Method for resonant measurement
Rhodes, G.W.; Migliori, A.; Dixon, R.D.
1996-03-05
A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.
Method for resonant measurement
Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.
1996-01-01
A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.
Estimation of static parameters based on dynamical and physical properties in limestone rocks
NASA Astrophysics Data System (ADS)
Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza
2018-01-01
Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.
NASA Astrophysics Data System (ADS)
Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong
2018-06-01
Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.
Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaccone, Alessio; Terentjev, Eugene M.
2014-01-21
The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in agreement with the assumption of affine deformation, namely that the atoms are displaced just by the amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine deformations, with additional displacements due to the structural disorder which induce a marked material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the shear modulus for disordered materials characterized by dense atomic packing, but not for random networks with point atoms. We explain this phenomenon with a microscopicmore » derivation of the elastic moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle correlations due to excluded volume. Short-range order is responsible for a reduction of the nonaffinity which is much stronger under compression, where the geometric coupling between nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination and atomic packing observed with many amorphous materials.« less
Physical property measurements of doped cesium iodide crystals
NASA Technical Reports Server (NTRS)
Synder, R. S.; Clotfelter, W. N.
1974-01-01
Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.
DOT National Transportation Integrated Search
2005-11-01
The stiffness (elastic modulus and shear modulus) and Poisson's ratio of the base and sublayers are important parameters in the design and quality assurance during construction of highway pavements. The new highway construction guide proposed by AASH...
DOT National Transportation Integrated Search
2005-11-01
The stiffness (elastic modulus and shear modulus) and Poissons ratio of the base and : sublayers are important parameters in the design and quality assurance during construction of : highway pavements. During and after the construction of a paveme...
Shear waves in vegetal tissues at ultrasonic frequencies
NASA Astrophysics Data System (ADS)
Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J. J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T. E.
2013-03-01
Shear waves are investigated in leaves of two plant species using air-coupled ultrasound. Magnitude and phase spectra of the transmission coefficient around the first two orders of the thickness resonances (normal and oblique incidence) have been measured. A bilayer acoustic model for plant leaves (comprising the palisade parenchyma and the spongy mesophyll) is proposed to extract, from measured spectra, properties of these tissues like: velocity and attenuation of longitudinal and shear waves and hence Young modulus, rigidity modulus, and Poisson's ratio. Elastic moduli values are typical of cellular solids and both, shear and longitudinal waves exhibit classical viscoelastic losses. Influence of leaf water content is also analyzed.
Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds
NASA Astrophysics Data System (ADS)
Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.
2018-06-01
First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.
Elastic Moduli of Pyrolytic Boron Nitride Measured Using 3-Point Bending and Ultrasonic Testing
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.; Roth, D. J.
1999-01-01
Three-point bending and ultrasonic testing were performed on a flat plate of PBN. In the bending experiment, the deformation mechanism was believed to be shear between the pyrolytic layers, which yielded a shear modulus, c (sub 44), of 2.60 plus or minus .31 GPa. Calculations based on the longitudinal and shear wave velocity measurements yielded values of 0.341 plus or minus 0.006 for Poisson's ratio, 10.34 plus or minus .30 GPa for the elastic modulus (c (sub 33)), and 3.85 plus or minus 0.02 GPa for the shear modulus (c (sub 44)). Since free basal dislocations have been reported to affect the value of c (sub 44) found using ultrasonic methods, the value from the bending experiment was assumed to be the more accurate value.
Theoretical investigations on structural, elastic and electronic properties of thallium halides
NASA Astrophysics Data System (ADS)
Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham
2011-04-01
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.
Grzebieluch, Wojciech; Będziński, Romuald; Czapliński, Tomasz; Kaczmarek, Urszula
2017-07-01
The FEM is often used in investigations of dentin loading conditions; however, its anisotropy is mostly neglected. The purpose of the study was to evaluate the anisotropy and the elastic properties of an equivalent homogenous material model of human dentin as well as to compare isotropic and anisotropic dentin FE-models. Analytical and numerical dentin homogenization according to Luciano and Barbero was performed and E-modulus (E), Poisson's ratios (v) G-modulus (G) were calculated. The E-modulus of the dentin matrix was 28.0 GPa, Poisson's ratio (v) was 0.3; finite element models of orthotropic and isotropic dentin were created, loaded and compared using Ansys® 14.5 and CodeAster® 11.2 software. Anisotropy of the dentin ranged from 6.9 to 35.2%. E-modulus and G-modulus were as follows: E1 = 22.0-26.0 GPa, E2/E3 = 15.7-23.0 GPa; G12/G13 = 6.96-9.35 GPa and G23 = 6.08-8.09 GPa (highest values in the superficial layer). In FEM analysis of the displacement values were higher in the isotropic than in the orthotropic model, reaching up to 16% by shear load, 37% by compression and 23% in the case of shear with bending. Strain values were higher in the isotropic model, up to 35% for the shear load, 31% for compression and 35% in the case of shear with bending. The decrease in the volumetric fraction and diameter of tubules increased the G and E values. Anisotropy of the dentin applied during FEM analysis decreased the displacements and strain values. The numerical and analytical homogenization of dentin showed similar results.
Baseline tensile tests of composite materials for LDEF (Long Duration Exposure Facility) exposure
NASA Technical Reports Server (NTRS)
Witte, William G.
1987-01-01
Tensile specimens of five graphite fiber reinforced composite materials were tested at room temperature to provide baseline data for similar specimens exposed to the space environment in low-Earth orbit on the NASA Long Duration Exposure Facility. All specimens were 4-ply (+ or - 45 deg)s layups; at least five replicate specimens were tested for each parameter evaluated. Three epoxy-matrix materials and two polysulfone-matrix materials, several fiber volume fractions, and two sizes of specimen were evaluated. Stress-strain and Poisson's ratio-stress curves, ultimate stress, strain at failure, secant modulus at 0.004 strain, inplane shear stress-strain curves, and unidirectional shear modulus at .004 shear strain are presented.
NASA Astrophysics Data System (ADS)
Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo
2018-02-01
Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.
Equilibrium structures of carbon diamond-like clusters and their elastic properties
NASA Astrophysics Data System (ADS)
Lisovenko, D. S.; Baimova, Yu. A.; Rysaeva, L. Kh.; Gorodtsov, V. A.; Dmitriev, S. V.
2017-04-01
Three-dimensional carbon diamond-like phases consisting of sp 3-hybridized atoms, obtained by linking of carcasses of fullerene-like molecules, are studied by methods of molecular dynamics modeling. For eight cubic and one hexagonal diamond-like phases on the basis of four types of fullerene-like molecules, equilibrium configurations are found and the elastic constants are calculated. The results obtained by the method of molecular dynamics are used for analytical calculations of the elastic characteristics of the diamond- like phases with the cubic and hexagonal anisotropy. It is found that, for a certain choice of the dilatation axis, three of these phases have negative Poisson's ratio, i.e., are partial auxetics. The variability of the engineering elasticity coefficients (Young's modulus, Poisson's ratio, shear modulus, and bulk modulus) is analyzed.
NASA Astrophysics Data System (ADS)
Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.
2016-08-01
The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
AnisoVis: a MATLAB™ toolbox for the visualisation of elastic anisotropy
NASA Astrophysics Data System (ADS)
Healy, D.; Timms, N.; Pearce, M. A.
2016-12-01
The elastic properties of rocks and minerals vary with direction, and this has significant consequences for their physical response to acoustic waves and natural or imposed stresses. This anisotropy of elasticity is well described mathematically by 4th rank tensors of stiffness or compliance. These tensors are not easy to visualise in a single diagram or graphic, and visualising Poisson's ratio and shear modulus presents a further challenge in that their anisotropy depends on two principal directions. Students and researchers can easily underestimate the importance of elastic anisotropy. This presentation describes an open source toolbox of MATLAB scripts that aims to visualise elastic anisotropy in rocks and minerals. The code produces linked 2-D and 3-D representations of the standard elastic constants, such as Young's modulus, Poisson's ratio and shear modulus, all from a simple GUI. The 3-D plots can be manipulated by the user (rotated, panned, zoomed), to encourage investigation and a deeper understanding of directional variations in the fundamental properties. Examples are presented of common rock forming minerals, including those with negative Poisson's ratio (auxetic behaviour). We hope that an open source code base will encourage further enhancements from the rock physics and wider geoscience communities. Eventually, we hope to generate 3-D prints of these complex and beautiful natural surfaces to provide a tactile link to the underlying physics of elastic anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guess, T.R.; Wischmann, K.B.; Stavig, M.E.
Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson`s ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide informationmore » for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson`s ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.« less
Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3
NASA Astrophysics Data System (ADS)
Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.
2017-04-01
The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.
A Focused Fundamental Study of Predicting Materials Degradation & Fatigue. Volume 1
1997-05-31
physical properties are: bulk modulus, shear strength, coefficient of friction, modulus of elasticity/ rigidity and Poisson’s ratio. Each of these physical...acting on a subsurface crack when abrasive motion occurs on the surface using linear elastic fracture mechanics theory. Both mechanisms involve a...The body of the scattering 5 cell was a 4-way Swagelok*(Crawford Fitting Co., Solon, OH) connector with a 1.5 mm hole drilled in the top for
Visualising elastic anisotropy: theoretical background and computational implementation
NASA Astrophysics Data System (ADS)
Nordmann, J.; Aßmus, M.; Altenbach, H.
2018-02-01
In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of uc(Young)'s modulus and bulk modulus as well as plane representations of shear modulus and uc(Poisson)'s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.
NASA Astrophysics Data System (ADS)
Bhatia, K. G.; Vyas, S. M.; Patel, A. B.; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.
2018-05-01
Using parameter-free (first principles local) pseudopotential, in the present communication we have calculated dynamical elastic constants (C11, C12 and C44), bulk modulus (B), shear modulus (µp), Young's modulus (Y) and Poisson's ratio (σ) in long wavelength limit. Our computed results are well agreed for C44 and B with experiment and with other theoretical results obtained within framework of second order perturbation pseudopotential theory. From the present study we conclude that pseudopotential used contain s-p hybridization and no extra term is required to account core-core repulsion.
First Principles Investigation of Fluorine Based Strontium Series of Perovskites
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2016-11-01
Density functional theory is used to explore structural, elastic, and mechanical properties of SrLiF3, SrNaF3, SrKF3 and SrRbF3 fluoroperovskite compounds by means of an ab-initio Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method. Several lattice parameters are employed to obtain accurate equilibrium volume (Vo). The resultant quantities include ground state energy, elastic constants, shear modulus, bulk modulus, young's modulus, cauchy's pressure, poisson's ratio, shear constant, ratio of elastic anisotropy factor, kleinman's parameter, melting temperature, and lame's coefficient. The calculated structural parameters via DFT as well as analytical methods are found to be consistent with experimental findings. Chemical bonding is used to investigate corresponding chemical trends which authenticate combination of covalent-ionic behavior. Furthermore electron density plots as well as elastic and mechanical properties are reported for the first time which reveals that fluorine based strontium series of perovskites are mechanically stable and posses weak resistance towards shear deformation as compared to resistance towards unidirectional compression while brittleness and ionic behavior is dominated in them which decreases from SrLiF3 to SrRbF3. Calculated cauchy's pressure, poisson's ratio and B/G ratio also proves ionic nature in these compounds. The present methodology represents an effective and influential approach to calculate the whole set of elastic and mechanical parameters which would support to understand various physical phenomena and empower device engineers for implementing these materials in numerous applications.
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.
2018-04-01
Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.
Modeling Plastic Shocks in Periodic Laminates with Gradient Plasticity Theories
2007-08-26
stainless steel (SS)) layers with volume fractions being respectively, LLf /11= , LLf /22= . (3) Material characteristics of the...characteristics of polycarbonate and stainless steel Poisson ratio Elastic shear modulus Mass density PC...Polycarbonate) 0.37 0.94 Gpa 1190 kg/m3 SS ( Stainless steel ) 0.29 77 Gpa 7890 kg
Constitutive Modeling of the Mechanical Properties of Optical Fibers
NASA Technical Reports Server (NTRS)
Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.
1998-01-01
Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.
The first principles study of elastic and thermodynamic properties of ZnSe
NASA Astrophysics Data System (ADS)
Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya
2018-05-01
The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.
Velocity and Density Heterogeneities of the Tien-Shan Lithosphere
NASA Astrophysics Data System (ADS)
Sabitova, T. M.; Lesik, O. M.; Adamova, A. A.
The Tien-Shan orogene is a region in which the earth's crust undergoes considerable thickening and tangential compression. Under these conditions the lithosphere heterogeneities (composi tion, rheological) create the prerequisites for the development of various phenomena of tectonic layering (lateral shearing, different deformation of layers). To study the distribution of velocity, density and other elastic parameters, the results from a seismic tomography study on P-wave as well as S-wave velocities were used. Using empirical as well as theoretical formulas on the relationship between velocity, density and silica content in rocks, their distribution in the Tien-Shan's lithosphere has been calculated. In addition, other elastic parameters, such as Young's modulus, shear modulus, Poisson's ratio and coefficient of general compressions have been determined. Zoning of different types of crust was carried out for the region investigated. The characteristics of the "crust-mantle" transition have been investi gated. Large blocks with different types of the earth's crust were distinguished. Layers with inverse values of velocity, density and shear and Young modulus are revealed in the Tien-Shan lithosphere. All of the above described features open new ways to solve geodynamics problems.
Evaluation of mechanical and transport properties of Zr2CoSi Heusler alloy
NASA Astrophysics Data System (ADS)
Yousuf, Saleem; Khandy, S. A.; Bhat, T. M.; Gupta, D. C.
2017-05-01
Systematic investigation of mechanical and transport properties of Zr2CoSi within the density functional theory have been analysed. From the elastic constants, the shear modulus, Young's modulus, Poisson's ratio, we conclude the ductile nature of alloy. Thermoelectric properties show that Zr2CoSi as an n-type thermoelectric material with a higher increase in Seebeck coefficient with temperature. Further the power factor analysis confirms the heavily doping of the alloy fruitful for increase in thermoelectric performance and its use for the future thermoelectric spin generators.
Nose Fairing Modeling and Simulation to Support Trident II D5 Lifecycle Extension
2013-09-01
Rupture Flexural Modulus Flexural Yield strength Compressive Yield strength Poissons Ratio Machinabi lily Shear strength Impact Work to...Categories: Ceramic; Glass; Glass Fiber , other Engineeting Material; C<>mposite Rbers Material Notes: Used as a reinforcing agent in fiber glass compos~es...MATWEB AMERICAN SITKA SPRUCE WOOD .......................35 APPENDIX B. MATWEB E–GLASS FIBER , GENERIC ......................................37 APPENDIX
Method of measuring material properties of rock in the wall of a borehole
Overmier, David K.
1985-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Method of measuring material properties of rock in the wall of a borehole
Overmier, D.K.
1984-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guess, T.R.; Wischmann, K.B.; Stavig, M.E.
Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson's ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide informationmore » for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson's ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.« less
Acoustic and elastic waves in metamaterials for underwater applications
NASA Astrophysics Data System (ADS)
Titovich, Alexey S.
Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.
NASA Astrophysics Data System (ADS)
Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.
2016-10-01
The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.
Stochastic Investigation of Natural Frequency for Functionally Graded Plates
NASA Astrophysics Data System (ADS)
Karsh, P. K.; Mukhopadhyay, T.; Dey, S.
2018-03-01
This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.
Elasticity, slowness, thermal conductivity and the anisotropies in the Mn3Cu1-xGexN compounds
NASA Astrophysics Data System (ADS)
Li, Guan-Nan; Chen, Zhi-Qian; Lu, Yu-Ming; Hu, Meng; Jiao, Li-Na; Zhao, Hao-Ting
2018-03-01
We perform the first-principles to systematically investigate the elastic properties, minimum thermal conductivity and anisotropy of the negative thermal expansion compounds Mn3Cu1-xGexN. The elastic constant, bulk modulus, shear modulus, Young’s modulus and Poisson ratio are calculated for all the compounds. The results of the elastic constant indicate that all the compounds are mechanically stable and the doped Ge can adjust the ductile character of the compounds. According to the values of the percent ratio of the elastic anisotropy AB, AE and AG, shear anisotropic factors A1, A2 and A3, all the Mn3Cu1-xGexN compounds are elastic anisotropy. The three-dimensional diagrams of elastic moduli in space also show that all the compounds are elastic anisotropy. In addition, the acoustic wave speed, slowness, minimum thermal conductivity and Debye temperature are also calculated. When the ratio of content for Cu and Ge arrived to 1:1, the compound has the lowest thermal conductivity and the highest Debye temperature.
NASA Astrophysics Data System (ADS)
Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin
2018-06-01
Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.
NASA Astrophysics Data System (ADS)
Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang
2018-06-01
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.
NASA Astrophysics Data System (ADS)
Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.
2018-02-01
We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.
Confined compression and torsion experiments on a pHEMA gel in various bath concentrations.
Roos, Reinder W; Petterson, Rob; Huyghe, Jacques M
2013-06-01
The constitutive behaviour of cartilaginous tissue is the result of complex interaction between electrical, chemical and mechanical forces. Electrostatic interactions between fixed charges and mobile ions are usually accounted for by means of Donnan osmotic pressure. Recent experimental data show, however, that the shear modulus of articular cartilage depends on ionic concentration even if the strain is kept constant. Poisson-Boltzmann simulations suggest that this dependence is intrinsic to the double-layer around the proteoglycan chains. In order to verify this premise, this study measures whether--at a given strain--this ionic concentration-dependent shear modulus is present in a polymerized hydroxy-ethyl-methacrylate gel or not. A combined 1D confined compression and torque experiment is performed on a thin cylindrical hydrogel sample, which is brought in equilibrium with, respectively, 1, 0.1 and 0.03 M NaCl. The sample was placed in a chamber that consists of a stainless steel ring placed on a sintered glass filter, and on top a sintered glass piston. Stepwise ionic loading was cascaded by stepwise 1D compression, measuring the total stress after equilibration of the sample. In addition, a torque experiment was interweaved by applying a harmonic angular displacement and measuring the torque, revealing the relation between aggregate shear modulus and salt concentration at a given strain.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.
2017-12-01
Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.
Combining AFM and Acoustic Probes to Reveal Changes in the Elastic Stiffness Tensor of Living Cells
Nijenhuis, Nadja; Zhao, Xuegen; Carisey, Alex; Ballestrem, Christoph; Derby, Brian
2014-01-01
Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young’s modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell’s cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value. PMID:25296302
Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds
NASA Astrophysics Data System (ADS)
Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang
2014-04-01
The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.
NASA Astrophysics Data System (ADS)
Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.
2018-06-01
The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.
NASA Astrophysics Data System (ADS)
Barbot, Sylvain; Fialko, Yuri; Sandwell, David
2009-10-01
We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a `homogenized' elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (~1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults.
Mechanics of fiber reinforced materials
NASA Astrophysics Data System (ADS)
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited
NASA Astrophysics Data System (ADS)
Wu, M.; Milkereit, B.
2014-12-01
Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.
NASA Astrophysics Data System (ADS)
Suetin, D. V.; Shein, I. R.
2018-02-01
Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.
Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Wang, Dayun
2017-08-08
The structural, mechanical, elastic anisotropic, and electronic properties of Pbca -XN (X = C, Si, Ge) are investigated in this work using the Perdew-Burke-Ernzerhof (PBE) functional, Perdew-Burke-Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by Perdew and Zunger (CA-PZ) functional in the framework of density functional theory. The achieved results for the lattice parameters and band gap of Pbca -CN with the PBE functional in this research are in good accordance with other theoretical results. The band structures of Pbca -XN (X = C, Si, Ge) show that Pbca -SiN and Pbca -GeN are both direct band gap semiconductor materials with a band gap of 3.39 eV and 2.22 eV, respectively. Pbca -XN (X = C, Si, Ge) exhibits varying degrees of mechanical anisotropic properties with respect to the Poisson's ratio, bulk modulus, shear modulus, Young's modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca -CN/SiN/GeN both exhibit greater elastic anisotropy in the bulk modulus and Young's modulus than the (100) plane.
Resonant Acoustic Determination of Complex Elastic Moduli
NASA Technical Reports Server (NTRS)
Brown, David A.; Garrett, Steven L.
1991-01-01
A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc.
DOT National Transportation Integrated Search
2010-11-01
The resilient modulus and Poissons ratio of base and sublayers in highway use are : important parameters in design and quality control process. The currently used techniques : include CBR (California Bearing Ratio) test, resilient modulus test,...
NASA Technical Reports Server (NTRS)
Mebs, R W; Mcadam, D J
1947-01-01
A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were removed. Comparison is also obtained between the variation of the several properties, as measured in tension and in shear. The rise of proof stress with extension is studied, and the work-hardening rates of the various metals evaluated. The ratio between the tensile and shear proof stresses for the various annealed and cold-worked tubular metals is likewise calculated. The influence of annealing or tempering temperature on the proof stresses and moduli for the cold-worked metals and for air-hardened 13:2 Cr-Ni steel is investigated. An improvement of elastic strength generally is obtained, without important loss of yield strength, by annealing at suitable temperature. The variation of the proof stress and modulus of elasticity with plastic deformation or annealing temperature is explained in terms of the relative dominance of three important factors: namely, (a) internal stress, (b) lattice-expansion or work-hardening, and (c) crystal reorientation. Effective values of Poisson's ratio were computed from tensile and shear moduli obtained on tubular specimens. The variation of Poisson's ratio with plastic deformation and annealing temperature is explained in terms of the degree of anisotropy produced by changes of (a) internal stress and (b) crystal orientation.
NASA Astrophysics Data System (ADS)
Lueck, A. J.; Raef, A. E.
2015-12-01
This study will focus on characterizing subsurface rock formations of the Wellington Field, in Sumner County, Kansas, for both geosequestration of carbon dioxide (CO2) in the saline Arbuckle formation and enhanced oil recovery of a depleting Mississippian oil reservoir. Multi-scale data including lithofacies core samples, X-ray diffraction, digital rock physics scans, scanning electron microscope (SEM) imaging, well log data including sonic and dipole sonic, and surface 3D seismic reflection data will be integrated to establish and/or validate a new or existing rock physics model that best represents our reservoir rock types and characteristics. We will acquire compressional wave velocity and shear wave velocity data from Mississippian and Arbuckle cores by running ultrasonic tests using an Ult 100 Ultrasonic System and a 12 ton hydraulic jack located in the geophysics lab in Thompson Hall at Kansas State University. The elastic constants Young's Modulus, Bulk Modulus, Shear (Rigidity) Modulus and Poisson's Ratio will be extracted from these velocity data. Ultrasonic velocities will also be compared to sonic and dipole sonic log data from the Wellington 1-32 well. These data will be integrated to validate a lithofacies classification statistical model, which will be and partially has been applied to the largely unknown saline Arbuckle formation, with hopes for a connection, perhaps via Poisson's ratio, allowing a time-lapse seismic feasibility assessment and potentially developing a transformation of compressional wave sonic velocities to shear wave sonic for all wells, where compressional wave sonic is available. We will also be testing our rock physics model by predicting effects of changing effective (brine + CO2 +hydrocarbon) fluid composition on seismic properties and the implications on feasibility of seismic monitoring. Lessons learned from characterizing the Mississippian are essential to understanding the potential of utilizing similar workflows for the much less known saline aquifer of the Arbuckle in south central Kansas.
2017-01-01
The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.
2017-11-01
This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thore, A., E-mail: andth@ifm.liu.se; Dahlqvist, M., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se; Alling, B., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se
2014-09-14
In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn₂GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants,more » the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn₂GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M₂AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.« less
NASA Astrophysics Data System (ADS)
Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang
2018-03-01
Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.
NASA Astrophysics Data System (ADS)
Pan, Y.; Zheng, W. T.; Guan, W. M.; Zhang, K. H.; Fan, X. F.
2013-11-01
The structural formation, elastic properties, hardness and electronic structure of TMB4 (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C22 for these compounds is almost two times bigger than the C11 and C33. The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB4>ReB4>RuB4>OsB4, and the Poisson's ratio and B/G ratio of TMB4 follow the order of CrB4
Polycrystalline gamma plutonium's elastic moduli versus temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migliori, Albert; Betts, J; Trugman, A
2009-01-01
Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.
A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB
NASA Astrophysics Data System (ADS)
Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang
2018-04-01
The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita
2017-07-01
We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.
Elasticity dominates strength and failure in metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Qu, R. T.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn
2015-01-07
Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitativemore » relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.« less
Topographical variation of the elastic properties of articular cartilage in the canine knee.
Jurvelin, J S; Arokoski, J P; Hunziker, E B; Helminen, H J
2000-06-01
Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y.; Zheng, W.T., E-mail: WTZheng@jlu.edu.cn; Guan, W.M.
