretation of the antibody-antigen interactions between Salmonella and a thickness shear mode (TSM) quartz resonator

    NASA Astrophysics Data System (ADS)

    Bailey, Claude Albert

    This dissertation outlines the developmental procedure for a real-time food-borne pathogen detector that uses a thickness shear mode (TSM) quartz resonator. A theory is discussed which provides some understanding of the measured signals obtained from the TSM resonator-based Salmonella detector. The theory explains surface viscosity and mass effects, but has yet to be fully implemented for anomalous bacterial interactions. An equivalent circuit model for an immunochemical coating and its effect on the TSM resonator frequency is presented. The latter part of this dissertation describes immunological experiments with precoated piezoelectric quartz crystals. A highly purified immunological system was used to optimize the immobilization procedure. The use of biosensors is becoming a viable alternative to conventional analysis and promises to experience dramatic growth, especially after their true potential is realized and more cost-effective assays are developed. Concern about the safety of our food and water supplies will undoubtedly stimulate further research, and miniaturized biosensors will be developed for use by safety inspectors, and concerned personnel. A Salmonella detector has been demonstrated consisting of a TSM resonator with antibodies immobilized in a Langmuir Blodgett (LB) film on the surface [3]. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Antigen-antibody interactions change the acoustic resonant properties that are reflected in the sensor frequency response. The Salmonella detector operates in a liquid environment (Salmonella suspended in a phosphate buffered saline solution). The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media (buffer solutions, chicken exudate, and varying fat contents of milk) were studied as a function of

  5. Exploring hydrocarbon-bearing shale formations with multi-component seismic technology and evaluating direct shear modes produced by vertical-force sources

    NASA Astrophysics Data System (ADS)

    Alkan, Engin

    It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different Swave modes (P-SV, SV-SV) in addition to the conventional P

  6. The Influence of Salmonid Spawning on Grain Architecture, Critical Bed Shear Stress, and Bed Load Transport in Streams

    NASA Astrophysics Data System (ADS)

    Buxton, T.; Buffington, J. M.; Yager, E. M.; Fremier, A. K.; Hassan, M. A.

    2012-12-01

    Salmonid spawning occurs in many high to mid-order streams in North America and Europe, but the detailed mechanics of this disturbance on stream bed mobility is not well studied. We calculated and measured spawning effects on incipient bed mobility and sediment transport in a laboratory flume and found that the tailspill portion of simulated spawning nests ("redds") are less stable than unspawned beds. This result agrees with field research by others, but counters prior calculations of tailspill stability that used grain architecture relationships derived from unspawned beds. Redds have coarser and better sorted surfaces, which reduce grain exposure and protrusion compared to unspawned beds, but load cell measurements of the total resistance to movement of grains on redds were lower despite deeper grain pockets and larger pivot angles. This is because the redd-building process flushed fine sediment that had previously cemented bed material, resulting in a looser bed structure and more mobile grains. These observations are supported by force balance calculations of critical shear stress on redds being lower on average than on unspawned beds. Computational results are supported by visual observations and measurements of bed load transport from redds and unspawned beds in the flume, where redds mobilized sooner and exhibited a higher sediment transport rate than unspawned beds. Redds were observed to erode by translating, then dispersing and evacuating downstream, before grains on the unspawned bed mobilized. Further increase in discharge mobilized greater proportions of the unspawned bed but did not scour the deeper portion of redds where spawners deposit their eggs. Our results suggest both an evolutionary trade-off and advantage to large spawning populations. Namely, the structurally loose tailspill likely increases intragravel flow to eggs at the expense of tailspill instability, which may sufficiently elevate sediment yields in streams with high spawner densities

  7. SU (2 )1 chiral edge modes of a critical spin liquid

    NASA Astrophysics Data System (ADS)

    Poilblanc, Didier; Schuch, Norbert; Affleck, Ian

    2016-05-01

    Protected chiral edge modes are a well-known signature of topologically ordered phases like the fractional quantum Hall states. Recently, using the framework of projected entangled pair states (PEPS) on the square lattice, we constructed a family of chiral resonating valence bond states with Z2 gauge symmetry. Here we revisit and analyze in full details the properties of the edge modes as given by their entanglement spectra on a cylinder. Surprisingly, we show that the latter can be well described by a chiral SU (2 )1 conformal field theory, as for the ν =1 /2 (bosonic) gapped Laughlin state, although our numerical data suggest a critical bulk compatible with an emergent U(1 ) gauge symmetry. We propose that our family of PEPS may physically describe a boundary between a chiral topological phase and a trivial phase.

  8. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production--a critical review.

    PubMed

    Kumar, Ashish; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2013-11-01

    The manufacturing of pharmaceutical dosage forms, which has traditionally been a batch-wise process, is now also transformed into a series of continuous operations. Some operations such as tabletting and milling are already performed in continuous mode, while the adaptation towards a complete continuous production line is still hampered by complex steps such as granulation and drying which are considered to be too inflexible to handle potential product change-overs. Granulation is necessary in order to achieve good flowability properties and better control of drug content uniformity. This paper reviews modelling and supporting measurement tools for the high shear wet granulation (HSWG) process, which is an important granulation technique due to the inherent benefits and the suitability of this unit operation for the desired switch to continuous mode. For gaining improved insight into the complete system, particle-level mechanisms are required to be better understood, and linked with an appropriate meso- or macro-scale model. A brief review has been provided to understand the mechanisms of the granulation process at micro- or particle-level such as those involving wetting and nucleation, aggregation, breakage and consolidation. Further, population balance modelling (PBM) and the discrete element method (DEM), which are the current state-of-the-art methods for granulation modelling at micro- to meso-scale, are discussed. The DEM approach has a major role to play in future research as it bridges the gap between micro- and meso-scales. Furthermore, interesting developments in the measurement technologies are discussed with a focus towards inline measurements of the granulation process to obtain experimental data which are required for developing good models. Based on the current state of the developments, the review focuses on the twin-screw granulator as a device for continuous HSWG and attempts to critically evaluate the current process. As a result, a set of open

  9. Linear Inviscid Damping for Monotone Shear Flows in a Finite Periodic Channel, Boundary Effects, Blow-up and Critical Sobolev Regularity

    NASA Astrophysics Data System (ADS)

    Zillinger, Christian

    2016-09-01

    In a previous article (Zillinger, Linear inviscid damping for monotone shear flows, 2014), we have established linear inviscid damping for a large class of monotone shear flows in a finite periodic channel and have further shown that boundary effects asymptotically lead to the formation of singularities of derivatives of the solution as {t → infty}. As the main results of this article, we provide a detailed description of the singularity formation and establish stability in all sub-critical fractional Sobolev spaces and blow-up in all super-critical spaces. Furthermore, we discuss the implications of the blow-up to the problem of nonlinear inviscid damping in a finite periodic channel, where high regularity would be essential to control nonlinear effects.

  10. Risk management in magnetic resonance: failure mode, effects, and criticality analysis.

    PubMed

    Petrillo, Antonella; Fusco, Roberta; Granata, Vincenza; Filice, Salvatore; Raiano, Nicola; Amato, Daniela Maria; Zirpoli, Maria; di Finizio, Alessandro; Sansone, Mario; Russo, Anna; Covelli, Eugenio Maria; Pedicini, Tonino; Triassi, Maria

    2013-01-01

    The aim of the study was to perform a risk management procedure in "Magnetic Resonance Examination" process in order to identify the critical phases and sources of radiological errors and to identify potential improvement projects including procedures, tests, and checks to reduce the error occurrence risk. In this study we used the proactive analysis "Failure Mode Effects Criticality Analysis," a qualitative and quantitative risk management procedure; has calculated Priority Risk Index (PRI) for each activity of the process; have identified, on the PRI basis, the most critical activities and, for them, have defined improvement projects; and have recalculated the PRI after implementation of improvement projects for each activity. Time stop and audits are performed in order to control the new procedures. The results showed that the most critical tasks of "Magnetic Resonance Examination" process were the reception of the patient, the patient schedule drafting, the closing examination, and the organization of activities. Four improvement projects have been defined and executed. PRI evaluation after improvement projects implementation has shown that the risk decreased significantly following the implementation of procedures and controls defined in improvement projects, resulting in a reduction of the PRI between 43% and 100%. PMID:24171173

  11. Nonaxisymmetric instabilities in rotating shear flows - Internal gravity modes in stratified media and analogies with plane flows

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Abramowicz, M. A.

    1991-01-01

    The role of the internal gravity modes in mediating the growth of nonaxisymmetric instabilities is investigated by studying the instability of stratified incompressible differentially rotating fluid cylinders to global nonaxisymmetric modes. The results indicate that, in addition to a modified version of the well-known principal branch mediated by surface modes of the system (analogous to f-modes of stars), there exist unstable branches of the dispersion relation mediated by internal gravity modes of the system (similar to the g-modes of stars). These branches arise due to the interaction between the g-modes. It is shown that the maximum growth rate on one of the new branches can sometimes equal or exceed that on the principal branch, thus modifying the principal branch.

  12. Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe₂ and ReS₂.

    PubMed

    Lorchat, Etienne; Froehlicher, Guillaume; Berciaud, Stéphane

    2016-02-23

    We investigate the interlayer phonon modes in N-layer rhenium diselenide (ReSe2) and rhenium disulfide (ReS2) by means of ultralow-frequency micro-Raman spectroscopy. These transition metal dichalcogenides exhibit a stable distorted octahedral (1T') phase with significant in-plane anisotropy, leading to sizable splitting of the (in-plane) layer shear modes. The fan-diagrams associated with the measured frequencies of the interlayer shear modes and the (out-of-plane) interlayer breathing modes are perfectly described by a finite linear chain model and allow the determination of the interlayer force constants. Nearly identical values are found for ReSe2 and ReS2. The latter are appreciably smaller than but on the same order of magnitude as the interlayer force constants reported in graphite and in trigonal prismatic (2Hc) transition metal dichalcogenides (such as MoS2, MoSe2, MoTe2, WS2, WSe2), demonstrating the importance of van der Waals interactions in N-layer ReSe2 and ReS2. In-plane anisotropy results in a complex angular dependence of the intensity of all Raman modes, which can be empirically utilized to determine the crystal orientation. However, we also demonstrate that the angular dependence of the Raman response drastically depends on the incoming photon energy, shedding light on the importance of resonant exciton-phonon coupling in ReSe2 and ReS2. PMID:26820232

  13. Core-localized Alfvénic modes driven by energetic ions in HL-2A NBI plasmas with weak magnetic shears

    NASA Astrophysics Data System (ADS)

    Chen, W.; Yu, L. M.; Ding, X. T.; Xie, H. S.; Shi, Z. B.; Ji, X. Q.; Yu, D. L.; Zhang, Y. P.; Shi, P. W.; Li, Y. G.; Feng, B. B.; Jiang, M.; Zhong, W. L.; Cao, J. Y.; Song, X. M.; Xu, M.; Xu, Y. H.; Yan, L. W.; Liu, Yi; Yang, Q. W.; Duan, X. R.; HL-2A Team

    2016-03-01

    Recent experimental results that are associated with the core-localized (i.e. normalized radius ρ =r/a<0.5 ) Alfvénic modes in HL-2A neutral beam injection (NBI) plasmas with weak magnetic shears are reported. In the different plasma parameter regions, the energetic ions produced by the NBI drive multiple Alfvénic instabilities, such as the toroidal Alfvén eigenmode (TAE), beta-induced Alfvén eigenmode, reversed shear Alfvén eigenmode (RSAE) and fishbone and energetic particle mode (EPM). Here, we focus on the high-frequency RSAE (HFRSAE) and resonant kinetic ballooning mode (rKBM). A group of downward-sweeping frequency coherent modes (HFRSAEs) with 100  <  f  <  500 kHz and n  =  3-7 are often observed with an increase in the edge safety factor, q a . Their measured frequency is more than that of the TAEs, and {{f}\\text{min}}˜ {{f}\\text{TAE}} . The analysis suggests that these modes localize inside the high-order Alfvén eigenmode (AE) gap of the Alfvénic continuum, and their eigenfrequency and eigenfunction depend on the {{q}\\text{min}} and q-profile. When the core plasma density is more than {{n}e0}>3.0× {{10}19} m-3 and the impurity or supersonic molecular beam enters the bulk plasma, the profiles of the plasma density/pressure peak, and the magnetic shear is weak or negative. In this case, a group of multi-harmonic coherent modes (rKBMs) with 30  <  f  <  150 kHz and n  =  2-9 are observed through multiple diagnostic techniques, and {{f}\\ast pi}/2<{{f}\\text{MHD}}={{f}\\text{lab}}-n{{f}vφ}<{{f}\\ast pi} , where {{f}\\ast pi}={ω\\ast pi}/2π is the diamagnetic drift frequency of the thermal ion. It is found that the HFRSAEs can transit into the rKBMs when the density profile suddenly peaks. Neutron monitoring outside the vacuum chamber demonstrates that the HFRSAE and rKBM both degrade the confinement of the energetic ions. The rKBM instabilities also affect the bulk plasma performance.

  14. Shear-flow trapped-ion-mode interaction revisited. I. Influence of low-frequency zonal flow on ion-temperature-gradient driven turbulence

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    Collisionless trapped ion modes (CTIMs) turbulence exhibits a rich variety of zonal flow physics. The coupling of CTIMs with shear flow driven by the Kelvin-Helmholtz (KH) instability has been investigated. The work explores the parametric excitation of zonal flow modified by wave-particle interactions leading to a new type of resonant low-frequency zonal flow. The KH-CTIM interaction on zonal flow growth and its feedback on turbulence is investigated using semi-Lagrangian gyrokinetic Vlasov simulations based on a Hamiltonian reduction technique, where both fast scales (cyclotron plus bounce motions) are gyro-averaged.

  15. Long-distance correlation and zonal flow structures induced by mean ExB shear flows in the biasing H-mode at TEXTOR

    SciTech Connect

    Xu, Y.; Jachmich, S.; Weynants, R. R.; Schoor, M. van; Vergote, M.; Kraemer-Flecken, A.; Schmitz, O.; Unterberg, B.

    2009-11-15

    Long-distance toroidal correlations of potential and density fluctuations have been investigated at the TEXTOR tokamak [H. Soltwisch et al., Plasma Phys. Controlled Fusion 26, 23 (1984)] in edge electrode-biasing experiments. During the biasing-induced H-mode, the dc ExB shear flow triggers a zonal flow structure and hence long-distance correlation in potential fluctuations, whereas for density fluctuations there is nearly no correlation. These results indicate an intimate interaction between the mean and zonal flows, and the significance of long range correlations in improved-confinement regimes.

  16. Ultra-wideband ladder filters using zero-th shear mode plate wave in ultrathin LiNbO3 plate with apodized interdigital transducers

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2016-07-01

    There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.

  17. Dynamics of turbulent transport dominated by the geodesic acoustic mode near the critical gradient regime

    SciTech Connect

    Miki, Kazuhiro; Kishimoto, Yasuaki; Li, Jiquan; Miyato, Naoaki

    2008-05-15

    The effects of geodesic acoustic modes (GAMs) on the toroidal ion temperature gradient turbulence and associated transport near the critical gradient regime in tokamak plasma are investigated based on global Landau-fluid simulations and extended predator-prey modeling analyses. A new type of intermittent dynamics of transport accompanied with the emission and propagation of the GAMs, i.e., GAM intermittency [K. Miki et al., Phys. Rev. Lett. 99, 145003 (2007)], has been found. The intermittent bursts are triggered by the onset of spatially propagating GAMs when the turbulent energy exceeds a critical value. The GAMs suffer collisionless damping during the propagation and nonlocally transfer local turbulence energy to wide radial region. The stationary zonal flows gradually increase due to the accumulation of non-damped residual part over many periods of quasi-periodic intermittent bursts and eventually quench the turbulence, leading to a nonlinear upshift of the linear critical gradient; namely, the Dimits shift. This process is categorized as a new class of transient dynamics, referred to as growing intermittency. The Dimits shift is found to be established through this dynamical process. An extended minimal predator-prey model with collisionless damping of the GAMs is proposed, which qualitatively reproduce the main features of the growing intermittency and approximately predict its various time scales observed in the simulations.

  18. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  19. Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs

    NASA Astrophysics Data System (ADS)

    Asgari, Marika; Heymans, Catherine; Blake, Chris; Harnois-Deraps, Joachim; Schneider, Peter; Van Waerbeke, Ludovic

    2016-10-01

    We present a re-analysis of the CFHTLenS weak gravitational lensing survey using Complete Orthogonal Sets of E/B-mode Integrals, known as COSEBIs. COSEBIs provide a complete set of functions to efficiently separate E-modes from B-modes and hence allow for robust and stringent tests for systematic errors in the data. This analysis reveals significant B-modes on large angular scales that were not previously seen using the standard E/B decomposition analyses. We find that the significance of the B-modes is enhanced when the data is split by galaxy type and analysed in tomographic redshift bins. Adding tomographic bins to the analysis increases the number of COSEBIs modes, which results in a less accurate estimation of the covariance matrix from a set of simulations. We therefore also present the first compressed COSEBIs analysis of survey data, where the COSEBIs modes are optimally combined based on their sensitivity to cosmological parameters. In this tomographic CCOSEBIs analysis we find the B-modes to be consistent with zero when the full range of angular scales are considered.

  20. Shear Wave Elastography in Head and Neck Lymph Node Assessment: Image Quality and Diagnostic Impact Compared with B-Mode and Doppler Ultrasonography.

    PubMed

    Desmots, Florian; Fakhry, Nicolas; Mancini, Julien; Reyre, Anthony; Vidal, Vincent; Jacquier, Alexis; Santini, Laure; Moulin, Guy; Varoquaux, Arthur

    2016-02-01

    The aim of this study was to assess the diagnostic performance of shear wave elastography (SWE) in comparison to B-mode and Doppler ultrasonography in differentiating benign from malignant head and neck lymph nodes (HNLNs). Sixty-two HNLNs from 56 patients were prospectively examined using B-mode, Doppler and SWE. The standard of reference was histopathology or cytology and follow-up. Qualitative malignant criteria (hilum infiltration, cortical hypo-echogenicity, irregular margins, abnormal vessels) were assessed on a five-point scale. Four quantitative parameters were obtained: long axis length, short axis length, short axis/long axis ratio, resistive index and maximum shear elasticity modulus (μmax). Diagnostic performance was analyzed with special emphasis on the sub-centimeter HNLN subgroup. Thirty HNLNs were malignant (48%). μmax intra-observer reproducibility was 0.899 (0.728 in sub-centimeter subgroup). Malignant HNLNs were stiffer (μmax = 72.4 ± 59.0 kPa) compared with benign nodes (μmax = 23.3 ± 25.3 kPa) (p < 0.001). Among the quantitative criteria, μmax had the highest diagnostic accuracy (area under the curve = 0.903 ± 0.042), especially in the sub-centimeter subgroup (area under the curve = 0.929 ± 0.045; p < 0.001) in which the area under the curve was significantly higher compared with the other quantitative criteria (p < 0.05). The additional use of SWE combined with B-mode tended to improve diagnostic accuracy (p > 0.05). SWE is a promising reproducible quantitative tool with which to predict malignant HNLNs, especially sub-centimeter nodes.

  1. Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the Powder River Basin of Wyoming

    SciTech Connect

    Thoman, R.W.; Niezgoda, S.L.

    2008-12-15

    The continuous discharge of coalbed natural gas-produced (CBNG-produced) water within ephemeral, cohesive channels in the Powder River Basin (PRB) of Wyoming can result in significant erosion. A study was completed to investigate channel stability in an attempt to correlate cohesive soil properties to critical shear stress. An in situ jet device was used to determine critical shear stress (tau{sub c}) and erodibility (k{sub d}); cohesive soil properties were determined following ASTM procedures for 25 reaches. The study sites were comprised of erodible to moderately resistant clays with tau{sub c} ranging from 0.11 to 15.35 Pa and k{sub d} ranging from 0.27 to 2.38 cm{sup 3}/N s. A relationship between five cohesive soil characteristics and tau{sub c} was developed and presented for use in deriving tau{sub c} for similar sites. Allowable discharges for CBNG-produced water were also derived using tau{sub c} and the tractive force method. An increase in the allowable discharge was found for channels in which vegetation was maintained. The information from this case study is critical to the development of a conservative methodology to establish allowable discharges while minimizing flow-induced instability.

  2. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  3. A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow

    NASA Technical Reports Server (NTRS)

    Balsa, Thomas F.

    1994-01-01

    Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.

  4. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    NASA Astrophysics Data System (ADS)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  5. Physics and control of ELMing H-mode negative-central-shear advanced tokamak ITER scenario based on experimental profiles from DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Chan, V. S.; Chu, M. S.; Evans, T.; Humphreys, D. A.; Leuer, J. A.; Mahdavi, M. A.; Petrie, T. W.; Snyder, P. B.; St. John, H. E.; Staebler, G. M.; Stambaugh, R. D.; Taylor, T. S.; Turnbull, A. D.; West, W. P.; Brennan, D. P.

    2003-10-01

    Key DIII-D advanced tokamak (AT) experimental and modelling results are applied to examine the physics and control issues for ITER to operate in a negative central shear (NCS) AT scenario. The effects of a finite edge pressure pedestal and current density are included based on the DIII-D experimental profiles. Ideal and resistive stability analyses demonstrate that feedback control of resistive wall modes by rotational drive or flux conserving intelligent coils is crucial for these AT configurations to operate at attractive bgrN values in the range 3.0-3.5. Vertical stability and halo current analyses show that reliable disruption mitigation is essential and mitigation control using an impurity gas can significantly reduce the local mechanical stress to an acceptable level. Core transport and turbulence analyses indicate that control of the rotational shear profile is essential to reduce the pedestal temperature required for high bgr. Consideration of edge stability and core transport suggests that a sufficiently wide pedestal is necessary for the projected fusion performance. Heat flux analyses indicate that, with core-only radiation enhancement, the outboard peak divertor heat load is near the design limit of 10 MW m-2. Detached operation may be necessary to reduce the heat flux to a more manageable level. Evaluation of the ITER pulse length using a local step response approach indicates that the 3000 s ITER long-pulse scenario is probably both necessary and sufficient for demonstration of local current profile control.

  6. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  7. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method. PMID:26357411

  8. Numerical Technique for Analyzing Rotating Rake Mode Measurements in a Duct With Passive Treatment and Shear Flow

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sutliff, Daniel L.

    2007-01-01

    A technique is presented for the analysis of measured data obtained from a rotating microphone rake system. The system is designed to measure the interaction modes of ducted fans. A Fourier analysis of the data from the rotating system results in a set of circumferential mode levels at each radial location of a microphone inside the duct. Radial basis functions are then least-squares fit to this data to obtain the radial mode amplitudes. For ducts with soft walls and mean flow, the radial basis functions must be numerically computed. The linear companion matrix method is used to obtain both the eigenvalues of interest, without an initial guess, and the radial basis functions. The governing equations allow for the mean flow to have a boundary layer at the wall. In addition, a nonlinear least-squares method is used to adjust the wall impedance to best fit the data in an attempt to use the rotating system as an in-duct wall impedance measurement tool. Simulated and measured data are used to show the effects of wall impedance and mean flow on the computed results.

  9. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    SciTech Connect

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  10. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    SciTech Connect

    Isliker, H.; Pisokas, Th.; Vlahos, L.; Strintzi, D.

    2010-08-15

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L{sub T} is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  11. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W

  12. Influence of shear strains on the phase of light transmitted through single-mode fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Jensen, David W.; Pai, Suresh P.

    1995-04-01

    Since the well-known demonstration of a fiber-optic strain gage by Butter and Hocker in 1978, significant refinements have been made in the area of fiber optic sensing, enabling the measurement of many different physical quantities, including strain, displacement, linear and circular acceleration, temperature, degree of cure in plastics, chemical compositions, pressure, acoustic waves, and fluid flow rates. Both analytical and experimental efforts have contributed to our current understanding of the relationship between the elongation of a host medium and phase changes in the light passing through an optical fiber. This paper describes research which partially fills in the remaining gap by quantifying the influence of shear strains on the phase change of light passing through an embedded optical fiber. In this experiment, optical fibers were embedded in 18-inch long by 2.25-inch diameter composite tubes. Three tubes were fabricated with axial fibers and one with a helical fiber, using a hand layup fabrication technique. These tubes were also instrumented with two strain gage rosettes. The tubes were subjected to pure torsional loads while the surface strains and the fiber-optic phase changes were measured. A modified all-fiber Mach-Zehnder interferometer with active homodyne feedback was used to determine the phase changes in the optical fibers due to the applied strains. The phase changes were also predicted using fundamental concepts of structural mechanics and existing phase-strain models.

  13. Simulation of solidly mounted plate wave resonator with wide bandwidth using 0-th shear horizontal mode in LiNbO3 plate

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2015-07-01

    A cognitive radio system using a vacant frequency band of digital TV channels (TV white space) requires a tunable filter with wide tunable ranges of center frequency and bandwidth. An ultra-wideband resonator is a key device to implement the tunable filter, because the tunable range is limited by the bandwidth (BW) of the resonators. A 0-th shear horizontal (SH0) mode plate wave resonator using an ultra-thin LiNbO3 plate is known to have a large electromechanical coupling factor, i.e., a large BW, but the structural fragility of the ultra-thin LiNbO3 plate is problematic. In this study, the feasibility of solidly mounted resonator type SH0 mode plate wave resonator was investigated systematically by finite element method simulation. The design parameters including the Euler angle, thickness of a LiNbO3 plate, and the material and thickness of an interdigital transducer were optimized. With the best design, a BW as wide as 26% is obtained.

  14. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-06-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.

  15. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    PubMed Central

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs. PMID:27324835

  16. Channel adjustment of an unstable coarse-grained stream: Opposing trends of boundary and critical shear stress, and the applicability of extremal hypotheses

    USGS Publications Warehouse

    Simon, A.; Thorne, C.R.

    1996-01-01

    Channel adjustments in the North Fork Toutle River and the Toutle River main stem were initiated by deposition of a 2.5km3 debris avalanche and associated lahars that accompanied the catastrophic eruption of Mount St. Helens, Washington on 18 May 1980. Channel widening was the dominant process. In combination, adjustments caused average boundary shear stress to decrease non-linearly with time and critical shear stress to increase non-linearly with time. At the discharge that is equalled or exceeded 1 per cent of the time, these trends converged by 1991-1992 so that excess shear stress approached minimum values. Extremal hypotheses, such as minimization of unit stream power and minimization of the rate of energy dissipation (minimum stream power), are shown to be applicable to dynamic adjustments of the Toutle River system. Maximization of the Darcy-Weisbach friction factor did not occur, but increases in relative bed roughness, caused by the concomitant reduction in hydraulic depths and bed-material coarsening, were documented. Predictions of stable channel geometries using the minimum stream power approach were unsuccessful when compared to the 1991-1992 geometries and bed-material characteristics measured in the field. It is concluded that the predictions are not applicable because the study reaches are not truly stable and cannot become so until a new floodplain has been formed by renewed channel incision, retreat of stream-side hummocks, and establishment of riparian vegetation to limit the destabilizing effects of large floods. Further, prediction of energy slope (and consequently stream power) by the sediment transport equations is inaccurate because of the inability of the equations to account for significant contributions of finer grained (sand and gravel) bank materials (relative to the coarsened channel bed) from bank retreat and from upstream terrace erosion.

  17. Shear-Mode-Based Cantilever Driving Low-Frequency Piezoelectric Energy Harvester Using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3.

    PubMed

    Zeng, Zhou; Ren, Bo; Gai, Linlin; Zhao, Xiangyong; Luo, Haosu; Wang, Dong

    2016-08-01

    Energy harvesting from external mechanical excitation has become a hot interest area, and relaxor piezoelectric single crystal ( 1 - x )Pb(Mg1/3Nb2/3)O3- x PbTiO3 (PMN- x PT or PMN-PT) has attracted continuous attention due to the well-known ultrahigh shear-mode electromechanical response. To exploit the low-frequency application of excellent shear-mode performance of the PMN-PT single crystal, we proposed a Shear-mode-based CANtilever Driving Low-frequency Energy harvester. The device is composed of two symmetrically assembled sandwich structures and a cantilever, in which sandwich structures can be driven by the cantilever. An analytical method was used to illustrate the high output mechanism, and a finite-element method model of the device was also established to optimize the generated electric energy in this device. The electrical properties of the device under different excitation frequencies and load resistances were studied systematically. The maximum voltage and power density at resonance frequency (43.8 Hz) were measured to be 60.8 V and 10.8 mW/cm(3) under a proof mass of 13.5 g, respectively. Both theoretical and experimental results demonstrate the considerable potential of the resonance-excited shear-mode energy harvester applied to wireless sensors and low-power portable electronics. PMID:27244735

  18. Shear-Mode-Based Cantilever Driving Low-Frequency Piezoelectric Energy Harvester Using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3.

    PubMed

    Zeng, Zhou; Ren, Bo; Gai, Linlin; Zhao, Xiangyong; Luo, Haosu; Wang, Dong

    2016-08-01

    Energy harvesting from external mechanical excitation has become a hot interest area, and relaxor piezoelectric single crystal ( 1 - x )Pb(Mg1/3Nb2/3)O3- x PbTiO3 (PMN- x PT or PMN-PT) has attracted continuous attention due to the well-known ultrahigh shear-mode electromechanical response. To exploit the low-frequency application of excellent shear-mode performance of the PMN-PT single crystal, we proposed a Shear-mode-based CANtilever Driving Low-frequency Energy harvester. The device is composed of two symmetrically assembled sandwich structures and a cantilever, in which sandwich structures can be driven by the cantilever. An analytical method was used to illustrate the high output mechanism, and a finite-element method model of the device was also established to optimize the generated electric energy in this device. The electrical properties of the device under different excitation frequencies and load resistances were studied systematically. The maximum voltage and power density at resonance frequency (43.8 Hz) were measured to be 60.8 V and 10.8 mW/cm(3) under a proof mass of 13.5 g, respectively. Both theoretical and experimental results demonstrate the considerable potential of the resonance-excited shear-mode energy harvester applied to wireless sensors and low-power portable electronics.

  19. The relationship between critical strain energy release rate and fracture mode in multidirectional carbon-fiber/epoxy laminates

    SciTech Connect

    Trakas, K.; Kortschot, M.T.