The structural formation, elastic properties, hardness and electronic structure of TMB{sub 4} (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C{sub 22} for these compounds is almost two times bigger than the C{sub 11} and C{sub 33}. The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB{sub 4}>ReB{sub 4}>RuB{sub 4}>OsB{sub 4}, and the Poisson's ratio and B/G ratio of TMB{sub 4} follow the order of CrB{sub 4}ReB{sub 4}>RuB{sub 4}>OsB{sub 4}. • The trend of hardness for TMB{sub 4} is consistent with the variation of elastic modulus. •more » The C{sub 22} value of TMB{sub 4} is bigger than that of C{sub 11} and C{sub 33}. • The high hardness of TMB{sub 4} is originated from the B–B bonds cage.« less
Structural and elastic properties of AIBIIIC 2 VI semiconductors
NASA Astrophysics Data System (ADS)
Kumar, V.; Singh, Bhanu P.
2018-01-01
The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.
NDE methods for determining the materials properties of silicon carbide plates
NASA Astrophysics Data System (ADS)
Kenderian, Shant; Kim, Yong; Johnson, Eric; Palusinski, Iwona A.
2009-08-01
Two types of SiC plates, differing in their manufacturing processes, were interrogated using a variety of NDE techniques. The task of evaluating the materials properties of these plates was a challenge due to their non-uniform thickness. Ultrasound was used to estimate the Young's Modulus and calculate the thickness profile and Poisson's Ratio of the plates. The Young's Modulus profile plots were consistent with the thickness profile plots, indicating that the technique was highly influenced by the non-uniform thickness of the plates. The Poisson's Ratio is calculated from the longitudinal and shear wave velocities. Because the thickness is cancelled out, the result is dependent only on the time of flight of the two wave modes, which can be measured accurately. X-Ray was used to determine if any density variations were present in the plates. None were detected suggesting that the varying time of flight of the acoustic wave is attributed only to variations in the elastic constants and thickness profiles of the plates. Eddy Current was used to plot the conductivity profile. Surprisingly, the conductivity profile of one type of plates varied over a wide range rarely seen in other materials. The other type revealed a uniform conductivity profile.
Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide
2015-01-01
Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.
NASA Astrophysics Data System (ADS)
Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya
2011-10-01
Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.
The stress analysis method for three-dimensional composite materials
NASA Astrophysics Data System (ADS)
Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki
1994-05-01
This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.
Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L
2016-03-21
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
NASA Astrophysics Data System (ADS)
Liu, Z. Q.; Zhang, Z. F.
2014-04-01
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs can be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.
Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys
NASA Astrophysics Data System (ADS)
Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet
2018-02-01
The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.
Static and vibrational properties of equiatomic Na-based binary alloys
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2007-09-01
The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.
Kalita, Viktor M; Snarskii, Andrei A; Shamonin, Mikhail; Zorinets, Denis
2017-03-01
The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.
NASA Astrophysics Data System (ADS)
Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis
2017-03-01
The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.
NASA Astrophysics Data System (ADS)
Patel, Shantanu; Martin, C. Derek
2018-02-01
Unlike metals, rocks show bi-modularity (different Young's moduli and Poisson's ratios in compression and tension). Displacements monitored during the Brazilian test are used in this study to obtain the Young's modulus and Poisson's ratio in tension. New equations for the displacements in a Brazilian test are derived considering the bi-modularity in the stress-strain relations. The digital image correlation technique was used to monitor the displacements of the Brazilian disk flat surface. To validate the Young's modulus and Poisson's ratio obtained from the Brazilian test, the results were compared with the values from the direct tension tests. The results obtained from the Brazilian test were repetitive and within 3.5% of the value obtained from the direct tension test for the rock tested.
Non-free gas of dipoles of non-singular screw dislocations and the shear modulus near the melting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Cyril, E-mail: malyshev@pdmi.ras.ru
2014-12-15
The behavior of the shear modulus caused by proliferation of dipoles of non-singular screw dislocations with finite-sized core is considered. The representation of two-dimensional Coulomb gas with smoothed-out coupling is used, and the stress–stress correlation function is calculated. A convolution integral expressed in terms of the modified Bessel function K{sub 0} is derived in order to obtain the shear modulus in approximation of interacting dipoles. Implications are demonstrated for the shear modulus near the melting transition which are due to the singularityless character of the dislocations. - Highlights: • Thermodynamics of dipoles of non-singular screw dislocations is studied below themore » melting. • The renormalization of the shear modulus is obtained for interacting dipoles. • Dependence of the shear modulus on the system scales is presented near the melting.« less
Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng
For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and mechanical stresses arising from in-service thermal gradients, thermal transients and/or mechanical loading. Hardness is related to a material's wear resistance and machinability, which are two essential considerations in fabrication and application.
Elasto-optics in double-coated optical fibers induced by axial strain and hydrostatic pressure.
Yang, Yu-Ching; Lee, Haw-Long; Chou, Huann-Ming
2002-04-01
Stresses, microbending loss, and refractive-index changes induced simultaneously by axial strain and hydrostatic pressure in double-coated optical fibers are analyzed. The lateral pressure and normal stresses in the optical fiber, primary coating, and secondary coating are derived. Also presented are the microbending loss and refractive-index changes in the glass fiber. The normal stresses are affected by axial strain, hydrostatic pressure, material properties, and thickness of the primary and secondary coatings. It is found that microbending loss decreases with increasing thickness, the Young's modulus, and the Poisson's ratio of the secondary coating but increases with the increasing Young's modulus and Poisson's ratio of the primary coating. Similarly, changes in refractive index in the glass fiber decrease with the increasing Young's modulus and Poisson's ratio of the secondary coating but increase with the increasing Young's modulus and Poisson's ratio of the primary coating. Therefore, to minimize microbending loss induced simultaneously by axial strain and hydrostatic pressure in the glass fiber, the polymeric coatings should be suitably selected. An optimal design procedure is also indicated.
Correlating off-axis tension tests to shear modulus of wood-based panels
Edmond P. Saliklis; Robert H. Falk
2000-01-01
The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear modulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new relationship is proposed that performs better than existing equations found in the literature. This relationship can be manipulated to calculate the shear modulus...
Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.
2008-01-01
An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.
NASA Astrophysics Data System (ADS)
Youness, Rasha A.; Taha, Mohammed A.; Ibrahim, Medhat A.
2017-12-01
Titanium-containing carbonated hydroxyapatite (Ti-CHA) nanocomposite powders, with different CHA contents, have been prepared using high-energy ball milling method. The effect of sintering temperatures, 900, 1100 and 1300 °C on molecular structure and microstructure of these samples were examined by XRD; Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Furthermore, their mechanical properties including hardness, longitudinal modulus, Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by ultrasonic non-destructive technique. Moreover, bioactivity of sintered samples at different firing temperatures was assessed by immersing them in simulated body fluid at 37 ± 0.5 °C for 7 days and then, analyzed by FTIR spectroscopy. The results pointed out that increasing sintering temperature up to 1100 °C caused significant increases in densities and mechanical properties of these nanocomposite samples. However, further increase of firing temperature to 1300 °C was responsible for complete CHA decomposition and the resultant α-tricalcium (α-TCP) phase greatly affected these properties. On the contrary, better bioactivity was observed for sintered samples at 900 °C only. However, increase of sintering temperature of these samples up to 1300 °C led to severe decrease in their bioactivity due to the formation of highly soluble α-TCP phase.
Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.
Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi
2017-12-12
For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of states in the orbital hybridization between Ga and N atoms of wurtzite GaN are much higher, indicating more electrons participate in forming Ga-N ionic bonds in the wurtzite GaN.
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
NASA Astrophysics Data System (ADS)
Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde
2018-02-01
This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have
Shear weakening for different lithologies observed at different saturation stages
NASA Astrophysics Data System (ADS)
Diethart-Jauk, Elisabeth; Gegenhuber, Nina
2018-01-01
For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2009-01-01
We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.
Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure
NASA Astrophysics Data System (ADS)
Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim
2018-03-01
Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.
Determination of elastic constants of a generally orthotropic plate by modal analysis
NASA Astrophysics Data System (ADS)
Lai, T. C.; Lau, T. C.
1993-01-01
This paper describes a method of finding the elastic constants of a generally orthotropic composite thin plate through modal analysis based on a Rayleigh-Ritz formulation. The natural frequencies and mode shapes for a plate with free-free boundary conditions are obtained with chirp excitation. Based on the eigenvalue equation and the constitutive equations of the plate, an iteration scheme is derived using the experimentally determined natural frequencies to arrive at a set of converged values for the elastic constants. Four sets of experimental data are required for the four independent constants: namely the two Young's moduli E1 and E2, the in-plane shear modulus G12, and one Poisson's ratio nu12. The other Poisson's ratio nu21 can then be determined from the relationship among the constants. Comparison with static test results indicate good agreement. Choosing the right combinations of natural modes together with a set of reasonable initial estimates for the constants to start the iteration has been found to be crucial in achieving convergence.
Factors that influence muscle shear modulus during passive stretch.
Koo, Terry K; Hug, François
2015-09-18
Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced materials for thermal protection system
NASA Astrophysics Data System (ADS)
Heng, Sangvavann; Sherman, Andrew J.
1996-03-01
Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.
Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine
2015-08-01
Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn
2014-04-28
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs canmore » be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.« less
NASA Astrophysics Data System (ADS)
Sun, Dongqiang; Wang, Yongxin; Zhang, Xinyi; Zhang, Minyu; Niu, Yanfei
2016-12-01
First-principles calculations based on density functional theory was used to investigate the structural, thermodynamic and elastic properties of precipitations, θ″, θ‧ and θ, in Al-Cu alloys. The values of lattice constants accord with experimental results well. The structural stability of θ is the best, followed by θ‧ and θ″. In addition, due to the highest bulk modulus, shear modulus and Young's modulus, θ possesses the best reinforcement effect in precipitation hardening process considered only from mechanical properties of perfect crystal. According to the values of B/G, Poisson's ratio and C11-C12, θ‧ has the worst ductility, while θ″ has the best ductility, the ductility of θ is in the middle. The ideal tensile strength of θ″, θ‧ and θ calculated along [100] and [001] directions are 20.87 GPa, 23.11 GPa and 24.70 GPa respectively. The analysis of electronic structure suggests that three precipitations all exhibit metallic character, and number of bonding electrons and bonding strength are the nature of different thermodynamic and elastic properties for θ″, θ‧ and θ.
Shear modulus of porcine coronary artery in reference to a new strain measure.
Zhang, Wei; Lu, Xiao; Kassab, Ghassan S
2007-11-01
To simplify the stress-strain relationship of blood vessels, we define a logarithmic-exponential (log-exp) strain measure to absorb the nonlinearity. As a result, the constitutive relation between the second Piola-Kirchhoff stress and the log-exp strain can be written as a generalized Hooke's law. In this work, the shear modulus of porcine coronary arteries is determined from the experimental data in inflation-stretch-torsion tests. It is found that the shear modulus with respect to the log-exp strain can be viewed as a material constant in the full range of elasticity, and the incremental shear modulus for Cauchy shear stress and small shear strain at various loading levels can be predicted by the proposed Hooke's law. This result further validates the linear constitutive relation for blood vessels when shear deformation is involved.
Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.; Taylor, R. E.
1973-01-01
Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.
Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms
Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.
2011-01-01
Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078
NASA Astrophysics Data System (ADS)
Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang
2018-06-01
The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei
2018-04-01
A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.
Fluid Effects on Shear for Seismic Waves in Finely Layered Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J G
Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus of the layered system (namely the uniaxial shear) contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored in this modulus by an amount that ranges from the smallest to the largest effective shear moduli of the VTI system. But, since there are five shear moduli in play, the overall increase in shear energy due to fluids is reducedmore » by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of overall shear modulus, being about 20% of the allowed range as liquid is fully substituted for gas. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% decreases the shear wave speed and, thereby, partially offsets the effect of this shear modulus increase. The final result is an increase of shear wave speed on the order of 5 to 10%. This increase is shown to be possible under most favorable circumstances - i.e. when the shear modulus fluctuations are large (resulting in strong anisotropy) and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), resulting short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity.« less
Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.
2006-01-01
A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.
Yoshitake, Yasuhide; Uchida, Daiki; Hirata, Kosuke; Mayfield, Dean L; Kanehisa, Hiroaki
2018-06-06
To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.
Depth-Dependent Transverse Shear Properties of the Human Corneal Stroma
Petsche, Steven J.; Chernyak, Dimitri; Martiz, Jaime; Levenston, Marc E.
2012-01-01
Purpose. To measure the transverse shear modulus of the human corneal stroma and its profile through the depth by mechanical testing, and to assess the validity of the hypothesis that the shear modulus will be greater in the anterior third due to increased interweaving of lamellae. Methods. Torsional rheometry was used to measure the transverse shear properties of 6 mm diameter buttons of matched human cadaver cornea pairs. One cornea from each pair was cut into thirds through the thickness with a femtosecond laser and each stromal third was tested individually. The remaining intact corneas were tested to measure full stroma shear modulus. The shear modulus from a 1% shear strain oscillatory test was measured at various levels of axial compression for all samples. Results. After controlling for axial compression, the transverse shear moduli of isolated anterior layers were significantly higher than central and posterior layers. Mean modulus values at 0% axial strain were 7.71 ± 6.34 kPa in the anterior, 1.99 ± 0.45 kPa in the center, 1.31 ± 1.01 kPa in the posterior, and 9.48 ± 2.92 kPa for full thickness samples. A mean equilibrium compressive modulus of 38.7 ± 8.6 kPa at 0% axial strain was calculated from axial compression measured during the shear tests. Conclusions. Transverse shear moduli are two to three orders of magnitude lower than tensile moduli reported in the literature. The profile of shear moduli through the depth displayed a significant increase from posterior to anterior. This gradient supports the hypothesis and corresponds to the gradient of interwoven lamellae seen in imaging of stromal cross-sections. PMID:22205608
3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
Orescanin, Marko; Wang, Yue; Insana, Michael
2011-02-01
The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.
A Method of Poisson's Ration Imaging Within a Material Part
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1994-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.
Method of Poisson's ratio imaging within a material part
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1996-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Measurement at low strain rates of the elastic properties of dental polymeric materials.
Chabrier, F; Lloyd, C H; Scrimgeour, S N
1999-01-01
To evaluate a simple static test (i.e. a slow strain rate test) designed to measure Young's modulus and the bulk modulus of polymeric materials (The NOL Test). Though it is a 'mature' test as yet it has never been applied to dental materials. A small cylindrical specimen is contained in a close-fitting steel constraining ring and compressive force applied to the ends by steel pistons. The initial (unconstrained) deformation is controlled by Young's modulus. Lateral spreading leads to constraint from the ring and subsequent deformation is controlled by the bulk modulus. A range of dental materials and reference polymers were selected and both moduli measured. From these data Poisson's ratios were calculated. The test proved be a simple reliable method for obtaining values for these properties. For composite the value of Young's modulus was lower, bulk modulus relatively similar and Poisson's ratio higher than that obtained from high strain rate techniques (as expected for a strain rate sensitive material). This test does fulfil a requirement for a simple test to define fully the elastic properties of dental polymeric materials. Measurements are made at the strain rates used in conventional static tests and values reflect this test condition. The higher values obtained for Poisson's ratio at this slow strain rate has implications for FEA, in that analysis is concerned with static or slow rate loading situations.
NASA Astrophysics Data System (ADS)
Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente
2016-07-01
To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-y Re x Os y (0 ⩽ x, y ⩽ 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young’s modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-y Os y than in W1-x Re x . A strong correlation between C‧ and the fcc-bcc structural energy difference for W1-x-y Re x Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C‧. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.
Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente
2016-06-03
To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y Re x Os y (0 ⩽ x, y ⩽ 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y Os y than in W 1-x Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y Re x Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.
A new method to study he effective shear modulus of shocked material
NASA Astrophysics Data System (ADS)
Xiaojuan, Ma; Fusheng, Liu
2013-06-01
Shear modulus is a crucial material parameter for description of mechanical behavior. However, at strong shock compression, it is generally deduced from the longitudinal and bulk sound velocity evaluated by unloading wave profile measurement. Here, a new method called the disturbed amplitude damping method of shock wave is presented, that can directly measure the shear modulus of material. This method relies on the correlation between the shear modulus of shock compressed state and amplitude damping and oscillation of an initial sinusoidal disturbance on shock front in concerned substance. Two important steps are required to determine the shear modulus of material. The first is to measure the damping and oscillation feature of disturbance by the flyer impacted method. The second is to find the quantitative relationship between the disturbed amplitude damping and shear modulus by the finite difference method which is applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in flyer impacted flow field. When aluminum shocked to 80 GPa is taken as an example, the shape of perturbed shock front and its disturbed amplitude development with propagation distance, are approximately mapped out. The figure shows an oscillatory damping characteristic. At the early stage the perturbation amplitude on the shock front experiences a decaying process until to zero point, then it rises to a maximum but in reverse phase, and then it decays again. Comparing these data with those simulated using the SCG constitutive model, the effective shear modulus for aluminum shocked to 80 GPa is determined to be about 90 GPa, which is higher than the result given by Yu.
Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
NASA Astrophysics Data System (ADS)
Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan
2016-07-01
This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.
Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study
NASA Astrophysics Data System (ADS)
Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj
2013-09-01
We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.
NASA Astrophysics Data System (ADS)
Gao, Peng; Berkun, Isil; Schmidt, Robert D.; Luzenski, Matthew F.; Lu, Xu; Bordon Sarac, Patricia; Case, Eldon D.; Hogan, Timothy P.
2014-06-01
Mg2(Si,Sn) compounds are promising candidate low-cost, lightweight, nontoxic thermoelectric materials made from abundant elements and are suited for power generation applications in the intermediate temperature range of 600 K to 800 K. Knowledge on the transport and mechanical properties of Mg2(Si,Sn) compounds is essential to the design of Mg2(Si,Sn)-based thermoelectric devices. In this work, such materials were synthesized using the molten-salt sealing method and were powder processed, followed by pulsed electric sintering densification. A set of Mg2.08Si0.4- x Sn0.6Sb x (0 ≤ x ≤ 0.072) compounds were investigated, and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si0.364Sn0.6Sb0.036. The high ZT is attributed to a high electrical conductivity in these samples, possibly caused by a magnesium deficiency in the final product. The mechanical response of the material to stresses is a function of the elastic moduli. The temperature-dependent Young's modulus, shear modulus, bulk modulus, Poisson's ratio, acoustic wave speeds, and acoustic Debye temperature of the undoped Mg2(Si,Sn) compounds were measured using resonant ultrasound spectroscopy from 295 K to 603 K. In addition, the hardness and fracture toughness were measured at room temperature.
First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects
NASA Astrophysics Data System (ADS)
Yuan, Zhipeng; Cui, Hongbao; Guo, Xuefeng
2017-01-01
Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C 11-C 11, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics. Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-09-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the transverse shear modulus at all. A comparison with the case of spherical inclusions illustrates that the transverse shear modulus for the cylindrical inclusion exhibits more S-wave attenuation than spherical inclusions.
Increased Upper Trapezius Muscle Stiffness in Overhead Athletes with Rotator Cuff Tendinopathy
Leong, Hio Teng; Hug, François; Fu, Siu Ngor
2016-01-01
Although excessive tension of the upper trapezius (UT) is thought to contribute to rotator cuff tendinopathy, no study examined UT tension in athletes with and without rotator cuff tendinopathy. Here we used UT shear modulus measured using ultrasound shear wave elastography as an index of muscle stiffness/tension. The aims of this study were twofold: 1) to determine whether the UT muscle shear modulus is altered in athletes with rotator cuff tendinopathy compared to asymptomatic athletes, and 2) to detect optimal cut-off points of UT shear modulus in identifying athletes with rotator cuff tendinopathy. Forty-three male volleyball players (17 asymptomatic and 26 with rotator cuff tendinopathy, mean age = 22.9±3.5 years) participated in the study. UT shear modulus was quantified during active arm holding at 30° and 60° of shoulder abduction and passive arm positioning at 0°, 30° and 60° of shoulder abduction. During the active tasks, the UT shear modulus was higher in athletes with rotator cuff tendinopathy than the asymptomatic athletes (p = 0.002), regardless the arm position. During the passive tasks, athletes with rotator cuff tendinopathy exhibited a higher UT shear modulus than asymptomatic athletes only at 0° of shoulder abduction (13.0±2.5 kPa vs 10.2±1.8 kPa, p = 0.001). When considering the active task, an optimal cut-off shear modulus of 12.0 kPa at 30° of shoulder abduction (sensitivity = 0.84, specificity = 0.57, AUC = 0.757, p = 0.008) and 9.5 kPa at 60° of shoulder abduction (sensitivity = 0.88, specificity = 0.67, AUC = 0.816, p = 0.002) was detected. When considering the passive task at 0° of shoulder abduction, a cut-off of 12.2 kPa was found (sensitivity = 0.73, AUC = 0.817, p = 0.001). Findings from the present study show that monitoring passive and active UT muscle shear modulus may provide important information for the prevention/rehabilitation of rotator cuff tendinopathy. PMID:27159276
Increased Upper Trapezius Muscle Stiffness in Overhead Athletes with Rotator Cuff Tendinopathy.
Leong, Hio Teng; Hug, François; Fu, Siu Ngor
2016-01-01
Although excessive tension of the upper trapezius (UT) is thought to contribute to rotator cuff tendinopathy, no study examined UT tension in athletes with and without rotator cuff tendinopathy. Here we used UT shear modulus measured using ultrasound shear wave elastography as an index of muscle stiffness/tension. The aims of this study were twofold: 1) to determine whether the UT muscle shear modulus is altered in athletes with rotator cuff tendinopathy compared to asymptomatic athletes, and 2) to detect optimal cut-off points of UT shear modulus in identifying athletes with rotator cuff tendinopathy. Forty-three male volleyball players (17 asymptomatic and 26 with rotator cuff tendinopathy, mean age = 22.9±3.5 years) participated in the study. UT shear modulus was quantified during active arm holding at 30° and 60° of shoulder abduction and passive arm positioning at 0°, 30° and 60° of shoulder abduction. During the active tasks, the UT shear modulus was higher in athletes with rotator cuff tendinopathy than the asymptomatic athletes (p = 0.002), regardless the arm position. During the passive tasks, athletes with rotator cuff tendinopathy exhibited a higher UT shear modulus than asymptomatic athletes only at 0° of shoulder abduction (13.0±2.5 kPa vs 10.2±1.8 kPa, p = 0.001). When considering the active task, an optimal cut-off shear modulus of 12.0 kPa at 30° of shoulder abduction (sensitivity = 0.84, specificity = 0.57, AUC = 0.757, p = 0.008) and 9.5 kPa at 60° of shoulder abduction (sensitivity = 0.88, specificity = 0.67, AUC = 0.816, p = 0.002) was detected. When considering the passive task at 0° of shoulder abduction, a cut-off of 12.2 kPa was found (sensitivity = 0.73, AUC = 0.817, p = 0.001). Findings from the present study show that monitoring passive and active UT muscle shear modulus may provide important information for the prevention/rehabilitation of rotator cuff tendinopathy.
You, Jun; Chen, Juan; Xiang, Feixiang; Song, Yue; Khamis, Simai; Lu, Chengfa; Lv, Qing; Zhang, Yanrong; Xie, Mingxing
2018-04-01
This study aimed at evaluating the diagnostic performance of quantitative shear wave elastography (SWE) in differentiating metastatic cervical lymph nodes from benign nodes in patients with thyroid nodules. One hundred and forty-one cervical lymph nodes from 39 patients with thyroid nodules that were diagnosed as papillary thyroid cancer had been imaged with SWE. The shear elasticity modulus, which indicates the stiffness of the lymph nodes, was measured in terms of maximum shear elasticity modulus (maxSM), minimum shear elasticity modulus (minSM), mean shear elasticity modulus (meanSM), and standard deviation (SD) of the shear elasticity modulus. All the patients underwent thyroid surgery, 50 of the suspicious lymph nodes were resected, and 91 lymph nodes were followed up for 6 months. The maxSM value, minSM value, meanSM value, and SD value of the metastatic lymph nodes were significantly higher than those of the benign nodes. The area under the curve of the maxSM value, minSM value, meanSM value, and SD value were 0.918, 0.606, 0.865, and 0.915, respectively. SWE can differentiate metastasis from benign cervical lymph nodes in patients with thyroid nodules, and the maxSM, meanSM, and SD may be valuable quantitative indicators for characterizing cervical lymph nodes.
Stiffness evaluation of neoprene bearing pads under long-term loads : final report, March 2009.
DOT National Transportation Integrated Search
2009-03-01
The objective of this project was to evaluate the interaction between the shear modulus of steel reinforced neoprene bearing pads and shear strain rate. The following interactions related to variations in the shear modulus were investigated for pads ...