    1997-12-31

    It is proposed that the fracture surface of delaminated specimens, and hence the critical strain energy release rate, is dependent on both the mode of fracture and the orientation of the plies on either side of the delamination with respect to the propagation direction. Recent fractographs of Mode 3 delamination surfaces obtained by the authors have reinforced the idea that the properties, G{sub 11c} and G{sub 111c}, are structural rather than material properties for composite laminates. In this study, the relationship between the mode of fracture, the ply orientation, and the apparent interlaminar toughness has been explored. Standard double-cantilever-beam and end-notched flexure tests have been used, as has the newly developed Mode 3 modified split-cantilever beam test. Delaminations between plies of various orientations have been constrained to the desired plane using Teflon inserts running along the entire length of the specimen. As well, scanning electron microscopy (SEM) fractography has been extensively used so that measured energies can be correlated to the surface deformation. While fractographs show that Modes 2 and 3 share common fractographic features, corresponding values of G, do not correlate, and it is shown that the large plastic zone of fractured Mode 2 specimens eliminates any comparison between the two. In contrast, Mode 1 delamination is found to be independent of the orientation of the delaminating plies.

  20. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy

    PubMed Central

    Okamoto, Norihiko L.; Fujimoto, Shu; Kambara, Yuki; Kawamura, Marino; Chen, Zhenghao M. T.; Matsunoshita, Hirotaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.

    2016-01-01

    High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33–43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of –0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5–4.5 nm near the screw orientation to ~5–8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m2. Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20–50 at.%, and atomic size misfit of ~4%. PMID:27775026

  1. Extracting and Applying SV-SV Shear Modes from Vertical Vibrator Data Across Geothermal Prospects Final Report

    SciTech Connect

    Hardage, Bob

    2013-07-01

    This 3-year project was terminated at the end of Year 1 because the DOE Geothermal project-evaluation committee decided one Milestone was not met and also concluded that our technology would not be successful. The Review Panel recommended a ?no-go? decision be implemented by DOE. The Principal Investigator and his research team disagreed with the conclusions reached by the DOE evaluation committee and wrote a scientifically based rebuttal to the erroneous claims made by the evaluators. We were not told if our arguments were presented to the people who evaluated our work and made the ?no-go? decision. Whatever the case regarding the information we supplied in rebuttal, we received an official letter from Laura Merrick, Contracting Officer at the Golden Field Office, dated June 11, 2013 in which we were informed that project funding would cease and instructed us to prepare a final report before September 5, 2013. In spite of the rebuttal arguments we presented to DOE, this official letter repeated the conclusions of the Review Panel that we had already proven to be incorrect. This is the final report that we are expected to deliver. The theme of this report will be another rebuttal of the technical deficiencies claimed by the DOE Geothermal Review Panel about the value and accomplishments of the work we did in Phase 1 of the project. The material in this report will present images made from direct-S modes produced by vertical-force sources using the software and research findings we developed in Phase 1 that the DOE Review Panel said would not be successful. We made these images in great haste when we were informed that DOE Geothermal rejected our rebuttal arguments and still regarded our technical work to be substandard. We thought it was more important to respond quickly rather than to take additional time to create better quality images than what we present in this Final Report.

  2. Toroidal Flow Shear Driven turbulence and Transport

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Hinton, F. L.; Hahm, T. S.; Tang, W. M.

    2012-10-01

    New results from global nonlinear gyrokinetic simulations with the GTS code show that strong flow shear can drive a negative compressibility mode [1-3] unstable in tokamak geometry in some experimentally relevant parameter regimes. The modes reside in a low-k range, similar to that of ITG mode, with smaller but almost constant growth rate over a wider kθ range, while the mode frequency increases strongly with kθ. More interestingly, the flow shear modes show significantly finite k//, unlike ITG and TEM. The nonlinear energy transfer to longer wavelength via toroidal mode coupling and corresponding strong zonal flow and geodestic acoustic mode (GAM) generation are shown to play a critical role in the nonlinear saturation of the instability. The associated turbulence fluctuations can produce significant momentum and energy transport, including an intrinsic torque in the co-current direction. Remarkably, strong ``resonance'' in the fluctuations and associated transport peaks at the lowest order rational surfaces with integer q-number (rather than fractional), consistent with theoretical calculation. As a consequence, local ``corrugations'' are generated in all plasma profiles (temperatures, density and toroidal rotation), potentially impacting transport barrier formation near the rational surface. Discussions on flow optimization for minimizing plasma transport will be reported.[4pt] [1] N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 (1988).[0pt] [2] P. J. Catto et al., Phys. Fluids 16, 1719 (1973).[0pt] [3] M. Artun and W. M. Tang, Phys. Fluids B4, 1102 (1992).

  3. Observation of a critical pressure gradient for the stabilization of interchange modes in simple magnetized toroidal plasmas

    SciTech Connect

    Federspiel, L.; Labit, B.; Ricci, P.; Fasoli, A.; Furno, I.; Theiler, C.

    2009-09-15

    The existence of a critical pressure gradient needed to drive the interchange instability is experimentally demonstrated in the simple magnetized torus TORoidal Plasma EXperiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. This gradient is reached during a scan in the neutral gas pressure p{sub n}. Around a critical value for p{sub n}, depending on the magnetic configuration and on the injected rf power, a small increase in the neutral gas pressure triggers a transition in the plasma behavior. The pressure profile is locally flattened, stabilizing the interchange mode observed at lower neutral gas densities. The measured value for the critical gradient is close to the linear theory estimate.

  4. Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin

    1997-01-01

    The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.

  5. A Critical Review of Mode of Action (MOA) Assignment Classifications for Ecotoxicology

    EPA Science Inventory

    There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human health toxicology. With increasing calls to assess thousands of chemicals, some of which have little available informatio...

  6. Diffusion with critically correlated traps and the slow relaxation of the longest-wavelength mode

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sonali; Nakanishi, Hisao

    1996-02-01

    We study diffusion on a substrate with permanent traps distributed with critical positional correlation, modeled by their placement on the perimeters of a critical percolation cluster. We perform a numerical analysis of the vibrational density of states and the largest eigenvalue of the equivalent scalar elasticity problem using the method of Arnoldi and Saad. We show that the critical trap correlation increases the exponent appearing in the stretched exponential behavior of the low frequency density of states by approximately a factor of two as compared to the case of no correlations. A finite-size scaling hypothesis of the largest eigenvalue is proposed and its relation to the density of states is given. The numerical analysis of this scaling postulate leads to the estimation of the stretch exponent in good agreement with the result for the density of states.

  7. Mechanisms for three kinds of limiting shear stresses appearing in the traction modes of viscous, viscoelastic, and glassy states of lubricants

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Fujita, Y.

    2014-06-01

    We present that the tractional flow of a lubricant shows three kinds of limiting shear stresses at which the shear stresses take place independently of the shear rates in its viscous, viscoelastic, and glassy states. We propose three models on the mechanisms for the limiting shear stresses, based on the data of Brillouin spectra and viscosity of viscoelastic liquids previously reported by us and based on the data of the deformation of glassy polymers referred from others. The Brillouin spectra of a viscoelastic lubricant measured at up to 5 GPa at 25 and 80 °C show that we could not observe a frequency dispersion in sound waves below 0.8 GPa at 80 °C, while we can observe the frequency dispersion above 0.1 MPa at 25 °C owing to the viscosity of the lubricant. This result predicts the viscous limiting shear stress in the viscous state owing to the disappearance of meso-structures by heating and shearing under pressure. The viscosity of a polymer measured around the glass transition temperature (Tg) shows that Tg determined by the viscosity measurement is 27 K lower than that determined by calorimetry. This result predicts the elastic limiting shear stress in the viscoelastic state near the glass transition pressure (Pg) owing to the shear thinning effect by shearing a lubricant film. In addition, there is the plastic limiting shear stress in the glassy state owing to the yield stress at which the tractional flow of a glassy lubricant behaves as a plastic solid.

  8. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    NASA Astrophysics Data System (ADS)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  9. Arts Activism: Praxis in Social Justice, Critical Discourse, and Radical Modes of Engagement

    ERIC Educational Resources Information Center

    Frostig, Karen

    2011-01-01

    How does arts activism relate to concepts of voice, issues of social justice, and ideas about sustainable change and transformative processes? Does arts activism imply a particular set of values? This article describes an arts activism course that is designed to raise critical discourse on these and other questions and to provide a structure for…

  10. Error-field penetration in reversed magnetic shear configurations

    SciTech Connect

    Wang, H. H.; Wang, Z. X.; Wang, X. Q.; Wang, X. G.

    2013-06-15

    Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.

  11. Ideal stability limits of reverse shear equilibria

    SciTech Connect

    Phillips, M.W.; Hughes, M.H.

    1996-12-31

    The dependence on various plasma parameters of the ideal stability limit of reverse shear current profiles in TFTR and other tokamaks has been thoroughly explored. Profiles with reverse shear allow core access to the second ballooning stability region. In addition, for sufficient shear reversal, modes with n = 2 and greater are also stabilized. The n = 1 stability threshold is only slightly affected by reverse shear and becomes the limiting instability. The mode is predominately an infernal mode with a significant external contribution. Particular emphasis will be on analysis of recent experimental results of enhanced reverse shear (ERS) profiles in TFTR and a study of those profile characteristics which optimize TFTR performance.

  12. Failure modes effects and criticality analysis (FMECA) approach to the crystalline silicon photovoltaic module reliability assessment

    NASA Astrophysics Data System (ADS)

    Kuitche, Joseph M.; Tamizh-Mani, Govindasamy; Pan, Rong

    2011-09-01

    Traditional degradation or reliability analysis of photovoltaic (PV) modules has historically consisted of some combination of accelerated stress and field testing, including field deployment and monitoring of modules over long time periods, and analyzing commercial warranty returns. This has been effective in identifying failure mechanisms and developing stress tests that accelerate those failures. For example, BP Solar assessed the long term reliability of modules deployed outdoor and modules returned from the field in 2003; and presented the types of failures observed. Out of about 2 million modules, the total number of returns over nine year period was only 0.13%. An analysis on these returns resulted that 86% of the field failures were due to corrosion and cell or interconnect break. These failures were eliminated through extended thermal cycling and damp heat tests. Considering that these failures are observed even on modules that have successfully gone through conventional qualification tests, it is possible that known failure modes and mechanisms are not well understood. Moreover, when a defect is not easily identifiable, the existing accelerated tests might no longer be sufficient. Thus, a detailed study of all known failure modes existed in field test is essential. In this paper, we combine the physics of failure analysis with an empirical study of the field inspection data of PV modules deployed in Arizona to develop a FMECA model. This technique examines the failure rates of individual components of fielded modules, along with their severities and detectabilities, to determine the overall effect of a defect on the module's quality and reliability.

  13. Near threshold conditions justify critical gradient model for Alvenic mode driven relaxation of fast ions

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Ghantous, Katy; Heidbrink, William; van Zeeland, Michael

    2013-10-01

    Future burning plasma performance will be limited by the constraints to confine energetic superalfvenic fusion products, which can drive several low frequency Alfvénic instabilities. Expected multiple resonances help to justify the model developed recently, called critical gradient or 1.5D reduced quasilinear diffusion model. Similar conditions are expected in burning plasmas with TAE instabilities in a non virulent nonlinear regime. The 1.5D model make use of TAE/RSAEs linear theory. One critical element of the presented model is that it requires averaging over the time comparable to the fast ion slowing down. Another element is that the fast ion diffusion near the resonance does not flatten the distribution function whose gradient is maintained by the collision scattering. Further validations of this model justify its use in case of relatively high collisions. With the parametric plasma dependencies embedded in the model and with the quantitative normalization to NOVA-K growth rates the 1.5D model application to DIII-D experiments is well positioned for validations. Good agreement is summarized here for absolute values of the deduced neutron rate and for the time behavior of fast ion losses near the AE activity thresholds. 1.5D model is applicable for ITER and other BPs. Supported in part by the U.S. Department of Energy under the contract DE-AC02-09CH11466.

  14. Critical insights into the effect of shear on in situ reduction of graphene oxide in PVDF: assessing by rheo-dielectric measurements

    NASA Astrophysics Data System (ADS)

    Sharma, Maya; Madras, Giridhar; Bose, Suryasarathi

    2016-06-01

    In situ reduction of graphene oxide (GO) during the preparation of conducting polymeric nanocomposites has been explored recently. In this study, the in situ reduction of GO in poly (vinylidene fluoride) (PVDF) under different conditions like quiescent, high and low shear, pre-shear has been investigated in detail. To accomplish this, PVDF/GO composites were prepared by both melt and solution blending. The bulk electrical conductivity of melt mixed composites, which had undergone extensive shear during preparation, was monitored by a rheo-dielectric setup and compared with the composites which experienced low shear. In addition, the bulk electric conductivity was also measured in situ for the composites that had undergone quiescent compositing. Comprehensive characterization of the composites reveals that GO is in situ reducing under all processes but the improvement in conductivity is dependent on the adopted process. Compression molded samples, which were annealed for 45 min, showed highest melt conductivity among all the adopted processes. The intense shearing of composites at high temperature in melt extrusion led to re-stacking of graphene sheets and resulted in decreased bulk electrical conductivity. Surprisingly, melt conductivity decreases with shear and time in all composites. This study can help in understanding the reduction of GO during intense shearing of composites.

  15. Features of sound propagation through and stability of a finite shear layer

    NASA Technical Reports Server (NTRS)

    Koutsoyannis, S. P.

    1976-01-01

    The plane wave propagation, the stability and the rectangular duct mode problems of a compressible inviscid linearly sheared parallel, but otherwise homogeneous flow, are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially Whittaker M-functions. A number of known results are obtained as limiting cases of exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies and shear layer velocity profile slopes except in the singular case of the vortex sheet.

  16. Critical body residue of compounds having different mode of action on energy metabolism in benthic invertebrates

    SciTech Connect

    Penttinen, O.P.; Kukkonen, J.

    1995-12-31

    The toxicity of organic chemicals with different mode of toxic action was evaluated by determining their effect on the metabolic rate of two common benthic invertebrates, midge larva (Chironomus riparius) and oligochate worm (Lumbriculus variegatus). The rate of metabolism was monitored by direct microcalorimetry and the change of heat output was related to the body residue of chemicals. The expected response of 2,4,5-trichlorophenol (TCP), known as an uncoupler of oxidative phosphorylation, was an increase of metabolic rate. The animals were exposed 24 h to water spiked with TCP (10 to 1,200 {micro}g/L) and they received the body residues of TCP in the range of 8.8 to 336 {micro}g/g wet wt (0.04 to 1.75 {micro}mol/g). The threshold concentration was 0.7 {micro}mol/g wet wt. (C. riparius) or 1.0 {micro}mol/g wet wt. (L. variegatus) above which the rate of heat dissipation increased in direct proportion to the concentration of TCP in tissue. At maximum, the metabolic rate increased by a factor of three. At the highest water concentration animals were dying and the metabolic rate was low. The energetic responses obtained with TCP are compared to those of a non-polar narcotic compound 1,2,4-trichlorobenzene and an other uncoupling agent, 2,4-dinitrophenol.

  17. Critical evaluation of the effectiveness of different modes of treatment of male infertility.

    PubMed

    Comhaire, F; Zalata, A; Mahmoud, A

    1996-01-01

    Among cohorts of couples treated for infertility due to a male factor it is the effective cumulative rate of successful deliveries and the cost per delivery that must be considered in assessing the value of different modes of treatment. The 'wait and see', timed coitus, or counselling approach has a low success rate (about 15% in 12 months), and a relatively high cost per delivery because of the cost of control visits and of tests for the prediction of ovulation. The high success rate of varicocele treatment (35% in 12 months, between 60 and 80% after 24 months), and the moderate cost of retrograde venography and embolisation results in a low cost per delivery. This cost is the lowest in anti-oestrogen treatment of idiopathic oligozoospermia, with a 20-30% effective cumulative pregnancy rate in 6 months. Three months of intra-uterine insemination (IUI) of Percoll gradient selected spermatozoa has a higher effective cumulative success rate than conventional in vitro fertilization (IVF) applied in cases with similar sperm characteristics, and the cost per successful delivery of the former is eight times lower than that of the latter. Intracytoplasmic sperm injection can successfully be applied in cases with more severe sperm deficiency; it has a higher success rate than conventional IVF, and is slightly more cost-efficient. However, the effective cumulative pregnancy rate remains relatively low (about 45% in 12 months) because of the high drop-out rate and long time interval between treatment cycles among unsuccessful couples.

  18. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review.

    PubMed

    Vachon, Vincent; Laprade, Raynald; Schwartz, Jean-Louis

    2012-09-15

    Bacillus thuringiensis (Bt) Cry toxins constitute the active ingredient in the most widely used biological insecticides and insect-resistant transgenic crops. A clear understanding of their mode of action is necessary for improving these products and ensuring their continued use. Accordingly, a long history of intensive research has established that their toxic effect is due primarily to their ability to form pores in the plasma membrane of the midgut epithelial cells of susceptible insects. In recent years, a rather elaborate model involving the sequential binding of the toxins to different membrane receptors has been developed to describe the events leading to membrane insertion and pore formation. However, it was also proposed recently that, in contradiction with this mechanism, Bt toxins function by activating certain intracellular signaling pathways which lead to the necrotic death of their target cells without the need for pore formation. Because work in this field has largely focused, for several years, on the elaboration and promotion of these two models, the present revue examines in detail the experimental evidence on which they are based. It is concluded that the presently available information still supports the notion that Bt Cry toxins act by forming pores, but most events leading to their formation, following binding of the activated toxins to their receptors, remain relatively poorly understood.

  19. Geometric aspects of shear jamming induced by deformation of frictionless sphere packings

    NASA Astrophysics Data System (ADS)

    Vinutha, H. A.; Sastry, Srikanth

    2016-09-01

    It has recently been demonstrated that shear deformation of frictionless sphere packings leads to structures that will undergo jamming in the presence of friction, at densities well below the isotropic jamming point {φj}≈ 0.64 , and at high enough strains. Here, we show that the geometric features induced by strain are robust with respect to finite size effects, and include the feature of hyperuniformity, previously studied in the context of jamming, and more recently in driven systems. We study the approach to jamming as strain is increased, by evolving frictionless sheared configurations through frictional dynamics, and thereby identify a critical, or jamming, strain for each density, for a chosen value of the coefficient of friction. In the presence of friction above a certain strain value the sheared frictionless packings begin to develop finite stresses, which marks the onset of shear jamming. At a higher strain value, the shear stress reaches a saturation value after rising rapidly above the onset of shear jamming, which permits identification of the shear jamming transition. The onset of shear jamming and shear jamming are found to occur when the coordination number Z reaches values of Z  =  3 and Z  =  4 respectively. By considering percolation probabilities for the contact network, clusters of four coordinated and six coordinated spheres, we show that the percolation of four coordinated spheres corresponds to the onset of shear jamming behaviour, whereas the percolation of six coordinated spheres corresponds to shear jamming, for the chosen friction coefficients. At the onset of shear jamming, the force distribution begins to develop a peak at finite value and the force network is anisotropic and heterogeneous. And at the shear jamming transition, the force distribution has a well defined peak close to < f> and the force network is less anisotropic and homogeneous. We briefly discuss mechanical aspects of the jamming behaviour by

  20. A critical interpersonal distance switches between two coordination modes in kendo matches.

    PubMed

    Okumura, Motoki; Kijima, Akifumi; Kadota, Koji; Yokoyama, Keiko; Suzuki, Hiroo; Yamamoto, Yuji

    2012-01-01

    In many competitive sports, players need to quickly and continuously execute movements that co-adapt to various movements executed by their opponents and physical objects. In a martial art such as kendo, players must be able to skillfully change interpersonal distance in order to win. However, very little information about the task and expertise properties of the maneuvers affecting interpersonal distance is available. This study investigated behavioral dynamics underlying opponent tasks by analyzing changes in interpersonal distance made by expert players in kendo matches. Analysis of preferred interpersonal distances indicated that players tended to step toward and away from their opponents based on two distances. The most preferred distance enabled the players to execute both striking and defensive movements immediately. The relative phase analysis of the velocities at which players executed steps toward and away revealed that players developed anti-phase synchronizations at near distances to maintain safe distances from their opponents. Alternatively, players shifted to in-phase synchronization to approach their opponents from far distances. This abrupt phase-transition phenomenon constitutes a characteristic bifurcation dynamics that regularly and instantaneously occurs between in- and anti-phase synchronizations at a critical interpersonal distance. These dynamics are profoundly affected by the task constraints of kendo and the physical constraints of the players. Thus, the current study identifies the clear behavioral dynamics that emerge in a sport setting.

  1. A feedforward compensation design in critical conduction mode boost power factor correction for low-power low totalharmonic distortion

    NASA Astrophysics Data System (ADS)

    Yani, Li; Yintang, Yang; Zhangming, Zhu; Wei, Qiang

    2012-03-01

    For low-power low total harmonic distortion (THD), based on the CSMC 0.5 μm BCD process, a novel boost power factor correction (PFC) converter in critical conduction mode is discussed and analyzed. Feedforward compensation design is introduced in order to increase the PWM duty cycle and supply more conversion energy near the input voltage zero-crossing points, thus regulating the inductor current of the PFC converter and compensating the system loop gain change with ac line voltage. Both theoretical and practical results reveal that the proposed PFC converter with feedforward compensation cell has better power factor and THD performance, and is suitable for low-power low THD design applications. The experimental THD of the boost PFC converter is 4.5%, the start-up current is 54 μA, the stable operating current is 3.85 mA, the power factor is 0.998 and the efficiency is 95.2%.

  2. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  3. The 3-min test does not provide a valid measure of critical power using the SRM isokinetic mode.

    PubMed

    Karsten, B; Jobson, S A; Hopker, J; Passfield, L; Beedie, C

    2014-04-01

    Recent datas suggest that the mean power over the final 30 s of a 3-min all-out test is equivalent to Critical Power (CP) using the linear ergometer mode. The purpose of the present study was to identify whether this is also true using an "isokinetic mode". 13 cyclists performed: 1) a ramp test; 2) three 3-min all-out trials to establish End Power (EP) and work done above EP (WEP); and 3) 3 constant work rate trials to determine CP and the work done above CP (W') using the work-time (=CP1/W'1) and 1/time (=CP2/W'2) models. Coefficient of variation in EP was 4.45% between trials 1 and 2, and 4.29% between trials 2 and 3. Limits of Agreement for trials 1-2 and trials 2-3 were -2±38 W. Significant differences were observed between EP and CP1 (+37 W, P<0.001), between WEP and W'1(-6.2 kJ, P=0.001), between EP and CP2 (+31 W, P<0.001) and between WEP and W'2 (-4.2 kJ, P=0.006). Average SEE values for EP-CP1 and EP-CP2 of 7.1% and 6.6% respectively were identified. Data suggest that using an isokinetic mode 3-min all-out test, while yielding a reliable measure of EP, does not provide a valid measure of CP.

  4. Repeated buckling of composite shear panels

    NASA Technical Reports Server (NTRS)

    Singer, Josef; Weller, Tanchum

    1990-01-01

    Failures in service of aerospace structures and research at the Technion Aircraft Structures Laboratory have revealed that repeatedly buckled stiffened shear panels might be susceptible to premature fatigue failures. Extensive experimental and analytical studies have been performed at Technion on repeated buckling, far in excess of initial buckling, for both metal and composite shear panels with focus on the influence of the surrounding structure. The core of the experimental investigation consisted of repeated buckling and postbuckling tests on Wagner beams in a three-point loading system under realistic test conditions. The effects of varying sizes of stiffeners, of the magnitude of initial buckling loads, of the panel aspect ratio and of the cyclic shearing force, V sub cyc, were studied. The cyclic to critical shear buckling ratios, (V sub cyc/V sub cr) were on the high side, as needed for efficient panel design, yet all within possible flight envelopes. The experiments were supplemented by analytical and numerical analyses. For the metal shear panels the test and numerical results were synthesized into prediction formulas, which relate the life of the metal shear panels to two cyclic load parameters. The composite shear panels studied were hybrid beams with graphite/epoxy webs bonded to aluminum alloy frames. The test results demonstrated that composite panels were less fatigue sensitive than comparable metal ones, and that repeated buckling, even when causing extensive damage, did not reduce the residual strength by more than 20 percent. All the composite panels sustained the specified fatigue life of 250,000 cycles. The effect of local unstiffened holes on the durability of repeatedly buckled shear panels was studied for one series of the metal panels. Tests on 2024 T3 aluminum panels with relatively small unstiffened holes in the center of the panels demonstrated premature fatigue failure, compared to panels without holes. Preliminary tests on two graphite

  5. Critical current degradation behaviour of GdBCO CC tapes in pure torsion and combined tension-torsion modes

    NASA Astrophysics Data System (ADS)

    Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop

    2016-10-01

    Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.

  6. Quantum Critical Elasticity.

    PubMed

    Zacharias, Mario; Paul, Indranil; Garst, Markus

    2015-07-10

    We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye's T(3) law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates, and iron-based superconductors. PMID:26207483

  7. The quenched state with dominant shear vibration mode originated from domain reconfiguration in [001]-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoyao; Garland, Philip P.; Adamson, Robert B. A.; Brown, Jeremy A.

    2014-06-01

    We present results of investigations into a low-frequency vibration mode (LVM) in [001] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal. Through a series of impedance measurement and polarization microscopy observations of domain structure, we find that the LVM is a shear mode arising from a polarization component lying in the (001) plane. Through quenching, a metastable state can be reached where the LVM is greatly enhanced and the thickness vibration mode of the typical poled state is highly suppressed. Measurements on the transverse vibration modes of differently oriented crystal samples show that the LVM state possesses a macroscopic orthorhombic symmetry (mm2) with its polarization vector along the [110] direction. The structural differences between the LVM-enhanced state and the usual poled state are discussed in detail. The two states have the same crystalline phase but different ferroelectric domain structures. When heated above the rhombohedral-to-tetragonal transition temperature, Trt, a tetragonal phase with (110) domain walls is formed. This domain structure can be frozen by the rapid quenching through the Trt. Based on compatibility of ferroelectric polarizations at domain walls, and observed polarization microscopy results, we are able to infer the possible arrangement of domain structures in rhombohedral and tetragonal phases. The [110] polarization component associated with LVM originates from the domain structure with well-organized (110) domain walls.

  8. Miniature specimen shear punch test for UHMWPE used in total joint replacements.

    PubMed

    Kurt, S M; Jewett, C W; Bergström, J S; Foulds, J R; Edidin, A A

    2002-05-01

    Despite the critical role that shear is hypothesized to play in the damage modes that limit the performance of total hip and knee replacements, the shear behavior of ultra-high molecular weight polyethylene (UHMWPE) remains poorly understood, especially after oxidative degradation or radiation crosslinking. In the present study, we developed the miniature specimen (0.5 mm thickness x 6.4mm diameter) shear punch test to evaluate the shear behavior of UHMWPE used in total joint replacement components. We investigated the shear punch behavior of virgin and crosslinked stock materials, as well as of UHMWPE from tibial implants that were gamma-irradiated in air and shelf aged for up to 8.5 years. Finite element analysis, scanning electron microscopy, and interrupted testing were conducted to aid in the interpretation of the shear punch load-displacement curves. The shear punch load-displacement curves exhibited similar distinctive features. Following toe-in, the load-displacement curves were typically bilinear, and characterized by an initial stiffness, a transition load, a hardening stiffness, and a peak load. The finite element analysis established that the initial stiffness was proportional to the elastic modulus of the UHMWPE, and the transition load of the bilinear curve reflected the development of a plastically deforming zone traversing through the thickness of the sample. Based on our observations, we propose two interpretations of the peak load during the shear punch test: one theory is based on the initiation of crystalline plasticity, the other based on the transition from shear to tension during the tests. Due to the miniature specimen size, the shear punch test offers several potential advantages over bulk test methods, including the capability to directly measure shear behavior, and quite possibly infer ultimate uniaxial behavior as well, from shelf aged and retrieved UHMWPE components. Thus, the shear punch test represents an effective and complementary

  9. Formal operational reasoning modes: Predictors of critical thinking abilities and grades assigned by teachers in science and mathematics for students in grades nine through twelve

    NASA Astrophysics Data System (ADS)

    Bitner, Betty L.

    To test the hypothesis that formal operational reasoning modes are predictors of critical thinking abilities and grades assigned by teachers in science and mathematics, in September 1986 the Group Assessment of Logical Thinking (GALT) and in December 1986 the Watson-Glaser Critical Thinking Appraisal (WGCTA) were administered to 101 rural students in Grades 9 through 12. The grades assigned by teachers were collected in May 1987. Construct and criterion-related validities and internal-consistency reliability using Cronbach's alpha method were established on the GALT. On the WGCTA, content and construct validities and internal consistency reliability using the split-half procedure, coefficient of stability, and coefficient of equivalence were established. The five formal operational reasoning modes in the GALT were found to be significant predictors of critical thinking abilities and grades assigned by teachers in science and mathematics. The variance in the five critical thinking abilities attributable to the five formal operational reasoning modes ranged between 28% and 70%. The five formal operational reasoning modes explained 29% of the variance in mathematics achievement and 62% of the variance in science achievement.

  10. Shear-thinning Fluid

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  11. Lateral shear interferometry with holo shear lens

    NASA Astrophysics Data System (ADS)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  12. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  13. Current-phase relation and h /e -periodic critical current of a chiral Josephson contact between one-dimensional Majorana modes

    NASA Astrophysics Data System (ADS)

    Shapiro, Dmitriy S.; Shnirman, Alexander; Mirlin, Alexander D.

    2016-04-01

    We explore a long Josephson contact transporting Cooper pairs between one-dimensional (1D) charge-neutral chiral Majorana modes in the leads via charged Dirac chiral modes in the normal region. We investigate the regimes of (i) transparent contacts and (ii) tunnel junctions implemented in 3D topological insulator/superconductor/magnet hybrid structures. The setup acts as a SQUID controlled by the magnetic flux enclosed by the chiral loop of the normal region. This chirality leads to the fractional h /e -periodic pattern of critical current. The current-phase relation can have sawtoothlike shape with spikes at unusual even phases of 2 π n .

  14. Single-Mode Propagation in Optical Waveguides and Fibres: A Critical Review of its Treatment in Physics Textbooks

    ERIC Educational Resources Information Center

    Ruddock, Ivan S.

    2009-01-01

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…

  15. Avalanches in strained amorphous solids: does inertia destroy critical behavior?

    PubMed

    Salerno, K Michael; Maloney, Craig E; Robbins, Mark O

    2012-09-01

    Simulations are used to determine the effect of inertia on athermal shear of amorphous two-dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks. Inertia takes the system to a new underdamped universality class rather than driving the system away from criticality as previously thought. Scaling exponents are determined for the underdamped and overdamped limits and a critical damping that separates the two regimes. Systems are in the overdamped universality class even when most vibrational modes are underdamped.

  16. Experimental and numerical study of the shear layer instability between two counter-rotating disks

    NASA Astrophysics Data System (ADS)

    Moisy, F.; Doaré, O.; Pasutto, T.; Daube, O.; Rabaud, M.

    2004-05-01

    The shear layer instability in the flow between two counter-rotating disks enclosed by a cylinder is investigated experimentally and numerically, for radius-to-height ratio Gamma {=} R/h between 2 and 21. For sufficiently large rotation ratio, the internal shear layer that separates two regions of opposite azimuthal velocities is prone to an azimuthal symmetry breaking, which is investigated experimentally by means of visualization and particle image velocimetry. The associated pattern is a combination of a sharp-cornered polygonal pattern, as observed by Lopez et al. (2002) for low aspect ratio, surrounded by a set of spiral arms, first described by Gauthier et al. (2002) for high aspect ratio. The spiral arms result from the interaction of the shear layer instability with the Ekman boundary layer over the faster rotating disk. Stability curves and critical modes are experimentally measured for the whole range of aspect ratios, and are found to compare well with numerical simulations of the three-dimensional time-dependent Navier Stokes equations over an extensive range of parameters. Measurements of a local Reynolds number based on the shear layer thickness confirm that a shear layer instability, with only weak curvature effect, is responsible for the observed patterns. This scenario is supported by the observed onset modes, which scale as the shear layer radius, and by the measured phase velocities.

  17. Time evolution of dynamic shear moduli in a physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt: Critical exponent and gel strength

    NASA Astrophysics Data System (ADS)

    Takenaka, Mikihito; Kobayashi, Toshiaki; Hashimoto, Takeji; Takahashi, Masaoki

    2002-04-01

    We investigated time evolution of shear moduli in the physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol (PDTS) in the polystyrene melt system containing 2.5 wt % of PDTS. At the gel point, storage and loss shear moduli, G' and G″, were described by the power law of frequency ω, G'˜G″˜ωn, with the critical exponent n equal to (2)/(3), in agreement with the value predicted by the percolation theory. The exponent n and the gel strength S at the gel point measured as a function of quench depth ΔT indicated that the fractal network structure of PDTS does not change with ΔT but that the mechanical strength of the network increases with ΔT. Before reaching the gel point, G'(ω) and G″(ω) obtained at various times can be well superposed onto the master curves, indicating that the mechanical as well as structural self-similarity hold in this gelation process.

  18. The importance of shear heating for shear localization during tectonic nappe displacement

    NASA Astrophysics Data System (ADS)

    Kiss, Dániel; Duretz, Thibault; Podladchikov, Yuri; Schmalholz, Stefan M.

    2016-04-01

    Localization of deformation plays a major role during tectonic processes at all scale, from the formation of deformation bands within single grains up to crustal and lithospheric scale shear zones. The role of shear localization is particularly important for the formation and displacement of tectonic nappes during orogeny. It has been shown that a simple one-dimensional (1D) thermo-mechanical shear zone model, which considers a power-law flow law and temperature dependent viscosity, can to the first-order explain thrust-sheet and fold nappe formation. This 1D model could successfully reproduce the overall shear strain distribution across natural nappes and shear zones, but underestimated systematically the shear strain at the base of the nappe and shear zone. This underestimation indicates that certain processes have been ignored in the analysis. We present therefore a new 1D thermo-mechanical model which also considers shear heating and the related thermal softening of temperature-dependent viscosity to quantify the impact of shear heating on strain localization during nappe displacement. We perform a dimensional analysis of the equations which describe the 1D shear zone model to determine the dimensionless parameters which control the deformation. Three deformation modes controlled by dimensionless parameters will be distinguished: (1) shear deformation for which shear heating is negligible, (2) shear deformation for which shear heating is moderate and displacement velocities stay in the range of plate velocities, (3) shear deformation for which shear heating is significant and velocities and temperatures increase continuously (thermal runaway). The 1D shear zone model is applied to the Helvetic nappe system in general and the Morcles, Doldenhorn and Wildhorn nappes in particular. For the geological and microstructural data available for the Helvetic nappe system we determine whether shear heating was important during nappe formation or not. The 1D results are

  19. Plasma pressure effect on the multiple low-shear toroidal Alfven eigenmodes

    SciTech Connect

    Marchenko, V. S.

    2009-04-15

    It is shown that there is a critical thermal pressure gradient at which the polarizations of the multiple low-shear toroidal Alfven eigenmodes (TAEs) are reversed. Below the critical value, the TAE spectrum consists of two bands of the even (odd) modes located in the upper (lower) part of the toroidal Alfven gap, which is consistent with the zero-pressure limit [J. Candy, B. N. Breizman, J. W. Van Dam, and T. Ozeki, Phys. Lett. A 215, 299 (1996)]. Above the critical pressure, the odd (even) TAEs appear in the upper (lower) part of the gap.

  20. The correlation between the temperature dependence of the CRSS and the formation of superlattice-intrinsic stacking faults in the nickel-base superalloy PWA 1480. [critical resolved shear stress

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    The PWA 1480 nickel-base superalloy is known to exhibit a unique minimum in the critical resolved shear stress (CRSS) at about 400 C. This paper reports an observation of a deformation mechanism whose temperature dependence correlates exactly with the reduction in the CRSS. It was found that, after monotonic or cyclic deformation of PWA 1480 at 20 C, the deformation substructures typically contain high density of superlattice-intrinsic stacking faults (S-ISFs) within the gamma-prime precipitates. As the temperature of deformation is increased, the density of S-ISFs is reduced, until finally no faults are observed after deformation in the range from 400 to 705 C. The reduction in the fault density corresponds exactly to the reduction in the CRSS, and the temperature at which the fault density is zero corresponds with the minimum in the CRRS. Two possible mechanisms related to the presence of the S-ISFs in the alloy are considered.

  1. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  2. Coherent motion in excited free shear flows

    NASA Technical Reports Server (NTRS)

    Wygnanski, Israel J.; Petersen, Robert A.

    1987-01-01

    The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.

  3. Meeting the Challenge of Health Literacy in Rural Uganda: The Critical Role of Women and Local Modes of Communication

    ERIC Educational Resources Information Center

    Kendrick, Maureen; Mutonyi, Harriet

    2007-01-01

    This article seeks to better understand the relation between local and traditional modes of communication and health literacy within the context of a rural West Nile community in Northern Uganda. Drawing on social semiotics (multimodality) and Bakhtin's notion of the carnival, the focus is on a group of women participating in a grassroots literacy…

  4. On the magnon interaction in Haematite. 2: Magnon energy of the acoustical mode and magnetic critical fields

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Nagai, O.; Tanaka, T.

    1975-01-01

    Previous spin wave theories of the antiferromagnet hematite were extended. The behavior of thermodynamic quantities around the Morin transition temperature was studied, and the latent heat of the Morin transition was calculated. The temperature dependence of the antiferromagnetic resonance frequency and the parallel and perpendicular critical spin-flop magnetic fields were calculated. It was found that the theory agrees well with experiment.

  5. Physics of the L-mode to H-mode transition in tokamaks

    SciTech Connect

    Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D.; Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L.; Finkenthal, D.; Hillis, D.L.; Wade, M.R.; Matsumoto, H.; Watkins, J.G.

    1992-07-01

    Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E {times} B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories.

  6. Temporal oscillations of the shear stress and scattered light in a shear-banding--shear-thickening micellar solution.

    PubMed

    Azzouzi, H; Decruppe, J P; Lerouge, S; Greffier, O

    2005-08-01

    The results of optical and rheological experiments performed on a viscoelastic solution (cetyltrimethylammonium bromide + sodium salicylate in water) are reported. The flow curve has a horizontal plateau extending between two critical shear rates characteristic of heterogeneous flows formed by two layers of fluid with different viscosities. These two bands which also have different optical anisotropy are clearly seen by direct observation in polarized light. At the end of the plateau, apparent shear thickening is observed in a narrow range of shear rates; in phase oscillations of the shear stress and of the first normal stress difference are recorded in a shearing device operating under controlled strain. The direct observation of the annular gap of a Couette cell in a direction perpendicular to a plane containing the vorticity shows that the turbidity of the whole sample also undergoes time dependent variations with the same period as the shear stress. However no banding is observed during the oscillations and the flow remains homogeneous.

  7. Temporal oscillations of the shear stress and scattered light in a shear-banding-shear-thickening micellar solution

    NASA Astrophysics Data System (ADS)

    Azzouzi, H.; Decruppe, J. P.; Lerouge, S.; Greffier, O.

    2005-08-01

    The results of optical and rheological experiments performed on a viscoelastic solution (cetyltrimethylammonium bromide + sodium salicylate in water) are reported. The flow curve has a horizontal plateau extending between two critical shear rates characteristic of heterogeneous flows formed by two layers of fluid with different viscosities. These two bands which also have different optical anisotropy are clearly seen by direct observation in polarized light. At the end of the plateau, apparent shear thickening is observed in a narrow range of shear rates; in phase oscillations of the shear stress and of the first normal stress difference are recorded in a shearing device operating under controlled strain. The direct observation of the annular gap of a Couette cell in a direction perpendicular to a plane containing the vorticity shows that the turbidity of the whole sample also undergoes time dependent variations with the same period as the shear stress. However no banding is observed during the oscillations and the flow remains homogeneous.

  8. Hierarchical cosmic shear power spectrum inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till

    2016-02-01

    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

  9. Effect of rotation and velocity shear on tearing layer stability in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    White, Ryan L.; Fitzpatrick, Richard

    2015-10-01

    Using a resistive generalization of the Frieman-Rotenberg formalism, the leading-order effects of velocity shear and rotation on linear tearing layer stability are studied for tokamak equilibria. The layer equations for resistive interchange modes are derived for arbitrary equilibrium rotation and velocity shear. The resulting layer equations do not conserve parity and are not simplified by Fourier transform. Thus, many standard numerical techniques cannot be implemented in a straightforward manner. Layer equations are also derived in the constant- Ψ limit. The constant- Ψ dispersion relation is obtained and is used to study the leading-order effects of rotation and velocity shear on the critical value of Δ' required for tearing instability. It is found that rotation and velocity shear can couple with the parallel current and the current gradient in the layer to reduce Δ'crit . If parallel currents are sufficiently weak to compete with second-order effects, velocity shear can be stabilizing, while rotation is found to have a destabilizing effect. Second-order coupling of velocity shear and rotation can have either sign, and thus can affect stability in either direction.

  10. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction. PMID:25853777

  11. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.

  12. Critical Layers and Protoplanetary Disk Turbulence

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan M.; Shariff, Karim; Cuzzi, Jeffrey N.

    2016-10-01

    A linear analysis of the zombie vortex instability (ZVI) is performed in a stratified shearing sheet setting for three model barotropic shear flows. The linear analysis is done by utilizing a Green’s function formulation to resolve the critical layers of the associated normal-mode problem. The instability is the result of a resonant interaction between a Rossby wave and a gravity wave that we refer to as Z-modes. The associated critical layer is the location where the Doppler-shifted frequency of a distant Rossby wave equals the local Brunt–Väisälä frequency. The minimum required Rossby number for instability, {\\mathtt{Ro}}=0.2, is confirmed for parameter values reported in the literature. It is also found that the shear layer supports the instability in the limit where stratification vanishes. The ZVI is examined in a jet model, finding that the instability can occur for {\\mathtt{Ro}}=0.05. Nonlinear vorticity forcing due to unstable Z-modes is shown to result in the creation of a jet flow at the critical layer emerging as the result of the competition between the vertical lifting of perturbation radial vorticity and the radial transport of perturbation vertical vorticity. We find that the picture of this instability leading to a form of nonlinearly driven self-replicating pattern of creation and destruction is warranted: a parent jet spawns a growing child jet at associated critical layers. A mature child jet creates a next generation of child jets at associated critical layers of the former while simultaneously contributing to its own destruction via the Rossby wave instability.

  13. Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach.

    PubMed

    Anssari-Benam, Afshin; Barber, Asa H; Bucchi, Andrea

    2016-02-01

    A matrix-fibril shear stress transfer approach is devised and developed in this paper to analyse the primary biomechanical factors which initiate the structural degeneration of the bioprosthetic heart valves (BHVs). Using this approach, the critical length of the collagen fibrils l c and the interface shear acting on the fibrils in both BHV and natural aortic valve (AV) tissues under physiological loading conditions are calculated and presented. It is shown that the required critical fibril length to provide effective reinforcement to the natural AV and the BHV tissue is l c  = 25.36 µm and l c  = 66.81 µm, respectively. Furthermore, the magnitude of the required shear force acting on fibril interface to break a cross-linked fibril in the BHV tissue is shown to be 38 µN, while the required interfacial force to break the bonds between the fibril and the surrounding extracellular matrix is 31 µN. Direct correlations are underpinned between these values and the ultimate failure strength and the failure mode of the BHV tissue compared with the natural AV, and are verified against the existing experimental data. The analyses presented in this paper explain the role of fibril interface shear and critical length in regulating the biomechanics of the structural failure of the BHVs, for the first time. This insight facilitates further understanding into the underlying causes of the structural degeneration of the BHVs in vivo. PMID:26715134

  14. Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach.

    PubMed

    Anssari-Benam, Afshin; Barber, Asa H; Bucchi, Andrea

    2016-02-01

    A matrix-fibril shear stress transfer approach is devised and developed in this paper to analyse the primary biomechanical factors which initiate the structural degeneration of the bioprosthetic heart valves (BHVs). Using this approach, the critical length of the collagen fibrils l c and the interface shear acting on the fibrils in both BHV and natural aortic valve (AV) tissues under physiological loading conditions are calculated and presented. It is shown that the required critical fibril length to provide effective reinforcement to the natural AV and the BHV tissue is l c  = 25.36 µm and l c  = 66.81 µm, respectively. Furthermore, the magnitude of the required shear force acting on fibril interface to break a cross-linked fibril in the BHV tissue is shown to be 38 µN, while the required interfacial force to break the bonds between the fibril and the surrounding extracellular matrix is 31 µN. Direct correlations are underpinned between these values and the ultimate failure strength and the failure mode of the BHV tissue compared with the natural AV, and are verified against the existing experimental data. The analyses presented in this paper explain the role of fibril interface shear and critical length in regulating the biomechanics of the structural failure of the BHVs, for the first time. This insight facilitates further understanding into the underlying causes of the structural degeneration of the BHVs in vivo.

  15. Damage Surrounding Dynamically Propagating Shear Cracks in Granodiorite (Invited)

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Faulkner, R. G.; Cembrano, J. M.; Jensen, E.

    2009-12-01

    Quantifying the microfracture damage surrounding faults and fractures is important for predicting the fluid flow properties of rock masses. Damage surrounding faults has been attributed to fault growth, geometric irregularities, and earthquake rupture. Up to now, earthquake rupture can only be inferred when pseudotachylyte is present, indicating shear heating leading to melt production. We describe shear fractures that have developed a relatively isotropic granodioritic protolith within the Atacama fault system in northern Chile. These fractures have an alteration zone produced as a result of intense microfracture damage surrounding the fractures. These alteration zones taper out towards the fracture tips. The alteration zone also shows asymmetry either side of the fracture that can be used to infer the propagation direction of the fracture. We interpret these observations as being due to a waning fracture tip stress field of a dynamically propagating shear crack. In contrast, simple fracture mechanics models indicate a quasi-statically propagating fracture would be expected to produce an expanding zone of damage at the crack tip as displacement accumulates. Another explanation for the reduction in alteration zone width might be extension of the fracture tips by sub-critical crack growth. The width of alteration zone has a positive correlation with the shear displacement and a zero intercept. The slope of this correlation is steeper than for microfracture damage zone widths measured on larger displacement faults in the same region. We suggest that this indicates a different mode of formation; that of damage surrounding a dynamically propagating shear fracture. At higher displacements, additional processes such as those mentioned earlier contribute to the width of the microfracture damage zone, and the rate of growth with displacement is not so pronounced.

  16. Development of a low frequency omnidirectional piezoelectric shear horizontal wave transducer

    NASA Astrophysics Data System (ADS)

    Belanger, Pierre; Boivin, Guillaume

    2016-04-01

    Structural health monitoring (SHM) may offer an alternative to time based maintenance of safety critical components. Ultrasonic guided waves have recently emerged as a prominent option because their propagation carries information regarding the location, severity and types of damage. The fundamental shear horizontal ultrasonic guided wave mode has recently attracted interest in SHM because of its unique properties. This mode is not dispersive and has no attenuation due to fluid loading. In order to cover large areas using an SHM system, omnidirectional transduction is desired. Omnidirectional transduction of SH0 is challenging because of the required torsional surface stress. This paper presents a concept based on the discretisation of a torsional surface stress source using shear piezoelectric trapezoidal elements. Finite element simulation and experimental results are used to demonstrate the performance of this concept. The experimental modal selectivity is 17 dB and the transducer has a true omnidirectional behaviour.

  17. The Effects of Composition and gamma'/gamma Lattice Parameter Mismatch on the Critical Resolved Shear Stresses for Octahedral and Cube Slip in NiAlCrX Alloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V.

    1997-01-01

    Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.

  18. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  19. Three dimensional fabric evolution of sheared sand

    SciTech Connect

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  20. Dynamic shear deformation in high purity Fe

    SciTech Connect

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P; Lopez, Mike F; Gray, George T

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  1. Miniature specimen shear punch test for UHMWPE used in total joint replacements.

    PubMed

    Kurt, S M; Jewett, C W; Bergström, J S; Foulds, J R; Edidin, A A

    2002-05-01

    Despite the critical role that shear is hypothesized to play in the damage modes that limit the performance of total hip and knee replacements, the shear behavior of ultra-high molecular weight polyethylene (UHMWPE) remains poorly understood, especially after oxidative degradation or radiation crosslinking. In the present study, we developed the miniature specimen (0.5 mm thickness x 6.4mm diameter) shear punch test to evaluate the shear behavior of UHMWPE used in total joint replacement components. We investigated the shear punch behavior of virgin and crosslinked stock materials, as well as of UHMWPE from tibial implants that were gamma-irradiated in air and shelf aged for up to 8.5 years. Finite element analysis, scanning electron microscopy, and interrupted testing were conducted to aid in the interpretation of the shear punch load-displacement curves. The shear punch load-displacement curves exhibited similar distinctive features. Following toe-in, the load-displacement curves were typically bilinear, and characterized by an initial stiffness, a transition load, a hardening stiffness, and a peak load. The finite element analysis established that the initial stiffness was proportional to the elastic modulus of the UHMWPE, and the transition load of the bilinear curve reflected the development of a plastically deforming zone traversing through the thickness of the sample. Based on our observations, we propose two interpretations of the peak load during the shear punch test: one theory is based on the initiation of crystalline plasticity, the other based on the transition from shear to tension during the tests. Due to the miniature specimen size, the shear punch test offers several potential advantages over bulk test methods, including the capability to directly measure shear behavior, and quite possibly infer ultimate uniaxial behavior as well, from shelf aged and retrieved UHMWPE components. Thus, the shear punch test represents an effective and complementary

  2. Hyperuniformity in periodically sheared dilute suspensions

    NASA Astrophysics Data System (ADS)

    Wilken, Sam; Guerra, Rodrigo; Pine, David J.; Chaikin, Paul M.

    Periodically sheared dilute, non-Brownian suspensions explore new configurations through collisions in an otherwise reversible flow. Below a critical strain, the particles remain active until they find a configuration with no collisions and reach an absorbing state. Recent simulations by Hexner and Levine have shown that the configuration of particles in the critically absorbing state is hyperuniform. The particle number fluctuations of hyperuniform systems decrease with counting box size more rapidly than random systems (like the same suspension that is not in a critically absorbing state). We built a compact, lightweight uni-axial shear cell where particle coordinates can be measured while shearing with a confocal microscope. We have identified hyperuniform structures with density fluctuation measurements in colloidal suspensions of up to 40% volume fraction in the critically absorbing state with a strain ramp down protocol and find hyperuniform scaling of the density fluctuations.

  3. Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Xuan, Shouhu; Jiang, Wanquan; Cao, Saisai; Gong, Xinglong

    2016-04-01

    In this study, the influence of the shear rate and shear time on the transient viscosity of polystyrene-ethylacrylate based shear thickening fluid (STF) is investigated. If the shear rate is stepwise changed, it is found that both the viscosity and critical shear rate are affected by the shear time. Above the critical shear rate, the viscosity of the STF with larger power law exponent (n) increases faster. However, the viscosity tends to decrease when the shear time is long enough. This phenomenon can be responsible for the reversible structure buildup and the break-down process. An effective volume fraction (EVF) mechanism is proposed to analyze the shear time dependent viscosity and it is found that viscosity changes in proportion to EVF. To further clarify the structure evolution, a structural kinetic model is studied because the structural kinetic parameter (λ) could describe the variation in the effective volume fraction. The theoretical results of the structural kinetic model agree well with the experimental results. With this model, the change in viscosity and EVF can be speculated from the variation of λ and then the structure evolution can be better illustrated.

  4. Reduced shear power spectrum

    SciTech Connect

    Dodelson, Scott; Shapiro, Charles; White, Martin J.; /UC, Berkeley, Astron. Dept. /UC, Berkeley

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  5. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  6. Nonlinear Instability of a Uni-directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Goldstein, Marvin E.

    1994-01-01

    It is well known that the presence of a weak cross flow in an otherwise two-dimensional shear flow results in a spanwise variation in the mean streamwise velocity profile that can lead to an amplification of certain three-dimensional disturbances through a kind of resonant-interaction mechanism (Goldstein and Wundrow 1994). The spatial evolution of an initially linear, finite-growth-rate, instability wave in such a spanwise-varying shear flow is considered, The base flow, which is governed by the three-dimensional parabolized Navier-Stokes equations, is initiated by imposing a spanwise- periodic cross-flow velocity on an otherwise two-dimensional shear flow at some fixed streamwise location. The resulting mean-flow distortion initially grows with increasing streamwise distance, reaches a maximum and eventually decays through the action of viscosity. This decay, which coincides with the viscous spread of of the shear layer, means that the local growth rate of the instability wave will eventually decrease as the wave propagates downstream. Nonlinear effects can then become important within a thin spanwise-modulated critical layer once the local instability-wave amplitude and growth rate become sufficiently large and small, respectively. The amplitude equation that describes this stage of evolution is shown to be a generalization of the one obtained by Goldstein and Choi (1989) who considered the related problem of the interaction of two oblique modes in a two-dimensional shear layer.

  7. Shear adhesion strength of aligned electrospun nanofibers.

    PubMed

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  8. Spatially-resolved microstructure in shear banding wormlike micellar solutions

    SciTech Connect

    Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W.

    2008-07-07

    Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding.

  9. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1987-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  10. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1989-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  11. Transiently Jammed State in Shear Thickening Suspensions under Shear

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Allen, Benjamin; Brown, Eric

    2014-03-01

    We examine the response of a suspension of cornstarch and water under normal impact at controlled velocities. This is a model system to understand why a person can run on the surface of a discontinuous shear thickening fluid. Using simultaneous high-speed imaging of the top and bottom surfaces along with normal force measurements allows us to investigate whether the force response is a result of system spanning structures. We observe a shear thickening transition where above a critical velocity the normal force increases by orders of magnitude. In the high force regime the force response is displacement dependent like a solid rather than velocity dependent like a liquid. The stresses are on the order of 106 Pa which is enough to hold up a person's weight. In this regime imaging shows the existence of a solid like structure that extends to the bottom interface.

  12. Shear induced orientation of edible fat and chocolate crystals

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  13. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    SciTech Connect

    Nieh, T G

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article Super Plastic Bulk Metallic Glasses at Room Temperature, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is always single shear. The stress

  14. Buckling and failure characteristics of graphite-polyimide shear panels

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Hagaman, J. A.

    1983-01-01

    The buckling and failure characteristics of unstiffened, blade stiffened, and hat stiffened graphite-polyimide shear panels are described. The picture frame shear test is used to obtain shear stress-strain data at room temperature and at 316 deg C. The experimental results are compared with a linear buckling analysis, and the specimen failure modes are described. The effect of the 316 deg C test temperature on panel behavior are discussed.

  15. Shear Forces Enhance Toxoplasma gondii Tachyzoite Motility on Vascular Endothelium

    PubMed Central

    Harker, Katherine S.; Jivan, Elizabeth; McWhorter, Frances Y.; Liu, Wendy F.; Lodoen, Melissa B.

    2014-01-01

    ABSTRACT Toxoplasma gondii is a highly successful parasite that infects approximately one-third of the human population and can cause fatal disease in immunocompromised individuals. Systemic parasite dissemination to organs such as the brain and eye is critical to pathogenesis. T. gondii can disseminate via the circulation, and both intracellular and extracellular modes of transport have been proposed. However, the processes by which extracellular tachyzoites adhere to and migrate across vascular endothelium under the conditions of rapidly flowing blood remain unknown. We used microfluidics and time-lapse fluorescence microscopy to examine the interactions between extracellular T. gondii and primary human endothelial cells under conditions of physiologic shear stress. Remarkably, tachyzoites adhered to and glided on human vascular endothelium under shear stress conditions. Compared to static conditions, shear stress enhanced T. gondii helical gliding, resulting in a significantly greater displacement, and increased the percentage of tachyzoites that invaded or migrated across the endothelium. The intensity of the shear forces (from 0.5 to 10 dynes/cm2) influenced both initial and sustained adhesion to endothelium. By examining tachyzoites deficient in the T. gondii adhesion protein MIC2, we found that MIC2 contributed to initial adhesion but was not required for adhesion strengthening. These data suggest that under fluidic conditions, T. gondii adhesion to endothelium may be mediated by a multistep cascade of interactions that is governed by unique combinations of adhesion molecules. This work provides novel information about tachyzoite interactions with vascular endothelium and contributes to our understanding of T. gondii dissemination in the infected host. PMID:24692639

  16. Ballooning mode second stability region for sequences of tokamak equilibria

    SciTech Connect

    Sugiyama, L.; Mark, J. W-K.

    1980-01-01

    A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln ..gamma.. and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary.

  17. Influence of magnetic shear on impurity transport

    SciTech Connect

    Nordman, H.; Fueloep, T.; Candy, J.; Strand, P.; Weiland, J.

    2007-05-15

    The magnetic shear dependence of impurity transport in tokamaks is studied using a quasilinear fluid model for ion temperature gradient (ITG) and trapped electron (TE) mode driven turbulence in the collisionless limit and the results are compared with nonlinear gyrokinetic results using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys 186, 545 (2003)]. It is shown that the impurity transport is sensitive to the magnetic shear, in particular for weak, negative, and large positive shear where a strong reduction of the effective impurity diffusivity is obtained. The fluid and gyrokinetic results are in qualitative agreement, with the gyrokinetic diffusivities typically a factor 2 larger than the fluid diffusivities. The steady state impurity profiles in source-free plasmas are found to be considerably less peaked than the electron density profiles for moderate shear. Comparisons between anomalous and neoclassical transport predictions are performed for ITER-like profiles [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)].

  18. Atomic structure of amorphous shear bands in boron carbide.

    PubMed

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  19. Mechanical shear and tensile characteristics of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...

  20. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  1. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  2. Compact forced simple-shear sample for studying shear localization in materials

    DOE PAGES

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less

  3. Compact forced simple-shear sample for studying shear localization in materials

    SciTech Connect

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical in many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.

  4. On the linear stability of sheared and magnetized jets without current sheets - non-relativistic case

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2016-09-01

    In a prior paper, we considered the linear stability of magnetized jets that carry no net electric current and do not have current sheets. In this paper, in addition to physically well-motivated magnetic field structures, we also include the effects of jet shear. The jets we study have finite thermal pressure in addition to having realistic magnetic field structures and velocity shear. We find that shear has a strongly stabilizing effect on various modes of jet instability. Increasing shear stabilizes the fundamental pinch modes at long wavelengths and short wavelengths. Increasing shear also stabilizes the first reflection pinch modes at short wavelengths. Increasing shear has only a very modest stabilizing effect on the fundamental kink modes at long wavelengths; however, increasing shear does have a strong stabilizing effect on the fundamental kink modes at short wavelengths. The first reflection kink modes are strongly stabilized by increasing shear at shorter wavelengths. Overall, we find that the combined effect of magnetic field and shear stabilizes jets more than shear alone. In addition to the results from a formal linear stability analysis, we present a novel way of visualizing and understanding jet stability. This gives us a deeper understanding of the enhanced stability of sheared, magnetized jets. We also emphasize the value of our numerical approach in understanding the linear stability of jets with realistic structure.

  5. Critical scaling in the rheology of damped random spring networks

    NASA Astrophysics Data System (ADS)

    Tighe, Brian

    2011-11-01

    Physical, biological, and engineered materials ranging from foams and emulsions to bioppolymer and bar-joint networks can be modelled as random networks of springs. We study the oscillatory rheology of random networks immersed in a viscous background fluid, and show how their response is intimately tied to the presence or absence of floppy modes in the zero frequency limit. The rheology displays dynamic critical scaling with three different regimes: viscous fluid, elastic solid, and shear thinning power law fluid. We give scaling arguments to explain all of the critical exponents and confirm our predictions with numerics. Supported by the Dutch Organization for Scientific Research (NWO).

  6. A critical assessment of the performance criteria in confirmatory analysis for veterinary drug residue analysis using mass spectrometric detection in selected reaction monitoring mode.

    PubMed

    Berendsen, Bjorn J A; Meijer, Thijs; Wegh, Robin; Mol, Hans G J; Smyth, Wesley G; Armstrong Hewitt, S; van Ginkel, Leen; Nielen, Michel W F

    2016-05-01

    Besides the identification point system to assure adequate set-up of instrumentation, European Commission Decision 2002/657/EC includes performance criteria regarding relative ion abundances in mass spectrometry and chromatographic retention time. In confirmatory analysis, the relative abundance of two product ions, acquired in selected reaction monitoring mode, the ion ratio should be within certain ranges for confirmation of the identity of a substance. The acceptable tolerance of the ion ratio varies with the relative abundance of the two product ions and for retention time, CD 2002/657/EC allows a tolerance of 5%. Because of rapid technical advances in analytical instruments and new approaches applied in the field of contaminant testing in food products (multi-compound and multi-class methods) a critical assessment of these criteria is justified. In this study a large number of representative, though challenging sample extracts were prepared, including muscle, urine, milk and liver, spiked with 100 registered and banned veterinary drugs at levels ranging from 0.5 to 100 µg/kg. These extracts were analysed using SRM mode using different chromatographic conditions and mass spectrometers from different vendors. In the initial study, robust data was collected using four different instrumental set-ups. Based on a unique and highly relevant data set, consisting of over 39 000 data points, the ion ratio and retention time criteria for applicability in confirmatory analysis were assessed. The outcomes were verified based on a collaborative trial including laboratories from all over the world. It was concluded that the ion ratio deviation is not related to the value of the ion ratio, but rather to the intensity of the lowest product ion. Therefore a fixed ion ratio deviation tolerance of 50% (relative) is proposed, which also is applicable for compounds present at sub-ppb levels or having poor ionisation efficiency. Furthermore, it was observed that retention time

  7. A critical assessment of the performance criteria in confirmatory analysis for veterinary drug residue analysis using mass spectrometric detection in selected reaction monitoring mode.