Shear-stress fluctuations and relaxation in polymer glasses
NASA Astrophysics Data System (ADS)
Kriuchevskyi, I.; Wittmer, J. P.; Meyer, H.; Benzerara, O.; Baschnagel, J.
2018-01-01
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δ t . The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μsf for the shear modulus and the shear-stress relaxation modulus G (t ) . Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μsf(T ) decreases continuously with increasing T for all Δ t sampled, its standard deviation δ μsf(T ) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δ t dependence of μsf and related quantities can be understood using a weighted integral over G (t ) .
NASA Astrophysics Data System (ADS)
Kotha, Shiva Prasad
Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.
NASA Astrophysics Data System (ADS)
El'Kin, V. M.; Mikhailov, V. N.; Mikhailova, T. Yu.
2011-12-01
In this paper, we discuss the potentials of the Steinberg-Cochran-Guinan (SCG) and Burakovsky-Preston (BP) models for the description of the shear-modulus behavior at temperatures and pressures that arise behind the shock-wave front. A modernized variant of the SCG model is suggested, which reduces to the introduction of a free parameter and the representation of the model in the volume-temperature coordinates (( V, T) model). A systematic comparison is performed of all three models of shear modulus with experimental data and data of ab initio calculations for metals such as Al, Be, Cu, K, Na, Mg, Mo, W, and Ta in a wide range of pressures. In addition, for Al, Cu, Mo, W, and Ta there is performed a comparison with the known temperature dependences of the shear modulus and with the results of measurements of the velocities of longitudinal sound behind the shock-wave front. It is shown that in the original form the SCG and BP models give overestimated values of the shear modulus as compared to the data of ab initio calculations and shock-wave experiments. The ( V, T) model, due to the use of a free parameter, makes it possible to optimally describe the totality of experimental and calculated data. The same result is achieved in the case of the BP model after a redefining of its initial parameters. The adequate description of the shear modulus in the range of high intermediate pressures characteristic of the solid-phase states behind the shock-wave front is accompanied in both cases by the violation of the correct asymptotic behavior of the shear modulus at ultrahigh compressions which is originally laid into the SCG and BP models.
Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa
2015-09-01
Development of shear wave elastography gave access to non-invasive muscle stiffness assessment in vivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy
NASA Technical Reports Server (NTRS)
Milkovich, S. M.; Herakovich, C. T.
1984-01-01
Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.
Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates
NASA Astrophysics Data System (ADS)
Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.
2018-04-01
Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz’menko, A. P., E-mail: apkuzm@gmail.com; Saburov, S. V., E-mail: saburov58@yandex.ru
2016-07-15
The paper puts forward a method for processing data from detailed seismic assessments of HPP dams (dynamic tests). A detailed assessment (hundreds of observation points in dam galleries) is performed with consideration of operating dam equipment and the microseismic noise. It is shown that dynamic oscillation characteristics (natural oscillation frequencies and modes in the main dam axes, the velocities of propagation of elastic waves with given polarization, and so on.) can be determined with sufficient accuracy by using complex transfer functions and pulse characteristics. Monitoring data is processed using data from a detailed assessment, taking account of identified natural oscillationmore » modes and determined ranges of natural frequencies. The spectra of characteristic frequencies thus obtained are used to choose substitution models and estimate the elastic characteristics of the “dam – rock bed” construction system, viz., the modulus of elasticity (the Young modulus), the Poisson ratio, the dam section stiffness with respect to shear, tension and compression and the elastic characteristics of the rock foundation.« less
NASA Astrophysics Data System (ADS)
Maqsood, Saba; Rashid, Muhammad; Din, Fasih Ud; Saddique, M. Bilal; Laref, A.
2018-03-01
The cubic XFeO3 (X = Sr, Ba) perovskite oxides are studied for their thermodynamic stability in the ferromagnetic phase by using density functional theory calculations. We also explore the elastic properties of these compounds in terms of elastic constants C ij, bulk modulus B, shear modulus G, anisotropy factor A, Poisson's ratio ν and the B/ G ratio. The electronic properties are examined to elucidate the magnetic order, and the thermoelectric properties of XFeO3 (X = Sr, Ba) materials are also presented. The modified Becke-Johnson local density approximation scheme has been used to compute the electronic band structure and density of states, which show that these materials are half-metallic ferromagnetic. We study the magnetic properties by computing the crystal field energy (ΔCF), John-Teller energy (ΔJT) and the exchange splitting energies Δx( d) and Δx( pd). Our results indicate that strong hybridization causes a decrease in the magnetic moment of Fe, which then produces permanent magnetic moments in the nonmagnetic sites.
Shearing single crystal magnesium in the close-packed basal plane at different temperatures
NASA Astrophysics Data System (ADS)
Han, Ming; Li, Lili; Zhao, Guangming
2018-05-01
Shear behaviors of single crystal magnesium (Mg) in close-packed (0001) basal plane along the [ 1 bar 2 1 bar 0 ], [ 1 2 bar 10 ], [ 10 1 bar 0 ] and [ 1 bar 010 ] directions were studied using molecular dynamics simulations via EAM potential. The results show that both shear stress-strain curves along the four directions and the motion path of free atoms during shearing behave periodic characteristics. It reveals that the periodic shear displacement is inherently related to the crystallographic orientation in single crystal Mg. Moreover, different temperatures in a range from 10 to 750 K were considered, demonstrating that shear modulus decreases with increasing temperatures. The results agree well with the MTS model. It is manifested that the modulus is independent with the shear direction and the size of the atomic model. This work also demonstrates that the classical description of shear modulus is still effective at the nanoscale.
Bending stiffness and interlayer shear modulus of few-layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaoming; Yi, Chenglin; Ke, Changhong, E-mail: cke@binghamton.edu
2015-03-09
Interlayer shear deformation occurs in the bending of multilayer graphene with unconstrained ends, thus influencing its bending rigidity. Here, we investigate the bending stiffness and interlayer shear modulus of few-layer graphene through examining its self-folding conformation on a flat substrate using atomic force microscopy in conjunction with nonlinear mechanics modeling. The results reveal that the bending stiffness of 2–6 layers graphene follows a square-power relationship with its thickness. The interlayer shear modulus is found to be in the range of 0.36–0.49 GPa. The research findings show that the weak interlayer shear interaction has a substantial stiffening effect for multilayer graphene.
Feng, Chuang; Wang, Yu; Yang, Jie
2018-01-07
Effects of bi-axial stretching induced reorientation of graphene platelets (GPLs) on the Young's modulus of GPL/polymer composites is studied by Mori-Tanaka micromechanics model. The dispersion state of the GPLs in polymer matrix is captured by an orientation distribution function (ODF), in which two Euler angles are used to identify the orientation of the GPLs. Compared to uni-axial stretching, the increase of the stretching strain in the second direction enhances the re-alignment of GPL fillers in this direction while it deteriorates the re-alignment of the fillers in the other two directions. Comprehensive parametric study on the effects of the out-of-plane Young's modulus, stretching strain, strain ratio, Poisson's ratio and weight fraction and GPL dimension on the effective Young's moduli of the composites in the three directions are conducted. It is found that the out-of-plane Young's modulus has limited effects on the overall Young's modulus of the composites. The second stretching enhances the Young's modulus in this direction while it decreases the Young's modulus in the other two directions. The results demonstrate the increase of Poisson's ratio is favorable in increasing the Young's modulus of the composites. GPLs with larger diameter-to-thickness ratio have better reinforcing effect on the Young's modulus of GPL/polymer nanocomposites.
Measuring shear modulus of individual fibers
NASA Astrophysics Data System (ADS)
Behlow, Herbert; Saini, Deepika; Oliviera, Luciana; Skove, Malcolm; Rao, Apparao
2014-03-01
Fiber technology has advanced to new heights enabling tailored mechanical properties. For reliable fiber applications their mechanical properties must be well characterized at the individual fiber level. Unlike the tensile modulus, which can be well studied in a single fiber, the present indirect and dynamic methods of measuring the shear properties of fibers suffer from various disadvantages such as the interaction between fibers and the influence of damping. In this talk, we introduce a quasi-static method to directly measure the shear modulus of a single micron-sized fiber. Our simple and inexpensive setup yields a shear modulus of 16 and 2 GPa for a single IM7 carbon fiber and a Kevlar fiber, respectively. Furthermore, our setup is also capable of measuring the creep, hysteresis and the torsion coefficient, and examples of these will be presented.
Dimitrakopoulos, P.
2013-01-01
Despite research spanning several decades, the exact value of the shear modulus Gs of the erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based on micropipette aspirations, ektacytometry systems and other flow chambers, and optical tweezers as well as application of several models have found different average values in the range 2–10 µN/m. Our study shows that different methodologies have predicted the correct shear modulus for the specific membrane modeling employed, i.e. the variation in the shear modulus determination results from the specific membrane modeling. Available experimental findings from ektacytometry systems and optical tweezers suggest that the dynamics of the erythrocyte membrane is strain-hardening at both moderate and large deformations. Thus the erythrocyte shear modulus cannot be determined accurately using strain-softening models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models (such as the Yeoh law) which overestimate the erythrocyte shear modulus. According to our analysis, the only available strain-hardening constitutive law, the Skalak et al. law, is able to match well both deformation-shear rate data from ektacytometry and force-extension data from optical tweezers at moderate and large strains, using an average value of the shear modulus of Gs = 2.4–2.75 µN/m, i.e. very close to that found in the linear regime of deformations via force-extension data from optical tweezers, Gs = 2.5±0.4 µN/m. In addition, our analysis suggests that a standard deviation in Gs of 0.4–0.5 µN/m (owing to the inherent differences between erythrocytes within a large population) describes well the findings from optical tweezers at small and large strains as well as from micro-pipette aspirations. PMID:22680508
Shear modulus and damping ratio of natural rubber containing carbon nanotubes
NASA Astrophysics Data System (ADS)
Ismail, R.; Ibrahim, A.; Rusop, M.; Adnan, A.
2018-05-01
This paper presents the results of an investigation into the potential application of Natural rubber (NR) containing Carbon Nanotubes (CNTs) by measuring its shear modulus and damping ratio. Four different types of rubber specimens which fabricated with different MWCNT loadings: 0 wt% (pure natural rubber), 1 wt%, 3 wt%, and 5 wt%. It is observed that the shear modulus and damping ratio of CNTs filled rubber composites are remarkably higher than that of raw rubber indicating the inherent reinforcing potential of CNTs.
The shear modulus of metastable amorphous solids with strong central and bond-bending interactions
NASA Astrophysics Data System (ADS)
Zaccone, Alessio
2009-07-01
We derive expressions for the shear modulus of deeply quenched, glassy solids, in terms of a Cauchy-Born free energy expansion around a rigid (quenched) reference state, following the approach due to Alexander (1998 Phys. Rep. 296 65). Continuum-limit explicit expressions of the shear modulus are derived starting from the microscopic Hamiltonians of central and bond-bending interactions. The applicability of the expressions to dense covalent glasses as well as colloidal glasses involving strongly attractive or adhesive bonds is discussed.
Micromechanics of soil responses in cyclic simple shear tests
NASA Astrophysics Data System (ADS)
Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George
2017-06-01
Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.
2010-01-01
The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, δ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate stability field.
Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers.
Gross, Wolfgang; Kress, Holger
2017-02-07
The behavior of cells and tissue is greatly influenced by the mechanical properties of their environment. For studies on the interactions between cells and soft matrices, especially those applying traction force microscopy the characterization of the mechanical properties of thin substrate layers is essential. Various techniques to measure the elastic modulus are available. Methods to accurately measure the Poisson ratio of such substrates are rare and often imply either a combination of multiple techniques or additional equipment which is not needed for the actual biological studies. Here we describe a novel technique to measure both parameters, the Youngs's modulus and the Poisson ratio in a single experiment. The technique requires only a standard inverted epifluorescence microscope. As a model system, we chose cross-linked polyacrylamide and poly-N-isopropylacrylamide hydrogels which are known to obey Hooke's law. We place millimeter-sized steel spheres on the substrates which indent the surface. The data are evaluated using a previously published model which takes finite thickness effects of the substrate layer into account. We demonstrate experimentally for the first time that the application of the model allows the simultaneous determination of both the Young's modulus and the Poisson ratio. Since the method is easy to adapt and comes without the need of special equipment, we envision the technique to become a standard tool for the characterization of substrates for a wide range of investigations of cell and tissue behavior in various mechanical environments as well as other samples, including biological materials.
Elastic moduli of a Brownian colloidal glass former
NASA Astrophysics Data System (ADS)
Fritschi, S.; Fuchs, M.
2018-01-01
The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.
2018-01-01
A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Astrophysics Data System (ADS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-06-01
The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-01-01
The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
The shear modulus of the human vocal fold, preliminary results from 20 larynxes.
Goodyer, Eric; Hemmerich, Sandra; Müller, Frank; Kobler, James B; Hess, Markus
2007-01-01
Quantification of the elastic properties of the human vocal fold provides invaluable data for researchers deriving mathematical models of phonation, developing tissue engineering therapies, and as normative data for comparison between healthy and scarred tissue. This study measured the shear modulus of excised cadaver vocal folds from 20 subjects. Twenty freshly excised human larynxes were evaluated less than four days post-mortem. They were split along the saggital plane and mounted without tension. Shear modulus was obtained by two different methods. For method 1 cyclical shear stress was applied transversely to the mid-membranous portion of the vocal fold, and shear modulus derived by applying a simple shear model. For method 2 the apparatus was configured as an indentometer, and shear modulus obtained from the stress/strain data by applying an established analytical technique. Method 1 shear model for male larynxes yielded a range from 246 to 3,356 Pa, with a mean value of 1,008 and SD of 380. The range for female larynxes was 286-3,332 Pa, with a mean value of 1,237 and SD of 768. Method 2 indentometer model for male larynxes yielded a range from 552 to 2,741 Pa, with a mean value of 1,000 and SD of 460. The range for female larynxes was 509-1,989 Pa, with a mean value of 1,332 and SD of 428. We have successfully demonstrated two methodologies that are capable of directly measuring the shear modulus of the human vocal fold, without dissecting out the vocal fold cover tissue. The sample size of nine female and 11 male larynxes is too small to validate a general conclusion. The high degree of variability in this small cohort of subjects indicates that factors such as age, health status, and post-mortem delay may be significant; and that there is range of 'normality' for vocal fold tissue.
Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle.
Ateş, Filiz; Andrade, Ricardo J; Freitas, Sandro R; Hug, François; Lacourpaille, Lilian; Gross, Raphael; Yucesoy, Can A; Nordez, Antoine
2018-03-01
While several studies demonstrated the occurrence of intermuscular mechanical interactions, the physiological significance of these interactions remains a matter of debate. The purpose of this study was to quantify the localized changes in the shear modulus of the gastrocnemius lateralis (GL), monoarticular dorsi- and plantar-flexor muscles induced by a change in knee angle. Participants underwent slow passive ankle rotations at the following two knee positions: knee flexed at 90° and knee fully extended. Ultrasound shear wave elastography was used to assess the muscle shear modulus of the GL, soleus [both proximally (SOL-proximal) and distally (SOL distal)], peroneus longus (PERL), and tibialis anterior (TA). This was performed during two experimental sessions (experiment I: n = 11; experiment II: n = 10). The shear modulus of each muscle was compared between the two knee positions. The shear modulus was significantly higher when the knee was fully extended than when the knee was flexed (P < 0.001) for the GL (averaged increase on the whole range of motion: + 5.8 ± 1.3 kPa), SOL distal (+ 4.5 ± 1.5 kPa), PERL (+ 1.1 ± 0.7 kPa), and TA (+ 1.6 ± 1.0 kPa). In contrast, a lower SOL-proximal shear modulus (P < 0.001, - 5.9 ± 1.0 kPa) was observed. As the muscle shear modulus is linearly related to passive muscle force, these results provide evidence of a non-negligible intermuscular mechanical interaction between the human lower leg muscles during passive ankle rotations. The role of these interactions in the production of coordinated movements requires further investigation.
Adhesion in ceramics and magnetic media
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.
Bharat, Shyam; Varghese, Tomy
2010-10-01
Quasi-static electrode displacement elastography, used for in-vivo imaging of radiofrequency ablation-induced lesions in abdominal organs such as the liver and kidney, is extended in this paper to dynamic vibrational perturbations of the ablation electrode. Propagation of the resulting shear waves into adjoining regions of tissue can be tracked and the shear wave velocity used to quantify the shear (and thereby Young's) modulus of tissue. The algorithm used utilizes the time-to-peak displacement data (obtained from finite element analyses) to calculate the speed of shear wave propagation in the material. The simulation results presented illustrate the feasibility of estimating the Young's modulus of tissue and is promising for characterizing the stiffness of radiofrequency-ablated thermal lesions and surrounding normal tissue.
Boundary Layer Effect on Behavior of Discrete Models.
Eliáš, Jan
2017-02-10
The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.
NASA Astrophysics Data System (ADS)
Sumi, C.
Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haker, C.D.; Rix, G.J.; Lai, C.G.
The seismic stability of municipal solid waste (MSW) landfills is often a significant consideration in landfill design. However, until recently, the dynamic properties of the waste material itself, which govern the seismic response of MSW landfills, have often been approximated or assumed. Tests to determine the dynamic properties of the material directly have been limited. Measurements of seismic surface waves were used to determine the dynamic properties of MSW, which are the initial tangent shear modulus and low-strain hysteretic damping ratio. Surface wave tests were performed at three MSW landfills to determine their shear modulus and damping ratio profiles. Surfacemore » wave tests are ideal for measuring the near-surface shear modulus and damping profiles of MSW landfills because the tests are non-invasive, an advantage for testing environmentally sensitive waste material. Factors which influence the dynamic properties of waste including density, confinement, age, and placement techniques are used to interpret the measured shear modulus and damping ratio profiles.« less
Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials
NASA Astrophysics Data System (ADS)
Moynihan, Glenn; Sanvito, Stefano; O'Regan, David D.
2017-12-01
We perform comprehensive density-functional theory calculations on strained two-dimensional phosphorus (P), arsenic (As) and antimony (Sb) in the monolayer, bilayer, and bulk α-phase, from which we compute the key mechanical and electronic properties of these materials. Specifically, we compute their electronic band structures, band gaps, and charge-carrier effective masses, and identify the qualitative electronic and structural transitions that may occur. Moreover, we compute the elastic properties such as the Young’s modulus Y; shear modulus G; bulk modulus B ; and Poisson ratio ν and present their isotropic averages of as well as their dependence on the in-plane orientation, for which the relevant expressions are derived. We predict strain-induced Dirac states in the monolayers of As and Sb and the bilayers of P, As, and Sb, as well as the possible existence of Weyl states in the bulk phases of P and As. These phases are predicted to support charge velocities up to 106 m {{\\text{s}}-1} and, in some highly anisotropic cases, permit one-dimensional ballistic conductivity in the puckered direction. We also predict numerous band gap transitions for moderate in-plane stresses. Our results contribute to the mounting evidence for the utility of these materials, made possible by their broad range in tuneable properties, and facilitate the directed exploration of their potential application in next-generation electronics.
NASA Astrophysics Data System (ADS)
Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.
2018-04-01
We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.
Ab-initio study of C15-type Laves phase superconductor LaRu2
NASA Astrophysics Data System (ADS)
Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur
2017-01-01
Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.
NASA Astrophysics Data System (ADS)
Han, Ru
This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.
Stability and Elastic, Electronic, and Thermodynamic Properties of Fe2TiSi1- x Sn x Compounds
NASA Astrophysics Data System (ADS)
Jong, Ju-Yong; Yan, Jihong; Zhu, Jingchuan; Kim, Chol-Jin
2017-10-01
We have systematically studied the structural, phase, and mechanical stability and elastic, electronic, and thermodynamic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) compounds using first-principles calculations. The structural and phase stability and elastic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) indicated that all of the compounds are thermodynamically and mechanically stable. The shear modulus, bulk modulus, Young's modulus, Poisson's ratio, electronic band structure, density of states, Debye temperature, and Grüneisen parameter of all the substituted compounds were studied. The results show that Sn substitution in Fe2TiSi enhances its stability and mechanical and thermoelectric properties. The Fe2TiSi1- x Sn x compounds have narrow bandgap from 0.144 eV and 0.472 eV for Sn substitution from 0 to 1. The calculated band structure and density of states (DOS) of Fe2TiSi1- x Sn x show that the thermoelectric properties can be improved at substituent concentration x of 0.75. The lattice thermal conductivity was significantly decreased in the Sn-substituted compounds, and all the results indicate that Fe2TiSi0.25Sn0.75 could be a new candidate high-performance thermoelectric material.
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud
2016-04-01
This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.
Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity
NASA Astrophysics Data System (ADS)
Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J.
2008-08-01
A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.
Atay, Stefan M.; Kroenke, Christopher D.; Sabet, Arash; Bayly, Philip V.
2008-01-01
In this study, the magnetic resonance elastography (MRE) technique was used to estimate the dynamic shear modulus of mouse brain tissue in vivo. The technique allows visualization and measurement of mechanical shear waves excited by lateral vibration of the skull. Quantitative measurements of displacement in three dimensions (3-D) during vibration at 1200 Hz were obtained by applying oscillatory magnetic field gradients at the same frequency during an MR imaging sequence. Contrast in the resulting phase images of the mouse brain is proportional to displacement. To obtain estimates of shear modulus, measured displacement fields were fitted to the shear wave equation. Validation of the procedure was performed on gel characterized by independent rheometry tests and on data from finite element simulations. Brain tissue is, in reality, viscoelastic and nonlinear. The current estimates of dynamic shear modulus are strictly relevant only to small oscillations at a specific frequency, but these estimates may be obtained at high frequencies (and thus high deformation rates), non-invasively throughout the brain. These data complement measurements of nonlinear viscoelastic properties obtained by others at slower rates, either ex vivo or invasively. PMID:18412500
Shear properties of pultruded fiber reinforced polymer composite materials
NASA Astrophysics Data System (ADS)
Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.
2018-06-01
This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
NASA Astrophysics Data System (ADS)
Harbert, W.; Delaney, D.; Mur, A. J.; Purcell, C.; Zorn, E.; Soong, Y.; Crandall, D.; Haljasmaa, I.
2016-12-01
To better understand the petrophysical response at ultrasonic frequencies in rhyolite and carbonate (relevant to CO2 storage and CO2 enhanced oil recovery) lithologies we conducted core analysis incorporating variation in temperature, effective pressure and pore filling fluid. Ultrasonic compressive and shear wave (VP, VS1 and VS2) velocities were measured allowing calculation of the Bulk modulus (K), Young's modulus (E), Lamè's first parameter (λ), Shear modulus (G), Poisson's ratio (ν), and P-wave modulus (M). In addition, from the ultrasonic waveform data collected, we employed the spectral ratio method to estimate the quality factor. Carbonate samples were tested dry, using atmospheric gas as the pore phase, and with deionized water, oil, and supercritical CO2. We observed that Qp was directly proportional to effective pressure in our rhyolite samples. In addition, we observed effects of core anisotropy on Qp, however this was not apparent in higher porosity samples. Increasing effective pressure seems to decrease the effects of ultrasonic P-wave anisotropy. Qp was inversely proportional to temperature, however this was not observed for higher porosity samples. Qp was highly dependent on the rock porosity. Higher porosity samples displayed significantly lower values of Qp. In our experiments we observed that ultrasonic wave scattering due to heterogeneities in the carbonate samples was dominant. Although we observed lower μρ values, trends in our data strongly agreed with the model proposed workers interpreting AVO trends in a LMR cross plot space. We found that μρ was proportional to temperature while λρ was temperature independent and that λρ-μρ trends were extremely dependent on porosity. Higher porosity results in lower values for both λρ and μρ. The presence of fluids causes a distinct shift in λρ values, an observation which could provide insight into subsurface exploration using amplitude variation with offset (AVO) classification. We present approaches to incorporate these laboratory results into well log calibrated MATLAB based Gassmann-Biot fluid substitution models incorporating compliant porosity, Thomsen parameters models that utilize orthorhombic velocity anisotropy to predict seismic responses.
Compression-sensitive magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf
2013-08-01
Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.
Critical behavior of modulus of gel
NASA Astrophysics Data System (ADS)
Tokita, Masayuki; Niki, Ryoya; Hikichi, Kunio
1985-09-01
The critical behavior of the shear modulus of casein gel is studied. The shear modulus of casein gel scales with the conductivity exponent in the immediate vicinity of the sol-gel transition point. The asymptotic behavior of the modulus in the region far above the transition point is governed by a different exponent which is much larger than the conductivity exponent. These results are explainable by the crossover behavior of the percolation process. This study shows that the gelation of the casein micelle solution is a realization of the percolation process.
Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions
Zhang, Jin
2016-01-01
The size-dependent bending modulus of nanotubes, which was widely observed in most existing three-point bending experiments [e.g., J. Phys. Chem. B 117, 4618–4625 (2013)], has been tacitly assumed to originate from the shear effect. In this paper, taking boron nitride nanotubes as an example, we directly measured the shear effect by molecular dynamics (MD) simulations and found that the shear effect is not the major factor responsible for the observed size-dependent bending modulus of nanotubes. To further explain the size-dependence phenomenon, we abandoned the assumption of perfect boundary conditions (BCs) utilized in the aforementioned experiments and studied the influence of the BCs on the bending modulus of nanotubes based on MD simulations. The results show that the imperfect BCs also make the bending modulus of nanotubes size-dependent. Moreover, the size-dependence phenomenon induced by the imperfect BCs is much more significant than that induced by the shear effect, which suggests that the imperfect BC is a possible physical origin that leads to the strong size-dependence of the bending modulus found in the aforementioned experiments. To capture the physics behind the MD simulation results, a beam model with the general BCs is proposed and found to fit the experimental data very well. PMID:27941866
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali
2017-10-01
The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M = Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.
NASA Astrophysics Data System (ADS)
Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja
2018-03-01
The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.
Mechanical Anisotropic and Electronic Properties of Amm2-carbon under Pressure*
NASA Astrophysics Data System (ADS)
Xing, Meng-Jiang; Li, Xiao-Zhen; Yu, Shao-Jun; Wang, Fu-Yan
2017-09-01
Structural, electronic properties and mechanical anisotropy of Amm2-carbon are investigated utilizing frist-principles calculations by Cambridge Serial Total Energy Package (CASTEP) code. The work is performed with the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE), PBEsol, Wu and Cohen (WC) and local density approximation in the form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ). The mechanical anisotropy calculations show that Amm2-carbon exhibit large anisotropy in elastic moduli, such as Poisson’s ratio, shear modulus and Young’s modulus, and other anisotropy factors, such as the shear anisotropic factor and the universal anisotropic index AU. It is interestingly that the anisotropy in shear modulus and Young’s modulus, universal anisotropic index and the shear anisotropic factor all increases with increasing pressure, but the anisotropy in Poisson’s ratio decreases. The band structure calculations reveal that Amm2-carbon is a direct-band-gap semiconductor at ambient pressure, but with the pressure increasing, it becomes an indirect-band-gap semiconductor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Jianxiang; Jing Fuqian; Li Dahong
2005-07-01
Experimental data for the shear modulus and yield strength of shocked aluminum, copper, and tungsten were systematically analyzed. Comparisons between these data and calculations using the Steinberg-Cochran-Guinan (SCG) constitutive model [D. J. Steinberg, S. G. Cochran, and M. W. Guinan, J. Appl. Phys. 51, 1498 (1980)] indicate that the yield strength has the same dependence on pressure and temperature as the shear modulus for aluminum for shock pressures up to 50 GPa, for copper to 100 GPa, and for tungsten to 200 GPa. Therefore, the assumption of Y{sub p}{sup '}/Y{sub 0}=G{sub p}{sup '}/G{sub 0},Y{sub T}{sup '}/Y{sub 0}=G{sub T}{sup '}/G{sub 0}more » is basically acceptable for these materials, and the SCG model can be used to describe the shear modulus and yield strength of the shocked material at high pressure and temperature.« less
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2014-09-01
Effect of solid distribution between edges and vertices of three-dimensional cellular solid with an open-cell structure was investigated both numerically and experimentally. Finite element analysis (FEA) with continuum elements and appropriate periodic boundary condition was employed to calculate the elastic properties of cellular solids using tetrakaidecahedral (Kelvin) unit cell. Relative densities between 0.01 and 0.1 and various values of solid fractions were considered. In order to validate the numerical model, three scaffolds with the relative density of 0.08, but different amounts of solid in vertices, were fabricated via 3-D printing technique. Good agreement was observed between numerical simulation and experimental results. Results of numerical simulation showed that, at low relative densities (<0.03), Young׳s modulus increased by shifting materials away from edges to vertices at first and then decreased after reaching a critical point. However, for the high values of relative density, Young׳s modulus increased monotonically. Mechanisms of such a behavior were discussed in detail. Results also indicated that Poisson׳s ratio decreased by increasing relative density and solid fraction in vertices. By fitting a curve to the data obtained from the numerical simulation and considering the relative density and solid fraction in vertices, empirical relations were derived for Young׳s modulus and Poisson׳s ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.
Relaxation of the bulk modulus in partially molten dunite?
NASA Astrophysics Data System (ADS)
Cline, C. J.; Jackson, I.
2016-11-01
To address the possibility of melt-related bulk modulus relaxation, a forced oscillation experiment was conducted at seismic frequencies on a partially molten synthetic dunite specimen (melt fraction = 0.026) utilizing the enhanced capacity of the Australian National University attenuation apparatus to operate in both torsional and flexural oscillation modes. Shear modulus and dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background. Flexural data exhibit a monotonic decrease in complex Young's modulus with increasing temperature under transsolidus temperatures. The observed variation of Young's modulus is well described by the relationship 1/E 1/3G, without requiring relaxation of the bulk modulus. At high homologous temperatures, when shear modulus is low, extensional and flexural oscillation measurements have little resolution of bulk modulus, and thus, only pressure oscillation measurements can definitively constrain bulk properties at these conditions.
NASA Astrophysics Data System (ADS)
Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.
2016-08-01
An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.
Leong, Hio-Teng; Ng, Gabriel Yin-Fat; Leung, Vivian Yee-Fong; Fu, Siu Ngor
2013-01-01
Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87-0.97) and inter-observer (ICC = 0.78-0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.
Leong, Hio-Teng; Ng, Gabriel Yin-fat; Leung, Vivian Yee-fong; Fu, Siu Ngor
2013-01-01
Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87–0.97) and inter-observer (ICC = 0.78–0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders. PMID:23825641
A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.
Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki
2016-08-01
We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.
Crack problems for bonded nonhomogeneous materials under antiplane shear loading
NASA Technical Reports Server (NTRS)
Erdogan, F.
1984-01-01
The singular nature of the crack tip stress field in a nonhomogeneous medium with a shear modulus with a discontinuous derivative was investigated. The simplest possible loading and geometry, the antiplane shear loading of two bonded half spaces in which the crack is perpendicular to the interface is considered. It is shown that the square root singularity of the crack tip stress field is unaffected by the discontinuity in the derivative of the shear modulus. The problem is solved for a finite crack and results for the stress intensity factors are presented.
The elastic properties of cancerous skin: Poisson's ratio and Young's modulus.
Tilleman, Tamara Raveh; Tilleman, Michael M; Neumann, Martino H A
2004-12-01
The physical properties of cancerous skin tissue have rarely been measured in either fresh or frozen skin specimens. Of interest are the elastic properties associated with the skin's ability to deform, i.e., to stretch and compress. Two constants--Young's modulus and Poisson's ratio--represent the basic elastic behavior pattern of any elastic material, including skin. The former relates the applied stress on a specimen to its deformation via Hooke's law, while the latter is the ratio between the axial and lateral strains. To investigate the elastic properties of cancerous skin tissue. For this purpose 23 consecutive cancerous tissue specimens prepared during Mohs micrographic surgery were analyzed. From these specimens we calculated the change in radial length (defined as the radial strain) and the change in tissue thickness (defined as axial strain). Based on the above two strains we determined a Poisson ratio of 0.43 +/- 0.12 and an average Young modulus of 52 KPa. Defining the elastic properties of cancerous skin may become the first step in turning elasticity into a clinical tool. Correlating these constants with the histopathologic features of a cancerous tissue can contribute an additional non-invasive, in vivo and in vitro diagnostic tool.
NASA Astrophysics Data System (ADS)
Ellis, Keith
The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour in tension and shear were the result of constraint of Poisson's ratio contraction in the compliant interphase. To confirm this, dynamic mechanical testing was used to measure tensile and shear moduli of the interphase material as a function of thickness. Constraint and support were provided by a thin steel substrate. The tensile modulus increased by orders of magnitude the thinner, and hence more constrained , the material became. Near to the interphase thickness used in practice the tensile modulus of the interphase was shown to approach that of the matrix. In summary, the use of a compliant interphase resulted in significant improvements in mechanical properties of the composite in shear.
Release characteristics of reattached barnacles to non-toxic silicone coatings.
Kim, Jongsoo; Nyren-Erickson, Erin; Stafslien, Shane; Daniels, Justin; Bahr, James; Chisholm, Bret J
2008-01-01
Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.
An evaluation of the Iosipescu specimen for composite materials shear property measurement
NASA Technical Reports Server (NTRS)
Morton, J.; Ho, H.; Tsai, M. Y.; Farley, G. L.
1992-01-01
A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. A linear finite element model of the specimen is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon strain gage measurements used for the determination of composite shear moduli. Based upon test results from graphite-epoxy laminates, the proximity of the load introduction point to the test section and the material orthotropy greatly influence the individual gage readings, however, shear modulus determination is not significantly affected by the lack of pure shear. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors are determined for the region occupied by the strain gage rosette. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and spurious shear stress-strain curves. The discovery of specimen twisting explains the apparently inconsistent shear property data found in the literature. Recommendations for improving the reliability and accuracy of the shear modulus values are made, and the implications for shear strength measurement discussed.
NASA Astrophysics Data System (ADS)
Li, Neng; Mo, Yuxiang; Ching, Wai-Yim
2013-11-01
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr2AC (A = Al, Ge) and their hypothetical nitride counterparts Cr2AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronic and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr2AX shows that the reflectivity is high in the visible-ultraviolet region up to ˜15 eV suggesting Cr2AX as a promising candidate for use as a coating material. The elastic coefficients (Cij) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr2AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.
Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling
NASA Astrophysics Data System (ADS)
Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.
2018-02-01
Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0
Dynamic rheology of food protein networks
USDA-ARS?s Scientific Manuscript database
Small amplitude oscillatory shear analyses of samples containing protein are useful for determining the nature of the protein matrix without damaging it. Elastic modulus, viscous modulus, and loss tangent (the ratio of viscous modulus to elastic modulus) give information on the strength of the netw...
Non-linear properties of metallic cellular materials with a negative Poisson's ratio
NASA Technical Reports Server (NTRS)
Choi, J. B.; Lakes, R. S.
1992-01-01
Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.
Determination of mechanical properties of polymer film materials
NASA Technical Reports Server (NTRS)
Hughes, E. J.; Rutherford, J. L.
1975-01-01
Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.
Influence of elastic parameters on the evolution of elasticity modulus of thin films
NASA Astrophysics Data System (ADS)
Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.
2012-09-01
In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.
NASA Technical Reports Server (NTRS)
Wolfenden, A.; Lastrapes, G.; Duggan, M. B.; Raj, S. V.
1991-01-01
Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-(22 mol pct)CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique. The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young modulus values, where this disagreement increases with increasing temperature.
Linking microscopic and macroscopic response in disordered solids
NASA Astrophysics Data System (ADS)
Hexner, Daniel; Liu, Andrea J.; Nagel, Sidney R.
2018-06-01
The modulus of a rigid network of harmonic springs depends on the sum of the energies in each of the bonds due to an applied distortion such as compression in the case of the bulk modulus or shear in the case of the shear modulus. However, the distortion need not be global. Here we introduce a local modulus, Li, associated with changing the equilibrium length of a single bond, i , in the network. We show that Li is useful for understanding many aspects of the mechanical response of the entire system. It allows an efficient computation of how the removal of any bond changes the global properties such as the bulk and shear moduli. Furthermore, it allows a prediction of the distribution of these changes and clarifies why the changes of these two moduli due to removal of a bond are uncorrelated; these are the essential ingredients necessary for the efficient manipulation of network properties by bond removal.
Material modeling of biofilm mechanical properties.
Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E
2014-05-01
A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.
Seismically damaged regolith as self-organized fragile geological feature
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2011-12-01
The S-wave velocity in the shallow subsurface within seismically active regions self-organizes so that typical strong dynamic shear stresses marginally exceed the Coulomb elastic limit. The dynamic velocity from major strike-slip faults yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic shear strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic shear stress is this quantity times the local shear modulus. The dynamic shear traction on fault parallel vertical planes is finite at the free surface. Coulomb failure occurs on favorably oriented fractures and internally in intact rock. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock extending all the way to the surface. The imposed dynamic shear strain in stiff rock causes Coulomb failure at shallow depths and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Cracked rock is also weaker in friction, but shear modulus changes have a larger effect. Each subsequent event causes additional shallow cracking until the rock becomes compliant enough that it just reaches Coulomb failure over a shallow depth range of tens to hundreds of meters. Further events maintain the material at the shear modulus as a function where it just fails. The formalism provided in the paper yields reasonable representation of the S-wave velocity in exhumed sediments near Cajon Pass and the San Fernando Valley of California. A general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock.
Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.
Bevzenko, Dmytro; Lubchenko, Vassiliy
2014-11-07
We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-01-01
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-03-07
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.
NASA Astrophysics Data System (ADS)
Zhang, Yiqing; Wang, Lifeng; Jiang, Jingnong
2018-03-01
Vibrational behavior is very important for nanostructure-based resonators. In this work, an orthotropic plate model together with a molecular dynamics (MD) simulation is used to investigate the thermal vibration of rectangular single-layered black phosphorus (SLBP). Two bending stiffness, two Poisson's ratios, and one shear modulus of SLBP are calculated using the MD simulation. The natural frequency of the SLBP predicted by the orthotropic plate model agrees with the one obtained from the MD simulation very well. The root of mean squared (RMS) amplitude of the SLBP is obtained by MD simulation and the orthotropic plate model considering the law of energy equipartition. The RMS amplitude of the thermal vibration of the SLBP is predicted well by the orthotropic plate model compared to the MD results. Furthermore, the thermal vibration of the SLBP with an initial stress is also well-described by the orthotropic plate model.
Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.
2011-01-01
The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American Geophysical Union.
Magnetic-field-dependent shear modulus of a magnetorheological elastomer based on natural rubber
NASA Astrophysics Data System (ADS)
Yang, In-Hyung; Yoon, Ji-Hyun; Jeong, Jae-Eun; Jeong, Un-Chang; Kim, Jin-Su; Chung, Kyung Ho; Oh, Jae-Eung
2013-01-01
A magnetorheological elastomer (MRE) is a smart material that has a reversible and variable modulus in a magnetic field. Natural rubber, which has better physical properties than silicone matrices, was used as a matrix in the fabrication of the MREs used in this study. Carbonyl iron powder (CIP), which has a rapid magnetic reaction, was selected as a magnetic material to generate the magnetic-field-dependent modulus in the MREs. The MRE specimens were cured in an anisotropic mold, which could be used to induce a uniaxial magnetic field via permanent magnets, to control the orientation of the CIP, and the shear modulus of the MREs was evaluated under a magnetic field induced by using a magnetic flux generator (MFG). Because the use of a conventional evaluation system to determine the magnetic-field-dependent shear modulus of the MREs was difficult, an evaluation system based on single degree-of-freedom vibration and electromagnetics that included an MFG, which is a device that generates a magnetic field via a variable induced current, was designed. An electromagnetic finite element method (FEM) analysis and design of experiments (DoE) techniques were employed to optimize the magnetic flux density generated by the MFG. The optimized system was verified over the range to determine the magnetic flux density generated by the MFG in order to use a magnetic circuit analysis to identify the existence of magnetic saturation. A variation in the shear modulus was observed with increasing CIP volume fraction and induced current. The experimental results revealed that the maximum variation in the shear modulus was 76.3% for 40 vol% CIP at an induced current of 4 A. With these results, the appropriate CIP volume fraction, induced current, and design procedure of the MFG can be proposed as guidelines for applications of MREs based on natural rubber.
Lowered pH Alters Decay but Not Speed of Tectorial Membrane Waves
NASA Astrophysics Data System (ADS)
Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.
2011-11-01
Tectorial membrane (TM) traveling waves and mechanical shear impedances were measured in artificial endolymph baths at neutral and acidic pHs. Lowering pH from 7 to 4 significantly decreases the spatial extent of TM waves but has a relatively minor effect on wave speed. At pH 4, the imaginary component of TM shear impedance, which relates to the shear modulus, drops significantly; whereas, the real component, which relates to viscosity, is reduced less. These results suggest that shear modulus, and not viscosity, controls the extent of TM waves at lower pH.
Crack problems for bonded nonhomogeneous materials under antiplane shear loading
NASA Technical Reports Server (NTRS)
Erdogan, F.
1985-01-01
The singular nature of the crack tip stress field in a nonhomogeneous medium having a shear modulus with a discontinuous derivative was investigated. The problem is considered for the simplest possible loading and geometry, namely the antiplane shear loading of two bonded half spaces in which the crack is perpendicular to the interface. It is shown that the square-root singularity of the crack tip stress field is unaffected by the discontinuity in the derivative of the shear modulus. The problem is solved for a finite crack and extensive results are given for the stress intensity factors.
The crack problem for bonded nonhomogeneous materials under antiplane shear loading
NASA Technical Reports Server (NTRS)
Erdogan, F.
1985-01-01
The singular nature of the crack tip stress field in a nonhomogeneous medium having a shear modulus with a discontinuous derivative was investigated. The problem is considered for the simplest possible loading and geometry, namely the antiplane shear loading of two bonded half spaces in which the crack is perpendicular to the interface. It is shown that the square-root singularity of the crack tip stress field is unaffected by the discontinuity in the derivative of the shear modulus. The problem is solved for a finite crack and extensive results are given for the stress intensity factors.
Chawla, A; Mukherjee, S; Karthikeyan, B
2009-02-01
The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.
Contributions of Hamstring Stiffness to Straight-Leg-Raise and Sit-and-Reach Test Scores.
Miyamoto, Naokazu; Hirata, Kosuke; Kimura, Noriko; Miyamoto-Mikami, Eri
2018-02-01
The passive straight-leg-raise (PSLR) and the sit-and-reach (SR) tests have been widely used to assess hamstring extensibility. However, it remains unclear to what extent hamstring stiffness (a measure of material properties) contributes to PSLR and SR test scores. Therefore, we aimed to clarify the relationship between hamstring stiffness and PSLR and SR scores using ultrasound shear wave elastography. Ninety-eight healthy subjects completed the study. Each subject completed PSLR testing, and classic and modified SR testing of the right leg. Muscle shear modulus of the biceps femoris, semitendinosus, and semimembranosus was quantified as an index of muscle stiffness. The relationships between shear modulus of each muscle and PSLR or SR scores were calculated using Pearson's product-moment correlation coefficients. Shear modulus of the semitendinosus and semimembranosus showed negative correlations with the two PSLR and two SR scores (absolute r value≤0.484). Shear modulus of the biceps femoris was significantly correlated with the PSLR score determined by the examiner and the modified SR score (absolute r value≤0.308). The present findings suggest that PSLR and SR test scores are strongly influenced by factors other than hamstring stiffness and therefore might not accurately evaluate hamstring stiffness. © Georg Thieme Verlag KG Stuttgart · New York.
Sonic Estimation of Elasticity via Resonance: A New Method of Assessing Hemostasis
Corey, F. Scott; Walker, William F.
2015-01-01
Uncontrolled bleeding threatens patients undergoing major surgery and in care for traumatic injury. This paper describes a novel method of diagnosing coagulation dysfunction by repeatedly measuring the shear modulus of a blood sample as it clots in vitro. Each measurement applies a high-energy ultrasound pulse to induce a shear wave within a rigid walled chamber, and then uses low energy ultrasound pulses to measure displacements associated with the resonance of that shear wave. Measured displacements are correlated with predictions from Finite Difference Time Domain (FDTD) models, with the best fit corresponding to the modulus estimate. In our current implementation each measurement requires 62.4 ms. Experimental data was analyzed using a fixed-viscosity algorithm and a free-viscosity algorithm. In experiments utilizing human blood induced to clot by exposure to kaolin, the free-viscosity algorithm quantified the shear modulus of formed clots with a worst-case precision of 2.5%. Precision was improved to 1.8% by utilizing the fixed-viscosity algorithm. Repeated measurements showed a smooth evolution from liquid blood to a firm clot with a shear modulus between 1.4 kPa and 3.3 kPa. These results show the promise of this technique for rapid, point of care assessment of coagulation. PMID:26399992
Kusano, Ken; Nishishita, Satoru; Nakamura, Masatoshi; Tanaka, Hiroki; Umehara, Jun; Ichihashi, Noriaki
2017-10-01
A decrease in flexibility of the infraspinatus muscle causes limitations in the range of shoulder motion. Static stretching (SS) is a useful method to improve muscle flexibility and joint mobility. Previous researchers investigated effective stretching methods for the infraspinatus. However, few researchers investigated the acute effect of SS on the infraspinatus muscle's flexibility. In addition, the minimum SS time required to increase the infraspinatus muscle's flexibility remains unclear. The aims of this study included investigating the acute effect of SS on the infraspinatus muscle's hardness (an index of muscle flexibility) by measuring shear elastic modulus and determining minimum SS time to decrease the infraspinatus muscle's hardness. This included measuring the effect of SS with extension and internal rotation of the shoulder on the infraspinatus muscle's hardness in 20 healthy men. Hence, shear elastic modulus of the infraspinatus was measured by ultrasonic shear wave elastography before and after every 10 seconds up to 120 seconds of SS. Two-way analysis of variance indicated a significant main effect of SS duration on shear elastic modulus. The post hoc test indicated no significant difference between shear elastic modulus after 10 seconds of SS and that before SS. However, shear elastic modulus immediately after a period ranging from 20 seconds to 120 seconds of SS was significantly lower than that before SS. The results suggested that shoulder extension and internal rotation SS effectively decreased the infraspinatus muscle's hardness. In addition, the results indicated that a period exceeding 20 seconds of SS decreased the infraspinatus muscle's hardness. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity
Park, Dae Woo
2016-01-01
Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476
NASA Technical Reports Server (NTRS)
Chen, C. P.; Lakes, R. S.
1991-01-01
An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modeling on the basis of cellular rib bending. The reentrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.
Determining shear modulus of thin wood composite materials using a cantilever beam vibration method
Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan
2016-01-01
Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...
NASA Technical Reports Server (NTRS)
Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.
2008-01-01
The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.
Semiempirical models of shear modulus at shock temperatures and pressures
NASA Astrophysics Data System (ADS)
Elkin, Vaytcheslav; Mikhaylov, Vadim; Mikhaylova, Tatiana
2011-06-01
The work is devoted to a comparison of capabilities the Steinberg-Cochran-Guinan and Burakovsky-Preston models of shear modulus offer for the description of experimental and calculated (ab initio) data at temperatures and pressures representative of solid state behind the shock front. Also, the SCG model is modernized by changing from the (P,V) variables to the (V,T) ones and adding a free parameter. The resulted model is then referred to as the (V,T)-model. The three models are tested for 9 metals (Al, Be, Cu, K, Na, Mg, Mo, W, Ta) with using ab initio and experimental values of shear modulus in a wide range of pressures as well as longitudinal sound velocities behind the shock front.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.
Bone material elasticity in a murine model of osteogenesis imperfecta.
Mehta, S S; Antich, P P; Landis, W J
1999-01-01
To investigate the source of bone brittleness in the disease osteogenesis imperfecta (OI), biomechanical properties have been measured in the femurs from a homozygous (oim/oim) mutant mouse model of OI, its heterozygous littermates, and wild-type animals. The novel technique of ultrasound critical-angle reflectometry (UCR) was used to determine bone material elasticity matrix from measurements of the pressure and shear wave velocity at different orientations about selected points of the bone specimens. This nondestructive method is the only available means for obtaining measurements of this nature from a single surface. The ultrasound pressure wave velocity showed an increased isotropy in the homozygous compared to the wild-type specimens. This was reflected in a significant decrease in the principal elastic modulus measured along the length of the oim/oim bones (E33) while the modulus along the width (E11) did not change significantly, compared to wild-type specimens. The Poisson's ratio, v12, also had a significantly increased value in oim/oim bones. Measurements of these parameters in heterozygous animals generally fell between those from homozygous and control mice. The differences in the elasticity components in oim/oim bones indicate an altered stress distribution and a modified elastic response to loads, compared to normal bone.
Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature
NASA Astrophysics Data System (ADS)
Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.
The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.
NASA Astrophysics Data System (ADS)
Kröner, C.; Altenbach, H.; Naumenko, K.