    PubMed

    Berendsen, Bjorn J A; Meijer, Thijs; Wegh, Robin; Mol, Hans G J; Smyth, Wesley G; Armstrong Hewitt, S; van Ginkel, Leen; Nielen, Michel W F

    2016-05-01

    Besides the identification point system to assure adequate set-up of instrumentation, European Commission Decision 2002/657/EC includes performance criteria regarding relative ion abundances in mass spectrometry and chromatographic retention time. In confirmatory analysis, the relative abundance of two product ions, acquired in selected reaction monitoring mode, the ion ratio should be within certain ranges for confirmation of the identity of a substance. The acceptable tolerance of the ion ratio varies with the relative abundance of the two product ions and for retention time, CD 2002/657/EC allows a tolerance of 5%. Because of rapid technical advances in analytical instruments and new approaches applied in the field of contaminant testing in food products (multi-compound and multi-class methods) a critical assessment of these criteria is justified. In this study a large number of representative, though challenging sample extracts were prepared, including muscle, urine, milk and liver, spiked with 100 registered and banned veterinary drugs at levels ranging from 0.5 to 100 µg/kg. These extracts were analysed using SRM mode using different chromatographic conditions and mass spectrometers from different vendors. In the initial study, robust data was collected using four different instrumental set-ups. Based on a unique and highly relevant data set, consisting of over 39 000 data points, the ion ratio and retention time criteria for applicability in confirmatory analysis were assessed. The outcomes were verified based on a collaborative trial including laboratories from all over the world. It was concluded that the ion ratio deviation is not related to the value of the ion ratio, but rather to the intensity of the lowest product ion. Therefore a fixed ion ratio deviation tolerance of 50% (relative) is proposed, which also is applicable for compounds present at sub-ppb levels or having poor ionisation efficiency. Furthermore, it was observed that retention time

  8. Electrical percolation networks of carbon nanotubes in a shear flow.

    PubMed

    Kwon, Gyemin; Heo, Youhee; Shin, Kwanwoo; Sung, Bong June

    2012-01-01

    The effect of shear on the electrical percolation network of carbon nanotube (CNT)-polymer composites is investigated using computer simulations. Configurations of CNTs in a simple shear, obtained by using Monte Carlo simulations, are used to locate the electrical percolation network of CNTs and calculate the electric conductivity. When exposed to the shear, CNTs align parallel to the shear direction and the electrical percolation threshold CNT concentration decreases. Meanwhile, after a certain period of the shear imposition above a critical shear rate, CNTs begin to form an aggregate and the percolating network of CNTs is broken, thus decreasing the electric conductivity significantly. We also construct quasiphase diagrams for the aggregate formation and the electrical percolation network formation to investigate the effect of the shear rate and CNT concentration. PMID:22400548

  9. Shear-accelerated crystallization in a supercooled atomic liquid.

    PubMed

    Shao, Zhen; Singer, Jonathan P; Liu, Yanhui; Liu, Ze; Li, Huiping; Gopinadhan, Manesh; O'Hern, Corey S; Schroers, Jan; Osuji, Chinedum O

    2015-02-01

    A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ̇(c)≈0.3 s(-1) which corresponds to Péclet number, Pe∼O(1). The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems.

  10. Shear-Induced Collapse in a Lyotropic Lamellar Phase

    SciTech Connect

    Porcar, L.; Warr, G.G.; Hamilton, W.A.; Butler, P.D.

    2005-08-12

    An entropically stabilized cetylpyridinium chloride, hexanol, and heavy brine lyotropic lamellar phase subjected to shear flow has been observed here by small angle neutron scattering to undergo collapse of smectic order above a threshold shear rate. The results are compared with theories predicting that such a lamellar phase sheared above a critical rate should lose its stability by a loss of resistance to compression due to the suppression of membrane fluctuations.

  11. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  12. Shear transport coefficients from gauge/gravity correspondence

    SciTech Connect

    Kapusta, J. I.; Springer, T.

    2008-09-15

    We study the shear mode in the gauge/gravity correspondence at finite temperature. First, we confirm the general formula for the shear viscosity in an arbitrary background metric which includes a black hole in the fifth dimension. We then derive a general formula for the shear mode relaxation time which appears in the theory of relativistic dissipative fluid dynamics; it agrees with known expressions in the limit of conformal fields. These results may be useful in relativistic viscous fluid descriptions of high energy nuclear collisions at RHIC and LHC.

  13. Behavior of Tilted Angle Shear Connectors.

    PubMed

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  14. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  15. The dynamics of inextensible capsules in shear flow under the effect of the natural state

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Niu, Xiting; Glowinski, Roland

    2015-11-01

    The effect of the natural state on the motion of an inextensible capsule in two-dimensional shear flow has been studied numerically. The energy barrier based on such natural state plays a role for having the transition between two well-known motions, tumbling and tank-treading (TT) with the long axis oscillating about a fixed inclination angle (a swinging mode), when varying the shear rate. Between tumbling and TT with a swinging mode, the intermittent region has been obtained for the capsule with a biconcave rest shape. The estimated critical value of the swelling ratio for having the intermittent region is < 0 . 7 , i.e., the capsule with the rest shape closer to a full disk has no intermittent behavior. The capsule intermittent behavior is a mixture of tumbling and TT. Just like the TT with a swinging mode, which can be viewed as TT with an incomplete tumbling, the membrane tank-treads backward and forward within a small range while tumbling. The transition between tumbling and TT with a swinging mode has been studied. This work is supported by an NSF grant DMS-0914788.

  16. An evaluation of mixed-mode delamination failure criteria

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.

    1992-01-01

    Many different failure criteria have been suggested for mixed mode delamination toughness, but few sets of mixed mode data exist that are consistent over the full mode I opening to mode II shear load range. The mixed mode bending (MMB) test was used to measure the delamination toughness of a brittle epoxy composite, a state of the art toughened epoxy composite, and a tough thermoplastic composite over the full mixed mode range. To gain insight into the different failure responses of the different materials, the delamination fracture surfaces were also examined. An evaluation of several failure criteria which have been reported in the literature was performed, and the range of responses modeled by each criterion was analyzed. A new bilinear failure criterion was analyzed. A new bilinear failure criterion was developed based on a change in the failure mechanism observed from the delamination surfaces. The different criteria were compared to the failure criterion. The failure response of the tough thermoplastic composite could be modeled well with the bilinear criterion but could also be modeled with the more simple linear failure criterion. Since the materials differed in their mixed mode failure response, mixed mode delamination testing will be needed to characterize a composite material. A critical evaluation is provided of the mixed mode failure criteria and should provide general guidance for selecting an appropriate criterion for other materials.

  17. Stability of coupled tearing and twisting modes in tokamaks

    SciTech Connect

    Fitzpatrick, R.

    1994-03-01

    A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable {open_quote}compound{close_quote} modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, {open_quote}compound{close_quote} modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-{beta} plasma, but twisting parity layers become more probable as the plasma {beta} is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up.

  18. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  19. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251

  20. Shear-flow Effects in Open Traps

    SciTech Connect

    Beklemishev, A. D.

    2008-11-01

    Interaction between shear flows and plasma instabilities and turbulence in open traps can lead to improved confinement both in experiments and in simulations. Shear flows, driven by biasing end-plates and limiters or by off-axis electron heating, in combination with the finite-larmor-radius (FLR) effects are shown to be efficient in confining plasmas even with unstable flute modes. Interpretation of the observed effects as the ''vortex confinement,'' i.e., confinement of the plasma core in the dead-flow zone of the driven vortex, is shown to agree well with simulations.

  1. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    PubMed

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements. PMID:23862796

  2. KELVIN-HELMHOLTZ INSTABILITY IN CORONAL MAGNETIC FLUX TUBES DUE TO AZIMUTHAL SHEAR FLOWS

    SciTech Connect

    Soler, R.; Terradas, J.; Oliver, R.; Ballester, J. L.; Goossens, M.

    2010-04-01

    Transverse oscillations of coronal loops are often observed and have been theoretically interpreted as kink magnetohydrodynamic (MHD) modes. Numerical simulations by Terradas et al. suggest that shear flows generated at the loop boundary during kink oscillations could give rise to a Kelvin-Helmholtz instability (KHI). Here, we investigate the linear stage of the KHI in a cylindrical magnetic flux tube in the presence of azimuthal shear motions. We consider the basic, linearized MHD equations in the beta = 0 approximation and apply them to a straight and homogeneous cylindrical flux tube model embedded in a coronal environment. Azimuthal shear flows with a sharp jump of the velocity at the cylinder boundary are included in the model. We obtain an analytical expression for the dispersion relation of the unstable MHD modes supported by the configuration, and compute analytical approximations of the critical velocity shear and the KHI growth rate in the thin tube limit. A parametric study of the KHI growth rates is performed by numerically solving the full dispersion relation. We find that fluting-like modes can develop a KHI in timescales comparable to the period of kink oscillations of the flux tube. The KHI growth rates increase with the value of the azimuthal wavenumber and decrease with the longitudinal wavenumber. However, the presence of a small azimuthal component of the magnetic field can suppress the KHI. Azimuthal motions related to kink oscillations of untwisted coronal loops may trigger a KHI, but this phenomenon has not been observed to date. We propose that the azimuthal component of the magnetic field is responsible for suppressing the KHI in a stable coronal loop. The required twist is small enough to prevent the development of the pinch instability.

  3. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to

  4. Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Wang, Fenglai

    2015-12-01

    An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the influence of different reinforcements and applied axial stress values on their seismic behavior. The results show that flexural strength increases with the applied axial stress, and shear strength dominated by diagonal cracking increases with both the amount of horizontal reinforcement and applied axial stress. Yield displacement, ductility, and energy dissipation capability can be improved substantially by increasing the amount of horizontal reinforcement. The critical parameters for the walls are derived from the experiment: displacement ductility values corresponding to 15% strength degradation of the walls reach up to 2.6 and 4.5 in the shear and flexure failure modes, respectively; stiffness values of flexure- and shear-dominated walls rapidly degrade to 17%-19% and 48%-57% of initial stiffness at 0.50 D max (displacement at peak load). The experiment suggests that RMSWs could be assigned a higher damping ratio (˜14%) for collapse prevention design and a lower damping value (˜7%) for a fully operational limit state or serviceability limit state.

  5. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  6. Modern developments in shear flow control with swirl

    NASA Technical Reports Server (NTRS)

    Farokhi, Saeed; Taghavi, R.

    1990-01-01

    Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.

  7. Longitudinal interfacial shearing of a unidirectional fiber composite

    SciTech Connect

    Yang, M.; Kurth, R.E.

    1995-12-31

    In this work, longitudinal interfacial shearing of a unidirectional fiber composite which sustains slippage at the interface between fiber and matrix is analyzed. Based on the experimental work on the fiber pull-out, the interface between the fiber and the matrix can be divided as three regions, depending on the longitudinal shear stress. These three regions are the bonded region, frictional slip regions, and the free-friction slid region. The problem is formulated as a nonlinear system of singular integral equations and solved numerically. It has been shown that when the longitudinal shear stress is less than a critical value, the fiber and the matrix can be assumed to be bonded perfectly. When the longitudinal shear stress is greater than this critical value, the slippage at the interface between the fiber and the interface takes place. From the recent fiber pull-out test, the phenomena of fiber frictional slip followed by free slide has been observed and analyzed. Thus, there are three stages for the deformation of interfacial shearing of a unidirectional fiber composite under longitudinal shearing. The first stage occurs when the applied longitudinal shear stress is less than the critical value corresponding to the onset of slippage. In the second stage, the interface is divided into two regions, namely, the bonded region and the frictional slip region in which the shear stress is either assumed to be constant or governed by a friction law. The third stage occurs when the longitudinal shear stress is greater than the critical value corresponding to free sliding or when the friction limit is exceeded. In the third stage, the interface between the fiber and the matrix can be divided into three regions, depending on the longitudinal shear stress. These three regions are the bonded region, the frictional slip regions, and the free-friction slide region in which the shear stress is neglected.

  8. A theoretical study of soft mode behavior and ferroelectric phase transition in 18O-isotope exchanged SrTiO3: evidence of phase coexistence at the quantum critical point

    NASA Astrophysics Data System (ADS)

    Mkam Tchouobiap, S. E.

    2014-02-01

    Motivated by recent experiments, the dynamics of the ferroelectric soft mode and the ferroelectric phase transition mechanism in 18O isotope exchanged systems SrTi(16O1-x18Ox)3 (abbreviated as STO18-x) are reinvestigated as a function of the 18O isotope exchange rate x, within a quasiharmonic model (QHM) for quantum ferroelectric modes in double-Morse local potential with mean-field approximation interactions between modes. The approach was realized within the framework of the variational principle method at finite temperature through the quantum mean-field approximation and by taking into account the effect of isotope replacement through the predominant mass effect, the cell volume effect, homogeneity of the composition throughout the material and the concentration-dependent ferroelectric mode distortion effect. The dynamics of the lowest-frequency soft phonon mode clearly presents an increased softening phenomenon with increasing x and a complete one at the corresponding phase transition temperature Tc, demonstrating the perfect soft-mode-type quantum ferroelectric phase transition for x ⩾ xc. Also, a ferroelectric-paraelectric phase coexistence state has been found near the quantum critical point xc and its origin is discussed. The ferroelectric phase transition mechanism is analyzed and its nature discussed, where a second-order phase transition close to the tricritical point is predicted. In addition, the effect of quantum fluctuations on the soft mode dynamics is discussed which reveals its reduction with increasing x and the crossover of the soft mode dynamics from the quantum to the classic one at the full 18O exchange limit x = 1, for which the origin seems to lie in the new homogeneity associated with the direct reduction of quantum fluctuations effects on the soft mode behavior. Within the QHM, consistent agreement with some of the previous experimental results and theoretical predictions of quantum ferroelectricity throughout the full range of x are

  9. Scaling properties of turbulence driven shear flow

    SciTech Connect

    Yan, Z.; Tynan, G. R.; Holland, C.; Xu, M.; Muller, S. H.; Yu, J. H.

    2010-01-15

    The characteristics and scaling properties of the turbulence driven shear flow are investigated in a cylindrical laboratory plasma device. For a given plasma pressure, the density fluctuation amplitude and radial particle flux increase with the applied magnetic field. Strong flow shear is found to coexist at high magnetic fields (>700 G) with approx10 kHz drift wave turbulence, but not at low magnetic fields (<700 G). The absolute value of the divergence of the turbulent Reynolds stress at the shear layer is shown to increase with the magnetic field as well. For a fixed magnetic field, the shear flow is found to decrease as the discharge gas pressure is increased. The density fluctuation amplitude and divergence of the turbulent Reynolds stress also decrease with the plasma pressure. For both situations the cross phase between the radial and azimuthal components of the velocity is found to be a key factor to determine variations in the turbulent Reynolds stress at different magnetic fields and discharge pressures. The results show that the generation of the shear flow is related to the development of specific frequency components of the drift wave turbulence for a variety of plasma conditions. The linear stability analysis shows that the observed variation in the turbulence and shear flow with magnetic field is also consistent with a critical gradient behavior.

  10. Angular shear plate

    SciTech Connect

    Ruda, Mitchell C.; Greynolds, Alan W.; Stuhlinger, Tilman W.

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  11. Fighting wind shear

    NASA Astrophysics Data System (ADS)

    A “coherent and sustained program” of improved radar detection of weather, pilot training, and better communication between pilots and air controllers can greatly reduce the risk of wind shear to airplanes landing or taking off, according to a National Research Council (NRC) committee.Wind shear, characterized by winds rapidly changing direction and speed, has caused several serious accidents in recent years; among the most notable is the July 8, 1982, crash of a Pan American World Airlines jetliner at the New Orleans International Airport, which killed 153 persons. Following the accident, Congress directed the Federal Aviation Administration (FAA) to contract with the NRC to study wind shear.

  12. Internal hydraulic jumps with large upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  13. Viscoelasticity and shear thinning of nanoconfined water.

    PubMed

    Kapoor, Karan; Amandeep; Patil, Shivprasad

    2014-01-01

    Understanding flow properties and phase behavior of water confined to nanometer-sized pores and slits is central to a wide range of problems in science, such as percolation in geology, lubrication of future nano-machines, self-assembly and interactions of biomolecules, and transport through porous media in filtration processes. Experiments with different techniques in the past have reported that viscosity of nanoconfined water increases, decreases, or remains close to bulk water. Here we show that water confined to less than 20-nm-thick films exhibits both viscoelasticity and shear thinning. Typically viscoelasticity and shear thinning appear due to shearing of complex non-Newtonian mixtures possessing a slowly relaxing microstructure. The shear response of nanoconfined water in a range of shear frequencies (5 to 25 KHz) reveals that relaxation time diverges with reducing film thickness. It suggests that slow relaxation under confinement possibly arises due to existence of a critical point with respect to slit width. This criticality is similar to the capillary condensation in porous media.

  14. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Dong, Shuxiang; Li, Faxin

    2016-05-01

    The fundamental shear horizontal (SH0) wave in plate-like structures is extremely useful for non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive. However, currently, the SH0 wave is usually excited by electromagnetic acoustic transducers (EMAT) whose energy conversion efficiency is fairly low. The face-shear ( d 36 ) mode piezoelectrics is more promising for SH0 wave excitation, but this mode cannot appear in conventional piezoelectric ceramics. Recently, by modifying the symmetry of poled PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering, we realized the face-shear d 36 mode in both soft and hard PZT ceramics. In this work, we further improved the face-shear properties of PZT-4 and PZT-5H ceramics via lateral compression under elevated temperature. It was found that when bonded on a 1 mm-thick aluminum plate, the d 36 type PZT-4 exhibited better face-shear performance than PZT-5H. We then successfully excite SH0 wave in the aluminum plate using a face-shear PZT-4 square patch and receive the wave using a face-shear 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] (PMN-PT) patch. The frequency response and directionality of the excited SH0 wave were also investigated. The SH0 wave can be dominated over the Lamb waves (S0 and A0 waves) from 160 kHz to 280 kHz. The wave amplitude reaches its maxima along the two main directions (0° and 90°). The amplitude can keep over 80% of the maxima when the deviate angle is less than 30°, while it vanishes quickly at the 45° direction. The excited SH0 wave using piezoelectric ceramics could be very promising in the fields of NDT and SHM.

  15. Strength of footing with punching shear preventers.

    PubMed

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  16. Strength of Footing with Punching Shear Preventers

    PubMed Central

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  17. A Critical Humanist Curriculum

    ERIC Educational Resources Information Center

    Magill, Kevin; Rodriguez, Arturo

    2015-01-01

    This essay is a critical humanist discussion of curriculum; a departure from the technicist view of education [education meant to support a global capitalist economy] and an analysis of curriculum considering critical humanism, political economy and critical race theory among other modes of critical analysis and inquiry. Our discussion supports a…

  18. Shear viscosity of a unitary Fermi gas.

    PubMed

    Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E

    2012-07-13

    We present an ab initio determination of the shear viscosity η of the unitary Fermi gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity-to-entropy density ratio η/s. The minimum of η/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being (η/s)min≈0.2ℏ/k(B), which is close the Kovtun-Son-Starinets universal value ℏ/(4πk(B)).

  19. Shear Fractures of Extreme Dynamics

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-10-01

    Natural and laboratory observations show that shear ruptures (faults) can propagate with extreme dynamics (up to intersonic rupture velocities) through intact materials and along pre-existing faults with frictional and coherent (bonded) interfaces. The rupture propagation is accompanied by significant fault strength weakening in the rupture head. Although essential for understanding earthquakes, rock mechanics, tribology and fractures, the question of what physical processes determine how that weakening occurs is still unresolved. The general approach today to explain the fault weakening is based upon the strong velocity-weakening friction law according to which the fault strength drops rapidly with slip velocity. Different mechanisms of strength weakening caused by slip velocity have been proposed including thermal effect, high-frequency compressional waves, expansion of pore fluid, macroscopic melting and gel formation. This paper proposes that shear ruptures of extreme dynamics propagating in intact materials and in pre-existing frictional and coherent interfaces are governed by the same recently identified mechanism which is associated with an intensive microcracking process in the rupture tip observed for all types of extreme ruptures. The microcracking process creates, in certain conditions, a special fan-like microstructure shear resistance of which is extremely low (up to an order of magnitude less than the frictional strength). The fan-structure representing the rupture head provides strong interface weakening and causes high slip and rupture velocities. In contrast with the velocity-weakening dependency, this mechanism provides the opposite weakening-velocity effect. The fan-mechanism differs remarkably from all reported earlier mechanisms, and it can provide such important features observed in extreme ruptures as: extreme slip and rupture velocities, high slip velocity without heating, off-fault tensile cracking, transition from crack-like to pulse

  20. Shear-induced displacement of isotropic-nematic spinodals

    NASA Astrophysics Data System (ADS)

    Lenstra, T. A. J.; Dogic, Z.; Dhont, J. K. G.

    2001-06-01

    The shear dependent location of the isotropic-nematic spinodals in suspensions of bacteriophage fd is studied by means of time resolved birefringence experiments. The hysteresis in the birefringence on increasing and subsequently decreasing the shear-rate allows the determination of the location of points in the shear-rate vs concentration phase diagram between the isotropic-to-nematic and the nematic-to-isotropic spinodals. Experimental hysteresis curves are interpreted on the basis of an equation of motion for the orientational order parameter tensor, as derived from the N-particle Smoluchowski equation. The spinodals are found to shift to lower concentrations on increasing the shear-rate. Above a critical shear-rate, where shear forces dominate over thermodynamic forces, no spinodal instability could be detected.

  1. Radiative instabilities in sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Sparks, L.; Van Hoven, G.

    1988-01-01

    The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.

  2. Investigation of Electron Bernstein Wave (EBW) Coupling and its Critical Dependence on EBW Collisional Loss in High-β, H-mode ST Plasmas

    SciTech Connect

    Diem, S J; Caughman, J B; Efthimion, P C; Kugel, H; LeBlanc, B P; Phillips, C K; Preinhaelter, J; Sabbagh, S A; Urban, J; Wilgen, J B

    2010-02-03

    High-β spherical tokamak (ST) plasma conditions cut off propagation of electron cyclotron (EC) waves used for heating and current drive in conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) has no density cutoff and is strongly absorbed and emitted at the EC harmonics, allowing EBWs to be used for heating and current drive in STs. However, this application requires efficient EBW coupling in the high-β, H-mode ST plasma regime. EBW emission (EBE) diagnostics and modelling have been employed on the National Spherical Torus Experiment (NSTX) to study oblique EBW to O-mode (B–X–O) coupling and propagation in H-mode plasmas. Efficient EBW coupling was measured before the L–H transition, but rapidly decayed thereafter. EBE simulations show that EBW collisional damping prior to mode conversion (MC) in the plasma scrape off reduces the coupling efficiency during the H-mode phase when the electron temperature is less than 30 eV inside the MC layer. Lithium evaporation during H-mode plasmas was successfully used to reduce this EBW collisional damping by reducing the electron density and increase the electron temperature in the plasma scrape off. Lithium conditioning increased the measured B–X–O coupling efficiency from less than 10% to 60%, consistent with EBE simulations.

  3. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  4. Shearing of magma along a high-grade shear zone: Evolution of microstructures during the transition from magmatic to solid-state flow

    NASA Astrophysics Data System (ADS)

    Zibra, I.; Kruhl, J. H.; Montanini, A.; Tribuzio, R.

    2012-04-01

    Syntectonic plutons may record short-lived geological events related to crustal melting and deformation of the continental crust. Therefore, interpretation of microstructure and orientation of fabrics is critical in order to constrain space/time/temperature/deformation relationships during pluton crystallization. Here we describe the transition from magmatic to solid-state deformation in the late-Variscan Diorite-Granite Suite (DGS) emplaced along the Santa Lucia Shear Zone. The systematic collection of meso-, microstructural and quartz < c > axis data allow us to examine the spatial distribution and the mode of superposition of different fabrics. We identify three magmatic microfabric types, thought to reflect the microstructural evolution at decreasing melt content during pluton crystallization. Our data suggest that diffusion creep, dislocation creep and grain-scale fracturing cooperated in accommodating the shearing of the partially molten quartzofeldspathic aggregate. We suggest that the switch from upward to horizontal magmatic flow occurred at melt fractions gt; ˜0.40, and that most of the hypersolidus fabrics formed during horizontal flow, reflecting the stress field imposed by the shear zone, and preserving no memory of the ascent stage.

  5. Axisymmetric single shear element combustion instability experiment

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    1993-01-01

    The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data are presented for chamber pressures of 300 and 1000 psia.

  6. Axisymmetric single shear element combustion instability experiment

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    1993-01-01

    The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data were obtained for chamber pressures of 300 and 1000 psia.

  7. Waves in Turbulent Stably Stratified Shear Flow

    NASA Technical Reports Server (NTRS)

    Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)

    2002-01-01

    Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.

  8. Dynamics of flexible fibers in shear flow

    SciTech Connect

    Słowicka, Agnieszka M.; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L.

    2015-09-28

    Dynamics of flexible non-Brownian fibers in shear flow at low-Reynolds-number are analyzed numerically for a wide range of the ratios A of the fiber bending force to the viscous drag force. Initially, the fibers are aligned with the flow, and later they move in the plane perpendicular to the flow vorticity. A surprisingly rich spectrum of different modes is observed when the value of A is systematically changed, with sharp transitions between coiled and straightening out modes, period-doubling bifurcations from periodic to migrating solutions, irregular dynamics, and chaos.

  9. Stiffener bond line monitoring using ultrasonic shear guided waves

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Castaings, M.; Lowe, M. J. S.; Fromme, P.; Biateau, C.

    2012-05-01

    Adhesively bonded stiffeners are employed in aerospace applications to increase structural stiffness. The potential of shear guided wave modes for the verification of adhesion and bond line thickness in difficult to access regions has been investigated. The properties of guided wave modes propagating along a T-shaped stiffener bonded to an aluminium plate were calculated using the Semi-Analytical Finite Element (SAFE) method. Shear modes were identified as well suited with energy concentrated at the stiffener and bond line, limiting energy radiation into the plate and thus achieving increased inspection length. The influence of bond line properties and thickness was investigated from SAFE and 3D Finite Element calculations and a significant influence of the epoxy shear (Coulomb) modulus on the phase velocity found. Experiments were conducted during the curing of an epoxy adhesive, bonding a stiffener to the plate with bond strength and stiffness increasing over time. The excited shear mode was measured using a laser interferometer. The measured phase velocity changed significantly during curing. The frequency dependency matches well with the SAFE calculations for a variation of the Coulomb's modulus of the adhesive layer. The potential of the shear guided wave mode for bond line inspection and monitoring has been shown.

  10. The underexpanded jet Mach disk and its associated shear layer

    NASA Astrophysics Data System (ADS)

    Edgington-Mitchell, Daniel; Honnery, Damon R.; Soria, Julio

    2014-09-01

    High resolution planar particle image velocimetry is used to measure turbulent quantities in the region downstream of the Mach disk in an axisymmetric underexpanded jet issuing from a convergent nozzle. The internal annular shear layer generated by the slip line emanating from the triple point is shown to persist across multiple shock cells downstream. A triple decomposition based on Proper Orthogonal Decomposition shows that the external helical structure associated with the screech tone generated by the jet exerts a strong influence on velocity fluctuations in the initial region of the annular shear layer. This influence manifests as the external vortices producing oscillatory motion of the Mach disk, and thus a forcing of the internal annular shear layer. The internal shear layer is characterized by a number of azimuthal modes of varying wavenumber and type, including both helical and axisymmetric modes. Finally, the possibility of a previously hypothesized recirculation region behind the Mach disk is investigated, with no evidence found to support its existence.

  11. Broad belts of shear zones: The common form of surface rupture produced by the 28 June 1992 Landers, California, earthquake

    SciTech Connect

    Johnson, A.M.; Cruikshank, K.M. |; Fleming, R.W.

    1993-12-31

    Surface rupturing during the 28 June 1992, Landers, California earthquake, east of Los Angeles, accommodated right-lateral offsets up to about 6 m along segments of distinct, en echelon fault zones with a total length of about 80 km. The offsets were accommodated generally not by faults -- distinct slip surfaces -- but rather by shear zones, tabular bands of localized shearing. In long, straight stretches of fault zones at Landers the rupture is characterized by telescoping of shear zones and intensification of shearing: broad shear zones of mild shearing, containing narrow shear zones of more intense shearing, containing even-narrower shear zones of very intense shearing, which may contain a fault. Thus the ground ruptured across broad belts of shearing with subparallel walls, oriented NW. Each broad belt consists of a broad zone of mild shearing, extending across its entire width (50 to 200 m), and much narrower (a few m wide) shear zones that accommodate most of the offset of the belt and are portrayed by en echelon tension cracks. In response to right-lateral shearing, the slices of ground bounded by the tension cracks rotated in a clockwise sense, producing left lateral shearing, and the slices were forced against the walls of the shear zone, producing thrusting. Even narrower shear zones formed within the narrow shear zones, and some of these were faults. Although the narrower shear zones probably are indicators to right-lateral fault segments at depth, the surface rupturing during the earthquake is characterized not by faulting, but by zones of shearing at various scales. Furthermore, understanding of the formation of the shear zones may be critical to understanding of earthquake faulting because, where faulting is associated with the formation of a shear zone, the faulting occurs late in the development of the shear zone. The faulting occurs after a shear zone or a belt of shear zones forms.

  12. Quasi-Stationary Shear-parallel MCS in a Near-saturated Environment

    NASA Astrophysics Data System (ADS)

    Liu, Changhai; Moncrieff, Mitchell

    2016-04-01

    Idealized simulations are performed to investigate a poorly-understood category of Mesoscale Convective Systems (MCSs) - quasi-stationary convective lines with upstream-building and downstream stratiform observed in very moist environments. A specific feature in the experimental design is the inclusion of a highly idealized moisture front, mimicking the water vapor variations across the large-scale quasi-stationary (Mei-Yu) front during the Asian summer monsoon, where this regime of convective organization has been frequently observed. The numerical experiment with a wind profile of significant low-level vertical shear, plus a moist thermodynamic sounding with low convective inhibition, generates a long-lasting convective system which is down-shear tilted with a morphology resembling the documented MCSs with back-building or parallel stratiform in East Asia and North America. This is the first successful simulations of the carrot-like MCS morphology, where cells initiate near the upstream edge in either back-building or forward-building form depending on the system propagation direction. A major disparity from most types of MCSs, especially the well-studied squall line, is the weak and shallow cold pool and its negligible effect on system sustenance and propagation. Instead of the cold-pool-shear interaction, it is found that convectively-excited gravity waves are responsible for the intermittent upstream initiation of convective elements. Sensitivity tests show that both the moisture front and shear are critical for this MCS category. Our study suggests that the background spatial moisture variability affects the selection of the modes of organization, and that a systematic investigation of its role in convective organization in various wind shear conditions should be explored.

  13. The shear fracture toughness, KIIc, of graphite

    DOE PAGES

    Burchell, Timothy D.; Erdman, III, Donald L.

    2015-11-05

    In this study, the critical shear stress intensity factor, KIIc, here-in referred to as the shear fracture toughness, KIIc (MPa m), of two grades of graphite are reported. The range of specimen volumes was selected to elucidate any specimen size effect, but smaller volume specimen tests were largely unsuccessful, shear failure did not occur between the notches as expected. This was probably due to the specimen geometry causing the shear fracture stress to exceed the compressive failure stress. In subsequent testing the specimen geometry was altered to reduce the compressive footprint and the notches (slits) made deeper to reduce themore » specimen's ligament length. Additionally, we added the collection of Acoustic Emission (AE) during testing to assist with the identification of the shear fracture load. The means of KIIc from large specimens for PCEA and NBG-18 are 2.26 MPa m with an SD of 0.37 MPa m and 2.20 MPa m with an SD of 0.53 MPa m, respectively. The value of KIIc for both graphite grades was similar, although the scatter was large. In this work we found the ratio of KIIc/KIc ≈ 1.6. .« less

  14. Shear-Driven Reconnection in Kinetic Models

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.

    2015-12-01

    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  15. Colloidal Aggregate Structure under Shear by USANS

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  16. Free volume under shear

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Vinutha, H. A.; Sastry, Srikanth; Heussinger, Claus

    2015-10-01

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems — particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.

  17. Free volume under shear.

    PubMed

    Maiti, Moumita; Vinutha, H A; Sastry, Srikanth; Heussinger, Claus

    2015-10-14

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems - particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.

  18. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  19. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  20. Multiplicity of low-shear toroidal Alfven eigenmodes

    SciTech Connect

    Candy, J.; Breizman, B.N. |; Van Dam, J.W.; Ozeki, T.

    1996-01-01

    An enlarged spectrum of ideal toroidal Alfven eigenmodes is demonstrated to exist within a toroidicity-induced Alfven gap when the inverse aspect ratio is comparable to or larger than the value of the magnetic shear. This limit is appropriate for the low-shear region in most tokamaks, especially those with low aspect ratio. The new modes may be destabilized by fusion-product alpha particles more easily than the standard toroidal Alfven eigenmodes.

  1. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  2. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  3. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  4. Development of conjugate shear bands during bulk simple shearing

    NASA Astrophysics Data System (ADS)

    Harris, L. B.; Cobbold, P. R.

    In rocks possessing a strong planar fabric, shear bands of constant shear sense and oriented at an oblique angle to the foliation are considered by many authors to be characteristic of a non-coaxial bulk deformation history, whereas conjugate shear bands are considered to indicate coaxial shortening. However, in two areas where bulk deformation history appears to be non-coaxial (Cap Corse, Corsica and Ile de Groix, Brittany), conjugate shear bands are observed. In order to investigate this problem, experiments were performed by bulk simple shearing using Plasticine as a rock analogue. When slip between layers of the model is permitted, shear bands of normal-fault geometry form with both the same and opposite shear sense as the bulk simple shearing at approximately the same angle with the layering (40°) irrespective of layer orientation in the undeformed state (for initial orientations of 50, 30 and 15°). Shear bands are initially formed within individual layers and may propagate across layer interfaces when further movement along these is inhibited. The existence of conjugate shear bands in Corsica and Ile de Groix is therefore not incompatible with a model of bulk simple shearing for these two regions. In field studies, one should perhaps exercise care in using shear bands to determine the kind of motion or the sense of bulk shearing.

  5. Shear response and design of RC beams strengthened using CFRP laminates

    NASA Astrophysics Data System (ADS)

    Singh, Shamsher B.

    2013-12-01

    The present investigation addresses the shear strengthening of deficient reinforced concrete (RC) beams using carbon fiber-reinforced polymer (CFRP) sheets. The effect of the pattern and orientation of the strengthening fabric on the shear capacity of the strengthened beams were examined. Three beams with various lay-ups of strengthening fabric, 45°, 0°/90°, and 0°/90°/45° were examined, in addition to an unstrengthened control beam. Principal and shear strains were measured at different locations at the critical sections of the strengthened beams corresponding to each applied shear force. Experimental results showing the advantage of beam strengthened using the various lay-ups of CFRP sheets are discussed. It is concluded that Beam-45°, Beam-0°/90°, and Beam-0°/90°/45° show about 25%, 19%, and 40% increases in shear-load carrying capacity in comparison to the control beam, respectively. Also, there exists a critical value of shear force up to which there is no appreciable shear strain in the CFRP sheets/beam. This shear force marks the ultimate shear resistance of the control beam. However, the strengthened beams exhibited significant strength and stiffness even beyond the critical value of the shear force. A design example for shear strengthening shows that the design equations available in the literature underestimate the actual shear strength of the beams.

  6. Electromagnetic effects in the stabilization of turbulence by sheared flow

    NASA Astrophysics Data System (ADS)

    Cole, M. D. J.; Newton, S. L.; Cowley, S. C.; Loureiro, N. F.; Dickinson, D.; Roach, C.; Connor, J. W.

    2014-01-01

    We have extended our study of the competition between the drive and stabilization of plasma microinstabilities by sheared flow to include electromagnetic effects at low plasma β (the ratio of plasma to magnetic pressure). The extended system of characteristic equations is formulated, for a dissipative fluid model developed from the gyrokinetic equation, using a twisting mode representation in sheared slab geometry and focusing on the ion temperature gradient mode. Perpendicular flow shear convects perturbations along the field at the speed we denote as Mcs (where cs is the sound speed). M \\gt 1/ \\sqrt{\\beta} is required to make the system characteristics unidirectional and inhibit eigenmode formation, leaving only transitory perturbations in the system. This typically represents a much larger flow shear than in the electrostatic case, which only needs M > 1. Numerical investigation of the region M \\lt 1/\\sqrt{\\beta} shows the driving terms can conflict, as in the electrostatic case, giving low growth rates over a range of parameters. Also, at modest drive strengths and low β values typical of experiments, including electromagnetic effects does not significantly alter the growth rates. For stronger flow shear and higher β, geometry characteristic of the spherical tokamak mitigates the effect of an instability of the shear Alfvén wave, driven by the parallel flow shear.

  7. Risk analysis of hematopoietic stem cell transplant process: failure mode, effect, and criticality analysis and hazard analysis critical control point methods integration based on guidelines to good manufacturing practice for medicinal product ANNEX 20 (February 2008).

    PubMed

    Gianassi, S; Bisin, S; Bindi, B; Spitaleri, I; Bambi, F

    2010-01-01

    The collection and handling of hematopoietic stem cells (HSCs) must meet high quality requirements. An integrated Quality Risk Management can help to identify and contain potential risks related to HSC production. Risk analysis techniques allow one to "weigh" identified hazards, considering the seriousness of their effects, frequency, and detectability, seeking to prevent the most harmful hazards. The Hazard Analysis Critical Point, recognized as the most appropriate technique to identify risks associated with physical, chemical, and biological hazards for cellular products, consists of classifying finished product specifications and limits of acceptability, identifying all off-specifications, defining activities that can cause them, and finally establishing both a monitoring system for each Critical Control Point and corrective actions for deviations. The severity of possible effects on patients, as well as the occurrence and detectability of critical parameters, are measured on quantitative scales (Risk Priority Number [RPN]). Risk analysis was performed with this technique on manipulation process of HPC performed at our blood center. The data analysis showed that hazards with higher values of RPN with greater impact on the process are loss of dose and tracking; technical skills of operators and manual transcription of data were the most critical parameters. Problems related to operator skills are handled by defining targeted training programs, while other critical parameters can be mitigated with the use of continuous control systems. The blood center management software was completed by a labeling system with forms designed to be in compliance with standards in force and by starting implementation of a cryopreservation management module.

  8. Nanoscale multiplane shear and twin deformation in nanowires and nanocrystalline solids

    NASA Astrophysics Data System (ADS)

    Ovid'ko, I. A.

    2011-08-01

    A special physical micromechanism/mode of twin deformation in nanowires and nanocrystalline (NC) solids is suggested and theoretically described. This mode represents a nanoscale multiplane shear (NMS) defined as an ideal shear occurring within a nanometer-sized volume. We calculated the energy and stress characteristics of nanoscale twin deformation through NMS in Cu nanowires and NC Cu. It is shown that this deformation mode can occur in NC solids and defect-free nanowires at high stresses.

  9. Holographic lateral shear interferometer.

    PubMed

    Malacara, D; Mallick, S

    1976-11-01

    A new type of lateral shear holographic interferometer is described. It can be used to test lenses as well as spherical and aspherical surfaces. A null pattern with straight fringes can be obtained for an aspherical surface, provided one has a prototype that can be used for making the hologram.

  10. Experimental observations of shear band nucleation and propagation in a bulk metallic glass using wedge-like cylindrical indentation

    NASA Astrophysics Data System (ADS)

    Antoniou, Antonia Maki

    2006-12-01

    pressure. These observations give detailed insight on the post-yield behavior of BMGs, which cannot be obtained from macroscopic uniaxial tension or compression tests. Despite the richness of the shear band details, the current framework has provided several notable results. First, the macroscopic trends, force-indentation depth response and the extent of deformation zones are well captured for this constrained deformation mode by continuum models that address only the onset of yielding. Second, the apparent pressure dependence of the shear band angle on the macroscopic measurements is minimal. Third, the initiation point, and not the shear band development is of critical importance. These findings would formulate the basis for simulation of shear band nucleation, propagation and interactions. They would also elucidate the role of secondary particle inclusion for toughening. Another form of inhomogeneous deformation in the form of shear bands is also studied in constrained layer of ductile metal subjected to shearing deformation. The material system utilized was comprised of a ductile layer of tin based solder, encapsulated within relatively hard copper shoulders. The experimental configuration provides pure shear state within the constrained solder layer. Different Pb/Sn compositions are tested with grain size approaching the film thickness. The in-plane strain distribution within the joint thickness is measured by a microscopic digital image correlation system. The toughness evolution within such highly gradient deformation field is monitored qualitatively through a 2D surface scan with a nanoindenter. The measurements showed a highly inhomogeneous deformation field within the film with discreet shear bands of concentrated strain. The localized shear bands showed long-range correlations of the order of 2-3 grain diameter. A size-dependent macroscopic response on the layer thickness is observed. However, the corresponding film thickness is approximately 100-1000 times

  11. Stent implantation influence wall shear stress evolution

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  12. Shear Thinning of Noncolloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Vázquez-Quesada, Adolfo; Tanner, Roger I.; Ellero, Marco

    2016-09-01

    Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.

  13. Shear Thinning of Noncolloidal Suspensions.

    PubMed

    Vázquez-Quesada, Adolfo; Tanner, Roger I; Ellero, Marco

    2016-09-01

    Shear thinning-a reduction in suspension viscosity with increasing shear rates-is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates. PMID:27636496

  14. Active shear flow control for improved combustion

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Parr, T. P.; Hanson-Parr, D. M.; Schadow, K. C.

    1990-01-01

    The acoustical and fluid dynamic facets of an excited premixed flame were studied experimentally to evaluate possibilities for development of a stabilizing closed-loop control system. The flame was analyzed as a nonlinear system which includes different subcomponents: acoustics, fluid dynamics, and chemical reaction. Identification of the acoustical and fluid dynamics subsystems is done by analyzing the transfer function, which was obtained by driving the system with both white-noise and a frequency-sweeping sine-wave. The features obtained by this analysis are compared to results of flow visualization and hot-wire flow-field and spectral measurements. The acoustical subsystem is determined by the resonant acoustic modes of the settling chamber. These modes are subsequently filtered and amplified by the flow shear layer, whose instability characteristics are dominated by the preferred mode frequency.

  15. Single-fluid stability of stationary plasma equilibria with velocity shear and magnetic shear

    SciTech Connect

    Miura, Akira

    2009-10-15

    By using incompressible single-fluid equations with a generalized Ohm's law neglecting the electron inertia, a linear eigenmode equation for a magnetic field perturbation is derived for stationary equilibria in a slab geometry with velocity and magnetic shears. The general eigenmode equation contains a fourth-order derivative of the perturbation in the highest order and contains Alfven and whistler mode components for a homogeneous plasma. The ratio of the characteristic ion inertia length to the characteristic inhomogeneity scale length is chosen as a small parameter for expansion. Neglecting whistler mode in the lowest order, the eigenmode equation becomes a second-order differential equation similar to the ideal magnetohydrodynamic eigenmode equation except for the fact that the unperturbed perpendicular velocity contains both electric and ion diamagnetic drifts. A sufficient condition for stability against the Kelvin-Helmholtz instability driven by shear in the ion diamagnetic drift velocity is derived and then applied to tokamaks.

  16. Studies of instability and transport in sheared-slab plasmas with very weak magnetic shear

    SciTech Connect

    Dong, J.Q.; Zhang, Y.Z. |; Mahajan, S.M.

    1997-09-01

    Ion temperature gradient (ITG or {eta}{sub i}) driven microinstabilities are studied, using kinetic theory, for tokamak plasmas with very weak (positive or negative) magnetic shear (VWS). The gradient of magnetic shear as well as the effects of parallel and perpendicular velocity shear (v{sub {parallel}}{sup {prime}} and v{sub E}{sup {prime}}) are included in the defining equations. Two eigenmodes: the double (D) and the global (G) are found to coexist. Parametric dependence of these instabilities, and of the corresponding quasilinear transport is systematically analyzed. It is shown that, in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize the modes, depending on the individual as well as the relative signs of PVS and of the gradient of magnetic shear. The quasilinear transport induced by the instabilities may be significantly reduced with PVS in VWS plasmas. The v{sub E}{sup {prime}} values required to completely suppress the instabilities are much lower in VWS plasmas than they are in normal plasmas. Possible correlations with tokamak experiments are discussed. {copyright} {ital 1997 American Institute of Physics.}

  17. Studies of instability and transport in sheared-slab plasmas with very weak magnetic shear

    NASA Astrophysics Data System (ADS)

    Dong, J. Q.; Zhang, Y. Z.; Mahajan, S. M.

    1997-09-01

    Ion temperature gradient (ITG or ηi) driven microinstabilities are studied, using kinetic theory, for tokamak plasmas with very weak (positive or negative) magnetic shear (VWS). The gradient of magnetic shear as well as the effects of parallel and perpendicular velocity shear (v∥' and vE') are included in the defining equations. Two eigenmodes: the double (D) and the global (G) are found to coexist. Parametric dependence of these instabilities, and of the corresponding quasilinear transport is systematically analyzed. It is shown that, in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize the modes, depending on the individual as well as the relative signs of PVS and of the gradient of magnetic shear. The quasilinear transport induced by the instabilities may be significantly reduced with PVS in VWS plasmas. The vE' values required to completely suppress the instabilities are much lower in VWS plasmas than they are in normal plasmas. Possible correlations with tokamak experiments are discussed.

  18. Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan

    2016-07-01

    This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.

  19. The Anatomy of Critical Discourse.

    ERIC Educational Resources Information Center

    Rosenfield, Lawrence W.

    1968-01-01

    Critical discourse is best understood when its logical features are identified. An examination of the basic elements and modes of rhetorical criticism (a form of critical discourse) produces a finite set of options for the critic, thus enabling him to develop a system of alternatives in his critical efforts. For example, by selecting from among…

  20. A bilinear failure criterion for mixed-mode delamination

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    1993-01-01

    Many different failure criteria have been suggested for mixed-mode delamination toughness, but few sets of mixed-mode data exist that are consistent over the full range of Mode 1 opening load to Mode 2 shear load range. The mixed-mode bending (MMB) test was used to measure the delamination toughness of a brittle epoxy composite, a state-of-the-art toughened epoxy composite, and a tough thermoplastic composite over the full mixed-mode range. To gain insight into the different failure responses of the different materials, the delamination fracture surfaces were also examined. An evaluation of several failure criteria that have been reported in the literature was performed, and the range of responses modeled by each criterion was analyzed. A bilinear failure criterion was introduced based on a change in the failure mechanism observed from the delamination surfaces. The different criteria were compared to the failure response of the three materials tested. The responses of the two epoxies were best modeled with the new bilinear failure criterion. The failure response of the tough thermoplastic composite could be modeled well with the bilinear criterion but could also be modeled with the more simple linear failure criterion. Since the materials differed in their mixed-mode failure response, mixed-mode delamination testing will be needed to characterize a composite material. This paper presents consistent sets of mixed-mode data, provides a critical evaluation of the mixed-mode failure criteria, and should provide general guidance for selecting an appropriate criterion for other materials.

  1. Gelation under shear

    SciTech Connect

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C.; Muzny, C.D.

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  2. Surface-enhanced unfolding of collapsed polymers in shear flow

    NASA Astrophysics Data System (ADS)

    Alexander-Katz, A.; Netz, R. R.

    2007-10-01

    Using hydrodynamic simulations we study the shear-induced unfolding of a collapsed polymer near a planar wall. Above a well-defined threshold shear rate \\dot{\\gamma}^* , the globule becomes unstable and displays stretching-refolding events. With decreasing distance from the surface, the critical shear rate \\dot{\\gamma}^* goes down, which is rationalized within a scaling analysis in terms of increased hydrodynamic stress due to a surface-induced slowing-down of globule rotation and translation. Our results are relevant for protein-assisted blood clotting in capillary vessels.

  3. Supersonic flutter of panels loaded with inplane shear

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1975-01-01

    A modal flutter analysis for biaxially loaded, orthotropic panels, using linear piston-theory aerodynamics, was extended in order to include the effects of inplane shear loading. Flutter boundaries for shear loads up to buckling are calculated for simply supported, isotropic panels of various length-width ratios and for a square, isotropic panel with elastic boundary conditions along the leading and trailing edges. These flutter boundaries are used to define conservative design curves. Sample calculations made using these design curves indicate that practical panels, which have otherwise been adequately designed, could become flutter critical if the inplane shear loads approach the buckling value.

  4. Hyperscaling violation and the shear diffusion constant

    NASA Astrophysics Data System (ADS)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2016-09-01

    We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  5. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  6. Imaging Faults and Shear Zones Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Mahan, Kevin H.

    2014-11-01

    The geometry of faults at seismogenic depths and their continuation into the ductile zone is of interest for a number of applications ranging from earthquake hazard to modes of lithospheric deformation. Teleseismic passive source imaging of faults and shear zones can be useful particularly where faults are not outlined by local seismicity. Passive seismic signatures of faults may arise from abrupt changes in lithology or foliation orientation in the upper crust, and from mylonitic shear zones at greater depths. Faults and shear zones with less than near-vertical dip lend themselves to detection with teleseismic mode-converted waves (receiver functions) provided that they have either a contrast in isotropic shear velocity ( V s), or a contrast in orientation or strength of anisotropic compressional velocity ( V p). We introduce a detection method for faults and shear zones based on receiver functions. We use synthetic seismograms to demonstrate common features of dipping isotropic interfaces and contrasts in dipping foliation that allows determination of their strike and depth without making further assumptions about the model. We proceed with two applications. We first image a Laramide thrust fault in the western U.S. (the Wind River thrust fault) as a steeply dipping isotropic velocity contrast in the middle crust near the surface trace of the fault; further downdip and across the range, where basin geometry suggests the fault may sole into a subhorizontal shear zone, we identify a candidate shear zone signal from midcrustal depths. The second application is the use of microstructural data from exhumed ductile shear zones in Scotland and in the western Canadian Shield to predict the character of seismic signatures of present-day deep crustal shear zones. Realistic anisotropy in observed shear fabrics generates a signal in receiver functions that is comparable in amplitude to first-order features like the Moho. Observables that can be robustly constrained without

  7. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  8. Shear flow induced unfolding of collapsed polymers.

    NASA Astrophysics Data System (ADS)

    Alexander-Katz, Alfredo; Netz, Roland

    2006-03-01

    In the process of clotting in small vessels, platelets form a plug in an injured zone only in the presence of a protein known as the von Willebrand Factor (vWF). The absence or malfunction of the vWF leads to a bleeding disorder, the so-called von Willebrand disease. It is believed that the protein is collapsed (or globular) when released into the blood flow, and that it undergoes a transition at high shear rates that allows it to bind platelets. Using hydrodynamic simulations of a simple model of the vWF in shear flow, we show that a globular polymer undergoes a globule-stretch transition at a critical shear rate. Below this threshold shear rate the polymer remains collapsed and slightly deformed, while above it the chain displays strong elongations in the direction of the flow. Finally, we discuss the relevance of our results in the case of blood flow, and compare them to the physiological values present in the body.

  9. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  10. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    SciTech Connect

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

  11. Conductivity measurements in a shear-banding wormlike micellar system.

    PubMed

    Photinos, Panos J; López-González, M R; Hoven, Corey V; Callaghan, Paul T

    2010-07-01

    Shear banding in the cetylpyridinium chloride/sodium salicylate micellar system is investigated using electrical conductivity measurements parallel to the velocity and parallel to the vorticity in a cylindrical Couette cell. The measurements show that the conductivity parallel to the velocity (vorticity) increases (decreases) monotonically with applied shear rate. The shear-induced anisotropy is over one order of magnitude lower than the anisotropy of the N(c) nematic phase. The steady-state conductivity measurements indicate that the anisotropy of the shear induced low-viscosity (high shear rate) phase is not significantly larger than the anisotropy of the high viscosity (low shear rate) phase. We estimate that the micelles in the shear induced low viscosity band are relatively short, with a characteristic length to diameter ratio of 5-15. The relaxation behavior following the onset of shear is markedly different above and below the first critical value γ1, in agreement with results obtained by other methods. The transient measurements show that the overall anisotropy of the sample decreases as the steady state is approached, i.e., the micellar length/the degree of order decrease.

  12. Ductile fracture in HY100 steel under mixed mode I/mode II loading

    SciTech Connect

    Bhattacharjee, D. . Dept. of Materials Science and Metallurgy); Knott, J.F. . School of Metallurgy and Materials)

    1994-05-01

    A number of criteria have been proposed which predict the direction of cracking under mixed Mode 1/Mode 2 loading. All have been evaluated for brittle materials, in which a crack subjected to tension and shear propagates normal to the maximum tensile stress (i.e. fracture is of the Mode 1 type). In a ductile material, however, a notch subjected to mixed Mode 1/Mode 2 loading may initiate a crack in the direction of maximum shear. This paper shows that the profile of the notch tip changes with increasing mixed mode load in such a way that one side of the tip blunts while the other sharpens. Various specimens, subjected to the same mixed mode ratio, were unloaded from different points on the load-displacement curves to study the change in notch-tip profile. Studies under the Scanning Electron Microscope (SEM) have shown that cracks initiate at the sharpened end, along a microscopic shear band. Using a dislocation pile-up model for decohesion of the carbide-matrix interface, a micromechanical model has been proposed for crack initiation in the shear band. It is shown that a theoretical prediction of the shear strain required for decohesion gives a result that is, of magnitude, similar to that of the shear strain at crack initiation measured in the experiments.

  13. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  14. Mixed-mode fatigue-crack growth thresholds in Ti-6Al-4V at high frequency

    SciTech Connect

    Campbell, J.P.; Ritchie, R.O.

    1999-10-22

    Multiaxial loading conditions exist at fatigue-critical locations within turbine engine components, particularly in association with fretting fatigue in the blade dovetail/disk contact section. For fatigue-crack growth in such situations, the resultant crack-driving force is a combination of the influence of a mode I (tensile opening) stress-intensity range, {Delta}K{sub I}, as well as mode II (in-plane shear) and/or mode III (anti-plane shear) stress-intensity ranges, {Delta}K{sub II} and {Delta}K{sub III}, respectively. For the case of the high-cycle fatigue of turbine-engine alloys, it is critical to quantify such behavior, as the extremely high cyclic loading frequencies ({approximately}1--2 kHz) and correspondingly short times to failure may necessitate a design approached based on the fatigue-crack growth threshold. Moreover, knowledge of such thresholds is required for accurate prediction of fretting fatigue failures. Accordingly, this paper presents the mixed-mode fatigue crack growth thresholds for mode I + II loading (phase angles from 0{degree} to 82{degree}) in a Ti-6Al-4V blade alloy. These results indicate that when fatigue-crack growth in this alloy is characterized in terms of the crack-driving force {Delta}G, which incorporates both the applied tensile and shear loading, the mode 1 fatigue-crack growth threshold is a lower bound (worst case) with respect to mixed-mode (I + II) crack-growth behavior.

  15. Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Tong, Hua; Xu, Ning

    2014-11-01

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution.

  16. Effect of functionality on unentangled star polymers at equilibrium and under shear flow

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolei; Chen, Jizhong

    2016-06-01

    The properties of unentangled star polymers with arm length Nf = 20 beads and functionality f (3 ≤ f ≤ 60) are investigated at equilibrium and under shear flow by coarse-grained molecular dynamics simulations. At equilibrium, the star polymer shows a crossover from a linear, freely penetrable, extremely soft object to a spherical, slightly hard object with an impenetrable center with increasing f. The results confirm that the arm relaxation is essentially independent of f and stars of large f form a liquid-like structure. In shear flow, the polymer deformation and alignment are calculated as well as the shear-induced rotational dynamics as function of shear rate. These properties are found to exhibit qualitative changes at an f-independent shear rate, γ p ˙ , which is a consequence of competition between chain relaxation and imposed flow. Shear thinning is characterized by shear viscosity and normal stress differences. With increasing f, the critical shear rate for the onset of shear thinning decreases from γ p ˙ for f = 3 to a smaller value. Our results also show that shear thinning of stars of large f arise from the collapse of liquid-like structures at low shear rates ( γ ˙ ≪ γ p ˙), where chains have no deformation; at high shear rates ( γ ˙ ≫ γ p ˙), shear thinning is mainly attributed to the chain stretching and orientation as linear polymers.

  17. Effect of functionality on unentangled star polymers at equilibrium and under shear flow.

    PubMed

    Xu, Xiaolei; Chen, Jizhong

    2016-06-28

    The properties of unentangled star polymers with arm length Nf = 20 beads and functionality f (3 ≤ f ≤ 60) are investigated at equilibrium and under shear flow by coarse-grained molecular dynamics simulations. At equilibrium, the star polymer shows a crossover from a linear, freely penetrable, extremely soft object to a spherical, slightly hard object with an impenetrable center with increasing f. The results confirm that the arm relaxation is essentially independent of f and stars of large f form a liquid-like structure. In shear flow, the polymer deformation and alignment are calculated as well as the shear-induced rotational dynamics as function of shear rate. These properties are found to exhibit qualitative changes at an f-independent shear rate, γṗ, which is a consequence of competition between chain relaxation and imposed flow. Shear thinning is characterized by shear viscosity and normal stress differences. With increasing f, the critical shear rate for the onset of shear thinning decreases from γṗ for f = 3 to a smaller value. Our results also show that shear thinning of stars of large f arise from the collapse of liquid-like structures at low shear rates (γ̇≪γṗ), where chains have no deformation; at high shear rates (γ̇≫γṗ), shear thinning is mainly attributed to the chain stretching and orientation as linear polymers. PMID:27369542

  18. Transverse electron-scale instability in relativistic shear flows.

    PubMed

    Alves, E P; Grismayer, T; Fonseca, R A; Silva, L O

    2015-08-01

    Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c/ωpe) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.

  19. Theory of self-organized critical transport in tokamak plasmas

    SciTech Connect

    Kishimoto, Y.; Tajima, T.; Horton, W.; LeBrun, M.J.; Kim, J.Y.

    1996-04-01

    A theoretical and computational study of the ion temperature gradient (ITG) and {eta}{sub {ital i}} instabilities in tokamak plasmas has been carried out. In a toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose a strong constraint on the drift mode fluctuations and the associated transport, showing self-organized criticality. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result of this, the temperature relaxation is self-similar and nonlocal, leading to radially increasing heat diffusivity. The nonlocal transport leads to Bohm-like diffusion scaling. Heat input regulates the deviation of the temperature gradient away from marginality. We present a critical gradient transport model that describes such a self-organized relaxed state. Some of the important aspects in tokamak transport like Bohm diffusion, near marginal stability, radially increasing fluctuation energy and heat diffusivity, intermittency of the wave excitation, and resilient tendency of the plasma profile can be described by this model, and these prominent features are found to belong to one physical category that originates from the radially extended nonlocal drift modes. The obtained transport properties and scalings are globally consistent with experimental observations of low confinement mode (L-mode) discharges. The nonlocal modes can be disintegrated into smaller radial islands by a poloidal shear flow, suggesting that the transport changes from Bohm-like to near gyro-Bohm. {copyright} {ital 1996 American Institute of Physics.}

  20. Temperature effect on ideal shear strength of Al and Cu

    NASA Astrophysics Data System (ADS)

    Iskandarov, Albert M.; Dmitriev, Sergey V.; Umeno, Yoshitaka

    2011-12-01

    According to Frenkel’s estimation, at critical shear stress τc=G/2π, where G is the shear modulus, plastic deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear parallel to the close-packed (111) plane along the [112¯] direction is studied at temperatures up to 800 K using embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25% (22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc, introduced by Ogata as a generalization of Frenkel’s formula, was found to be almost independent of temperature. We also discuss the simulation cell size effect and compare our results with the results of abinitio calculations and experimental data.

  1. Infernal Fishbone Mode

    SciTech Connect

    Ya.I. Kolesnichenko; V.S. Marchenko; R.B. White

    2003-02-11

    A new kind of fishbone instability associated with circulating energetic ions is predicted. The considered instability is essentially the energetic particle mode; it is characterized by m/n not equal to 1 (m and n are the poloidal and toroidal mode numbers, respectively). The mode is localized inside the flux surface where the safety factor (q) is q* = m/n, its amplitude being maximum near q*. The instability arises in plasmas with small shear inside the q* surface and q(0) > 1. A possibility to explain recent experimental observations of the m = 2 fishbone oscillations accompanied by strong changes of the neutron emission during tangential neutral-beam injection in the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] is shown.

  2. Shear surface waves in phononic crystals.

    PubMed

    Kutsenko, A A; Shuvalov, A L

    2013-02-01

    The existence of shear horizontal (SH) surface waves in two-dimensional periodic phononic crystals with an asymmetric depth-dependent profile is theoretically reported. Examples of dispersion spectra with bandgaps for subsonic and supersonic SH surface waves are demonstrated. The link between the effective (quasistatic) speeds of the SH bulk and surface waves is established. Calculation and analysis is based on the integral form of a projector on the subspace of evanescent modes which means no need for their explicit finding. This method can be extended to the vector waves and the three-dimensional case.

  3. Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes

    SciTech Connect

    N.N. Gorelenkov, G.J. Kramer, and R. Nazikian

    2011-05-23

    A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.