2009-05-01
The aim of this paper is to discuss the basic theories of interfaces able to transfer the results of an injection molding analyis of fiber-reinforced polymers, performed by using the commercial computer code Moldflow, to the structural analysis program ABAQUS. The elastic constants of the materials, such as Young's modulus, shear modulus, and Poisson's ratio, which depend on both the fiber content and the degree of fiber orientation, were calculated not by the usual method of "orientation averaging," but with the help of linear functions fitted to experimental data. The calculation and transfer of all needed data, such as material properties, geometry, directions of anisotropy, and so on, is performed by an interface developed. The interface is suit able for midplane elements in Moldflow. It calculates and transfers to ABAQUS all data necessary for the use of shell elements. In addition, a method is described how a nonlinear orthotropic behavior can be modeled starting from the generalized Hooke's law. It is also shown how such a model can be implemented in ABAQUS by means of a material subroutine. The results obtained according to this subroutine are compared with those based on an orthotropic, linear, elastic simulation.
Shallow near-fault material self organizes so it is just nonlinear in typical strong shaking
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2011-12-01
Cracking within shallow compliant fault zones self-organizes so that strong dynamic stresses marginally exceed the elastic limit. To the first order, the compliant material experiences strain boundary conditions imposed by underlying stiffer rock. A major strike-slip fault yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic stress is this quantity times the local shear modulus. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock surrounding the shallow fault zone. The imposed dynamic strain in stiff rock causes Coulomb failure and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Each subsequent event causes more cracking until the rock becomes compliant enough that it just reaches its elastic limit. Further events maintain the material at the shear modulus where it just fails. Analogously, shallow damaged regolith forms with its shear modulus and S-wave velocity increasing with depth so it just reaches failure during typical strong shaking. The general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock. The equilibrium shear modulus and S-wave velocity depend only modestly on the effective coefficient of internal friction.
Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution
NASA Astrophysics Data System (ADS)
Jivani, A. R.; Jani, A. R.
2011-12-01
Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.
Dislocation Mobility and Anomalous Shear Modulus Effect in ^4He Crystals
NASA Astrophysics Data System (ADS)
Malmi-Kakkada, Abdul N.; Valls, Oriol T.; Dasgupta, Chandan
2017-02-01
We calculate the dislocation glide mobility in solid ^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid ^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid ^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid ^4He.
Chino, Kentaro; Takahashi, Hideyuki
2016-09-01
The purpose of this study was to examine the feasibility of using handheld tissue hardness meters to assess the mechanical properties of skeletal muscle. This observational study included 33 healthy men (age, 22.4 ± 4.4 years) and 33 healthy women (age, 23.7 ± 4.2 years). Participants were placed in a supine position, and tissue hardness overlying the rectus femoris and the shear modulus of the muscle were measured on the right side of the body at 50% thigh length. In the same position, subcutaneous adipose tissue thickness and muscle thickness were measured using B-mode ultrasonography. To examine the associations of subcutaneous adipose tissue thickness, muscle thickness, and muscle shear modulus with tissue hardness, linear regression using a stepwise bidirectional elimination approach was performed. Stepwise linear regression revealed that subcutaneous adipose tissue thickness (r = -0.38, P = .002) and muscle shear modulus (r = 0.27, P = .03) were significantly associated with tissue hardness. Significant associations among adipose tissue thickness, muscle shear modulus, and tissue hardness show the limitations and feasibility of handheld tissue hardness meters for assessing the mechanical properties of skeletal muscles. Copyright © 2016. Published by Elsevier Inc.
Permeability and shear modulus of articular cartilage in growing mice.
Berteau, J-Ph; Oyen, M; Shefelbine, S J
2016-02-01
Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Understanding the changes in mechanical tissues properties during growth is a critical step in advancing strategies for orthopedics and for cell- and biomaterial- based therapies dedicated to cartilage repair. We hypothesize that at the microscale, the articular cartilage tissue properties of the mouse (i.e., shear modulus and permeability) change with the growth and are dependent on location within the joint. We tested cartilage on the medial femoral condyle and lateral femoral condyle of seven C57Bl6 mice at different ages (2, 3, 5, 7, 9, 12, and 17 weeks old) using a micro-indentation test. Results indicated that permeability decreased with age from 2 to 17 weeks. Shear modulus reached a peak at the end of the growth (9 weeks). Within an age group, shear modulus was higher in the MFC than in the LFC, but permeability did not change. We have developed a method that can measure natural alterations in cartilage material properties in a murine joint, which will be useful in identifying changes in cartilage mechanics with degeneration, pathology, or treatment.
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-01-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
NASA Astrophysics Data System (ADS)
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-04-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.
Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils.
Barkaoui, Abdelwahed; Hambli, Ridha
2011-01-01
The aim of this work is to develop a 3D finite elements model to study the nanomechanical behavior of mineralized collagen microfibrils, which consists of three phases, (i) collagen phase formed by five tropocollagen (TC) molecules linked together with cross-links, (ii) a mineral phase (Hydroxyapatite), and (iii) impure mineral phase, and to investigate the important role of individual properties of every constituent. The mechanical and geometric properties (TC molecule diameter) of both tropocollagen and mineral were taken into consideration as well as cross-links, which was represented by spring elements with adjusted properties based on experimental data. In this paper an equivalent homogenized model was developed to assess the whole microfibril mechanical properties (Young's modulus and Poisson's ratio) under varying mechanical properties of each phase. In this study, both equivalent Young's modulus and Poisson's ratio, which were expressed as functions of Young's modulus of each phase, were obtained under tensile load with symmetric and periodic boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Neng, E-mail: lineng@umkc.edu; Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110; Mo, Yuxiang
2013-11-14
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr{sub 2}AC (A = Al, Ge) and their hypothetical nitride counterparts Cr{sub 2}AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronicmore » and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr{sub 2}AX shows that the reflectivity is high in the visible-ultraviolet region up to ∼15 eV suggesting Cr{sub 2}AX as a promising candidate for use as a coating material. The elastic coefficients (C{sub ij}) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr{sub 2}AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.« less
Mechanical properties of novel forms of graphyne under strain: A density functional theory study
NASA Astrophysics Data System (ADS)
Majidi, Roya
2017-06-01
The mechanical properties of two forms of graphyne sheets named α-graphyne and α2-graphyne under uniaxial and biaxial strains were studied. In-plane stiffness, bulk modulus, and shear modulus were calculated based on density functional theory. The in-plane stiffness, bulk modulus, and shear modulus of α2-graphyne were found to be larger than that of α-graphyne. The maximum values of supported uniaxial and biaxial strains before failure were determined. The α-graphyne was entered into the plastic region with the higher magnitude of tension in comparison to α2-graphyne. The mechanical properties of α-graphyne family revealed that these forms of graphyne are proper materials for use in nanomechanical applications.
Bulk Modulus Relaxation in Partially Molten Dunite?
NASA Astrophysics Data System (ADS)
Jackson, I.; Cline, C. J., II
2016-12-01
Synthetic solgel-derived Fo90 olivine was mixed with 3.5 wt % basaltic glass and hot-pressed within Ni/Fe foil to produce a dense aggregate expected to contain a small melt fraction at temperatures ≥ 1100°C. This specimen was precision ground and tested in both torsional and flexural forced oscillation to determine the relaxation behavior of both shear (G) and bulk (K) moduli at seismic frequencies. A recent upgrade of our experimental facility allows such measurements to be made without alteration of the driver/detector geometry, and uses an oscillating bending force rather than a bending moment, as previously described. The torsional and flexural tests were conducted in a gas apparatus at 200 MPa confining pressure, with oscillation periods ranging between 1 and 1000 s, during slow staged-cooling from 1300 to 25°C. Shear modulus and associated dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background within the 1-1000 s observational window at temperatures of 1100-1200°C. A filament elongation model relates the observed flexural measurements to the variations along the experimental assembly of the complex Young's modulus (E*), bending moment and diametral moment of inertia. With E* given by 1/E*=1/(3G*) + 1/(9K*), and the complex shear modulus (G*) derived from torsional oscillation, any relaxation of K can be identified. Preliminary modeling shows that the viscoelastic properties in flexure are broadly consistent with those expected from the shear-mode viscoelasticity with anharmonic (real) values of K. However, some discrepancies between modeled results and flexure data at super-solidus temperatures require further investigation of possible differences in shear modulus relaxation between the torsional and flexural modes, and of potential relaxation of the bulk modulus through stress-induced changes in melt redistribution and/or proportions of coexisting crystalline and melt phases.
NASA Astrophysics Data System (ADS)
Sharma, R.
2016-12-01
Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis
Shear modulus of neutron star crust
NASA Astrophysics Data System (ADS)
Baiko, D. A.
2011-09-01
The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.
Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.
Horkay, F; Tasaki, I; Basser, P J
2000-01-01
The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.
Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG
NASA Astrophysics Data System (ADS)
Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar
2018-03-01
The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.
Experimental constraints on the sound velocities of cementite Fe3C to core pressures
NASA Astrophysics Data System (ADS)
Chen, Bin; Lai, Xiaojing; Li, Jie; Liu, Jiachao; Zhao, Jiyong; Bi, Wenli; Ercan Alp, E.; Hu, Michael Y.; Xiao, Yuming
2018-07-01
Sound velocities of cementite Fe3C have been measured up to 1.5 Mbar and at 300 K in a diamond anvil cell using the nuclear resonant inelastic X-ray scattering (NRIXS) technique. From the partial phonon density of states (pDOS) and equation of state (EOS) of Fe3C, we derived its elastic parameters including shear modulus, compressional (VP) and shear-wave (VS) velocities to core pressures. A pressure-induced spin-pairing transition in the powdered Fe3C sample was found to occur gradually between 10 and 50 GPa by the X-ray Emission Spectroscopy (XES) measurements. Following the completion of the spin-pairing transition, the VP and VS of low-spin Fe3C increased with pressure at a markedly lower rate than its high-spin counterpart. Our results suggest that the incorporation of carbon in solid iron to form iron carbide phases, Fe3C and Fe7C3, could effectively lower the VS but respectively raise the Poisson's ratio by 0.05 and 0.07 to approach the seismically observed values for the Earth's inner core. The comparison with the preliminary reference Earth model (PREM) implies that an inner core composition containing iron and its carbon-rich alloys can satisfactorily explain the observed seismic properties of the inner core.
Garai, Ashesh; Nandi, Arun K
2008-04-01
The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (< 6 x 10(-3) s(-1)) and power law variation for the higher shear rate region. The characteristic time (A) increase with increasing clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained from jamming or network formation of clay tactoids under shear. A probable explanation of the two apparently contradictory phenomena of shear thinning versus pseudo-solid behavior of the nanocomposite sols is discussed.
NASA Technical Reports Server (NTRS)
Kumosa, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
The application of the Iosipescu shear test for the room and high temperature failure analyses of the woven graphite/polyimide composites with the medium (T-650) and igh (M40J and M60J) modulus graphite fibers is discussed. The M40J/PMR-II-50 and M60J/PMR-II-50 composites were tested as supplied and after thermal conditioning. The effect of temperature and conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
Ichihashi, Noriaki; Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Fujita, Kosuke; Umehara, Jun; Nakao, Sayaka; Ibuki, Satoko
2016-12-01
The aims of this study were to investigate the effects of a 4-week intervention of static stretching (SS) on muscle hardness of the semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) muscles. Shear elastic modulus was measured by using ultrasound shear wave elastography as the index of muscle hardness. Thirty healthy men (age 22.7 ± 2.2 years) volunteered for this study and were randomly assigned to the SS intervention group (n = 15) or the control group (n = 15). Participants in the SS intervention group received a 4-week stretch intervention for the hamstrings of their dominant leg. Shear elastic moduli of the hamstrings were measured at initial evaluation and after 4 weeks in both groups at a determined angle. In all muscles, the shear elastic modulus decreased significantly after SS intervention. The percentage change in the shear elastic modulus from the value at initial evaluation to after 4 weeks intervention was greatest in the SM. These results suggest that SS intervention has chronic effects on reducing hardness of the hamstring muscle components, especially the SM muscle.
Lu, X K; Xin, T Y; Zhang, Q; Xu, Q; Wei, T H; Wang, Y X
2018-08-03
Recently, a series of graphene-like binary monolayers (g-SiC x ), where Si partly substitutes the C positions in graphene, have been obtained by tailoring the band gaps of graphene and silicene that have made them a promising material for application in opto-electronic devices. Subsequently, evaluating the mechanical properties of g-SiC x has assumed great importance for engineering applications. In this study, we quantified the in-plane mechanical properties of g-SiC x (x = 7, 5, 3, 2 and 1) monolayers (also including graphene and silicene) based on density function theory. It was found that the mechanical parameters of g-SiC x , such as the ideal strength, Young's modulus, shear modulus, Poisson's ratio, as well as fracture toughness, are overall related to the ratio of Si-C to C-C bonds, which varies with Si concentration. However, for g-SiC 7 and g-SiC 3 , the mechanical properties seem to depend on the structure because in g-SiC 7 , the C-C bond strength is severely weakened by abnormal stretching, and in g-SiC 3 , conjugation structure is formed. The microscopic failure of g-SiC x exhibits diverse styles depending on the more complex structural deformation modes introduced by Si substitution. We elaborated the structure-properties relationship of g-SiC x during the failure process, and in particular, found that the structural transformation of g-SiC 3 and g-SiC is due to the singular symmetry of their structure. Due to the homogeneous phase, all the g-SiC x investigated in this study preserve rigorous isotropic Young's moduli and Poisson's ratios. With versatile mechanical performances, the family of g-SiC x may facilitate the design of advanced two-dimensional materials to meet the needs for practical mechanical engineering applications. The results offer a fundamental understanding of the mechanical behaviors of g-SiC x monolayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günay, E.
In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values.more » In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.« less
Dimitrakopoulos, P; Kuriakose, S
2015-04-14
Determination of the elastic properties of the membrane of artificial capsules is essential for the better design of the various devices that are utilized in their engineering and biomedical applications. However this task is complicated owing to the combined effects of the shear and area-dilatation moduli on the capsule deformation. Based on computational investigation, we propose a new methodology to determine a membrane's shear modulus, independent of its area-dilatation modulus, by flowing strain-hardening capsules in a converging micro-capillary of comparable size under Stokes flow conditions, and comparing the experimental measurements of the capsule elongation overshooting with computational data. The capsule prestress, if any, can also be determined with the same methodology. The elongation overshooting is practically independent of the viscosity ratio for low and moderate viscosity ratios, and thus a wide range of capsule fluids can be employed. Our proposed experimental device can be readily produced via glass fabrication while owing to the continuous flow in the micro-capillary, the characterization of a large number of artificial capsules is possible.
Measuring the elastic properties of fine wire.
Fallen, C T; Costello, J; Crawford, G; Schmidt, J A
2001-01-01
The elastic moduli of fine wires made from MP35N and 304SS used in implantable biomedical devices are assumed to be the same as those published in the literature. However, the cold working required to manufacture the wire significantly alters the elastic moduli of the material. We describe three experiments performed on fine wire made from MP35N and 304SS. The experimentally determined Young's and shear modulus of both wire types were significantly less than the moduli reported in the literature. Young's modulus differed by as much as 26%, and the shear modulus differed by as much as 14% from reported values.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena
2017-04-01
We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.
Monitoring the lesion formation during histotripsy treatment using shear wave imaging
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Lee, Wei-Ning; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-11-01
Monitoring the lesion formation induced by histotripsy has mainly relied on the quantitative change in backscatter intensity using ultrasound B-mode imaging. However, how the mechanical properties of the histotripsy-treated tissue region alter during the procedure is yet to be fully investigated. We thus proposed here to monitor such a therapeutic process based on shear modulus estimated by shear wave imaging (SWI). In the therapeutic procedure, a single-element piezo-composite focused transducer (Imasonic, Besançon, France) with a center frequency of 660 kHz, a focal length of 45 mm, and an fnumber of 1 was driven by a function generator (AFG 3101, Tektronix, Beaverton, OR) and a gated RF power amplifier (GA-2500A, RITEC Inc., USA) to generate ultrasound histotripsy pulses. Histotripsy pulses were delivered for 20 seconds and then followed by a 30-second pause and a rapid monitoring step. Such a treatment and monitoring scheme was repeated for 10 mins. Both the reference measurement and monitoring were realized by SWI, where plane shear waves were generated by an 8 MHz linear array probe connected to a prototype ultrasound scanner, and acquired at a frame rate of 10000 Hz. Shear modulus was estimated and mapped in 2D through a time-of-flight algorithm. Gelatin (8%)-agar (2%) phantoms and ex-vivo porcine liver samples were tested. Regions of interests (ROI's) of 2 mm-by-2 mm in both untreated and treated regions were selected to compute the contrast-to-noise ratio (CNR). In all three scenarios where different PD's and PRF's were implemented, during the first 100 seconds of the treatment, 50% decrease in the shear modulus within the histotripsy-targeted zone was already observed, and the CNR of the shear modulus increased by 18 dB. In contrast, the backscatter intensity began to reduce and the corresponding CNR was found to increase by 6 dB only after 120 seconds of treatment. The results demonstrated that SWI can map quantitatively the change of mechanical properties during histotripsy treatment. Moreover, the shear modulus estimated by SWI was a more sensitive indicator of the lesion formation than the backscatter intensity obtained from B-mode at the early stage of the histotripsy treatment. In-vitro experiments on liver samples have also been carried out.
Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.
Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping
2016-01-01
Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.
Hydrogen storage in lithium hydride: A theoretical approach
NASA Astrophysics Data System (ADS)
Banger, Suman; Nayak, Vikas; Verma, U. P.
2018-04-01
First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree
2018-04-01
The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μ b, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.
Moroni, L; de Wijn, J R; van Blitterswijk, C A
2006-03-01
One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.
Shear properties of vocal fold mucosal tissues and their effect on vocal fold oscillation
NASA Astrophysics Data System (ADS)
Chan, Roger Wai Kai
Viscoelastic shear properties of vocal fold mucosal tissues and phonosurgical biomaterials were measured with a parallel-plate rotational rheometer. Elastic, viscous and damping properties were quantified as a function of frequency (0.01 Hz to 15 Hz) for human vocal fold mucosal tissues (N = 15), implantable biomaterials commonly used in the treatment of vocal fold paralysis (Teflon, gelatin, and collagen) (the non-mucosal group), and biomaterials currently or potentially useful in the treatment of vocal fold mucosal defects (adipose tissue or fat, hyaluronic acid, and fibronectin) (the mucosal group). It was found that intersubject differences as large as an order of magnitude were often observed for the shear properties of vocal fold mucosal tissues, part of which may be age- and gender-related. Shear properties of the non-mucosal group biomaterials were often much higher than those of the mucosal group biomaterials, which were relatively close to the shear properties of mucosal tissues. Viscoelastic and rheological modeling showed that shear properties of human vocal fold mucosa may be described by a quasi-linear viscoelastic theory and a statistical network theory, based upon which extrapolations to audio frequencies were possible. A theory of small-amplitude vocal fold oscillation was revisited to describe the effects of tissue shear properties on vocal fold oscillation and phonation threshold pressure, a measure of the 'ease' of phonation and an objective indication of vocal function. It was found that phonation threshold pressure is directly related to the viscous shear modulus or the 'effective damping modulus', a concept proposed to quantify the effective amount of damping in vocal fold oscillation. The mucosal group biomaterials were incorporated into the artificial vocal fold mucosa of a physical model in order to empirically assess their effects on phonation threshold pressure. Results showed that higher threshold pressures were consistently observed for higher concentrations of hyaluronic acid and for hyaluronic acid mixed with fibronectin, in correlation with their differences in viscous shear modulus and effective damping modulus. Implications for phonosurgery were discussed in terms of the choice of optimal biomaterials for the surgical management of vocal fold mucosal defects and lamina propria deficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semari, F.; Khenata, R.; Depatment of Physics and Astronomy, King Saud University, PO Box 2455, Riyadh 11451
2010-12-15
The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the totalmore » energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}« less
NASA Astrophysics Data System (ADS)
Kaluvan, Suresh; Zhang, Haifeng; Mridha, Sanghita; Mukherjee, Sundeep
2017-04-01
Bulk metallic glasses are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of bulk metallic glasses include high strength and hardness as well as excellent corrosion and wear resistance. However, there are few reports and limited understanding of their mechanical properties at elevated temperatures. We used a nondestructive sonic resonance method to measure the Young's modulus and Shear modulus of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5, at elevated temperatures. The measurement system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The OMICRON Bode-100 Vector Network Analyzer was used to sweep the frequency and its output was connected to the speaker which vibrated the material in its flexural mode and torsional modes. A Polytec OFV-505 laser vibrometer sensor was used to capture the vibration of the material at various frequencies. The flexural and torsional mode frequency shift due to the temperature variation was used to determine the Young's modulus and Shear modulus. The temperature range of measurement was from 50°C to 350°C. The Young's modulus was found to reduce from 100GPa to 94GPa for the 300°C temperature span. Similarly, the Shear modulus decreased from 38.5GPa at 50°C to 36GPa at 350°C.
Extensor indicis proprius tendon transfer using shear wave elastography.
Lamouille, J; Müller, C; Aubry, S; Bensamoun, S; Raffoul, W; Durand, S
2017-06-01
The means for judging optimal tension during tendon transfers are approximate and not very quantifiable. The purpose of this study was to demonstrate the feasibility of quantitatively assessing muscular mechanical properties intraoperatively using ultrasound elastography (shear wave elastography [SWE]) during extensor indicis proprius (EIP) transfer. We report two cases of EIP transfer for post-traumatic rupture of the extensor pollicis longus muscle. Ultrasound acquisitions measured the elasticity modulus of the EIP muscle at different stages: rest, active extension, active extension against resistance, EIP section, distal passive traction of the tendon, after tendon transfer at rest and then during active extension. A preliminary analysis was conducted of the distribution of values for this modulus at the various transfer steps. Different shear wave velocity and elasticity modulus values were observed at the various transfer steps. The tension applied during the transfer seemed close to the resting tension if a traditional protocol were followed. The elasticity modulus varied by a factor of 37 between the active extension against resistance step (565.1 kPa) and after the tendon section (15.3 kPa). The elasticity modulus values were distributed in the same way for each patient. The therapeutic benefit of SWE elastography was studied for the first time in tendon transfers. Quantitative data on the elasticity modulus during this test may make it an effective means of improving intraoperative adjustments. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
2008-01-15
grading scheme involves embedding particles only in the outer layers of a laminate , achieving maximal increases in bending stiffness with a minimum...by Eq. (19), with d=2. Longitudinal-transverse shear modulus The shear modulus for distortion of the laminate in axes with one direction aligned...The effective Poisson’s ratio νeLT is dictated by the other material constants of the laminate (Hill, 1964; Torquato, 2001): 12 νe LT = ν f + ν
Measuring anisotropic muscle stiffness properties using elastography.
Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E
2013-11-01
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.
Rounded stretched exponential for time relaxation functions.
Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B
2009-12-07
A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)
Computationally designed lattices with tuned properties for tissue engineering using 3D printing
Gonella, Veronica C.; Engensperger, Max; Ferguson, Stephen J.; Shea, Kristina
2017-01-01
Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth. PMID:28797066
Computationally designed lattices with tuned properties for tissue engineering using 3D printing.
Egan, Paul F; Gonella, Veronica C; Engensperger, Max; Ferguson, Stephen J; Shea, Kristina
2017-01-01
Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth.
Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich
2017-01-01
A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
2016-06-01
Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.
NASA Astrophysics Data System (ADS)
El-Sabbagh, A.; Baz, A.
2006-03-01
Conventionally, the viscoelastic cores of Constrained Layer Damping (CLD) treatments are made of materials that have uniform shear modulus. Under such conditions, it is well-recognized that these treatments are only effective near their edges where the shear strains attain their highest values. In order to enhance the damping characteristics of the CLD treatments, we propose to manufacture the cores from Functionally Graded ViscoElastic Materials (FGVEM) that have optimally selected gradient of the shear modulus over the length of the treatments. With such optimized distribution of the shear modulus, the shear strain can be enhanced, and the energy dissipation can be maximized. The theory governing the vibration of beams treated with CLD, that has functionally graded viscoelastic cores, is presented using the finite element method (FEM). The predictions of the FEM are validated experimentally for plain beams, beams treated conventional CLD, and beams with CLD/FGVEM of different configurations. The obtained results indicate a close agreement between theory and experiments. Furthermore, the obtained results demonstrate the effectiveness of the new class of CLD with functionally graded cores in enhancing the energy dissipation over the conventional CLD over a broad frequency band. Extension of the proposed one-dimensional beam/CLD/FGVEM system to more complex structures is a natural extension to the present study.
NASA Astrophysics Data System (ADS)
Knapmeyer, M.; Fischer, H. H.; Joerg, K.; Seidensticker, K. J.