  4. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.

    PubMed

    Nechyporchuk, Oleksandr; Belgacem, Mohamed Naceur; Pignon, Frédéric

    2014-11-01

    The rheological properties of enzymatically hydrolyzed and TEMPO-oxidized microfibrillated/nanofibrillated cellulose (MFC/NFC) aqueous suspensions were investigated in oscillation and steady-flow modes and were compared with the morphology of the studied materials. The flow instabilities, which introduce an error in the rheological measurements, were discovered during flow measurements. A wall-slip (interfacial slippage on the edge of geometry tools and suspension) was detected at low shear rates for two types of NFC suspensions while applying cone-plate geometry. A roughening of the tool surfaces was performed to overcome the aforementioned problem. Applying to TEMPO-oxidized NFC, a stronger suspension response was detected at low shear rates with higher values of measured shear stress. However, a shear banding (localization of shear within a sample volume) became more pronounced. The use of serrated tools for enzymatically hydrolyzed NFC produced lower shear stress at the moderate shear rates, which was influenced by water release from the suspension.

  5. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  6. The response of toroidal drift modes to profile evolution: a model for small-ELMs in tokamak plasmas?

    NASA Astrophysics Data System (ADS)

    Bokshi, A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.

    2016-07-01

    We consider a time-dependent linear global electrostatic toroidal fluid ion-temperature gradient (ITG) model to study the evolution of toroidal drift modes in tokamak plasmas as the equilibrium flow-shear varies with time. While we consider the ITG mode as a specific example, the results are expected to be valid for most other toroidal microinstabilities. A key result is that when there is a position in the plasma with a maximum in the instability drive (e.g. ITG), there is a transient burst of stronger growth as the flow-shear evolves through a critical value. This transient burst is expected to drive a filamentary plasma eruption, reminiscent of small-ELMs. The amplitude of the dominant linear mode is initially peaked above or below the outboard midplane, and rotates through it poloidally as the flow-shear passes through the critical value. This theoretical prediction could provide an experimental test of whether this mechanism underlies some classes of small-ELMs.

  7. Instability of streaks in pipe flow of shear-thinning fluids.

    PubMed

    López Carranza, S N; Jenny, M; Nouar, C

    2013-08-01

    This study is motivated by recent experimental results dealing with the transition to turbulence in a pipe flow of shear-thinning fluids, where a streaky flow with an azimuthal wave number n=1 is observed in the transitional regime. Here, a linear stability analysis of pipe flow of shear-thinning fluids modulated azimuthally by finite amplitude streaks is performed. The shear-thinning behavior of the fluid is described by the Carreau model. The streaky base flows considered are obtained from two-dimensional direct numerical simulation using finite amplitude longitudinal rolls as the initial condition and by extracting the velocity field at time t(max), where the amplitude of the streaks reaches its maximum, denoted by A(max). It is found that the amplitude A(max) increases with increasing Reynolds number as well as with increasing amplitude E(0) of the initial longitudinal rolls. For sufficiently large streaks amplitude, streamwise velocity profiles develop inflection points, leading to instabilities. Depending on the threshold amplitude A(c), two different modes may trigger the instability of the streaks. If A(c) exceeds approximately 41.5% of the centerline velocity, the instability mode is located near the axis of the pipe, i.e., it is a "center mode." For weaker amplitude A(c), the instability mode is located near the pipe wall, in the region of highest wall normal shear, i.e., it is a "wall mode." The threshold amplitude A(c) decreases with increasing shear-thinning effects. The energy equation analysis indicates that (i) wall modes are driven mainly by the work of the Reynolds stress against the wall normal shear and (ii) for center modes, the contribution of the normal wall shear remains dominant; however, it is noted that the contribution of the Reynolds stress against the azimuthal shear increases with increasing shear-thinning effects.

  8. Magnetized stratified rotating shear waves

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Lehner, T.; Godeferd, F.; Cambon, C.

    2012-02-01

    We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k1=0, axisymmetric disturbances) and a finite one (k1≠0, nonaxisymmetric disturbances). In the former case (k1=0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k1≠0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the stability of the

  9. Magnetized stratified rotating shear waves.

    PubMed

    Salhi, A; Lehner, T; Godeferd, F; Cambon, C

    2012-02-01

    We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k(1) = 0, axisymmetric disturbances) and a finite one (k(1) ≠ 0, nonaxisymmetric disturbances). In the former case (k(1) = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k(1) ≠ 0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the

  10. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  11. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  12. Wind shear test

    NASA Astrophysics Data System (ADS)

    Techniques for forecasting and detecting a type of wind shear called microbursts are being tested this month in an operational program at Denver's Stapleton International Airport as part of an effort to reduce hazards to airplanes and passengers.Wind shear, which can be spawned by convective storms, can occur as a microburst. These downbursts of cool air are usually recognizable as a visible rain shaft beneath a thundercloud. Sometimes, however, the rain shaft evaporates before reaching the ground, leaving the downdraft invisible. Although thunderstorms are traditionally avoided by airplane pilots, these invisible downdrafts also harbor hazards in what usually appear to be safe skies. When the downdraft reaches the earth's surface, the downdraft spreads out horizontally, much like a stream of water gushing from a garden hose on a concrete surface, explained John McCarthy, director of the operational program. Airplanes can encounter trouble when the downdraft from the microburst causes sudden shifts in wind direction, which may reduce lift on the wing, an especially dangerous situation during takeoff.

  13. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.

  14. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680

  15. Linear stability of tearing modes

    SciTech Connect

    Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.

    1986-05-01

    This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when ..delta..' is positive.

  16. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  17. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength

  18. Inductive shearing of drilling pipe

    DOEpatents

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  19. Compound hydraulic shear-modulated vortex amplifiers

    NASA Technical Reports Server (NTRS)

    Goldschmied, F. R.

    1977-01-01

    A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.

  20. Inverse magnetic/shear catalysis

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2016-05-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  1. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  2. Tunable shear thickening in suspensions.

    PubMed

    Lin, Neil Y C; Ness, Christopher; Cates, Michael E; Sun, Jin; Cohen, Itai

    2016-09-27

    Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomenon in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allows for tuning of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to 2 decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a route toward creating materials whose mechanical properties can be controlled. PMID:27621472

  3. The SDSS Coadd: Cosmic Shear Measurement

    SciTech Connect

    Lin, Huan; Dodelson, Scott; Seo, Hee-Jong; Soares-Santos, Marcelle; Annis, James; Hao, Jiangang; Johnston, David; Kubo, Jeffrey M.; Reis, Ribamar R.R.; Simet, Melanie; /Chicago U., EFI /Chicago U., KICP

    2011-11-01

    Stripe 82 in the Sloan Digital Sky Survey was observed multiple times, allowing deeper images to be constructed by coadding the data. Here we analyze the ellipticities of background galaxies in this 275 square degree region, searching for evidence of distortions due to cosmic shear. The E-mode is detected in both real and Fourier space with > 5-{sigma} significance on degree scales, while the B-mode is consistent with zero as expected. The amplitude of the signal constrains the combination of the matter density {Omega}{sub m} and fluctuation amplitude {sigma}{sub 8} to be {Omega}{sub m}{sup 0.7} {sigma}{sub 8} = 0.276{sub -0.050}{sup +0.036}.

  4. Cockpit display of hazardous wind shear information

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John, Jr.

    1990-01-01

    Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.

  5. Variable-amplitude oscillatory shear response of amorphous materials

    NASA Astrophysics Data System (ADS)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  6. Depth Dependence of Shear Properties in Articular Cartilage

    NASA Astrophysics Data System (ADS)

    Buckley, Mark; Gleghorn, Jason; Bonassar, Lawrence; Cohen, Itai

    2007-03-01

    Articular cartilage is a highly complex and heterogeneous material in its structure, composition and mechanical behavior. Understanding these spatial variations is a critical step in designing replacement tissue and developing methods to diagnose and treat tissue affected by damage or disease. Existing techniques in particle image velocimetry (PIV) have been used to map the shear properties of complex materials; however, these methods have yet to be applied to understanding shear behavior in cartilage. In this talk, we will show that confocal microscopy in conjunction with PIV techniques can be used to determine the depth dependence of the shear properties of articular cartilage. We will show that the shear modulus of this tissue varies by over an order of magnitude over its depth, with the least stiff region located about 200 microns from the surface. Furthermore, our data indicate that the shear strain profile of articular cartilage is sensitive to both the degree of compression and the total applied shear strain. In particular, we find that cartilage strain stiffens most dramatically in a region 200-500 microns below the surface. Finally, we will describe a physical model that accounts for this behavior by taking into account the local buckling of collagen fibers just below the cartilage surface and present second harmonic generation (SHG) imaging data addressing the collagen orientation before and after shear.

  7. Roles of wind shear at different vertical levels: Cloud system organization and properties

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Fan, Jiwen; Hagos, Samson; Gustafson, William I.; Berg, Larry K.

    2015-07-01

    Understanding critical processes that contribute to the organization of mesoscale convective systems (MCSs) is important for accurate weather forecasts and climate predictions. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of convective systems using the Weather Research and Forecasting model with spectral bin microphysics. Based on a control run for a MCS with weak wind shear (Ctrl), we find that increasing wind shear at the lower troposphere (L-shear) leads to a more organized quasi-line convective system. Strong wind shear in the middle troposphere (M-shear) tends to produce large vorticity and form a mesocyclone circulation and an isolated strong storm that leans toward supercellular structure. By increasing wind shear at the upper vertical levels only (U-shear), the organization of the convection is not changed much, but the convective intensity is weakened. Increasing wind shear in the middle troposphere for the selected case results in a significant drying, and the drying is more significant when conserving moisture advection at the lateral boundaries, contributing to the suppressed convective strength and precipitation relative to Ctrl. Precipitation in the L-shear and U-shear does not change much from Ctrl. Evident changes of cloud macrophysical and microphysical properties in the strong wind shear cases are mainly due to large changes in convective organization and water vapor. The insights obtained from this study help us better understand the major factors contributing to convective organization and precipitation.

  8. Effect of fracture surface roughness on shear crack growth

    SciTech Connect

    Gross, T.S.; Watt, D.W. . Dept. of Mechanical Engineering); Mendelsohn, D.A. . Dept. of Engineering Mechanics)

    1992-12-01

    A model of fracture surface interference for Mode I fatigue crack profiles was developed and evaluated. Force required to open the crack faces is estimated from point contact expressions for Mode I stress intensity factor. Force transfer across contacting asperities is estimated and used to calculate Mode II resistance stress intensity factor (applied factor is sum of effective and resistance factors). Electro-optic holographic interferometry was used to measure 3-D displacement field around a Mode I fatigue pre-crack in Al loaded in Mode II shear. Induced Mode I crack face displacements were greater than Mode II displacements. Plane stress shear lip caused displacement normal to surface as the crack faces are displaced. Algorithms are being developed to track the displacements associated with the original coordinate system in the camera. A 2-D boundary element method code for mixed mode I and II loading of a rough crack (sawtooth asperity model) has been completed. Addition of small-scale crack tip yielding and a wear model are completed and underway, respectively.

  9. Constraining primordial vector mode from B-mode polarization

    SciTech Connect

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke E-mail: maresuke.shiraishi@pd.infn.it

    2014-10-01

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum, from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.

  10. Effects of toroidal rotation shear on toroidicity-induced Alfven eigenmodes in the National Spherical Torus Experiment

    SciTech Connect

    Podesta, M.; Bell, R. E.; Fredrickson, E. D.; Gorelenkov, N. N.; LeBlanc, B. P.; Heidbrink, W. W.; Crocker, N. A.; Kubota, S.; Yuh, H.

    2010-12-15

    The effects of a sheared toroidal rotation on the dynamics of bursting toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of decorrelation of the modes by the sheared rotation is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes on NSTX.

  11. Against Critical Thinking Pedagogy

    ERIC Educational Resources Information Center

    Hayes, David

    2015-01-01

    Critical thinking pedagogy is misguided. Ostensibly a cure for narrowness of thought, by using the emotions appropriate to conflict, it names only one mode of relation to material among many others. Ostensibly a cure for fallacies, critical thinking tends to dishonesty in practice because it habitually leaps to premature ideas of what the object…

  12. Mixed-mode fracture of ceramics

    SciTech Connect

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  13. An Innovative Adaptive Pushover Procedure Based on Storey Shear

    SciTech Connect

    Shakeri, Kazem; Shayanfar, Mohsen A.

    2008-07-08

    Since the conventional pushover analyses are unable to consider the effect of the higher modes and progressive variation in dynamic properties, recent years have witnessed the development of some advanced adaptive pushover methods. However in these methods, using the quadratic combination rules to combine the modal forces result in a positive value in load pattern at all storeys and the reversal sign of the modes is removed; consequently these methods do not have a major advantage over their non-adaptive counterparts. Herein an innovative adaptive pushover method based on storey shear is proposed which can take into account the reversal signs in higher modes. In each storey the applied load pattern is derived from the storey shear profile; consequently, the sign of the applied loads in consecutive steps could be changed. Accuracy of the proposed procedure is examined by applying it to a 20-storey steel building. It illustrates a good estimation of the peak response in inelastic phase.

  14. Flexible Micropost Arrays for Shear Stress Measurement

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  15. Dynamics of a deformable active particle under shear flow.

    PubMed

    Tarama, Mitsusuke; Menzel, Andreas M; ten Hagen, Borge; Wittkowski, Raphael; Ohta, Takao; Löwen, Hartmut

    2013-09-14

    The motion of a deformable active particle in linear shear flow is explored theoretically. Based on symmetry considerations, we propose coupled nonlinear dynamical equations for the particle position, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear flow as well as active spinning motions, are taken into account. Our equations reduce to known models in the two limits of vanishing shear flow and vanishing particle deformability. For varied shear rate and particle propulsion speed, we solve the equations numerically in two spatial dimensions and obtain a manifold of different dynamical modes including active straight motion, periodic motions, motions on undulated cycloids, winding motions, as well as quasi-periodic and chaotic motions induced at high shear rates. The types of motion are distinguished by different characteristics in the real-space trajectories and in the dynamical behavior of the particle orientation and its deformation. Our predictions can be verified in experiments on self-propelled droplets exposed to a linear shear flow.

  16. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  17. Shear flow by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.

    1985-08-01

    A detailed comparison is made between a number of methods for generating shear flow in Molecular Dynamics computer simulation. Algorithms which closely mimic most experimental methods for producing shear flow are those by Trozzi and Ciccotti, and Ashurst and Hoover. They employ hard wall boundaries and fluid walls respectively (with sheared cell periodicity being only in two dimensions). The sheared fluid properties are therefore inextricably linked with interfacial effects. These problems are largely eliminated by the Lees and Edwards scheme which creates a pseudo-infinite sheared material. There are a number of derivatives of this model including one favoured by the author for investigating non-linear viscoelastic phenomena. A number of results from this scheme pertaining to the Lennard-Jones liquid are presented.

  18. Electroosmotic shear flow in microchannels.

    PubMed

    Mampallil, Dileep; van den Ende, Dirk

    2013-01-15

    We generate and study electroosmotic shear flow in microchannels. By chemically or electrically modifying the surface potential of the channel walls a shear flow component with controllable velocity gradient can be added to the electroosmotic flow caused by double layer effects at the channel walls. Chemical modification is obtained by treating the channel wall with a cationic polymer. In case of electric modification, we used gate electrodes embedded in the channel wall. By applying a voltage to the gate electrode, the zeta potential can be varied and a controllable, uniform shear stress can be applied to the liquid in the channel. The strength of the shear stress depends on both the gate voltage and the applied field which drives the electroosmotic shear flow. Although the stress range is still limited, such a microchannel device can be used in principle as an in situ micro-rheometer for lab on a chip purposes. PMID:23089595

  19. A Piezoelectric Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  20. Avalanche weak layer shear fracture parameters from the cohesive crack model

    NASA Astrophysics Data System (ADS)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0

  1. Nucleation in a Sheared Liquid Binary Mixture.

    NASA Astrophysics Data System (ADS)

    Min, Kyung-Yang

    When a binary liquid mixture of lutidine plus water (LW) is quenched to a temperature T and is exposed to a continuous shear rate S, the result is a steady-state droplet distribution. This steady state can be probed by measuring the unscattered intensity I_{f}, or the scattered intensity I_{s}, as a function of delta T and S. In the experiments described here, S is fixed and delta T is varied in a step-wise fashion. The absence of hysteresis was probed in two separate experiments: First, I_{f} was measured as a function of S for a given delta T. Next, I_{f} was measured as a function of delta T for a given S. In either case, the hysteresis associated with the shear-free nucleation is absent. In addition, a flow-history dependent hysteresis was studied. In the 2-dimensional parameter space consisting of S and delta T, the onset of nucleation uniquely determines a cloud point line. A plot of the cloud point line exhibits two segments of different slopes with a cross-over near the temperature corresponding to the Becker-Doring limit. The classical picture of a free energy barrier was reformulated to explain this cross-over behavior. Next, photon correlation spectroscopy was used to study the dependence of the transient nucleation behavior on the initial states. A unique feature of this study is that this initial state can be conveniently adjusted by varying the shear rate S to which the mixture is initially exposed. The shear is then turned off, and the number density N(t), as well as the mean radius of the growing droplets, is monitored as a function of time. It was possible to measure the droplet density at a very early stage of phase separation where the nucleation rate J was close to zero. The measurement reveals that N(t) depends critically on the initial state of the metastable system. When the shear is large enough to rupture the droplets as small as the critical size, N(t) increases very slowly. Measurements of the nucleation rates vs. the square of the

  2. Study of spatial growth of disturbances in an Incompressible Double Shear Layer flow configuration

    NASA Astrophysics Data System (ADS)

    Natarajan, Hareshram; Jacobs, Gustaaf

    2014-11-01

    The spatial growth of disturbance within the linear instability regime in an incompressible 2D double shear layer flow configuration is studied by performing a Direct Numerical Simulation. The motivation of this study is to characterize the effect of the presence of an additional shear layer on the spatial growth of a shear layer instability. Initially, a DNS of an incompressible single shear layer is performed and the spatial growth rate of various disturbance frequency modes are validated with Linear Stability Analysis. The addtional shear layer is found to impact the spatial growth rates of the different disturbances and the frequency of the mode with the maximum growth rate is found to be shifted.

  3. Hydrodynamic correlations in shear flow: Multiparticle-collision-dynamics simulation study.

    PubMed

    Varghese, Anoop; Huang, Chien-Cheng; Winkler, Roland G; Gompper, Gerhard

    2015-11-01

    The nonequilibrium hydrodynamic correlations of a multiparticle-collision-dynamics (MPC) fluid in shear flow are studied by analytical calculations and simulations. The Navier-Stokes equations for a MPC fluid are linearized about the shear flow and the hydrodynamic modes are evaluated as an expansion in the wave vector. The shear-rate dependence and anisotropy of the transverse and longitudinal velocity correlations are analyzed. We demonstrate that hydrodynamic correlations in shear flow are anisotropic, specifically, the two transverse modes are no longer identical. In addition, our simulations reveal the directional dependence of the frequency and attenuation of the longitudinal velocity correlation function. Furthermore, the velocity autocorrelation functions of a tagged fluid particle in shear flow are determined. The simulation results for various hydrodynamic correlations agree very well with the theoretical predictions. PMID:26651774

  4. Progressive Failure Studies of Stiffened Panels Subjected to Shear Loading

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Hilburger, Mark W.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Experimental and analytical results are presented for progressive failure of stiffened composite panels with and without a notch and subjected to in plane shear loading well into their postbuckling regime. Initial geometric imperfections are included in the finite element models. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Experimental results from the test include strain field data from video image correlation in three dimensions in addition to other strain and displacement measurements. Results from nonlinear finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for the stitched stiffened composite panels studied.

  5. Anisotropic Alfven-ballooning modes in the Earth's magnetosphere

    SciTech Connect

    Chan, A.A. . Dept. of Physics and Astronomy); Xia, Mengfen . Dept. of Physics); Chen, Liu . Plasma Physics Lab.)

    1993-05-01

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P[perpendicular] > P[parallel]. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value [beta][sub o][sup B] [approx] 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P[parallel] > P[perpendicular], or due to increased ballooning-mirror destabilization when P[perpendicular] > P[parallel]. We use a [beta]-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters [bar [beta

  6. Evaluation of magnetic shear in off-disk center active regions

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.; Hagyard, M. J.; Hathaway, D. H.

    1989-01-01

    The changes that projection effects produce in the evaluation of magnetic shear in off-disk center active regions by comparing angular shear calculated in image plane and heliographic coordinates are analyzed, and the procedure for properly evaluating magnetic shear by transforming the observed vector magnetic field into the heliographic system is described. This procedure is then used to evaluate magnetic shear along the magnetic neutral line in an active region that was observed on April 24, 1984 at a longitude offset of -45 deg. In particular, the number of 'critically sheared' pixels along an east-west directed segment of the neutral line in the leader sunspot group changes from 16 in the image plane magnetogram to 14 in the heliographic magnetogram. The critical shear as calculated in the image plane served as a good predictor for the location of flaring activity since the flare ribbons of the great flare of April 24 bracketed the inversion line where the critical shear was located. These results indicate that for this particular region, projection effects did not significantly affect the evaluation of critical shear.

  7. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Zhu, Qi; Shao, Hao; Chen, Changhua; Huang, Wenhua

    2015-03-01

    A dual-cavity TM02-TM01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM01 mode feedback.

  8. Elastic moduli and vibrational modes in jammed particulate packings

    NASA Astrophysics Data System (ADS)

    Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E.

    2016-06-01

    When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M , it is therefore necessary to take into account not only the affine modulus MA, but also the nonaffine modulus MN that arises from the nonaffine deformation. In the present work, we study the bulk (M =K ) and shear (M =G ) moduli in static jammed particulate packings over a range of packing fractions φ . The affine MA is determined essentially by the static structural arrangement of particles, whereas the nonaffine MN is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine MN through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φc, the vibrational density of states g (ω ) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω*. We illustrate that this unusual feature apparent in g (ω ) is reflected in the behavior of MN: As φ →φc , where ω*→0 , those modes for ω <ω* contribute less and less, while contributions from those for ω >ω* approach a constant value which results in MN to approach a critical value MN c, as MN-MN c˜ω* . At φc itself, the bulk modulus attains a finite value Kc=KA c-KN c>0 , such that KN c has a value that remains below KA c. In contrast, for the critical shear modulus Gc, GN c and GA c approach the same value so that the total value becomes exactly zero, Gc=GA c-GN c=0 . We explore what features of the configurational and vibrational properties cause such a distinction between K and G , allowing us to validate analytical expressions for their critical values.

  9. Transport bifurcation induced by sheared toroidal flow in tokamak plasmasa)

    NASA Astrophysics Data System (ADS)

    Highcock, E. G.; Barnes, M.; Parra, F. I.; Schekochihin, A. A.; Roach, C. M.; Cowley, S. C.

    2011-10-01

    First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear than one of finite magnetic shear, because in the former case the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence. In the zero-magnetic-shear regime, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the existence of modes, driven by the ion temperature gradient and the parallel velocity gradient, which grow transiently. Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gradients. A parametric model is constructed which accurately describes the combined effect of the temperature gradient and the flow gradient over a wide range of their values. Using this parametric model, it is shown that in the reduced-transport state, heat is transported almost neoclassically, while momentum transport is dominated by subcritical parallel-velocity-gradient-driven turbulence. It is further shown that for any given input of torque, there is an optimum input of heat which maximises the temperature gradient. The parametric model describes both the behaviour of the subcritical turbulence (which cannot be modelled by the quasi-linear methods used in current transport codes) and the complicated effect of the flow shear on the transport stiffness. It may prove useful for transport modelling of tokamaks with sheared flows.

  10. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    SciTech Connect

    Marín-Santibáñez, Benjamín M.; Pérez-González, José; Rodríguez-González, Francisco

    2014-11-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.

  11. Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in shear

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    The nonlinear/inelastic response under inplane shear of a large variety of graphite-epoxy and boron-epoxy angle-ply laminates was tested. Their strength allowables were obtained and the mechanisms which govern their mode of failure were determined. Two types of specimens for the program were chosen, tested, and evaluated: shear panels stabilized by an aluminum honeycomb core and shear tubes. A modified biaxially compression/tension loaded picture frame was designed and utilized in the test program with the shear panels. The results obtained with this test technique categorically prefer the shear panels, rather than the tubes, for adequate and satisfactory experimental definition of the objectives. Test results indicate the existence of a so-called core-effect which ought to be considered when reducing experimental data for weak in shear laminates.

  12. The stability of stratified spatially periodic shear flows at low Péclet number

    SciTech Connect

    Garaud, Pascale; Gallet, Basile

    2015-08-15

    This work addresses the question of the stability of stratified, spatially periodic shear flows at low Péclet number but high Reynolds number. This little-studied limit is motivated by astrophysical systems, where the Prandtl number is often very small. Furthermore, it can be studied using a reduced set of “low-Péclet-number equations” proposed by Lignières [“The small-Péclet-number approximation in stellar radiative zones,” Astron. Astrophys. 348, 933–939 (1999)]. Through a linear stability analysis, we first determine the conditions for instability to infinitesimal perturbations. We formally extend Squire’s theorem to the low-Péclet-number equations, which shows that the first unstable mode is always two-dimensional. We then perform an energy stability analysis of the low-Péclet-number equations and prove that for a given value of the Reynolds number, above a critical strength of the stratification, any smooth periodic shear flow is stable to perturbations of arbitrary amplitude. In that parameter regime, the flow can only be laminar and turbulent mixing does not take place. Finding that the conditions for linear and energy stability are different, we thus identify a region in parameter space where finite-amplitude instabilities could exist. Using direct numerical simulations, we indeed find that the system is subject to such finite-amplitude instabilities. We determine numerically how far into the linearly stable region of parameter space turbulence can be sustained.

  13. Multidirectional direct simple shear apparatus

    SciTech Connect

    DeGroot, D.J.; Germaine, J.T.; Ladd, C.C.

    1993-09-01

    The paper describes a new simple shear testing device, the multidirectional direct simple shear (MDSS) apparatus, for testing soil specimens under conditions that simulate, at the element level, the state of stress acting within the foundation soil of an offshore Arctic gravity structure. The MDSS uses a circular specimen that is consolidated under both a vertical effective stress ({sigma}{sub vc}{prime}) and a horizontal shear stress ({tau}{sub 1}). The specimen is subsequently sheared undrained by applying a second independent horizontal shear stress ({tau}{sub 2}) at an angle {theta} relative to the horizontal consolidation shear stress {tau}{sub 1}. Evaluation of the MDSS first compares conventional K{sub D}-consolidated undrained direct simple shear (CK{sub 0}UDSS) test data ({tau}{sub 1} = 0) on normally consolidated Boston blue clay (BBC) with results obtained in the Geonor DSS device. The MDSS gives lower secant Young`s modulus values and on average 8% lower strengths, but produces remarkably less scatter in the test results than the Geonor DSS. Kinematic proof tests with an elastic material (rubber) confirm that the setup procedure, application of forces, and strain measurement systems in the MDSS work properly and produce repeatable results. Results from a MDSS test program on BBC wherein specimens were first normally consolidated with {sigma}{sub vc}{prime} and {tau}{sub 1} = 0.2{sigma}{sub vc}{prime} and then sheared undrained at {theta} varing in 30{degree} increments from zero (shear in same direction) to 150{degree} show dramatic differences in the response of the soil as a function of {theta}. The peak undrained strength varies almost twofold from 0 = 0 to 120{degree}, while the deformation behavior varies from very brittle at low {theta} angles to becoming ductile at higher angles. 11 refs., 15 figs.

  14. Organized motions underlying turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Waleffe, F.

    1990-01-01

    The objective of this project is to determine the nature and significance of the organized motions underlying turbulent shear flow. There is considerable experimental evidence for the existence of such motions. In particular, one consistently observes longitudinal streaks with a spacing of about 100 in wall units in the near-wall region of wall-bounded shear flows. Recently, an analysis based on the direct resonance mechanism has predicted the appearance of streaks with precisely such a spacing. Also, the minimum channel simulations of Jimenez and Moin have given a strong dynamical significance to that spanwise length scale. They have shown that turbulent-like flows can not be maintained when the spanwise wavelength of the motion is constrained to be less than about that critical number. A critical review of the direct resonance ideas and the non-linear theory of Benney and Gustavsson is presented first. It is shown how this leads to the later mean flow-first harmonic theory of Benney. Finally, we note that a different type of analysis has led to the prediction streaks with a similar spacing. This latter approach consists of looking for optimum fields and directly provides deep insights into why a particular structure or a particular scale should be preferred.

  15. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer.

    PubMed

    Pengfei Song; Heng Zhao; Urban, Matthew W; Manduca, Armando; Pislaru, Sorin V; Kinnick, Randall R; Pislaru, Cristina; Greenleaf, James F; Shigao Chen

    2013-12-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially

  16. On the vertical-shear instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Barker, A. J.; Latter, H. N.

    2015-06-01

    We explore the linear stability of astrophysical discs exhibiting vertical shear, which arises when there is a radial variation in the temperature or entropy. Such discs are subject to a `vertical-shear instability', which recent non-linear simulations have shown to drive hydrodynamic activity in the MRI-stable regions of protoplanetary discs. We first revisit locally isothermal discs using the quasi-global reduced model derived by Nelson et al. This analysis is then extended to global axisymmetric perturbations in a cylindrical domain. We also derive and study a reduced model describing discs with power-law radial entropy profiles (`locally polytropic discs'), which are somewhat more realistic in that they possess physical (as opposed to numerical) surfaces. The fastest growing modes have very short wavelengths and are localized at the disc surfaces (if present), where the vertical shear is maximal. An additional class of modestly growing vertically global body modes is excited, corresponding to destabilized classical inertial waves (`r modes'). We discuss the properties of both types of modes, and stress that those that grow fastest occur on the shortest available length-scales (determined either by the numerical grid or the physical viscous length). This ill-posedness makes simulations of the instability difficult to interpret. We end with some brief speculation on the non-linear saturation and resulting angular momentum transport.

  17. d.c. electric field stabilization of plasma fluctuations due to a velocity shear in the parallel ion flow. [in ionosphere

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.; Ossakow, S. L.

    1989-01-01

    Consideration is given to the suggestion by Basu and Coppi (1988, 1989) that the DE-2 observations of broadband turbulence associated with sheared ion flows can be explained by electrostatic waves driven by a sheared ion flow along the magnetic field. It is pointed out that such a theory ignores the stronger shear in the ion flow transverse to the magnetic field, and that, when this shear is taken into account, the modes described by Basu and Coppi are easily destabilized. The theory of Basu and Coppi is shown to break down even when the shear in the parallel flow exceeds the shear in the transverse flow.