2016-12-01
During the more than 3 hours of the MUPUS PEN insertion phase at Abydos, the Comet Acoustic Surface Sounding Experiment (CASSE), part of SESAME, recorded hammer strokes of MUPUS with all three accelerometers, which are housed in Philae's feet. Stroke times recorded in the MUPUS housekeeping data, the identification of two adjacent strokes in a single recording, and laboratory experiments concerning the properties of sound transmission through Philae's legs and feet foster the identification of the recorded signals as hammer strokes, and as elastic waves transmitted through the comet. A hammer stroke exerted on a surface dominantly excites surface waves of the Rayleigh type. By comparison of arrival times at the individual feet, we estimate the propagation velocity of these Rayleigh waves to be at least 80 m/s. With the bulk density of 533 ± 6 kg/m3 as derived from tracking Rosetta (Pätzold et al., Nature, vol. 530, 2016), this velocity translates into a shear modulus of the comet material of at least 3.2 MPa. Shear modulus scales with velocity squared, so when taking into account the formal uncertainties arising from the arrival time inversion, the shear modulus may easily be as large as 10 MPa. This is still low compared to solid rock or monocrystalline ice, but is compatible with highly porous materials. The recorded signals are only weakly dispersive: Energy at frequencies below approx. 200 Hz arrives slightly later than at higher frequencies. This indicates the presence of a surface layer, to which the above propagation velocity and shear modulus apply, on top of a material with an even lower propagation velocity and shear modulus. The boundary between the two materials is likely more than 20 cm below the surface. We conclude that the results of CASSE listening to MUPUS support the hypothesis of surficial sintering at least for the Abydos site on 67P/Churyumov-Gerasimenko.
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
CAD-FEA modeling and analysis of different full crown monolithic restorations.
Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Souza, Rodrigo Othávio de Assunção E; Bottino, Marco Antonio
2018-06-19
To investigate the influence of different materials for monolithic full posterior crowns using 3D-Finite Element Analysis (FEA). Twelve (12) 3D models of adhesively-restored teeth with different crowns according to the material and its elastic modulus were analysed: Acrylic resin, Polyetheretherketone, Composite resin, Hybrid ceramic, pressable and machinable Zirconia reinforced lithium silicate, Feldspathic, Lithium disilicate, Gold alloy, Cobalt-Chromium alloy (Co-Cr), Zirconia tetragonal partially stabilized with yttria, and Alumina. All materials were assumed to behave elastically throughout the entire deformation. Results in restoration and cementing line were obtained using maximum principal stress. In addition, maximum shear stress criteria was used for the cementing line. Restorative materials with higher elastic modulus present higher stress concentration inside the crown, mainly tensile stress on an intaglio surface. On the other hand, materials with lower elastic modulus allow stress passage for cement, increasing shear stress on this layer. Stiffer materials promote higher stress peak values. Materials with higher elastic modulus such as Co-Cr, zirconia and alumina enable higher tensile stress concentration on the crown intaglio surface and higher shear stress on the cement layer, facilitating crown debonding. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Simplified method for calculating shear deflections of beams.
I. Orosz
1970-01-01
When one designs with wood, shear deflections can become substantial compared to deflections due to moments, because the modulus of elasticity in bending differs from that in shear by a large amount. This report presents a simplified energy method to calculate shear deflections in bending members. This simplified approach should help designers decide whether or not...
Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka
2012-01-01
In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.
NASA Technical Reports Server (NTRS)
Ho, Henjen
1991-01-01
A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. An experimental investigation using conventional strain gage instrumentation and moire interferometry is performed. A finite element analysis of the Iosipescu shear test for unidirectional and cross-ply composites is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon the strain gage measurements used for the determination of composite shear moduli. From the test results for graphite-epoxy laminates, it is shown that the proximity of the load introduction point to the test section greatly influences the individual gage readings for certain fiber orientations but the effect upon shear modulus measurement is relatively unimportant. A numerical study of the load contact effect shows the sensitivity of some fiber configurations to the specimen/fixture contact mechanism and may account for the variations in the measured shear moduli. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and yielded spurious shear stress-strain curves. In the numerical analysis, it is shown that the Iosipescu specimens for different fiber orientations have to be modeled differently in order to closely approximate the true loading conditions. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors, which are determined for the region occupied by the strain gage rosette, are found to be dependent upon the material orthotropic ratio and the finite element models. Based upon the experimental and numerical results, recommendations for improving the reliability and accuracy of the shear modulus values are made, and the implications for shear strength measurement discussed. Further application of the Iosipescu shear test to woven fabric composites is presented. The limitations of the traditional strain gage instrumentation on the satin weave and high tow plain weave fabrics is discussed. Test results of a epoxy based aluminum particulate composite is also presented. A modification of the Iosipescu specimen is proposed and investigated experimentally and numerically. It is shown that the proposed new specimen design provides a more uniform shear stress field in the test section and greatly reduces the normal and shear stress concentrations in the vicinity of the notches. While the fabrication and the material cost of the proposed specimen is tremendously reduced, it is shown the accuracy of the shear modulus measurement is not sacrificed.
NASA Astrophysics Data System (ADS)
Edwards, Michael
This thesis presents the results of a research program characterizing a soil simulant called Fillite, which is composed of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. Fillite is available in large quantities at a reasonable cost and it is chemically inert. Fillite has been selected by the National Aeronautics and Space Administration (NASA) Glenn Research Center to simulate high-sinkage/high-slip environment in a large test bed such as the ones encountered by the Spirit rover on Mars in 2009 when it became entrapped in a pocket of soft, loose regolith on Mars. The terms high-sinkage and high-slip used here describe the interaction of soils with typical rover wheels. High-sinkage refers to a wheel sinking with little to no applied force while high-slip refers to a spinning wheel with minimal traction. Standard material properties (density, specific gravity, compression index, Young's modulus, and Poisson's ratio) of Fillite were determined from a series of laboratory tests conducted in general accordance with ASTM standards. Tests were also performed to determine some less standard material properties of Fillite such as the small strain shear wave velocity, maximum shear modulus, and several pressure-sinkage parameters for use in pressure-sinkage models. The experiments include an extensive series of triaxial compression tests, bender element tests, and normal and shear bevameter tests. The unit weight of Fillite on Earth ranges between 3.9 and 4.8 kN/m 3, which is similar to that of Martian regolith (about 3.7 -- 5.6 kN/m3) on Mars and close to the range of the unit weight of lunar regolith (about 1.4 -- 2.9 kN/m3) on the Moon. The data presented here support that Fillite has many physical and mechanical properties that are similar to what is known about Martian regolith. These properties are also comparable to lunar regolith. Fillite is quite dilatant; its peak and critical angles of internal friction are smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, results in smaller bearing and shearing resistances allowing for better simulation of the intended high-sinkage, high-slip behavior for rover mobility studies. The results of the normal bevameter tests were used to determine parameters for two models available in the literature - the Bekker model and the New Model of Mobility (N2M) model. These parameters were then used to predict the sinkage of a Spirit rover wheel if the rover were to be used on Fillite. The predicted sinkage of a Spirit rover wheel in Fillite was 84% of the wheel diameter, which was within the observed sinkage of 50 to 90% of the wheel diameter of the Spirit rover on Mars. Shear bevameter tests were also performed on Fillite to assess the shear stresses and shear deformations imparted by wheels under torsional loads. The results compared well to the estimated shear stresses and deformations of Martian soil caused by the wheels of the Spirit rover. When compared to other simulants (e.g. GRC-1), the pressure-sinkage and shear stress-shear deformation behaviors of Fillite confirm that Fillite is more suitable for high-sinkage and high-slip rover studies than other typical simulants derived from natural terrestrial soils and rocks.
Evidence for intermuscle difference in slack angle in human triceps surae.
Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu
2015-04-13
This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.
New Elastic Moduli for Amphiboles and Feldspars: Impact on Interpretations of Seismic Velocities
NASA Astrophysics Data System (ADS)
Brown, J. M.; Angel, R. J.
2016-12-01
Seismic properties (both isotropic and anisotropic) of the crust and upper mantle require re-evaluation in light of improved single crystal properties for feldspars and amphiboles as a function of elemental partitioning. Together these minerals constitute more than half of the crust and are locally important in the lithospheric mantle. Their contribution in understanding seismic structures (both in the crust and mantle) has long been recognized. However, published single crystal elastic moduli, required in predictions of seismic velocities based on mineral properties, have remained inadequate for over 50 years. For example, the contribution of amphiboles to seismic velocities has often been approximated on the basis of the reported moduli for two hornblende crystals of unknown composition. New measurements now accurately characterize the plagioclase feldspars, the potassium feldspars, and the calcium and calcium-sodium amphiboles (including a range of compositions for common hornblende). The new moduli allow successful predictions of rock velocities with and without crystal preferred orientations. In contrast, the older moduli required inappropriate use of the Voigt upper aggregate bound in order to rationalize laboratory measurements. These minerals are also more anisotropic than suggested on the basis of the earlier work where cracks and open cleavage surfaces may have artificially depressed the apparent anisotropy. Both feldspars and amphiboles are nearly as anisotropic as sheet silicates with compressional velocity anisotropy of greater than 50%. The plagioclase feldspars show strong compositional trends with small discontinuities between minor structural transitions. In contrast, potassium substitution for sodium and differences in aluminum ordering have little impact on elastic moduli. In the amphiboles, elastic properties are strongly dependent on total aluminum and iron composition. The bulk modulus is most sensitive to aluminum and the shear modulus is more sensitive to iron. Variations in Poisson's ratio (which depends on the ratio of isotropic compressional and shear wave velocities) associated with compositions within the amphiboles and the feldspars are larger than previously predicted. The extent of modifications to seismic interpretations is evaluated.
NASA Astrophysics Data System (ADS)
Patrin, Lauren
The objective of this research was to study the effect of nanoclay and temperature on the behavior of woven glass-fabric reinforced epoxy composite under low velocity and ballistic impacts. The materials used in manufacturing the composite were S2 (6181) glass-fibers, epoxy resin (EPON 828), hardener (Epikure 3230), nanoclay and Heloxy 61 modifier. The nanoclay addition was 0%, 1%, 3% and 5% by weight, with respect to the resin. All specimens were manufactured at the City College facilities using vacuum infusion. Tensile tests were conducted to characterize the material and obtain the Young's modulus, ultimate stress, failure strain, Poisson's ratio, shear modulus and shear strength and their variation with nanoclay percentage and temperature. The tests were conducted at room temperature (21°C/70°F), -54°C (-65°F), -20°C (-4°F), 49°C (120°F) and 71°C (160°F). Next composite specimens with 0%, 1%, 3% and 5% nanoclay by weight, with respect to the resin, were subjected to low velocity impact at the previously specified temperatures to determine dynamic force, displacement and energy correlations. The extent of damage was studied using the ultrasound technique. Then ballistic tests were conducted on the nanoclay infused specimens at room temperature to obtain the ballistic limit (V50) and the damage behavior of the composite. The dynamic finite element analysis (FEA) software LS-DYNA was used to model and simulate the results of low velocity impact tests. Good agreement was obtained between experimental and numerical (FEA) results. Analytical analyses were undertaken to compare the results from the tensile experiments. The finite element analysis (FEA) allowed for further analytical comparison of the results. The FEA platform used was LS-DYNA due to its proficient dynamic and damage capabilities in composite materials. The FEA was used to model and simulate the low velocity impacts and compare the results to experiments.
NASA Astrophysics Data System (ADS)
Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min
2018-04-01
Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.
Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range
NASA Astrophysics Data System (ADS)
Boudjema, F.; Khelidj, B.; Lounis, M.
2017-01-01
In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Non-invasive In vivo measurement of the shear modulus of human vocal fold tissue
Kazemirad, Siavash; Bakhshaee, Hani; Mongeau, Luc; Kost, Karen
2014-01-01
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects’ vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 to 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI. PMID:24433668
The simulation of magnetic resonance elastography through atherosclerosis.
Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R
2016-06-14
The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra
2015-08-01
In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.
Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2006-07-01
This study investigated the effect of alloying titanium with gold, silver, or copper on the elastic properties of the alloys. A series of binary titanium alloys was made with four concentrations of gold, silver, or copper (5, 10, 20, and 30 mass%) in an argon-arc melting furnace. The Young's moduli and Poisson's ratios of the alloy castings were determined with an ultrasonic-pulse method. The density of each alloy was previously measured by the Archimedes' principle. Results were analyzed using one-way ANOVA and the Scheffé's test. The densities of Ti-Au, Ti-Ag, and Ti-Cu alloys monotonically increased as the concentration of alloying elements increased. As the concentration of gold or silver increased to 20%, the Young's modulus significantly decreased, followed by a subsequent increase in value. As the concentration of copper increased, the Young's modulus monotonically increased. The Young's moduli of all the Ti-Cu alloys were significantly higher than that of the titanium. The density of all the experimental alloys was virtually independent of the alloy phases, while the Young's moduli and Poisson's ratios of the alloys were dependent. The addition of gold or silver slightly reduced the Young's modulus of the titanium when the alloy phase was single alpha. The increase in the Young's modulus of the Ti-Cu alloys is probably due to the precipitation of intermetallic compound Ti2Cu. Copper turned out to be a moderate stiffener that gains a Young's modulus of titanium up to 20% at the copper concentration of 30 mass%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie
A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2016-01-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions. PMID:27087704
NASA Astrophysics Data System (ADS)
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2016-05-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A; Huang, Yonggang; Zhang, Yihui
2016-05-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.
Ab-initio study of electronic structure and elastic properties of ZrC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.
2016-05-23
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
Elastic metamaterials with simultaneously negative effective shear modulus and mass density.
Wu, Ying; Lai, Yun; Zhang, Zhao-Qing
2011-09-02
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.
NASA Astrophysics Data System (ADS)
Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol
2018-04-01
We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Suga, Mikio; Matsuda, Tetsuya; Minato, Kotaro; Oshiro, Osamu; Chihara, Kunihiro; Okamoto, Jun; Takizawa, Osamu; Komori, Masaru; Takahashi, Takashi
2003-07-01
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. Moreover, a propagating shear wave is distorted by reflections from the boundaries of objects. However, the distortions are minimal around the wave front of the propagating shear wave. Therefore, we can avoid the effect of reflection on a region of interest (ROI) by adjusting the duration of mechanical vibrations. Thus, the ROI is often shorter than the propagating shear wavelength. In the MRE sequence, a motion-sensitizing gradient (MSG) is synchronized with mechanical cyclic motion. MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
The power law and dynamic rheology in cheese analysis
USDA-ARS?s Scientific Manuscript database
The protein networks of food such as cheese are investigated nondestructively by small amplitude oscillatory shear analysis, which provides information on elastic modulus and viscous modulus. Relationships between frequency and viscoelastic data may be obtained from frequency sweeps by applying the...
Biocompatible Zr-Al-Fe bulk metallic glasses with large plasticity
NASA Astrophysics Data System (ADS)
Hua, NengBin; Li, Ran; Wang, JianFeng; Zhang, Tao
2012-09-01
In the present study, high-zirconium ternary Zr-Al-Fe bulk metallic glasses (BMGs) with low Young's modulus and good plasticity were developed. Zr75Al7.5Fe17.5 BMG exhibits a low Young's modulus of 70 GPa and high Poisson's ratio of 0.403. Pronounced plasticity was demonstrated under both compression and bending conditions for the BMGs. Furthermore, the alloys show high corrosion resistance in phosphate buffered solution. The combination of desirable mechanical and chemical properties implies potential for biomedical applications.
NASA Astrophysics Data System (ADS)
Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C.
2017-04-01
This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω-1 /2, has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.
Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C
2017-04-21
This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω -1/2 , has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.
NASA Astrophysics Data System (ADS)
Guo, Fuda; Zhan, Yongzhong
2017-12-01
The prediction for distribution trends and effect of three 4d transition metal elements (Ru, Rh and Pd) on mechanical properties and martensitic transformation temperature of B2-ZrCu phase were investigated by first-principles calculations. The convex surface of formation energy suggests that the alloying elements prefer to occupy the Cu sites in B2-ZrCu phase and the dopants studied in present are able to strengthen the phase stability. The calculated results of substitutional formation energy suggest that the distribution trend of dopants in B2-ZrCu phase is Ru > Rh > Pd below the dopant concentration 9 at. %, and the distribution trend is Rh > Pd > Ru from 9 at. % to 12.5 at. %. The elastic constants and mechanical properties including bulk modulus and shear modulus were calculated and discussed. The brittleness/ductility characteristic was investigated using the B/G ratio, Poisson's ratio v and Cauchy pressure Cp. The martensitic transformation temperature (Ms) and melting point (Tm) were predicted by using two cubic elastic moduli (C‧ and C44). The prediction results suggest that only the Ms of Zr8Cu7Pd is higher than the parent. The martensitic transformation temperatures of other compounds decrease with the addition of 4d transition metal dopants. Finally, the electronic structures and electron density different were discussed to reveal the bonding characteristics.
Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article
NASA Technical Reports Server (NTRS)
Gupta, Anju
2013-01-01
This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.
NASA Astrophysics Data System (ADS)
Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito
2017-12-01
We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.
NASA Astrophysics Data System (ADS)
Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam
2016-04-01
It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.
Nonlinear thermal dynamic analysis of graphit/aluminum composite plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenneti, R.; Chandrashekhara, K.
1994-09-01
Because of the increased application of composite materials in high-temperature environments, the thermoelastic analysis of laminated composite structures is important. Many researchers have applied the classical lamination theory to analyze laminated plates under thermomechanical loading, which neglects shear deformation effects. The transverse shear deformation effects are not negligible as the ratios of inplane elastic modulus to transverse shear modulus are relatively large for fiber-reinforced composite laminates. The application of first-order shear deformation theory for the thermoelastic analysis of laminated plates has been reported by only a few investigators. Reddy and Hsu have considered the thermal bending of laminated plates. Themore » analytical and finite element solutions for the thermal bucking of laminated plates have been reported by Tauchert and Chandrashekara, respectively. However, the first-order shear deformation theory, based on the assumption of constant distribution of transverse shear through the thickness, requires a shear correction factor to account for the parabolic shear strain distribution. Higher order theories have been proposed which eliminate the need for a shear correction factor. In the present work, nonlinear dynamic analysis of laminated plates subjected to rapid heating is investigated using a higher order shear deformation theory. A C(sup 0) finite element model with seven degrees of freedom per node is implmented and numerical results are presented for laminated graphite/aluminum plates.« less
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate knowledge of the geology and the structures of the subsurface would assist engineers in the best way to carry out constructions to avoid building collapse. In this study, near surface seismic refraction method was used to determine the geotechnical parameters of the subsurface, the results obtained were correlated with the result of borehole data drilled in the study area. The results of seismic refraction method delineated mostly two distinct layers with the first layer having the lower geotechnical parameters. It was observed that in the first layer, the Young’s modulus ranged from 0.168 to 0.458 GPa, shear modulus ranged between 0.068 and 0.185 GPa, the bulk modulus ranged between 0.106 and 0.287 GPa while the bearing capacity ranged from 0.083 to 0.139 MPa. On the other hand, in the second layer, the Young’s modulus ranged between 3.717 and 7.018 GPa, shear modulus ranged from 1.500 to 2.830 GPa while the bulk modulus ranged from 2.383 to 4.449 GPa. Significantly, the formation of the second layer appeared to be more competent than the first layer, therefore engineering construction in this geological setting is recommended to be founded on the second layer at depth ranging between 7 and 16 m.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
NASA Astrophysics Data System (ADS)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.
2018-05-01
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...
2018-05-04
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
NASA Astrophysics Data System (ADS)
Matl, Peter; Ong, N. P.; Gagnon, R.; Taillefer, L.
2002-06-01
The complex resistivity ρ^(ω) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7 has been measured at frequencies ω/2π from 100 kHz to 20 MHz in a 2-T field H||c, using a four-probe rf transmission technique that enables continuous measurements versus ω and temperature T. As T is increased, the inductance Ls(ω)=Imρ^(ω)/ω increases steeply to a cusp at the melting temperature Tm, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66. We discuss in detail the separation of the vortex-lattice inductance from the ``volume'' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω) over 2 decades in ω. Values of the pinning parameter κ and shear modulus c66 obtained show that c66 collapses by over 4 decades at Tm, whereas κ remains finite.
An improved shear beam method for the characterization of bonded composite joints
NASA Technical Reports Server (NTRS)
Hiel, Clem C.; Brinson, Hal F.
1989-01-01
Closed-form analytical solutions, which govern the displacements and stresses in an adhesive shear beam, are discussed. The remarkable precision with which the shear stresses in the adhesive can be predicted forms the basis of the proposed characterization procedure. The shear modulus of the adhesive is obtained by means of a parameter estimation procedure which requires a symbiosis of theoretical and experimental stress analysis.
Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa.
Chan, R W; Titze, I R
1999-07-01
To measure the viscoelastic shear properties of hyaluronic acid, with and without fibronectin, and to compare them with those of the human vocal fold mucosa and other phonosurgical biomaterials. Viscoelastic shear properties of various implantable biomaterials (Teflon, gelatin, collagen, fat, hyaluronic acid, and hyaluronic acid with fibronectin) were measured with a parallel-plate rotational rheometer. Elastic and viscous shear properties were quantified as a function of oscillation frequency (0.01-15 Hz) at 37 degrees C. The shear properties of hyaluronic acid were relatively close to those of human vocal fold mucosal tissues reported previously. Hyaluronic acid at specific concentrations (0.5%-1%), with or without fibronectin, was found to exhibit viscous shear properties (viscous shear modulus and dynamic viscosity) similar to those of the average male and female vocal fold mucosa. According to a theory that establishes the effects of tissue shear properties on vocal fold oscillation, phonation threshold pressure (a measure of the ease of phonation) is directly related to the viscous shear modulus of the vibrating vocal fold mucosa. Therefore, our findings suggest that hyaluronic acid, either by itself or mixed with fibronectin, may be a potentially optimal bioimplant for the surgical management of vocal fold mucosal defects and lamina propria deficiencies (e.g., scarring) from a biomechanical standpoint.
Elastic moduli of rock glasses under pressure to 8 kilobars and geophysical implications.
Meister, R.; Robertson, E.C.; Werke, R.W.; Raspet, R.
1980-01-01
Shear and longitudinal velocities were measured by the ultrasonic phase comparison method as a function of pressure to 8 kbar on synthetic glasses of basalt, andesite, rhyolite, and quartz composition and on natural obsidian. Velocities of most of the glasses decrease anomalously with pressure, but increasingly more-normal behavior occurs with decrease in SiO2 content. The pressure derivatives of rigidity and bulk modulus increase linearly, from -3.39 to -0.26 and from -5.91 to +2.09, respectively, with decrease in SiO2 content from 100 to 49%. The change from negative to positive in the pressure derivatives of both moduli and observed at Poisson's ratio of about 0.25 is consitent with the Smyth model for the anomalous elastic behavior of glass. If the temperature in the upper mantle is about 1500oC, tholeiitic basalt would be molten in accordance with the partial melt explanation for the low-velocity zone; at 1300oC and below, basalt would be in the glassy state, especially if more felsic than tholeiite. -Authors
Effect of thermodisinfection on mechanic parameters of cancellous bone.
Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander
2016-09-01
Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p < 0.05 was significant. Shear modulus was significantly reduced by thermodisinfection to 1.02 ± 0.31 GPa from 1.28 ± 0.68 GPa for unprocessed cancellous bone (p = 0.029) since thermodisinfection reduced pressure modulus not significantly from 6.30 ± 4.72 GPa for native specimens to 4.97 ± 2.23 GPa and maximum bending force was 270.03 ± 116.68 N for native and 228.80 ± 70.49 N for thermodisinfected cancellous bone. Shear and pressure modulus were reduced by thermodisinfection around 20 % and maximum bending force was impaired by about 15 % compared with native cancellous bone since only the reduction of shear modulus reached significance. The results suggest that thermodisinfection similarly affects different mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.
Ronot, Maxime; Lambert, Simon A.; Wagner, Mathilde; Garteiser, Philippe; Doblas, Sabrina; Albuquerque, Miguel; Paradis, Valérie; Vilgrain, Valérie; Sinkus, Ralph; Van Beers, Bernard E.
2014-01-01
Objective To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis. Materials and Methods The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5±2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures. Results At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p<0.0001). This parameter had an Obuchowski measure of 0.89+/−0.03. This measure was significantly larger than that of the loss modulus (0.78+/−0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/−0.03, p = 0.84). Conclusion Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus. PMID:24722733
Acoustic attenuation due to transformation twins in CaCl2: Analogue behaviour for stishovite
NASA Astrophysics Data System (ADS)
Zhang, Zhiying; Schranz, Wilfried; Carpenter, Michael A.