  18. On the Effect of Strain Gradient on Adiabatic Shear Banding

    NASA Astrophysics Data System (ADS)

    Tsagrakis, Ioannis; Aifantis, Elias C.

    2015-10-01

    Most of the work on adiabatic shear banding is based on the effect of temperature gradients on shear band nucleation and evolution. In contrast, the present work considers the coupling between temperature and strain gradients. The competition of thermal and strain gradient terms on the onset of instability and its dependence on specimen size is illustrated. It is shown that heat conduction promotes the instability initiation in the hardening part of the homogeneous stress-strain, while the strain gradient term favors the occurrence of this initiation in the softening regime. This behavior is size dependent, i.e., small specimens can support stable homogeneous deformations even in the softening regime. The spacing of adiabatic shear bands is also evaluated by considering the dominant instability mode during the primary stages of the localization process and it is found that it is an increasing function of the strain gradient coefficient.

  19. Dynamics of a double-stranded DNA segment in a shear flow.

    PubMed

    Panja, Debabrata; Barkema, Gerard T; van Leeuwen, J M J

    2016-04-01

    We study the dynamics of a double-stranded DNA (dsDNA) segment, as a semiflexible polymer, in a shear flow, the strength of which is customarily expressed in terms of the dimensionless Weissenberg number Wi. Polymer chains in shear flows are well known to undergo tumbling motion. When the chain lengths are much smaller than the persistence length, one expects a (semiflexible) chain to tumble as a rigid rod. At low Wi, a polymer segment shorter than the persistence length does indeed tumble as a rigid rod. However, for higher Wi the chain does not tumble as a rigid rod, even if the polymer segment is shorter than the persistence length. In particular, from time to time the polymer segment may assume a buckled form, a phenomenon commonly known as Euler buckling. Using a bead-spring Hamiltonian model for extensible dsDNA fragments, we first analyze Euler buckling in terms of the oriented deterministic state (ODS), which is obtained as the steady-state solution of the dynamical equations by turning off the stochastic (thermal) forces at a fixed orientation of the chain. The ODS exhibits symmetry breaking at a critical Weissenberg number Wi_{c}, analogous to a pitchfork bifurcation in dynamical systems. We then follow up the analysis with simulations and demonstrate symmetry breaking in computer experiments, characterized by a unimodal to bimodal transformation of the probability distribution of the second Rouse mode with increasing Wi. Our simulations reveal that shear can cause strong deformation for a chain that is shorter than its persistence length, similar to recent experimental observations. PMID:27176342

  20. 3-D shear lag model for the analysis of interface damage in ceramic matrix composites

    SciTech Connect

    Dharani, L.R.; Ji, F.

    1995-12-31

    In this paper a micromechanics analytical model is presented for characterizing the behavior of a unidirectional brittle matrix composite containing initial matrix flaws, specifically, as they approach a fiber-matrix interface. It is contemplated that when a matrix crack impinges on the interface it may go around the fiber or go through the fiber by breaking it or debond the fiber/matrix interface. It has been experimentally observed that the crack front does not remain straight, rather it bows once it impinges on a row of fibers. If a unit cell approach is used, the problem is clearly non-axisymmetric and three-dimensional. Since most of the previous analyses dealing with self-similar cracking and interface debonding have considered axisymmetric cracking or two-dimensional planar geometries, the development of an analytical micromechanics model using a 3-D (non-axisymmetric) formulation is needed. The model is based on the consistent shear lag constitutive relations and does account for the large stiffness of the ceramic matrix. Since the present consistent shear lag model is for Cartesian coordinates, we have first derived the consistent shear lag constitutive relations in cylindrical coordinates. The governing equations are obtained by minimizing the potential energy in which the three displacements are represented by means of finite exponential series. Since the full field stresses and displacements are known, the strain energy release rates for self-similar extension of the matrix crack (Gp) and the interface debonding (Gd) are calculated using the Compliance method. The competition between various failure modes will be assessed based on the above strain energy release rates and the corresponding critical (toughness) values. The type of interfaces addressed include fictional, elastic, and gradient with varying properties (interphase). An extensive parametric study will be presented involving different constitutive properties and interface conditions.

  1. Dynamics of a double-stranded DNA segment in a shear flow

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata; Barkema, Gerard T.; van Leeuwen, J. M. J.

    2016-04-01

    We study the dynamics of a double-stranded DNA (dsDNA) segment, as a semiflexible polymer, in a shear flow, the strength of which is customarily expressed in terms of the dimensionless Weissenberg number Wi. Polymer chains in shear flows are well known to undergo tumbling motion. When the chain lengths are much smaller than the persistence length, one expects a (semiflexible) chain to tumble as a rigid rod. At low Wi, a polymer segment shorter than the persistence length does indeed tumble as a rigid rod. However, for higher Wi the chain does not tumble as a rigid rod, even if the polymer segment is shorter than the persistence length. In particular, from time to time the polymer segment may assume a buckled form, a phenomenon commonly known as Euler buckling. Using a bead-spring Hamiltonian model for extensible dsDNA fragments, we first analyze Euler buckling in terms of the oriented deterministic state (ODS), which is obtained as the steady-state solution of the dynamical equations by turning off the stochastic (thermal) forces at a fixed orientation of the chain. The ODS exhibits symmetry breaking at a critical Weissenberg number Wic, analogous to a pitchfork bifurcation in dynamical systems. We then follow up the analysis with simulations and demonstrate symmetry breaking in computer experiments, characterized by a unimodal to bimodal transformation of the probability distribution of the second Rouse mode with increasing Wi. Our simulations reveal that shear can cause strong deformation for a chain that is shorter than its persistence length, similar to recent experimental observations.

  2. Shear thinning of nanoparticle suspensions.

    SciTech Connect

    Grest, Gary Stephen; Petersen, Matthew K.; in't Veld, Pieter J.

    2008-08-01

    Results of large scale non-equilibrium molecular dynamics (NEMD) simulations are presented for nanoparticles in an explicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the solvent is represented by standard Lennard-Jones particles. Here we present results for the shear rheology of spherical nanoparticles of size 5 to 20 times that of the solvent for a range of nanoparticle volume fractions and interactions. Results from NEMD simulations suggest that for strongly interacting nanoparticle that form a colloidal gel, the shear rheology of the suspension depends only weakly on the size of the nanoparticle, even for nanoparticles as small as 5 times that of the solvent. However for hard sphere-like colloids the size of the nanoparticles strongly affects the shear rheology. The shear rheology for dumbbell nanoparticles made of two fused spheres is also compared to spherical nanoparticles and found to be similar except at very high volume fractions.

  3. A piezoelectric shear stress sensor

    NASA Astrophysics Data System (ADS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-04-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress, suppressing effects of normal stress components, by applying opposite poling vectors to the piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces where it demonstrated high sensitivity to shear stress (91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-33%PT, d31=-1330 pC/N). The sensor also exhibited negligible sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is up to 800 Hz.

  4. Facing rim cavities fluctuation modes

    NASA Astrophysics Data System (ADS)

    Casalino, Damiano; Ribeiro, André F. P.; Fares, Ehab

    2014-06-01

    Cavity modes taking place in the rims of two opposite wheels are investigated through Lattice-Boltzmann CFD simulations. Based on previous observations carried out by the authors during the BANC-II/LAGOON landing gear aeroacoustic study, a resonance mode can take place in the volume between the wheels of a two-wheel landing gear, involving a coupling between shear-layer vortical fluctuations and acoustic modes resulting from the combination of round cavity modes and wheel-to-wheel transversal acoustic modes. As a result, side force fluctuations and tonal noise side radiation take place. A parametric study of the cavity mode properties is carried out in the present work by varying the distance between the wheels. Moreover, the effects due to the presence of the axle are investigated by removing the axle from the two-wheel assembly. The azimuthal properties of the modes are scrutinized by filtering the unsteady flow in narrow bands around the tonal frequencies and investigating the azimuthal structure of the filtered fluctuation modes. Estimation of the tone frequencies with an ad hoc proposed analytical formula confirms the observed modal properties of the filtered unsteady flow solutions. The present study constitutes a primary step in the description of facing rim cavity modes as a possible source of landing gear tonal noise.

  5. Experimental Study of the Vortex-Induced Vibration of Drilling Risers under the Shear Flow with the Same Shear Parameter at the Different Reynolds Numbers

    PubMed Central

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607

  6. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    PubMed

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  7. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    PubMed

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607

  8. Fluid migration in ductile shear zones

    NASA Astrophysics Data System (ADS)

    Fusseis, Florian; Menegon, Luca

    2014-05-01

    Fluid migration in metamorphic environments depends on a dynamically evolving permeable pore space, which was rarely characterised in detail. The data-base behind our understanding of the 4-dimensional transport properties of metamorphic rocks is therefore fragmentary at best, which leaves conceptual models poorly supported. Generally, it seems established that deformation is a major driver of permeability generation during regional metamorphism, and evidence for metamorphic fluids being channelled in large scale shear zones has been found in all depth segments of the continental crust. When strain localizes in ductile shear zones, the microfabric is modified until a steady state mylonite is formed that supports large deformations. A dynamic porosity that evolves during mylonitisation controls the distinct transport pathways along which fluid interacts with the rock. This dynamic porosity is controlled by a limited number of mechanisms, which are intrinsically linked to the metamorphic evolution of the rock during its deformational overprint. Many mid- and lower-crustal mylonites comprise polyphase mixtures of micron-sized grains that show evidence for deformation by dissolution/precipitation-assisted viscous grain boundary sliding. The establishment of these mineral mixtures is a critical process, where monomineralic layers are dispersed and grain growth is inhibited by the heterogeneous nucleation of secondary mineral phases at triple junctions. Here we show evidence from three different mid- and lower-crustal shear zones indicating that heterogeneous nucleation occurs in creep cavities. Micro- and nanotomographic observations show that creep cavities provide the dominant form of porosity in these ultramylonites. They control a "granular fluid pump" that directs fluid migration and hence mass transport. The granular fluid pump operates on the grain scale driven by viscous grain boundary sliding, and requires only small amounts of fluid. The spatial arrangement of

  9. Viscometer for low frequency, low shear rate measurements

    NASA Technical Reports Server (NTRS)

    Berg, R. F.; Moldover, M. R.

    1986-01-01

    A computer-controlled torsion-oscillator viscometer with low 0.5 Hz frequency and very low 0.05/s shear rate is designed to precisely study shear-sensitive fluids such as microemulsions, gels, polymer solutions and melts, colloidal solutions undergoing coagulation, and liquid mixtures near critical points. The viscosities are obtained from measurements of the logarithmic decrement of an underdriven oscillator. The viscometer is found to have a resolution of 0.2 percent when used with liquid samples and a resolution of 0.4 percent when used with a dense gaseous sample. The design is compatible with submillikelvin temperature control.

  10. Shear velocity criterion for incipient motion of sediment

    USGS Publications Warehouse

    Simoes, Francisco J.

    2014-01-01

    The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle’s settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.

  11. Shear flow effects on ion thermal transport in tokamaks

    SciTech Connect

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory.

  12. Residual turbulence from velocity shear stabilized interchange instabilities

    SciTech Connect

    Hung, C. P.; Hassam, A. B.

    2013-01-15

    The stabilizing effect of velocity shear on the macroscopic, broad bandwidth, ideal interchange instability is studied in linear and nonlinear regimes. A 2D dissipative magnetohydrodynamic (MHD) code is employed to simulate the system. For a given flow shear, V Prime , linear growth rates are shown to be suppressed to below the shear-free level at both the small and large wavelengths. With increasing V Prime , the unstable band in wavenumber-space shrinks so that the peak growth results for modes that correspond to relatively high wavenumbers, on the scale of the density gradient. In the nonlinear turbulent steady state, a similar turbulent spectrum obtains, and the convection cells are roughly circular. In addition, the density fluctuation level and the degree of flattening of the initial inverted density profile are found to decrease as V Prime increases; in fact, unstable modes are almost completely stabilized and the density profile reverts to laminar when V Prime is a few times the classic interchange growth rate. Moreover, the turbulent particle flux diminishes with increasing velocity shear such that all the flux is carried by the classical diffusive flux in the asymptotic limit. The simulations are compared with measurements of magnetic fluctuations from the Maryland Centrifugal Experiment, MCX, which investigated interchange modes in the presence of velocity shear. The experimental spectral data, taken in the plasma edge, are in general agreement with the numerical data obtained in higher viscosity simulations for which the level of viscosity is chosen consistent with MCX Reynolds numbers at the edge. In particular, the residual turbulence in both cases is dominated by elongated convection cells. Finally, concomitant Kelvin-Helmholtz instabilities in the system are also examined. Complete stability to interchanges is obtained only in the parameter space wherein the generalized Rayleigh inflexion theorem is satisfied.

  13. Population-balance description of shear-induced clustering, gelation and suspension viscosity in sheared DLVO colloids.

    PubMed

    Lattuada, Marco; Zaccone, Alessio; Wu, Hua; Morbidelli, Massimo

    2016-06-28

    Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition), dominated by the complex interplay between DLVO interactions and shear flow. The quantitative understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a systematic numerical study, based on the governing master kinetic equation (population-balance) for the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth, controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the reactivity of which increases along with their size growth. When their size reaches a critical threshold, a very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier between particles. This stage terminates when a dynamic balance between shear-induced aggregation and cluster breakage is reached. It is also observed that these systems are characterized by a cluster mass distribution that for a long time presents a well-defined bimodality. The model predictions are quantitatively in excellent agreement with available experimental data, showing how the theoretical picture is able to quantitatively account for the underlying nonequilibrum physics. PMID:27222249

  14. Population-balance description of shear-induced clustering, gelation and suspension viscosity in sheared DLVO colloids.

    PubMed

    Lattuada, Marco; Zaccone, Alessio; Wu, Hua; Morbidelli, Massimo

    2016-06-28

    Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition), dominated by the complex interplay between DLVO interactions and shear flow. The quantitative understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a systematic numerical study, based on the governing master kinetic equation (population-balance) for the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth, controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the reactivity of which increases along with their size growth. When their size reaches a critical threshold, a very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier between particles. This stage terminates when a dynamic balance between shear-induced aggregation and cluster breakage is reached. It is also observed that these systems are characterized by a cluster mass distribution that for a long time presents a well-defined bimodality. The model predictions are quantitatively in excellent agreement with available experimental data, showing how the theoretical picture is able to quantitatively account for the underlying nonequilibrum physics.

  15. Shear Induced Morphology Evolution and Dynamic Viscoelastic Behavior of Binary and Ternary Elastomer Blends

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Liu, Xianggui; Liu, Wei; Han, Charles C.; Wang, Dujin

    2015-03-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene /polyisoprene blend and solution-polymerized styrene-butadiene rubber/polyisoprene/silica ternary composites after various shear flow were in situ studied with the rheological and rheo-optical techniques. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The storage modulus G' increased significantly in the breakup process of the string-like phase. In long time scale, silica slowed down the succeeding breakup of the string-phase domains and simultaneous coalescence of broken droplets, and then effectively reduced the droplets size and stabilized the morphology. The authors thank the financial support from National Natural Science Foundation of China (No. 51173195).

  16. Effect of Grain Boundary Character Distribution on the Adiabatic Shear Susceptibility

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Jiang, Lihong; Luo, Shuhong; Hu, Haibo; Tang, Tiegang; Zhang, Qingming

    2016-11-01

    The adiabatic shear susceptibility of AISI321 stainless steels with different grain boundary character distributions (GBCDs) was investigated by means of split-Hopkinson pressure bar. The results indicate that the width of the adiabatic shear band of the specimen after thermomechanical processing (TMP) treatment is narrower. The comparison of the stress collapse time, the critical stress, and the adiabatic shear forming energy suggests that the TMP specimens have lower adiabatic shear susceptibility than that of the solution-treated samples under the same loading condition. GBCD and grain size affected the adiabatic shear susceptibility. The high-angle boundary network of the TMP specimens was interrupted or replaced by the special grain boundary, and smaller grain size hindered the adiabatic shearing.

  17. Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Carmeliet, J.; Savage, H. M.; Scuderi, M.; Carpenter, B. M.; Guyer, R. A.; Daub, E. G.; Marone, C.

    2016-02-01

    We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidenced by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.

  18. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  19. Resonant instability of supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Lele, S. K.

    1990-01-01

    A computer simulation of possible resonant instability of a supersonic shear layer is carried out. The resonance of two acoustic duct modes of the flow induced by periodic Mach waves generated by a wavy wall is sought. Results of the simulations are reported. Simulations are unable to document a resonant instability and the mixing characteristics remain unchanged. Possible weakness of the present simulations are discussed. A second set of simulations involving a mixing layer separating a supersonic and a subsonic stream were performed. A wavy wall placed adjacent to the supersonic stream to produce a set of periodic Mach waves terminating at the shear layer is modelled. The entire flow field is similar to that of an imperfectly expanded supersonic jet discharging into a subsonic coflowing stream for which enhanced mixing due to the onset of screech (feedback instability) is known to occur. The purpose of these simulations is to see if enhanced mixing and feedback instability would, indeed, take place. Some evidence of feedback oscillations is found in the simulated flow.

  20. Cosmic Shear - with ACS Pure Parallel Observations

    NASA Astrophysics Data System (ADS)

    Ratnatunga, Kavan

    2002-07-01

    The ACS, with greater sensitivity and sky coverage, will extend our ability to measure the weak gravitational lensing of galaxy images caused by the large scale distribution of dark matter. We propose to use the ACS in pure parallel {non- proprietary} mode, following the guidelines of the ACS Default Pure Parallel Program. Using the HST Medium Deep Survey WFPC2 database we have measured cosmic shear at arc-min angular scales. The MDS image parameters, in particular the galaxy orientations and axis ratios, are such that any residual corrections due to errors in the PSF or jitter are much smaller than the measured signal. This situation is in stark contrast with ground-based observations. We have also developed a statistical analysis procedure to derive unbiased estimates of cosmic shear from a large number of fields, each of which has a very small number of galaxies. We have therefore set the stage for measurements with the ACS at fainter apparent magnitudes and smaller, 10 arc-second scales corresponding to larger cosmological distances. We will adapt existing MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work with the ACS. The analysis would also yield an online database similar to that in archive.stsci.edu/mds/

  1. The effect of plasma shaping on turbulent transport and ExB shear quenching in nonlinear gyrokinetic simulations

    SciTech Connect

    Kinsey, J. E.; Waltz, R. E.; Candy, J.

    2007-10-15

    Nonlinear gyrokinetic simulations with kinetic electron dynamics are used to study the effects of plasma shaping on turbulent transport and ExB shear in toroidal geometry including the presence of kinetic electrons using the GYRO code. Over 120 simulations comprised of systematic scans were performed around several reference cases in the local, electrostatic, collisionless limit. Using a parameterized local equilibrium model for shaped geometry, the GYRO simulations show that elongation {kappa} (and its gradient) stabilizes the energy transport from ion temperature gradient (ITG) and trapped electron mode (TEM) instabilities at fixed midplane minor radius. For scans around a reference set of parameters, the GYRO ion energy diffusivity, in gyro-Bohm units, approximately follows a {kappa}{sup -1} scaling which is qualitatively similar to recent experimental energy confinement scalings. Most of the {kappa} scaling is due to the shear in the elongation rather than the local {kappa} itself. The {kappa} scaling for the electrons is found to vary and can be stronger or weaker than {kappa}{sup -1} depending on the wavenumber where the transport peaks. The {kappa} scaling is weaker when the energy diffusivity peaks at low wavenumbers and is stronger when the peak occurs at high wavenumbers. The simulations also demonstrate a nonlinear upshift in the critical temperature gradient as the elongation increases due to an increase in the residual zonal flow amplitude. Triangularity is found to be slightly destabilizing and its effect is strongest for highly elongated plasmas. Finally, we find less ExB shear is needed to quench the transport at high elongation and low aspect ratio. A new linear ExB shear quench rule, valid for shaped tokamak geometry, is presented.

  2. Anisotropic Power Law Strain Correlations in Sheared Amorphous 2D Solids

    NASA Astrophysics Data System (ADS)

    Maloney, C. E.; Robbins, M. O.

    2009-06-01

    The local deformation of steadily sheared two-dimensional Lennard-Jones glasses is studied via computer simulations at zero temperature. In the quasistatic limit, spatial correlations in the incremental strain field are highly anisotropic. The data show power law behavior with a strong angular dependence of the scaling exponent, and the strongest correlations along the directions of maximal shear stress. These results support the notion that the jamming transition at the onset of flow is critical, but suggest unusual critical behavior. The predicted behavior is testable through experiments on sheared amorphous materials such as bubble rafts, foams, emulsions, granular packings, and other systems where particle displacements can be tracked.

  3. Anisotropic Power Law Strain Correlations in Sheared Amorphous 2D Solids

    SciTech Connect

    Maloney, C. E.; Robbins, M. O.

    2009-06-05

    The local deformation of steadily sheared two-dimensional Lennard-Jones glasses is studied via computer simulations at zero temperature. In the quasistatic limit, spatial correlations in the incremental strain field are highly anisotropic. The data show power law behavior with a strong angular dependence of the scaling exponent, and the strongest correlations along the directions of maximal shear stress. These results support the notion that the jamming transition at the onset of flow is critical, but suggest unusual critical behavior. The predicted behavior is testable through experiments on sheared amorphous materials such as bubble rafts, foams, emulsions, granular packings, and other systems where particle displacements can be tracked.

  4. Evaluation of cylindrical shear joints for composite materials

    NASA Astrophysics Data System (ADS)

    Groves, Scott; Sanchez, Roberto; Lyon, Richard; Magness, Frank

    1992-01-01

    An evaluation is made of the strength of four candidate cylindrical shear joints for composite tubes. The basic joint design is of one inch axial length with an external 15 deg tapered cone. The purpose of the joint is to transfer axial loads from a cylinder through a steel shear attachment with a matching internal conical seat. The candidate designs are a bonded wedge cone, a pinned wedge cone, a bonded and pinned wedge cone attached to a two-inch diameter composite tube, and a wedge cone integrally wound into the tube. The actual joint strengths were found to be dependent on the amount of hydrostatic or radial compression applied to the joint. The bonded wedge ring and the integral wedge ring both achieved over 96 MPa (14 ksi) of shear strength without failure. The bonded and pinned joint reached a peak shear strength of 78.9 MPa (11.5 ksi), and the pinned only configuration achieved 70.6 MPa (10.3 ksi). Without any hydrostatic compression loading, the joint strengths were less than 34.3 MPa (5 ksi); however, the failure mode was hoop compression buckling of the tube itself as opposed to a joint shear failure.

  5. Gyrokinetic Simulation of Residual Stress from Diamagnetic Velocity Shears

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2010-11-01

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the parallel velocity (and parallel velocity itself) vanishes. Previously [1] we demonstrated with gyrokinetic (GYRO) simulations that TAM pinching from the diamagnetic level shear in the ExB velocity could provide the residual stress needed for spontaneous toroidal rotation. Here we show that the shear in the diamagnetic velocities themselves provide comparable residual stress (and level of stabilization). The sign of the residual stress, quantified by the ratio of TAM flow to ion power flow (M/P), depends on the signs of the various velocity shears as well as ion (ITG) versus electron (TEM) mode directed turbulence. The residual stress from these temperature and density gradient diamagnetic velocity shears is demonstrated in global gyrokinetic simulation of ``null'' rotation DIIID discharges by matching M/P profiles within experimental error. 8pt [1] R.E. Waltz, G.M. Staebler, J. Candy, and F.L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009).

  6. Morphology evolution and rheological properties of polybutadiene/polyisoprene blend after the cessation of steady shear

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Dong, Xia; Zou, Fasheng; Yang, Jian; Wang, Dujin; Han, Charles C.

    2013-09-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene/polyisoprene blend after the cessation of steady shear was studied with an ARES rheometer and a shear light scattering photometer equipped with an optical microscope in this work. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The average size of the dispersed domains in the coarsening process was influenced by the pre-shear history. The results indicated that the pre-shear history could slow down the growth rate of phase domains during the coarsening process. It had effect on the coarsening mechanism on the early stage of relaxation after the cessation of very strong shear when the homogenization effects were strong, but no effect on the late stage. The storage modulus G' increased significantly in the breakup process of the string-like phase. After all the string-like structures were broken up into small ellipsoids, then G' gradually decreased and finally approached to an invariant value. The characteristic rheological behavior can be attributed to the different structure on the relaxation process.

  7. Morphology evolution and rheological properties of polybutadiene/polyisoprene blend after the cessation of steady shear.

    PubMed

    Liu, Wei; Dong, Xia; Zou, Fasheng; Yang, Jian; Wang, Dujin; Han, Charles C

    2013-09-21

    The morphology evolution and rheological response of a near-critical composition polybutadiene/polyisoprene blend after the cessation of steady shear was studied with an ARES rheometer and a shear light scattering photometer equipped with an optical microscope in this work. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The average size of the dispersed domains in the coarsening process was influenced by the pre-shear history. The results indicated that the pre-shear history could slow down the growth rate of phase domains during the coarsening process. It had effect on the coarsening mechanism on the early stage of relaxation after the cessation of very strong shear when the homogenization effects were strong, but no effect on the late stage. The storage modulus G' increased significantly in the breakup process of the string-like phase. After all the string-like structures were broken up into small ellipsoids, then G' gradually decreased and finally approached to an invariant value. The characteristic rheological behavior can be attributed to the different structure on the relaxation process. PMID:24070308

  8. Nonlinear evolution of layered stratified shear flows

    NASA Astrophysics Data System (ADS)

    Lee, Victoria; Caulfield, Colm-Cille

    2000-11-01

    We investigate numerically and theoretically the nonlinear evolution of a parallel shear flow at moderate Reynolds number which has embedded within it a mixed layer of intermediate fluid. Linear stability theory predicts that such flows are unstable to stationary vortical disturbances which are a generalization of an inviscid instability first considered by G. I. Taylor. We investigate the behaviour of these Taylor modes at finite amplitude through numerical simulations. Through considering the long-time evolution of such flows, we investigate how secondary instabilities, and the layered background density profile, affect merging between neighbouring Taylor billows, and alter the irreversible mixing of the background stratification as the flow undergoes transition to small-scale disorder.

  9. Seismic shear waves as Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  10. Axisymmetric Shearing Box Models of Magnetized Disks

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoyue; Gammie, Charles F.

    2008-01-01

    The local model, or shearing box, has proven a useful model for studying the dynamics of astrophysical disks. Here we consider the evolution of magnetohydrodynamic (MHD) turbulence in an axisymmetric local model in order to evaluate the limitations of global axisymmetric models. An exploration of the model parameter space shows the following: (1) The magnetic energy and α-decay approximately exponentially after an initial burst of turbulence. For our code, HAM, the decay time τ propto Res , where Res/2 is the number of zones per scale height. (2) In the initial burst of turbulence the magnetic energy is amplified by a factor proportional to Res3/4λR, where λR is the radial scale of the initial field. This scaling applies only if the most unstable wavelength of the magnetorotational instability is resolved and the final field is subthermal. (3) The shearing box is a resonant cavity and in linear theory exhibits a discrete set of compressive modes. These modes are excited by the MHD turbulence and are visible as quasi-periodic oscillations (QPOs) in temporal power spectra of fluid variables at low spatial resolution. At high resolution the QPOs are hidden by a noise continuum. (4) In axisymmetry disk turbulence is local. The correlation function of the turbulence is limited in radial extent, and the peak magnetic energy density is independent of the radial extent of the box LR for LR > 2H. (5) Similar results are obtained for the HAM, ZEUS, and ATHENA codes; ATHENA has an effective resolution that is nearly double that of HAM and ZEUS. (6) Similar results are obtained for 2D and 3D runs at similar resolution, but only for particular choices of the initial field strength and radial scale of the initial magnetic field.

  11. Gyrokinetic analysis of shear flow instability in torodial geometry

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Hahm, T. S.

    2008-11-01

    Motivated by recent observation of intrinsic rotation in tokamak plasmas, we study linear stability of ion gyroradius scale short wavelength fluctuations in the presence of sheared parallel flow, ion temperature gradient, and toroidal mode coupling. Our gyrokinetic approach in toroidal geometry is an extension of previous studies including those by Catto et al., [Phys. Fluids 16 1719 (1973)] Mattor and Diamond [Phys. Fluids 31 1180 (1988)], and Artun and Tang [Phys. Fluids B 4 1102 (1992)].

  12. Analysis of coupled fast-shear and extensional vibrations of a LiTaO3 crystal plate with a ferroelectric inversion layer.

    PubMed

    Ma, Tingfeng; Pei, Jieyu; Wang, Ji; Du, Jianke; Zhang, Chao; Huang, Bin; Yuan, Lili; Yu, Fapeng

    2016-05-01

    The resonance vibrations of LiTaO3 fast-shear overtone mode resonators with a ferroelectric inversion layer are analyzed. In addition to the fast-shear mode, the coupled extensional mode is considered. Different from most of the LiTaO3 resonators studied in the literature that are based on the slow-shear mode, the resonator in this paper operates with the fast-shear overtone mode. Results show that the capacitance ratio assumes maxima at two resonances, which are identified to be the second overtone modes of fast-shear and extension, respectively. It is found that the thickness of the inversion layer has obvious influences on the capacitance ratio of fast-shear and extensional modes. This condition may provide a simple method to adjust capacitance ratios of piezoelectric resonators. The influence mechanisms are also discussed. Besides, the effect of the cut angle of the crystal on the mode shape of vibrations is also investigated. The results can be used as important basis of parameters designs of LiTaO3 resonators operating on the fast-shear overtone mode. PMID:27250157

  13. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  14. Phase separation of compatibilized polymer blends during shear

    SciTech Connect

    Nakatani, A.I.; Johnsonbaugh, D.S.; Han, C.C.

    1996-12-31

    The phase separation and mixing behavior during shear of a blend of polystyrene (PS) and polybutadiene (PB) with and without a symmetric diblock copolymer added (PS-PB) are examined as a function of quench depth and copolymer concentration for a fixed ratio of PS to PB. This blend exhibits upper critical solution temperature (UCST) behavior (60:40 PS:PB, T{sub c} = 108{degrees}C). The results are obtained on a static light scattering instrument coupled to a transparent cone and plate rheometer with a two-dimensional charge-coupled device detector. A comparison of the homopolymer blend with the three-component mixture showed enhanced mixing during isothermal, steady shear experiments and a suppressed rate of phase separation while cooling with shear in the three-component system.

  15. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  16. Condensation modes in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    An, Chang-Hyuk

    1986-01-01

    Condensation modes in magnetized cylindrical plasmas, with concentration on how magnetic field affects the stability were studied. It is found that the effects of magnetic field (shear, twist, and strength) on the condensation modes are different depending on the wave vector. For modes whose wave vector is not perpendicular to magnetic field lines the plasma motion is mainly along the field lines; the effects of magnetic field on the modes are negligible except on the heat flow parallel to the field line. For a mode which is localized near a surface where the wave vector is perpendicular to the field line, the plasma moves perpendicular to the line carrying the field line into the condensed region; magnetic field affects the mode by building up magnetic pressure in the condensed region. The stability of condensation modes strongly depends on how density and temperature vary with field twist. The stable nature of global quiescent prominence magnetic configurations implies that prominences form for low field twist for which ideal MHD modes are stable; plasma temperature should increase with field twist for stable prominence formation.

  17. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin ‑ Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10‑5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the

  18. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most

  19. The shear modulus of the neutron star crust and nonradial oscillations of neutron stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.; Van Horn, H. M.; Ogata, S.; Iyetomi, H.; Ichimaru, S.

    1991-01-01

    Shear moduli are calculated for bcc crystalline and rapidly quenched Coulomb solids produced by the Monte Carlo simulation method. The shear moduli are calculated up to the transition temperature and include the effects of thermal fluctuations. An effective shear modulus appropriate to an approximate 'isotropic' body is introduced. It is found that the values of the 'average shear modulus' for the quenched solids remain about the same as those for the corresponding bcc crystals, although the individual shear moduli of the former, disordered solids deviate considerably from the cubic symmetry of the latter. These results are applied to analyses of neutron star oscillations. It is found that the periods of the two interfacial modes are increased by about 10 percent compared to previous results, and that s-mode periods are increased by about 30 percent. The periods of the f and p modes are hardly affected at all. The surface g-mode periods are not greatly affected, while the t-mode periods are increased by 20-25 percent.

  20. Shear stress related blood damage in laminar couette flow.

    PubMed

    Paul, Reinhard; Apel, Jörn; Klaus, Sebastian; Schügner, Frank; Schwindke, Peter; Reul, Helmut

    2003-06-01

    Artificial organs within the blood stream are generally associated with flow-induced blood damage, particularly hemolysis of red blood cells. These damaging effects are known to be dependent on shear forces and exposure times. The determination of a correlation between these flow-dependent properties and actual hemolysis is the subject of this study. For this purpose, a Couette device has been developed. A fluid seal based on fluorocarbon is used to separate blood from secondary external damage effects. The shear rate within the gap is controlled by the rotational speed of the inner cylinder, and the exposure time by the amount of blood that is axially pumped through the device per given time. Blood damage is quantified by the index of hemolysis (IH), which is calculated from photometric plasma hemoglobin measurements. Experiments are conducted at exposure times from texp=25 - 1250 ms and shear rates ranging from tau=30 up to 450 Pa ensuring Taylor-vortex free flow characteristics. Blood damage is remarkably low over a broad range of shear rates and exposure times. However, a significant increase in blood damage can be observed for shear stresses of tau>or= 425 Pa and exposure times of texp>or= 620 ms. Maximum hemolysis within the investigated range is IH=3.5%. The results indicate generally lower blood damage than reported in earlier studies with comparable devices, and the measurements clearly indicate a rather abrupt (i.e., critical levels of shear stresses and exposure times) than gradual increase in hemolysis, at least for the investigated range of shear rates and exposure times. PMID:12780506

  1. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE).

    PubMed

    Song, Pengfei; Macdonald, Michael; Behler, Russell; Lanning, Justin; Wang, Michael; Urban, Matthew; Manduca, Armando; Zhao, Heng; Callstrom, Matthew; Alizad, Azra; Greenleaf, James; Chen, Shigao

    2015-02-01

    Two-dimensional shear-wave elastography presents 2-D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2-D shear-wave elastography on conventional ultrasound scanners, however, is challenging because of the low tracking pulse-repetition-frequency (PRF) of these systems. Although some clinical and research platforms support software beamforming and plane-wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2-D shear-wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a time-aligned sequential tracking (TAST) method for shear-wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high-PRF shear-wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The comb-push ultrasound shear elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave SNR and facilitate robust reconstructions of 2-D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner. A phantom study showed that the shear-wave speed measurements from the conventional ultrasound scanner were in good agreement with the values measured from other 2-D shear wave imaging technologies. An inclusion phantom study showed that the conventional ultrasound scanner had comparable performance to a state-of-the-art shear-wave imaging system in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the conventional ultrasound

  2. Resonant behavior of trapped Brownian particles in an oscillatory shear flow.

    PubMed

    Kählert, Hanno; Löwen, Hartmut

    2012-10-01

    The response of harmonically trapped Brownian particles to an externally imposed oscillatory shear flow is explored by theory and computer simulation. The special case of a single trapped particle is solved analytically. We present explicit results for the time-dependent density and the velocity distribution. The response of the many-body problem is studied by computer simulations. In particular, we investigate the influence of oscillatory shear flow on the internal modes of the cluster. As a function of the shear oscillation frequency, we find resonant behavior for certain (antisymmetric) normal modes, implying that they can be efficiently excited by oscillatory shear. Our results are verifiable in experiments on dusty plasmas and trapped colloidal dispersions.

  3. A technique for combined dynamic compression-shear test

    NASA Astrophysics Data System (ADS)

    Zhao, P. D.; Lu, F. Y.; Chen, R.; Lin, Y. L.; Li, J. L.; Lu, L.; Sun, G. L.

    2011-03-01

    It is critically important to study the dynamic response of materials under a combined compression-shear loading for developing constitutive laws more accurately and fully. We present a novel technique to achieve the combined compression and shear loadings at high strain rates. The main apparatus consists of a strike bar, an incident bar, and two transmission bars. The close-to-specimen end of the incident bar is wedge-shaped with 90°. In each experiment, there are two identical specimens, respectively, agglutinated between one side of the wedge and one of transmission bars. When a loading impulse travels to specimens along the incident bar, because of the special geometrical shape, the specimen-incident bar interface gets an axial and a transverse velocity. Specimens endure a combined compression-shear loading at high strain rates. The compression stress and strain of the specimens are deduced from signals recorded by strain gages mounted on the bars. The shear stress is measured by two piezoelectric transducers of quartz (Y-cut with rotation angle 17.7°) embedded at the close-to-specimen end of transmission bars; the shear strain is measured with a novel optical technique, which is based on the luminous flux method. An analytic model was proposed and validated by the numerical simulations. The simulation results yield good agreement with the analytic results. The proposed technique was then validated through experiments carried out on lead specimens, by comparing experimental results with that of the split Hopkinson pressure bar experiments.

  4. Shear-Rate-Independent Diffusion in Granular Flows.

    PubMed

    Fan, Yi; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M

    2015-08-21

    We computationally study the behavior of the diffusion coefficient D in granular flows of monodisperse and bidisperse particles spanning regions of relatively high and low shear rate in open and closed laterally confined heaps. Measurements of D at various flow rates, streamwise positions, and depths collapse onto a single curve when plotted as a function of γd2, where d is the local mean particle diameter and γ is the local shear rate. When γ is large, D is proportional to γd2, as in previous studies. However, for γd2 below a critical value, D is independent of γd2. The acceleration due to gravity g and particle stiffness (or, equivalently, the binary collision time t(c)) together determine the transition in D between regimes. This suggests that while shear rate and particle size determine diffusion at relatively high shear rates in surface-driven flows, diffusion at low shear rates is an elastic phenomenon with time and length scales dependent on gravity (sqrt d/g) and particle stiffness (t(c)sqrt(dg), respectively.

  5. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  6. Squirming through shear thinning fluids

    NASA Astrophysics Data System (ADS)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  7. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  8. Beam distribution modification by Alfven modes

    SciTech Connect

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2010-05-15

    Modification of a deuterium beam distribution in the presence of low amplitude toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes in a toroidal magnetic confinement device is examined. Comparison to experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.

  9. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    DOE PAGES

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena; Katoh, Yutai; Gross, Dietmar

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less

  10. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  11. Study of micro-instabilities in toroidal plasmas with negative magnetic shear

    SciTech Connect

    Dong, J.Q.; Zhang, Y.Z.; Mahajan, S.M.; Guzdar, P.N.

    1996-03-01

    The micro-instabilities driven by a parallel velocity shear, and a temperature gradient of ions are studied in toroidal plasmas with negative magnetic shear. Both the fluid and the gyro-kinetic formulations are investigated. It is found that for a broad range of parameters, the linear growth rates of the modes are lower, and the threshold temperature gradient {eta}{sub icr} is higher for plasmas with negative magnetic shear compared to plasmas with positive magnetic shear of equal magnitude. The reduction in the growth rate (with negative shear), although not insignificant, does not seem to be enough to account for the dramatic improvement in the confinement observed experimentally. Other possible physical mechanisms for the improved confinement are discussed.

  12. Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves

    NASA Astrophysics Data System (ADS)

    Heinemann, T.; McWilliams, J. C.; Schekochihin, A. A.

    2011-12-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  13. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Carlson, C. W.

    1977-01-01

    Simultaneous measurements of energetic particles and ac electric fields made by the javelin sounding rocket NASA 8:56 during the late expansion phase of a magnetic storm have revealed an intense shear in plasma flow of magnitude 20 (m/s)/m at the edge of an auroral arc. Structure with two characteristic scales sizes is displayed in the region of shear. Larger structures are of the order of several kilometers in size. Intense irregularities with characteristic wavelengths smaller than the scale size of the shear have also been detected. The large-scale changes in the orientation of the charge sheet at the edge of the arc may be due to the Kelvin-Helmholtz branch; shorter-wavelength modes may be related to the shear driven resistive drift wave. Observations are consistent with the suggestion that velocity shear instabilities may play a role in the formation of high-latitude irregularities.

  14. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    SciTech Connect

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena; Katoh, Yutai; Gross, Dietmar

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside their joined area.

  15. NMR-based analysis of aminoglycoside recognition by the resistance enzyme ANT(4'): the pattern of OH/NH3(+) substitution determines the preferred antibiotic binding mode and is critical for drug inactivation.

    PubMed

    Revuelta, Julia; Vacas, Tatiana; Torrado, Mario; Corzana, Francisco; Gonzalez, Carlos; Jiménez-Barbero, Jesús; Menendez, Margarita; Bastida, Agatha; Asensio, Juan Luis

    2008-04-16

    The most significant mechanism of bacterial resistance to aminoglycosides is the enzymatic inactivation of the drug. Herein, we analyze several key aspects of the aminoglycoside recognition by the resistance enzyme ANT(4') from Staphylococcus aureus, employing NMR complemented with site-directed mutagenesis experiments and measurements of the enzymatic activity on newly synthesized kanamycin derivatives. From a methodological perspective, this analysis provides the first example reported for the use of transferred NOE (trNOE) experiments in the analysis of complex molecular recognition processes, characterized by the existence of simultaneous binding events of the ligand to different regions of a protein receptor. The obtained results show that, in favorable cases, these overlapping binding processes can be isolated employing site-directed mutagenesis and then independently analyzed. From a molecular recognition perspective, this work conclusively shows that the enzyme ANT(4') displays a wide tolerance to conformational variations in the drug. Thus, according to the NMR data, kanamycin-A I/II linkage exhibits an unusual anti-Psi orientation in the ternary complex, which is in qualitative agreement with the previously reported crystallographic complex. In contrast, closely related, kanamycin-B is recognized by the enzyme in the syn-type arrangement for both glycosidic bonds. This observation together with the enzymatic activity displayed by ANT(4') against several synthetic kanamycin derivatives strongly suggests that the spatial distribution of positive charges within the aminoglycoside scaffold is the key feature that governs its preferred binding mode to the protein catalytic region and also the regioselectivity of the adenylation reaction. In contrast, the global shape of the antibiotic does not seem to be a critical factor. This feature represents a qualitative difference between the target A-site RNA and the resistance enzyme ANT(4') as aminoglycoside

  16. Matrix cracking of fiber-reinforced ceramic composites in shear

    NASA Astrophysics Data System (ADS)

    Rajan, Varun P.; Zok, Frank W.

    2014-12-01

    The mechanics of cracking in fiber-reinforced ceramic matrix composites (CMCs) under general loadings remains incomplete. The present paper addresses one outstanding aspect of this problem: the development of matrix cracks in unidirectional plies under shear loading. To this end, we develop a model based on potential energy differences upstream and downstream of a fully bridged steady-state matrix crack. Through a combination of analytical solutions and finite element simulations of the constituent stresses before and after cracking, we identify the dominant stress components that drive crack growth. We show that, when the axial slip lengths are much larger than the fiber diameter and when interfacial slip precedes cracking, the shear stresses in the constituents are largely unaffected by the presence of the crack; the changes that do occur are confined to a 'core' region within a distance of about one fiber diameter from the crack plane. Instead, the driving force for crack growth derives mainly from the axial stresses-tensile in the fibers and compressive in the matrix-that arise upon cracking. These stresses are well-approximated by solutions based on shear-lag analysis. Combining these solutions with the governing equation for crack growth yields an analytical estimate of the critical shear stress for matrix cracking. An analogous approach is used in deriving the critical stresses needed for matrix cracking under arbitrary in-plane loadings. The applicability of these results to cross-ply CMC laminates is briefly discussed.

  17. Shear-thinning-induced chaos in taylor-couette flow

    PubMed

    Ashrafi; Khayat

    2000-02-01

    The effect of weak shear thinning on the stability of the Taylor-Couette flow is explored for a Carreau-Bird fluid in the narrow-gap limit. The Galerkin projection method is used to derive a low-order dynamical system from the conservation of mass and momentum equations. In comparison with the Newtonian system, the present equations include additional nonlinear coupling in the velocity components through the viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of the base (Couette) flow, becomes lower as the shear-thinning effect increases. That is, shear thinning tends to precipitate the onset of Taylor vortex flow. Similar to Newtonian fluids, there is an exchange of stability between the Couette and Taylor vortex flows, which coincides with the onset of a supercritical bifurcation. However, unlike the Newtonian model, the Taylor vortex cellular structure loses its stability in turn as the Taylor number reaches a critical value. At this point, a Hopf bifurcation emerges, which exists only for shear-thinning fluids. PMID:11046426

  18. Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks

    PubMed Central

    Xu, Donghua; Hawk, Jennifer L.; Loveless, David M.; Jeon, Sung Lan; Craig, Stephen L.

    2010-01-01

    We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range. PMID:20479956

  19. A Zoology of unstable modes in a stratified cylinder wake

    NASA Astrophysics Data System (ADS)

    Bosco, Mickael; Meunier, Patrice

    2013-11-01

    Although the dynamics of a cylinder wake is well known and extremely rich for a homogeneous fluid, very few studies have been focused on stratified wakes despite the obvious extensive number of applications for geophysical flows and submarine wakes. The presence of the stratification may largely modify the dynamics of the wake. The study is devoted to understand the effect of the tilt and also of a strong stratification. So extensive experimental and numerical results have been investigated to describe the full dynamics of a tilted cylinder wake. For weak stratification and small tilt angle, the classical mode A found for a homogeneous fluid is still present, but for a large tilt angle, an instability appearing far from the cylinder is created. The case of a cylinder towed a very stratified fluid has been finally investigated. The dynamics is strongly modified and for moderate tilt angles, a new unstable mode appears with a structure similar to the Kelvin-Helmholtz billows (observed in the critical layer of a tilted stratified vortex), whereas for large tilt angles, another unstable mode characterized by a strong shear appears generated without a 2D von Karman structure. This reveals the rich dynamics of the cylinder wake in the presence of a stable stratification.

  20. NASA experimental airborne doppler radar and real time processor for wind shear detection

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip H.; Richards, Mark A.; Jones, William R.; Crittenden, Lucille H.

    1992-01-01

    The topics are presented in viewgraph form and include the following: experimental radar system capabilities; an experimental radar system block diagram; wind shear radar signal and data processor (WRSDP); WRSDP hardware architecture; WRSDP system design goals; DSP software development tools; OS-9 software development tools; WRSDP digital signal processing; WRSDP display operational modes; WRSDP division of functions; structure of WRSDP signal and data processing algorithms; and the wind shear radar flight experiment.

  1. Shear rates measurements in natural shear zones using quartz piezometers.

    NASA Astrophysics Data System (ADS)

    Boutonnet, Emmanuelle; Hervé Leloup, Philippe

    2010-05-01

    Whether deformation within the deep continental crust is fundamentally concentrated in narrow shear zones or distributed in wide zones stays a major controversy of the earth sciences. This is in part because direct measurements of ductile strain or strain rate are difficult, especially when deformation is intense as it is the case in ductile shear zones. Paleo-shear stress can be evaluated by using paleo-piezometers that link shear stress to the size of recrystallized minerals. Such piezometers are calibrated by microphysical models or experimental studies. Indirect measurements of strain rate in natural rocks can be achieved using shear stress, an estimation of the temperature of deformation, and assuming a flow law. However, such estimates have rarely been validated by independent constraints. By comparing shear rates calculated from paleopiezometry, and measured in situ in the same outcrop we determined the more appropriate paleopiezometer and power flow law in order to generalize the method to other outcrops. Within the Ailao - Red River shear zone (ASSR, SE Asia) paleo strain rates during the Miocene left-lateral shear are estimated between 1*10-13 s-1 and 2*10-13 s-1 from tectonic considerations. At site C1, by combining dating of syntectonic dykes and measurements of their deformation, the strain rate is calculated between 3 and 4*10-14 s-1 between 29 to 22 Ma, (Sassier et al., JGR, 2009). Quartz ribbons of sample YY33 from the same outcrop show continuous dynamic recrystallisation (DRX) mechanisms, characterized by subgrain rotation nucleation, and growth by grain boundary migration (Shimitzu et al. JSG, 2008). This dislocation creep regime is compatible with the microphysical models of Twiss (Pure Ammp. Geoph., 1977) and Shimitzu (JSG, 2008) and the experimental piezometer of Stipp and Tullis (GRL, 2003). The measured quartz grain size range between 10 and 960 μm, while the mean recrystallized grain size is 112.2 ± 1.5μm. The associated paleostress is

  2. Rotational and divergent response of baroclinic and barotropic modes to tropical heating

    NASA Astrophysics Data System (ADS)

    Taft, Patricia R.

    A two-layer inviscid incompressible channel model, expressed as two modes (barotropic, first baroclinic), is used to examine the flow evolutions forced by transient local baroclinic convective heating, within the equatorial region. Four classes of analytically balanced background flows including constant zonal wind, vertical shear, lateral shear, and zero absolute vorticity are examined. Domain-averaged root-mean-square stream function and velocity potential are calculated to estimate the effectiveness of forcing the rotational and divergent parts of the barotropic and baroclinic modes. When upper and lower layer large scale zonal winds are in the same direction significant barotropic responses are observed in 14-day simulations. Constant zonal wind basic states, with upper and lower layer easterlies of 15 and 5 m s-1, respectively, cause the strongest response in the barotropic stream function and velocity potential, for a given equatorial forcing. The structure of the waves differs from the quiescent state response. Strength of barotropic responses is moderately related to vertical shear. One other large response, as strong as the constant easterly zonal flow basic state run, is observed in the lateral shear case. It has weak upper (lower) layer equatorial westerlies (easterlies), midlatitude easterlies (westerlies), and critical latitudes at 30°N and 30°S. The structure of the response is changed qualitatively, where the Rossby wave is trapped near the equator as in the constant easterly run, amplifying its barotropic response intensely. Barotropic response is not excited with forcing placed within a zero absolute vorticity field. Barotropic responses persist at least ten days after heating is turned off implying that tropical convection can affect the global atmosphere long after it has dissipated. Basic states with strongest response resemble mean tropical circulation in convectively active regions.

  3. Fault mirrors along carbonate faults: Formation and destruction during shear experiments

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Aharonov, Einat; Boneh, Yuval; Reches, Ze'ev

    2015-11-01

    Glossy, light reflective surfaces are commonly exposed in carbonate fault-zones. It was suggested that such surfaces, recently termed Fault Mirrors (FMs), form during seismic slip. Ultramicroscopic analyses indicate that FMs are highly smooth and composed of a cohesive thin layer of nano-size grains. We explore here mechanisms of formation and destruction of FMs by shear experiments that were conducted on three types of limestone which were sheared at wide range of slip-velocities of v = 0.001- 0.63 m /s, and normal stress up to 1.57 MPa. The experiments showed that FMs started to develop as local patches when the slip velocity exceeded a critical value of 0.07 m/s. The area coverage by FM patches increases systematically with increasing velocity, reaching in a few cases ∼100% coverage. The measured quasi-steady-state friction coefficient, μss, was inversely correlated with the FM coverage: μss ∼ 0.8 for no-FM, at v < 0.07 m /s, and μss ∼ 0.4 for 50% FM coverage at v ∼ 0.6 m /s. Further, in a series of slip-velocity alternation between low and high values, the FMs which formed at a high-velocity stage were destroyed during a subsequent low-velocity stage. Our analyses of the experimental thermal conditions and ultramicroscopy imaging of the FMs suggest that the FMs form by sintering of gouge nanograins during shear. We propose that formation/destruction of FMs in high/low slip-velocity reflects a competition between brittle and ductile processes: FMs form in a ductile mode, and are destroyed by brittle wear. Shear heating during high velocity leads to ductile deformation and sintering so that FM construction rate exceeds brittle FM destruction rate. Based on our results, we suggest that, at least for shallow faults, the presence of extensive FM coverage along natural carbonate faults indicates that the fault segment slipped at seismic velocities and experienced dynamic weakening.

  4. Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids.

    PubMed

    Mohagheghi, Mouge; Khomami, Bamin

    2016-06-01

    Dissipative particle dynamics simulations of polymeric melts in a start-up of shear flow as a function of ramp time to its steady state value is studied. Herein, we report the molecular findings showing the effect of ramp time on the formation of shear banded structures and chain relaxation behavior. Specifically, it is shown that shear banding emerges at a rapid start-up; however, homogeneous shear prevails when the deformation rate ramp time is sufficiently slow. This finding is in full consistency with prior continuum level linear stability analysis of shear banding in start-up of shear flows as well as experimental observations of entangled DNA and polymer solutions. Further, it has been revealed that the ratio of the longest chain orientation relaxation time to that of the time for the imposed deformation rate to reach its steady state value plays a central role in determining whether local strain inhomogeneities that lead to the formation of shear banded flow structures are created. In addition, we have shown that the gradient of the number of entanglements along the velocity gradient direction should reach a critical value for the creation of localized strain inhomogeneity. Moreover, the relation between the local process leading to shear banded flows and the relaxation mechanism of the chain is discussed. Overall, a molecular picture for the interrelation between the longest chain orientation and stress relaxation time, local inhomogeneities, and shear banding has been proposed and corroborated with extensive analysis. PMID:27415319

  5. Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids

    NASA Astrophysics Data System (ADS)

    Mohagheghi, Mouge; Khomami, Bamin

    2016-06-01

    Dissipative particle dynamics simulations of polymeric melts in a start-up of shear flow as a function of ramp time to its steady state value is studied. Herein, we report the molecular findings showing the effect of ramp time on the formation of shear banded structures and chain relaxation behavior. Specifically, it is shown that shear banding emerges at a rapid start-up; however, homogeneous shear prevails when the deformation rate ramp time is sufficiently slow. This finding is in full consistency with prior continuum level linear stability analysis of shear banding in start-up of shear flows as well as experimental observations of entangled DNA and polymer solutions. Further, it has been revealed that the ratio of the longest chain orientation relaxation time to that of the time for the imposed deformation rate to reach its steady state value plays a central role in determining whether local strain inhomogeneities that lead to the formation of shear banded flow structures are created. In addition, we have shown that the gradient of the number of entanglements along the velocity gradient direction should reach a critical value for the creation of localized strain inhomogeneity. Moreover, the relation between the local process leading to shear banded flows and the relaxation mechanism of the chain is discussed. Overall, a molecular picture for the interrelation between the longest chain orientation and stress relaxation time, local inhomogeneities, and shear banding has been proposed and corroborated with extensive analysis.

  6. Shear-lag model of diffusion-induced buckling of core–shell nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Kai; Zheng, Bailin; Yang, Fuqian

    2016-07-01

    The lithiation and de-lithiation during the electrochemical cycling of lithium–ion batteries (LIBs) can introduce local deformation in the active materials of electrodes, resulting in the evolution of local stress and strain in the active materials. Understanding the structural degradation associated with lithiation-induced deformation in the active materials is one of the important steps towards structural optimization of the active materials used in LIBs. There are various degradation modes, including swelling, cracking, and buckling especially for the nanowires and nanorods used in LIBs. In this work, a shear-lag model and the theory of diffusion-induced stress are used to investigate diffusion-induced buckling of core–shell nanowires during lithiation. The critical load for the onset of the buckling of a nanowire decreases with the increase of the nanowire length. The larger the surface current density, the less the time is to reach the critical load for the onset of the buckling of the nanowire.

  7. Flow dichroism in critical colloidal fluids

    SciTech Connect

    Lenstra, T. A. J.; Dhont, J. K. G.

    2001-06-01

    Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Experiments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on a colloid-polymer mixture, existing of silica spheres (radius 51 nm) and polydimethylsiloxane polymer (molar weight 204 kg/mol). Sufficiently far away from the critical point, in the mean-field region, the experimental data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the turbidity.

  8. Cold work hardening of Al from shear deformation up to large strains

    SciTech Connect

    Les, P.; Zehetbauer, M.; Kopacz, I.; Rauch, E.F.

    1999-08-06

    Several deformation modes have been applied so far which exhibited stage IV and stage V hardening in large strain cold working. However, some deformation modes especially if applied to single crystals failed (1) because of limited deformation (tensile test and compression), (2) inhomogeneous deformation (torsion), (3) iterative deformation (wire drawing, rolling) allowing for recovery processes in between small deformation steps. Moreover, except for torsion test, none of the deformation modes is capable of measuring the strain rate sensitivity up to large strains at low deformation temperatures. Thus it was the aim of the present work to deform single and polycrystalline samples of Al 99.99% in a simple shear test which has been shown to achieve also the late stages of deformation. Moreover, it should make possible strain rate sensitivity measurements in parallel to the shear stress-strain characteristics. For single crystals at room temperature the shear test seems to be the only method which can provide such data.

  9. A magnetohydrodynamic stability study of reverse shear equilibria in the Tokamak Fusion Test Reactor

    SciTech Connect

    Phillips, M.W.; Zarnstorff, M.C.; Manickam, J.; Levinton, F.M.; Hughes, M.H.

    1996-05-01

    A study is presented of the low-{ital n} ({ital n}=1,2,3) magnetohydrodynamic stability of equilibria with reverse shear safety factor profiles. The low-{ital n} stability boundaries are found to be characterized by resonance structures due to internal so-called {open_quote}{open_quote}infernal{close_quote}{close_quote} mode types of instabilities. The parametric dependence of shear reversal width and depth, current, and pressure gradient on the beta limit are determined by using profile models that allow each parameter to be varied independently. Reverse magnetic shear is found to have a stabilizing influence for modes with toroidal mode numbers {ital n}{ge}2 leading to the possibility of improved {beta} limits in the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. {bold 26}, 11 (1984)]. {copyright} {ital 1996 American Institute of Physics.}

  10. Generation of inhomogeneous bulk plane acoustic modes by laser-induced thermoelastic grating near mechanically free surface

    SciTech Connect

    Gusev, Vitalyi

    2010-06-15

    The detailed theoretical description of how picosecond plane shear acoustic transients can be excited by ultrafast lasers in isotropic media is presented. The processes leading to excitation of inhomogeneous plane bulk compression/dilatation (c/d) and shear acoustic modes by transient laser interference pattern at a mechanically free surface of an elastically isotropic medium are analyzed. Both pure modes are dispersive. The modes can be evanescent or propagating. The mechanical displacement vector in both propagating modes is oriented obliquely to the mode propagation direction. Consequently the c/d mode is not purely longitudinal and shear mode is not purely transversal. Each of the propagating modes has a plane wave front parallel to the surface and the amplitude harmonically modulated along the surface. Inhomogeneous shear acoustic mode cannot be generated in isotropic medium by thermal expansion and is excited by mode conversion of laser-generated inhomogeneous c/d acoustic mode incident on the surface. The spectral transformation function of the laser radiation conversion into shear modes has one of its maxima at a frequency corresponding to transmission from laser-induced generation of propagating to laser-induced generation of evanescent c/d modes. At this particular frequency the shear waves are due to their Cherenkov emission by bulk longitudinal acoustic waves skimming along the laser-irradiated surface, which are generated by laser-induced gratings synchronously. There exists an interval of frequencies where only shear acoustic modes are launched in the material by laser-induced grating, while c/d modes generated by thermoelastic optoacoustic conversion are evanescent. Propagating picosecond plane shear acoustic fronts excited by interference pattern of fs-ps laser pulses can be applied for the determination of the shear rigidity by optoacoustic echoes diagnostics of thin films and coatings. Theoretical predictions are correlated with available results

  11. Plasma Modes

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  12. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin

    2015-12-01

    The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.

  13. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  14. The effect of shearing strain-rate on the ultimate shearing resistance of clay

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1975-01-01

    An approach for investigating the shearing resistance of cohesive soils subjected to a high rate of shearing strain is described. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies, the shearing resistance increases initially with shearing velocity, but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results of this investigation are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.

  15. The effect of shearing strain-rate on the ultimate shearing resistance of clay

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1976-01-01

    The shearing resistance of cohesive soils subjected to a high rate of shearing strain was investigated. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies to date, the shearing resistance increases initially with shearing velocity but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.

  16. Transverse electron-scale instability in relativistic shear flows.

    PubMed

    Alves, E P; Grismayer, T; Fonseca, R A; Silva, L O

    2015-08-01

    Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c/ωpe) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales. PMID:26382337

  17. Density-shear instability in electron magneto-hydrodynamics

    SciTech Connect

    Wood, T. S. Hollerbach, R.; Lyutikov, M.

    2014-05-15

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.

  18. Transverse electron-scale instability in relativistic shear flows

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Fonseca, R. A.; Silva, L. O.

    2015-08-01

    Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c /ωp e ) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.

  19. Poroelastic fluid effects on shear for rocks with soft anisotropy

    SciTech Connect

    Berryman, J G

    2004-04-13

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluid mechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2 x 2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall poroelastic system. The analysis shows for example that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (on the order of 10 to 20%) for wave propagation studies in some real granites and sandstones, including Spirit River sandstone and Schuler-Cotton Valley sandstone. Some of the results quoted here are obtained by using a new product formula relating local bulk and uniaxial shear energy to the product of the two eigenvalues that are coupled to the fluid mechanics. This product formula was first derived in prior work, but is given a more intuitive derivation here. The results obtained here are observed to be useful both for explaining difficult to reconcile experimental data, and for benchmarking of poroelastic codes.

  20. Density-shear instability in electron magneto-hydrodynamics

    NASA Astrophysics Data System (ADS)

    Wood, T. S.; Hollerbach, R.; Lyutikov, M.

    2014-05-01

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is "at least as stable" as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.