2012-09-01
CaCl2 undergoes a tetragonal (P42/mnm) to orthorhombic (Pnnm) transition as a function of temperature which is essentially the same as occurs in stishovite at high pressures. It can therefore be used as a convenient analogue material for experimental studies. In order to investigate variations in elastic properties associated with the transition and possible anelastic loss behaviour related to the mobility of ferroelastic twin walls in the orthorhombic phase, the transition in polycrystalline CaCl2 has been examined using resonant ultrasound spectroscopy (RUS) at high frequencies (0.1-1.5 MHz) in the temperature interval 7-626 K, and dynamic mechanical analysis (DMA) at low frequencies (0.1-50 Hz) in the temperature interval 378-771 K. RUS data show steep softening of the shear modulus as the transition temperature is approached from above and substantial acoustic dissipation in the stability field of the orthorhombic structure. DMA data show softening of the storage modulus, which continues through to a minimum ˜20 K below the transition point and is followed by stiffening with further lowering of temperature. There is no obvious acoustic dissipation associated with the transition, as measured by tan δ, however. The elastic softening and stiffening matches the pattern expected for a pseudoproper ferroelastic transition as predicted elsewhere. Acoustic loss behaviour at high frequencies fits with the pattern of behaviour expected for a twin wall loss mechanism but with relaxation times in the vicinity of ˜10-6 s. With such short relaxation times, the shear modulus of CaCl2 at frequencies corresponding to seismic frequencies would include relaxations of the twin walls and is therefore likely to be significantly lower than the intrinsic shear modulus. If these characteristics apply also to twin wall mobility in stishovite, the seismic signature of the orthorhombic phase should be an unusually soft shear modulus but with no increase in attenuation.
Geometry and the onset of rigidity in a disordered network
NASA Astrophysics Data System (ADS)
Vermeulen, Mathijs F. J.; Bose, Anwesha; Storm, Cornelis; Ellenbroek, Wouter G.
2017-11-01
Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ★, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.
Nakamura, Masatoshi; Hasegawa, Satoshi; Umegaki, Hiroki; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ibuki, Satoko; Ichihashi, Noriaki
2016-08-01
Hamstring muscle strain is one of the most common injuries in sports. Therefore, to investigate the factors influencing hamstring strain, the differences in passive tension applied to the hamstring muscles at the same knee and hip positions as during terminal swing phase would be useful information. In addition, passive tension applied to the hamstrings could change with anterior or posterior tilt of the pelvis. The aims of this study were to investigate the difference in passive tension applied to the individual muscles composing the hamstrings during passive elongation, and to investigate the effect of pelvic position on passive tension. Fifteen healthy men volunteered for this study. The subject lay supine with the angle of the trunk axis to the femur of their dominant leg at 70° and the knee angle of the dominant leg fixed at 30° flexion. In three pelvic positions ("Non-Tilt", "Anterior-Tilt" and "Posterior-Tilt"), the shear elastic modulus of each muscle composing the hamstrings (semitendinosus, semimembranosus, and biceps femoris) was measured using an ultrasound shear wave elastography. The shear elastic modulus of semimembranosus was significantly higher than the others. Shear elastic modulus of the hamstrings in Anterior-Tilt was significantly higher than in Posterior-Tilt. Passive tension applied to semimembranosus is higher than the other muscles when the hamstring muscle is passively elongated, and passive tension applied to the hamstrings increases with anterior tilt of the pelvis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.
2010-09-30
This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.
Elastic superlattices with simultaneously negative effective mass density and shear modulus
NASA Astrophysics Data System (ADS)
Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.
2013-03-01
We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.
Mechanical properties of thermal protection system materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less
Earlywood and latewood elastic properties in loblolly pine
Steven Cramer; David Kretschmann; Roderic Lakes; Troy Schmidt
2005-01-01
The elastic properties of earlywood and latewood and their variability were measured in 388 specimens from six loblolly pine trees in a commercial plantation. Properties measured included longitudinal modulus of elasticity, shear modulus, specific gravity, microfibril angle and presence of compression wood. Novel testing procedures were developed to measure properties...
Southern pine veneer laminates at various moduli of elasticity
George E. Woodson
1972-01-01
Modulus of rigidity (GLT) of veneer laminates was shown to be unrelated to dynamic modulus of elasticity (Ed) of single veneers and also, within the range of samples tested, unrelated to specific gravity. Values determined by flexure test (GLR) were consistent with those from standard plate shear...
Feneberg, Wolfgang; Aepfelbacher, Martin; Sackmann, Erich
2004-08-01
We studied the local viscoelasticity of the apical membrane of human umbilical vein endothelial cells within confluent layers by magnetic tweezers microrheometry. Magnetic beads are coupled to various integrins by coating with fibronectin or invasin. By analyzing the deflection of beads evoked by various force scenarios we demonstrate that the cell envelope behaves as a linear viscoelastic body if forces up to 2 nN are applied for short times (<20 s) but can respond in an adaptive way if stress pulses are applied longer (>30 s). The time-dependent shear relaxation modulus G(t) exhibits three time regimes: a fast response (t < 0.05 s) where the relaxation modulus G(t) obeys a power law G(t) approximately t(-0.82+/-0.02); a plateau-like behavior (at 0.05 s < t < 0.15 s); and a slow flow-like response which is, however, partially reversible. Strain field mapping experiments with colloidal probes show that local forces induce a strain field exhibiting a range of zeta = 10 +/- 1 microm, but which could only be observed if nonmagnetic beads were coupled to the cell surface by invasin. By application of the theory of elasticity of planar bodies we estimated a surface shear modulus of 2.5 x10(-4) N/m. By assuming a thickness of the actin cortex of approximately 0.5 microm we estimate a Young modulus micro approximately 400 Pa for the apical membrane. The value agrees with a plateau modulus of an entangled or weakly cross-linked actin network of an actin concentration of 100 microM (mesh size 0.2 microm). This result together with our observation of a strong reduction of the shear modulus by the actin destabilizing agent latrunculin A suggests that the shear modulus measured by our technique is determined by the actin cortex. The effect of two ligands inducing actin stress fiber formation and centripetal contraction of cells (associated with the formation of gaps in the confluent cell monolayer) on the viscoelastic responses were studied: histamine and lysophosphatidic acid (LPA). Histamine evoked a dramatic increase of the cell stiffness by >1 order of magnitude within <30 s, which is attributed to a transient rise of the intracellular Ca(2+) level, since DMSO exerted a similar effect. The stiffening is accompanied by a concomitant rounding of the cells as observed by microinterferometry and relaxes partially in the timescale of 5 min, whereas gaps between cells close after approximately 30 min. LPA did not exert a remarkable and reproducible effect other than an occasional very weak transient increase of the shear stiffness, which shows that the gap formation activated by LPA is mediated by a different mechanism than that induced by histamine.
Developing descriptors to predict mechanical properties of nanotubes.
Borders, Tammie L; Fonseca, Alexandre F; Zhang, Hengji; Cho, Kyeongjae; Rusinko, Andrew
2013-04-22
Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C(N2)/C(T) (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure C(N2)/C(T), providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were C(N2)/C(T), chiral angle, and M(N)/C(T) (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data.
Rheological investigation of body cream and body lotion in actual application conditions
NASA Astrophysics Data System (ADS)
Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won
2015-08-01
The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.
Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.
McAleavey, Stephen
2011-01-01
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.
Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki
2017-07-01
Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Modeling stiffness loss in boron/aluminum below the fatigue limit
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1982-01-01
Boron/aluminum can develop significant internal matrix cracking when fatigued. These matrix cracks can result in a 40 percent secant modulus loss in some laminates, even when fatigued below the fatigue limit. It is shown that the same amount of fatigue damage will develop during stress or strain-controlled tests. Stacking sequence has little influence on secant modulus loss. The secant modulus loss in unidirectional composites is small, whereas the losses are substantial in laminates containing off-axis plies. A simple analysis is presented that predicts unnotched laminate secant modulus loss due to fatigue. The analysis is based upon the elastic modulus and Poisson's ratio of the fiber and matrix, fiber volume fraction, fiber orientations, and the cyclic-hardened yield stress of the matrix material. Excellent agreement was achieved between model predictions and experimental results. With this model, designers can project the material stiffness loss for design load or strain levels and assess the feasibility of its use in stiffness-critical parts.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Toutian, Golnoosh
This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
Zhang, Z J; Ng, G Y F; Fu, S N
2015-11-01
Tendon mechanical properties are linked to sports performance and tendon-related injuries, such as tendinopathy. Whether habitual loading, such as participation in regular jumping activities, would induce adaptation on tendon mechanical properties remains unclear. Forty healthy subjects (10 sedentary, 15 volleyball players, and 15 basketball players) aged between 18 and 35 years were recruited. Supersonic shearwave imaging was used to measure the shear elastic modulus and thickness and cross-sectional area (CSA) of the proximal patellar tendons of both knees at 30° of flexion. Significant group differences in tendon shear elastic modulus were found among the three groups. In the dominant leg, reduction in tendon shear elastic modulus by 18.9 % (p = 0.018) and 48.7 % (p = 0.000) were observed in the basketball and volleyball players, respectively, when compared with sedentary subjects. In the non-dominant leg, reduction in tendon shear elastic modulus were 27.3 % (p = 0.034) and 47.1 % (p = 0.02) in the basketball and volleyball players, respectively. The athlete groups were found to have larger CSA but with similar tendon thickness than sedentary group. The CSA were larger by 24-29 % and by 22-24 % in the basketball players and volleyball players, for the dominant and non-dominant legs, respectively (all p < 0.05). Age and body mass are related to tendon stiffness and CSA, particularly in the sedentary subjects. The proximal patellar tendon can undergo substantial adaptation on tendon mechanical and morphological properties when exposed in jumping sports. Intrinsic factors such as age and body mass could influence tendon properties.
Calculating tissue shear modulus and pressure by 2D log-elastographic methods
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce R.; Zhang, Ning; Manduca, Armando
2010-08-01
Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ sdot u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms.
Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry
NASA Technical Reports Server (NTRS)
Hong, Yie-Ming
1973-01-01
Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.
Update on Breast Cancer Detection Using Comb-push Ultrasound Shear Elastography
Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H.; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-01-01
In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale being that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue’s mechanical properties. CUSE utilizes a simultaneous multiple laterally spaced radiation force (ARF) excitations and detection sequence to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property is quantified by Young’s modulus. In this study, the tissue stiffness of 73 breast masses is interrogated. The mean shear wave speeds for malignant masses (3.42 ± 1.32 m/s) were higher than benign breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p < 0.001), when tissue elasticity is quantified by Young’s modulus. A Young’s modulus > 83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC). PMID:26688871
Suydam, Stephen M; Soulas, Elizabeth M; Elliott, Dawn M; Silbernagel, Karin Gravare; Buchanan, Thomas S; Cortes, Daniel H
2015-06-01
Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2 kPa and 141.0 Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p = 0.013, 0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Suydam, Stephen M.; Soulas, Elizabeth M.; Elliott, Dawn M.; Silbernagel, Karin Gravare; Buchanan, Thomas S.; Cortes, Daniel H.
2015-01-01
Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2kPa and 141.0Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p=0.013,0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. PMID:25882209
Computer simulation of the matrix-inclusion interphase in bulk metallic glass based nanocomposites
NASA Astrophysics Data System (ADS)
Kokotin, V.; Hermann, H.; Eckert, J.
2011-10-01
Atomistic models for matrix-inclusion systems are generated. Analyses of the systems show that interphase layers of finite thickness appear interlinking the surface of the nanocrystalline inclusion and the embedding amorphous matrix. In a first approximation, the interphase is characterized as an amorphous structure with a density slightly reduced compared to that of the matrix. This result holds for both monatomic hard sphere systems and a Cu47.5Zr47.5Al5 alloy simulated by molecular dynamics (MD). The elastic shear and bulk modulus of the interphase are calculated by simulated deformation of the MD systems. Both moduli diminish with decreasing density but the shear modulus is more sensitive against density reduction by one order of magnitude. This result explains recent observations of shear band initiation at the amorphous-crystalline interface during plastic deformation.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
Relationship between radial compressive modulus of elasticity and shear modulus of wood
Jen Y. Liu; Robert J. Ross
2005-01-01
Wood properties in transverse compression are difficult to determine because of such factors as anatomical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, considered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the reference coordinate system changes its orientation. In this...
Ultra-high modulus organic fiber hybrid composites
NASA Technical Reports Server (NTRS)
Champion, A. R.
1981-01-01
An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.
Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites
NASA Astrophysics Data System (ADS)
Hsueh, Chun-Hway
1992-11-01
Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.
Reinforcement of single-walled carbon nanotube bundles by intertube bridging
NASA Astrophysics Data System (ADS)
Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.
2004-03-01
During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.
Wanniarachchi, W. A. M.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.
2017-01-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1–1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43–4.61 km s−1 and 1.43–2.41 km h−1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests. PMID:29134090
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen, E-mail: zhangyu@missouri.edu
Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered asmore » the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C{sub 11}, C{sub 12}, and C{sub 44}, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.« less
Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
NASA Astrophysics Data System (ADS)
Wanniarachchi, W. A. M.; Ranjith, P. G.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s-1 and 1.43-2.41 km h-1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
Experimental shear strength of unchecked solid-sawn Douglas-fir
D. R. Rammer; L. A. Soltis; P. K. Lebow
This report presents experimental results of modulus of rupture and shear strength tests on unsplit, green, sawn Douglas-fir lumber. Five different size-matched specimens, ranging from nominal 2-by 4-in (standard 38- by 89-mm) to nominal 4- by 14-in (standard 95-by 343-mm), were tested in third-point bending and five-point beam shear. A total of 120 bending and 160...
Laperrousaz, B; Berguiga, L; Nicolini, F E; Martinez-Torres, C; Arneodo, A; Satta, V Maguer; Argoul, F
2016-06-02
Cancer cell transformation is often accompanied by a modification of their viscoelastic properties. When capturing the stress-to-strain response of primary chronic myelogenous leukemia (CML) cells, from two data sets of CD34+ hematopoietic cells isolated from healthy and leukemic bone marrows, we show that the mean shear relaxation modulus increases upon cancer transformation. This stiffening of the cells comes along with local rupture events, detected as reinforced sharp local maxima of this modulus, suggesting that these cancer cells respond to a local mechanical stress by a cascade of local brittle failure events.
Elasticity reconstruction: Beyond the assumption of local homogeneity
NASA Astrophysics Data System (ADS)
Sinkus, Ralph; Daire, Jean-Luc; Van Beers, Bernard E.; Vilgrain, Valerie
2010-07-01
Elasticity imaging is a novel domain which is currently gaining significant interest in the medical field. Most inversion techniques are based on the homogeneity assumption, i.e. the local spatial derivatives of the complex-shear modulus are ignored. This analysis presents an analytic approach in order to overcome this limitation, i.e. first order spatial derivatives of the real-part of the complex-shear modulus are taken into account. Resulting distributions in a gauged breast lesion phantom agree very well with the theoretical expectations. An in-vivo example of a cholangiocarcinoma demonstrates that the new approach provides maps of the viscoelastic properties which agree much better with expectations from anatomy.
NASA Astrophysics Data System (ADS)
Laperrousaz, B.; Berguiga, L.; Nicolini, F. E.; Martinez-Torres, C.; Arneodo, A.; Maguer Satta, V.; Argoul, F.
2016-06-01
Cancer cell transformation is often accompanied by a modification of their viscoelastic properties. When capturing the stress-to-strain response of primary chronic myelogenous leukemia (CML) cells, from two data sets of CD34+ hematopoietic cells isolated from healthy and leukemic bone marrows, we show that the mean shear relaxation modulus increases upon cancer transformation. This stiffening of the cells comes along with local rupture events, detected as reinforced sharp local maxima of this modulus, suggesting that these cancer cells respond to a local mechanical stress by a cascade of local brittle failure events.
NASA Astrophysics Data System (ADS)
Terasaki, Hidenori; Moriguchi, Koji; Tomio, Yusaku; Yamagishi, Hideki; Morito, Shigekazu
2017-12-01
The effect of carbon content on the density of variant-pair boundaries was investigated in 9Ni steel using an electron backscatter diffraction patterns method. The changes in the density of variant-pair boundaries were correlated with the nondestructive measured values of shear modulus of the austenite phase at the phase transformation point. Furthermore, the effective grain size was correlated with the shear modulus and the density of variant-pair boundaries. These relations are discussed from the viewpoint of self-accommodation of elastic strain energy and the nucleation event in the bainite and martensitic transformations.
NASA Astrophysics Data System (ADS)
Wang, Na; Zhang, Wei-bing; Tang, Bi-yu; Gao, Hai-Tao; He, En-jie; Wang, Lei
2018-07-01
The crystal structure, elastic and magnetic properties of important ternary Mg-based alloys NdMgT4 (T = Co, Ni, Cu) have been studied using reliable ab initio calculations. Both cohesive energy and charge density difference suggest that three alloys have good structural stability with the order: NdMgCo4 > NdMgNi4 > NdMgCu4. It shows that NdMgCo4 alloy has magnetic moments with the Co atoms being the main contribution, which is also in agreement with the calculated electronic structures. We find that NdMgT4 (T = Co, Ni, Cu) alloys are all ductile materials with bulk-to-shear modulus (B/G) values higher than 1.75. The trends of calculated values for the shear moduli Cs and C44 are consistent with that of shear modulus G and young's modulus E, proving that NdMgT4 (T = Co, Ni, Cu) alloys exhibit good plasticity with the trend: NdMgNi4 > NdMgCu4 > NdMgCo4. These calculated results give the basis guidance for the design of rare earth-magnesium-transition metal (R-Mg-T) alloys with improved mechanical properties.
NASA Astrophysics Data System (ADS)
Rahman, Gul; Gee Kim, In; Bhadeshia, H. K. D. H.
2012-03-01
The effects of magnetism on the Bain transformation of α-phase FeNi systems are investigated by using the full potential linearized augmented plane wave method based on the generalized gradient approximation. We found that Ni impurity in bcc Fe increases the lattice constant in the ferromagnetic (FM) states, but not in the nonmagnetic (NM) states. The shear modulus, G, and Young's modulus, E, of bcc Fe are also increased by raising the concentration of nickel. All the compositions considered show high shear anisotropy, and the ratio of the bulk to shear modulus is greater than 1.75, implying ductility. The mean sound velocities in the [100] directions are greater than in the [110] directions. The Bain transformation, which is a component of martensitic transformation, has also been studied to reveal that NixFe1-x alloys are elastically unstable in the NM states, but not so in the FM states. The electronic structures explain these results in terms of the density of states at the Fermi level. It is evident that magnetism cannot be neglected when dealing with the Bain transformation in iron and its alloys.
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Oh, H. S.; Park, E. S.
2017-10-01
Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.
Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.; ...
2017-02-16
Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.
Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less
NASA Astrophysics Data System (ADS)
Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.
2018-05-01
Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).
NASA Astrophysics Data System (ADS)
Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.
2018-04-01
In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.
Tunable Mechanical Behavior of Synthetic Organogels as Biofidelic Tissue Simulants
2013-01-01
leather , silicone elastomers, soap, lard, and clay (Appleby- Thomas et al., 2011; Jussila et al., 2005; Merkle et al., 2008). In most cases, the tissue...and throughout all experiments reported herein. 2.2. Rheology To measure the shear storage modulus G′, loss modulus G″, and loss tangent tan δ (i.e...magnitude and rate dependence of G′, G″, and tan δ Solvent has a significant impact on the modulus of these gels in two ways: (1) the solvent will
DOT National Transportation Integrated Search
1975-01-01
The determination of the elastic, or Young's, modulus, E, of the materials in each layer in an n-layered pavement system given the number, order, thicknesses, and Poisson's ratios of the layers, and the surface load and deflection data, is not possib...
Surface temperatures and glassy state investigations in tribology, part 2
NASA Technical Reports Server (NTRS)
Bair, S. S.; Winer, W. O.
1979-01-01
Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.
Bonded joint and method. [for reducing peak shear stress in adhesive bonds
NASA Technical Reports Server (NTRS)
Sainsbury-Carter, J. B. (Inventor)
1974-01-01
An improved joint is described for reducing the peak shear stress in adhesive bonds when adhesives are used to bond two materials which are in a lapped relationship and which differ in value of modulus of elasticity. An insert placed between the adhesive and one of the two materials acts to cushion the discontinuity of material stiffness thereby reducing the peak shear stress in the adhesive bond.
Laminated beams: deflection and stress as a function of epoxy shear modulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialek, J.
1976-01-01
The large toroidal field coil deflections observed during the PLT power test are due to the poor shear behavior of the insulation material used between layers of copper. Standard techniques for analyzing such laminated structures do not account for this effect. This paper presents an analysis of laminated beams that corrects this deficiency. The analysis explicitly models the mechanical behavior of each layer in a laminated beam and hence avoids the pitfalls involved in any averaging technique. In particular, the shear modulus of the epoxy in a laminated beam (consisting of alternate layers of metal and epoxy) may span themore » entire range of values from zero to classical. Solution of the governing differential equations defines the stress, strain, and deflection for any point within a laminated beam. The paper summarizes these governing equations and also includes a parametric study of a simple laminated beam.« less
Particle-wall tribology of slippery hydrogel particle suspensions.
Shewan, Heather M; Stokes, Jason R; Cloitre, Michel
2017-03-08
Slip is an important phenomenon that occurs during the flow of yield stress fluids like soft materials and pastes. Densely packed suspensions of hydrogel microparticles are used to show that slip is governed by the tribological interactions occurring between the samples and shearing surfaces. Both attractive/repulsive interactions between the dispersed particles and surface, as well as the viscoelasticity of the suspension, are found to play key roles in slip occurring within rheometric flows. We specifically discover that for two completely different sets of microgels, the sliding stress at which slip occurs scales with both the modulus of the particles and the bulk suspension modulus. This suggests that hysteresis losses within the viscoelastic particles contribute to friction forces and thus slip at the particle-surface tribo-contact. It is also found that slip during large amplitude oscillatory shear and steady shear flows share the same generic features.
Elasticity of water-saturated rocks as a function of temperature and pressure.
NASA Technical Reports Server (NTRS)
Takeuchi, S.; Simmons, G.
1973-01-01
Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.
The Spectrum of Torsional Oscillations of the Moon
NASA Astrophysics Data System (ADS)
Gudkova, T. V.; Zharkov, V. N.
2000-11-01
The diagnostic potentialities of the torsional oscillations for probing the structure of the interiors of the Moon are investigated. Models with no core, a liquid core, and a solid core are considered. The profiles of compressional and shear wave velocities V_P and V_S for the lunar interior estimated by Bills and Ferrari (1977), Goins et al. (1981), and Nakamura (1983) from the Apollo lunar seismic network are used. For all these models, the periods of torsional oscillations for n = 2-100 and four overtones have been calculated. The derivatives of the dimensionless eigenfrequency with respect to the dimensionless shear modulus and density are calculated and tabulated for use. These data can be used to determine corrections to the model density and shear modulus distributions due to their small change. The damping of torsional oscillations is studied. Several trial radial distributions of the dissipative function Q are considered.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1994-05-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1995-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1995-08-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1994-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi
Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.
Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping
2012-01-01
Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890
Massage induces an immediate, albeit short-term, reduction in muscle stiffness.
Eriksson Crommert, M; Lacourpaille, L; Heales, L J; Tucker, K; Hug, F
2015-10-01
Using ultrasound shear wave elastography, the aims of this study were: (a) to evaluate the effect of massage on stiffness of the medial gastrocnemius (MG) muscle and (b) to determine whether this effect (if any) persists over a short period of rest. A 7-min massage protocol was performed unilaterally on MG in 18 healthy volunteers. Measurements of muscle shear elastic modulus (stiffness) were performed bilaterally (control and massaged leg) in a moderately stretched position at three time points: before massage (baseline), directly after massage (follow-up 1), and following 3 min of rest (follow-up 2). Directly after massage, participants rated pain experienced during the massage. MG shear elastic modulus of the massaged leg decreased significantly at follow-up 1 (-5.2 ± 8.8%, P = 0.019, d = -0.66). There was no difference between follow-up 2 and baseline for the massaged leg (P = 0.83) indicating that muscle stiffness returned to baseline values. Shear elastic modulus was not different between time points in the control leg. There was no association between perceived pain during the massage and stiffness reduction (r = 0.035; P = 0.89). This is the first study to provide evidence that massage reduces muscle stiffness. However, this effect is short lived and returns to baseline values quickly after cessation of the massage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A rheological model for elastohydrodynamic contacts based on primary laboratory data
NASA Technical Reports Server (NTRS)
Bair, S.; Winer, W. O.
1979-01-01
A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is a Maxwell model modified with a limiting shear stress. Three material properties are required: Low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure. In applying the model to EHD contacts the predicted response possesses the characteristics expected from several experiments reported in the literature and, in one specific case where direct comparison could be made, good numerical agreement is shown.
Magnetic resonance elastography to observe deep areas: comparison of external vibration systems.
Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo
2007-01-01
MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves deep inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus deep inside the body.
Castro, Pedro; Elvira, Luis; Maestre, Juan Ramón; Montero de Espinosa, Francisco
2017-06-15
This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM) resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and dissipation factor) that vary in contact with the analyzed sample. This work shows that different variations during the microorganism growth can be detected by the sensors and highlights which of these changes are indicative of biofilm formation. TSM sensors have been used to monitor in real time the development of Staphylococcus epidermidis and Escherichia coli biofilms, formed on the gold electrode of the quartz crystal resonators, without any coating. Strains with different ability to produce biofilm have been tested. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to upper layers of the biofilm. The experiments allow the microrheological evaluation of the complex shear modulus ( G * = G ' + jG ″) of the biofilm at 5 MHz and at 15 MHz, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of S. epidermidis and E. coli , is an increase in the resonance frequency shift of the quartz crystal sensor, which is connected with an increase of the real shear modulus, related to the elasticity or stiffness of the layer. In addition both the real and the imaginary shear modulus are frequency dependent at these high frequencies in biofilms.
Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak
2018-05-01
Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Elastic energy distribution in bi-material lithosphere: implications for shear zone formation
NASA Astrophysics Data System (ADS)
So, B.; Yuen, D. A.
2013-12-01
Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.
Sun, Ping; Adhikari, Benu P.; Li, Dong
2018-01-01
This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890
Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature
Lipp, M. J.; Jenei, Zs.; Cynn, H.; ...
2017-10-31
Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less
[Assessment of plantar fasciitis using shear wave elastography].
Zhang, Lining; Wan, Wenbo; Zhang, Lihai; Xiao, Hongyu; Luo, Yukun; Fei, Xiang; Zheng, Zhixin; Tang, Peifu
2014-02-01
To assess the stiffness and thickness of the plantar fascia using shear wave elastography (SWE) in healthy volunteers of different ages and in patients with plantar fasciitis. The bilateral feet of 30 healthy volunteers and 23 patients with plantar fasciitis were examined with SWE. The plantar fascia thickness and elasticity modulus value were measured at the insertion of the calcaneus and at 1 cm from the insertion. The elderly volunteers had a significantly greater plantar fascia thickness measured using conventional ultrasound (P=0.005) and a significantly lower elasticity modulus value than the young volunteers (P=0.000). The patients with fasciitis had a significantly greater plantar fascia thickness (P=0.001) and a lower elasticity modulus value than the elderly volunteers (P=0.000). The elasticity modulus value was significantly lower at the calcaneus insertion than at 1 cm from the insertion in patients with fasciitis (P=0.000) but showed no significantly difference between the two points in the elderly or young volunteers (P=0.172, P=0.126). SWE allows quantitative assessment of the stiffness of the plantar fascia, which decreases with aging and in patients with plantar fasciitis.
Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipp, M. J.; Jenei, Zs.; Cynn, H.
Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less
NASA Astrophysics Data System (ADS)
Xia, Z. M.; Wang, C. G.; Tan, H. F.
2018-04-01
A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.
NASA Astrophysics Data System (ADS)
Muslih, M. Refai; Sumirat, I.; Sairun; Purwanta
2008-03-01
The distribution of residual stress of SUS304 samples that were undergone TIG welding process with four different electric currents has been measured. The welding has been done in the middle part of the samples that was previously grooved by milling machine. Before they were welded the samples were annealed at 650 degree Celsius for one hour. The annealing process was done to eliminate residual stress generated by grooving process so that the residual stress within the samples was merely produced from welding process. The calculation of distribution of residual stress was carried out by measuring the strains within crystal planes of Fe(220) SUS304. Strain, Young modulus, and Poisson ratio of Fe(220) SUS304 were measured using DN1-M neutron diffractometer. Young modulus and Poisson ratio of Fe(220) SUS304 sample were measured in-situ. The result of calculations showed that distribution of residual stress of SUS304 in the vicinity of welded area is influenced both by treatments given at the samples-making process and by the electric current used during welding process.
Microstructure and micromechanical elastic properties of weak layers
NASA Astrophysics Data System (ADS)
Köchle, Berna; Matzl, Margret; Proksch, Martin; Schneebeli, Martin
2014-05-01
Weak layers are the mechanically most important stratigraphic layer for avalanches. Yet, there is little known about their exact geometry and their micromechanical properties. To distinguish weak layers or interfaces is essential to assess stability. However, except by destructive mechanical tests, they cannot be easily identified and characterized in the field. We casted natural weak layers and their adjacent layers in the field during two winter seasons and scanned them non-destructively with X-ray computer tomography with a resolution between 10 - 20 µm. Reconstructed three-dimensional models of centimeter-sized layered samples allow for calculating the change of structural properties. We found that structural transitions cannot always by expressed by geometry like density or grain size. In addition, we calculated the Young's modulus and Poisson's ratio of the individual layers with voxel-based finite element simulations. As any material has its characteristic elastic parameters, they may potentially differentiate individual layers, and therefore different microstructures. Our results show that Young's modulus correlates well with density but do not indicate snow's microstructure, in contrast to Poisson's ratio which tends to be lower for strongly anisotropic forms like cup crystals and facets.
Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K
2015-04-01
Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Weck, Philippe F.; Kim, Eunja; Tikare, Veena; ...
2015-10-13
Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of δ-ZrH 1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P4 2/ mcm polymorph. Elastic moduli predicted with the Voigt–Reuss–Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debyemore » temperatures predicted for γ-ZrH, δ-ZrH 1.5 and ε-ZrH 2 are θ D = 299.7, 415.6 and 356.9 K, respectively, while θ D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.« less
NASA Astrophysics Data System (ADS)
Sankovich, Vladimir
1998-12-01
The goal of this paper is to build a consistent physical theory of the dynamics of the bat-ball interaction. This requires creating realistic models for both the softball bat and the softball. Some of the features of these models are known phenomenologically, from experiments conducted in our laboratory, others will be introduced and computed from first principles here for the first time. Both interacting objects are treated from the viewpoint of the theory of elasticity, and it is shown how a computer can be used to accurately calculate all the relevant characteristics of batball collisions. It is shown also how the major elastic parameters of the material constituting the interior of a softball can be determined using the existing experimental data. These parameters, such as the Young's modulus, the Poisson ratio and the damping coefficient are vital for the accurate description of the ball's dynamics. We are demonstrating how the existing theories of the elastic behavior of solid bars and hollow shells can be augmented to simplify the resulting equations and make the subsequent computer analysis feasible. The standard system of fourth-order PDE's is reduced to a system of the second order, because of the inclusion of the usually ignored effects of the shear forces in the bat.
Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks
NASA Astrophysics Data System (ADS)
Khandelwal, Manoj
2013-04-01
In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.
Effects of fabric anisotropy on elastic shear modulus of granular soils
NASA Astrophysics Data System (ADS)
Li, Bo; Zeng, Xiangwu
2014-06-01
The fabric anisotropy of a granular soil deposit can strongly influence its engineering properties and behavior. This paper presents the results of a novel experimental study designed to examine the effects of fabric anisotropy on smallstrain stiffness and its evolution with loading on the elastic shear modulus of granular materials under a K 0 condition. Two primary categories of fabric anisotropy, i.e., deposition-induced and particle shape-induced, are investigated. Toyoura sand deposits with relative densities of 40% and 80% were prepared using deposition angles oriented at 0° and 90°. Piezoelectric transducers were used to obtain the elastic shear modulus in the vertical and horizontal directions ( G vh and G hh). The measurements indicate distinct differences in the values of G with respect to the different deposition angles. Particle shapeinduced fabric anisotropy was examined using four selected sands. It was concluded that sphericity is a controlling factor dominating the small-strain stiffness of granular materials. The degree of fabric anisotropy proves to be a good indicatorin the characterization of stress-induced fabric evolution during loading and unloading stress cycles. The experimental data were used to calibrate an existing micromechanical model, which was able to represent the behavior of the granular material and the degree of fabric anisotropy reasonably well.
Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M
2016-06-30
An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimation of viscoelastic parameters in Prony series from shear wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.
Chuong, C J; Zhong, P; Preminger, G M
1993-12-01
The acoustic and mechanical properties of renal calculi dictate how a stone interacts with the mechanical forces produced by shock wave lithotripsy; thus, these properties are directly related to the success of the treatment. Using an ultrasound pulse transmission technique, we measured both longitudinal and transverse (or shear) wave propagation speeds in nine groups of renal calculi with different chemical compositions. We also measured stone density using a pycnometer based on Archimedes' principle. From these measurements, we calculated wave impedance and dynamic mechanical properties of the renal stones. Calcium oxalate monohydrate and cystine stones had higher longitudinal and transverse wave speeds, wave impedances, and dynamic moduli (bulk modulus, Young's modulus, and shear modulus), suggesting that these stones are more difficult to fragment. Phosphate stones (carbonate apatite and magnesium ammonium phosphate hydrogen) were found to have lower values of these properties, suggesting they are more amenable to shock wave fragmentation. These data provide a physical explanation for the significant differences in stone fragility observed clinically.
Griffin, Darvin J; Bonnevie, Edward D; Lachowsky, Devin J; Hart, James C A; Sparks, Holly D; Moran, Nance; Matthews, Gloria; Nixon, Alan J; Cohen, Itai; Bonassar, Lawrence J
2015-07-16
There has been much interest in using autologous chondrocytes in combination with scaffold materials to aid in cartilage repair. In the present study, a total of 27 animals were used to compare the performance of matrix-assisted chondrocyte implantation (MACI®) using a collagen sponge as a chondrocyte delivery vehicle, the sponge membrane alone, and empty controls. A total of three distinct types of mechanical analyses were performed on repaired cartilage harvested from horses after 53 weeks of implantation: (1) compressive behavior of samples to measure aggregate modulus (HA) and hydraulic permeability (k) in confined compression; (2) local and global shear modulus using confocal strain mapping; and (3) boundary friction coefficient using a custom-built tribometer. Cartilage defects receiving MACI® implants had equilibrium modulus values that were 70% of normal cartilage, and were not statistically different than normal tissue. Defects filled with Maix™ membrane alone or left empty were only 46% and 51-63% of control, respectively. The shear modulus of tissue from all groups of cartilage defects were between 4 and 10 times lower than control tissue, and range from 0.2 to 0.4 MPa. The average values of boundary mode friction coefficients of control tissue from all groups ranged from 0.42 to 0.52. This study represents an extensive characterization of the mechanical performance of the MACI® grafts implant in a large animal model at 53 weeks. Collectively, these data demonstrate a range of implant performance, revealing similar compressive and frictional properties to native tissue, with inferior shear properties. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
A theoretical equation was derived to predict the spring constant (load/deflection) for a simply supported cylindrical section with a line force applied at the center. Curved leaves of PBN were mechanically deformed and the force versus deflection data was recorded and compared to the derived theoretical equation to yield an effective modulus for each leaf. The effective modulus was found to vary from the pure shear modulus for a flat plate to a mixed mode for a half cylinder as a function of the sine of one half the angular leaf span. The spring constants of individual PBN leaves were usually predicted to within 30%.
NASA Astrophysics Data System (ADS)
Jeanne, Pierre; Rutqvist, Jonny; Hutchings, Lawrence; Singh, Ankit; Dobson, Patrick F.; Walters, Mark; Hartline, Craig; Garcia, Julio
2015-03-01
Using coupled thermal-hydro-mechanical (THM) modeling, we evaluated new seismic tomography results associated with stimulation injection at an EGS demonstration project at the Northwest Geysers geothermal steam field, California. We studied high resolution seismic tomography images built from data recorded during three time periods: a period of two months prior to injection and during two consecutive one month periods after injection started in October 2011. Our analysis shows that seismic velocity decreases in areas of most intense induced microseismicity and this is also correlated with the spatial distribution of calculated steam pressure changes. A detailed analysis showed that shear wave velocity decreases with pressure in areas where pressure is sufficiently high to cause shear reactivation of pre-existing fractures. The analysis also indicates that cooling in a liquid zone around the injection well contributes to reduced shear wave velocity. A trend of reducing compressional wave velocity with fluid pressure was also found, but at pressures much above the pressure required for shear reactivation. We attribute the reduction in shear wave velocity to softening in the rock mass shear modulus associated with shear dislocations and associated changes in fracture surface properties. Also, as the rock mass become more fractured and more deformable this favors reservoir expansion caused by the pressure increase, and so the fracture porosity increases leading to a decrease in bulk density, a decrease in Young modulus and finally a decrease in Vp.
Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.
2014-01-01
Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395
Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.
2011-01-01
Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that deposited ECM contributes to the construct shear properties. Collectively, these findings show that aligned electrospun PCL scaffolds are a promising tool for engineering fibrocartilage tissues, and that the shear properties of both acellular and cell-seeded formulations can match or exceed native tissue benchmarks. PMID:22098865
Direct Shear Failure in Reinforced Concrete Beams under Impulsive Loading
1983-09-01
115 References ............... ............................. 119 Tables . ............................. 124 Figures ............ 1..............30...8217. : = differentiable functions of time 1 = elastic modulus enhancement function 4) 41’ = constants for a given mode W’, = frequency w tfirst thickness-shear...are defined by linear partial differential equations. The analytic results are compared to data gathered on one-way slabs loaded with impulsive blast
NASA Technical Reports Server (NTRS)
Bair, S.; Winer, W. O.
1980-01-01
Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.
Petrovic, Ljubomir M; Zorica, Dusan M; Stojanac, Igor Lj; Krstonosic, Veljko S; Hadnadjev, Miroslav S; Janev, Marko B; Premovic, Milica T; Atanackovic, Teodor M
2015-08-01
In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties. Isothermal experimental study was conducted on a rheometer with parallel plates. In dynamic oscillatory shear test, storage and loss modulus, as well as the complex viscosity where determined. We assumed four different fractional viscoelastic models, each belonging to one particular class, derivable from distributed-order fractional constitutive equation. The restrictions following from the Second law of thermodynamics are imposed on each model. The optimal parameters corresponding to each model are obtained by minimizing the error function that takes into account storage and loss modulus, thus obtaining the best fit to the experimental data. In the frequency range considered, we obtained that for Wave HV and Wave MV there exist a critical frequency for which loss and storage modulus curves intersect, defining a boundary between two different types of behavior: one in which storage modulus is larger than loss modulus and the other in which the situation is opposite. Loss and storage modulus curves for Ice and Wave do not show this type of behavior, having either elastic, or viscous effects dominating in entire frequency range considered. The developed models may be used to predict behavior of four tested composites in different flow conditions (different deformation speed), thus helping to estimate optimal handling characteristics for specific clinical applications. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Konstantinovskaya, E.; Malo, M.; Claprood, M.; Tran-Ngoc, T. D.; Gloaguen, E.; Lefebvre, R.
2012-04-01
The Paleozoic sedimentary succession of the St. Lawrence Platform was characterized to estimate the CO2 storage capacity, the caprock integrity and the fracture/fault stability at the Becancour pilot site. Results are based on the structural interpretation of 25 seismic lines and analysis of 11 well logs and petrophysical data. The three potential storage units of Potsdam, Beekmantown and Trenton saline aquifers are overlain by a multiple caprock system of Utica shales and Lorraine siltstones. The NE-SW regional normal faults dipping to the SE affect the subhorizontal sedimentary succession. The Covey Hill (Lower Potsdam) was found to be the only unit with significant CO2 sequestration potential, since these coarse-grained poorly-sorted fluvial-deltaic quartz-feldspar sandstones are characterized by the highest porosity, matrix permeability and net pay thickness and have the lowest static Young modulus, Poisson's ratio and compressive strength relative to other units. The Covey Hill is located at depths of 1145-1259 m, thus injected CO2 would be in supercritical state according to observed salinity, temperature and fluid pressure. The calcareous Utica shale of the regional seal is more brittle and has higher Young modulus and lower Poisson's ratio than the overlying Lorraine shale. The 3D geological model is kriged using the tops of the geological formations recorded at wells and picked travel times as external drift. The computed CO2 storage capacity in the Covey Hill sandstones is estimated by the volumetric and compressibility methods as 0.22 tons/km2 with storage efficiency factor E 2.4% and 0.09 tons/km2 with E 1%, respectively. A first set of numerical radial simulations of CO2 injection into the Covey Hill were carried out with TOUGH2/ECO2N. A geomechanical analysis of the St. Lawrence Platform sedimentary basin provides the maximum sustainable fluid pressures for CO2 injection that will not induce tensile fracturing and shear reactivation along pre-existing fractures and faults in the caprock. The regional stresses/pressure gradients estimated for the Paleozoic sedimentary basin (depths < 4 km) indicate a strike-slip stress regime. The average maximum horizontal stress orientation (SHmax) is estimated N62.8°E±4.0° in the Becancour-Notre Dame area. The high-angle NE-SW Yamaska normal fault is oriented at 16.7° to the SHmax orientation in the Becancour site. The slip tendency along the fault in this area is estimated to be 0.47 based on the stress magnitude and rock strength evaluations for the borehole breakout intervals in local wells. The regional pore pressure-stress coupling ratio under assumed parameters is about 0.5-0.65 and may contribute to reduce the risk of shear reactivation of faults and fractures. The maximum sustainable fluid pressure that would not cause opening of vertical tensile fractures during CO2 operations is about 18.5-20 MPa at a depth of 1 km.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2003-01-01
We report on laboratory measurements of compressional- and shear-wave speeds in a compacted, polycrystalline ice-Ih sample. The sample was made from triply distilled water that had been frozen into single crystal ice, ground into small grains, and sieved to extract the 180250 µm diameter fraction. Porosity was eliminated from the sample by compacting the granular ice between a hydraulically driven piston and a fixed end plug, both containing shear-wave transducers. Based on simultaneous compressional- and shear-wave-speed measurements, we calculated Poisson's ratio and compressional-wave, bulk, and shear moduli from 20 to 5°C and 22 to 33 MPa.
NASA Technical Reports Server (NTRS)
Kumose, M.; Gentz, M.; Rupnowski, P.; Armentrout, D.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
A major limitation of woven fiber/polymer matrix composite systems is the inability of these materials to resist intralaminar and interlaminar damage initiation and propagation under shear-dominated biaxial loading conditions. There are numerous shear test methods for woven fabric composites, each with its own advantages and disadvantages. Two techniques, which show much potential, are the Iosipescu shear and +/- 45 deg tensile tests. In this paper, the application of these two tests for the room and high temperature failure analyses of woven graphite/polyimide composites is briefly evaluated. In particular, visco-elastic micro, meso, and macro-stress distributions in a woven eight harness satin (8HS) T650/PMR-15 composite subjected to these two tests are presented and their effect on the failure process of the composite is evaluated. Subsequently, the application of the Iosipescu tests to the failure analysis of woven composites with medium (T650) and high (M40J and M60J) modulus graphite fibers and PMR-15 and PMR-II-50 polyimide resins is discussed. The composites were tested as-supplied and after thermal conditioning. The effect of temperature and thermal conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Jeffrey H.; Akin, Minta C.; Chau, Ricky
2015-07-01
Here, we respond to the Comment by Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] on their reinterpretation of our published data [Nguyen et al., Phys. Rev. B 89, 174109 (2014)]. In the original paper, we argued that there is no solid-solid phase transition along the Hugoniot at 2.1 Mbars. There is, however, a softening of the shear modulus starting at 2.6 Mbars. Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] reinterpreted our data and concluded that there is a structural change near 2.3 Mbars on the Hugoniot. Finally, we will explore the differences and agreements in themore » two interpretations of our data.« less
Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures
Haglund, A.; Koehler, M.; Catoor, D.; ...
2014-12-05
A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less
Elastic moduli in nano-size samples of amorphous solids: System size dependence
NASA Astrophysics Data System (ADS)
Cohen, Yossi; Procaccia, Itamar
2012-08-01
This letter is motivated by some recent experiments on pan-cake-shaped nano-samples of metallic glass that indicate a decline in the measured shear modulus upon decreasing the sample radius. Similar measurements on crystalline samples of the same dimensions showed a much more modest change. In this letter we offer a theory of this phenomenon; we argue that such results are generically expected for any amorphous solid, with the main effect being related to the increased contribution of surfaces with respect to the bulk when the samples get smaller. We employ exact relations between the shear modulus and the eigenvalues of the system's Hessian matrix to explore the role of surface modes in affecting the elastic moduli.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
NASA Astrophysics Data System (ADS)
Guechi, N.; Bouhemadou, A.; Bin-Omran, S.; Bourzami, A.; Louail, L.
2018-02-01
We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin-orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young's modulus and Poisson's ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (˜ 25 × 104 {cm}^{ - 1} ) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.
Tensile strength of Iß crystalline cellulose predicted by molecular dynamics simulation
Xiawa Wu; Robert J. Moon; Ashlie Martini
2014-01-01
The mechanical properties of IÃ crystalline cellulose are studied using molecular dynamics simulation. A model IÃ crystal is deformed in the three orthogonal directions at three different strain rates. The stress-strain behaviors for each case are analyzed and then used to calculate mechanical properties. The results show that the elastic modulus, Poisson's ratio...
NASA Astrophysics Data System (ADS)
Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael
2011-08-01
In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.
Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids
NASA Astrophysics Data System (ADS)
Rénier, Mathieu; Gennisson, Jean-Luc; Barrière, Christophe; Catheline, Stefan; Tanter, Mickaël; Royer, Daniel; Fink, Mathias
2008-06-01
Recently a nonlinear equation describing the plane shear wave propagation in isotropic quasi-incompressible media has been developed using a new expression of the strain energy density, as a function of the second, third and fourth order shear elastic constants (respectively μ, A, D) [1]. In such a case, the shear nonlinearity parameter βs depends only from these last coefficients. To date, no measurement of the parameter D have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids are measured. Firstly, this theoretical background is applied to the acoustoelasticity theory, giving the variations of the shear wave speed as a function of the stress applied to the medium. From such variations, both linear (μ) and third order shear modulus (A) are deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a focused ultrasound beam is used to generate quasi-plane linear shear waves within the medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force generation technique is replaced by a vibrating plate applied at the surface of the phantoms. The propagation is also imaged using the same ultrafast scanner. From the assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. Finally, combining these results with the acoustoelasticity experiment, the fourth order modulus (D) is deduced. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. Measurements of the A moduli reveal that while the behaviors of both soft solids are close from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30±10 kPa.
Measured iron-gallium alloy tensile properties under magnetic fields
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Flatau, Alison B.
2004-07-01
Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.
Correlated Time-Variation of Asphalt Rheology and Bulk Microstructure
NASA Astrophysics Data System (ADS)
Ramm, Adam; Nazmus, Sakib; Bhasin, Amit; Downer, Michael
We use noncontact optical microscopy and optical scattering in the visible and near-infrared spectrum on Performance Grade (PG) asphalt binder to confirm the existence of microstructures in the bulk. The number of visible microstructures increases linearly as penetration depth of the incident radiation increases, which verifies a uniform volume distribution of microstructures. We use dark field optical scatter in the near-infrared to measure the temperature dependent behavior of the bulk microstructures and compare this behavior with Dynamic Shear Rheometer (DSR) measurements of the bulk complex shear modulus | G* (T) | . The main findings are: (1) After reaching thermal equilibrium, both temperature dependent optical scatter intensity (I (T)) and bulk shear modulus (| G* (T) |) continue to change appreciably for times much greater than thermal equilibration times. (2) The hysteresis behavior during a complete temperature cycle seen in previous work derives from a larger time dependence in the cooling step compared with the heating step. (3) Different binder aging conditions show different thermal time-variations for both I (T) and | G* (T) | .
Atypical soil hardening during the Tohoku earthquake of March 11, 2011 ( M w = 9.0)
NASA Astrophysics Data System (ADS)
Pavlenko, O. V.
2017-10-01
Based on the records of KiK-net vertical arrays, models of soil behavior down to depths of 100-200 m in the near-fault zones during the Tohoku earthquake are examined. In contrast to the regular pattern observed during strong earthquakes, soft soils have not broadly demonstrated nonlinear behavior, or a reduction (with the onset of strong motions) and recovery (after strong motions finished) of the shear modulus in soil layers. At the stations where anomalously high peak ground accelerations were recorded (PGA > 1g), the values of the shear modulus in soil layers increased with the onset of strong motions and reached a maximum when motions were the most intensive, which indicated hardening of soils. Soil behavior was close to linear, here. The values of the shear moduli decrease along with a decrease in intensity of strong ground motions, and at soft soil stations, this was accompanied by a stepwise decrease in the frequency of motion.
Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments
Lee, M.W.
2006-01-01
Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.
2018-05-01
Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.
Cheng Guan; Houjiang Zhang; Xiping Wang; Hu Miao; Lujing Zhou; Fenglu Liu
2017-01-01
Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by...
NASA Astrophysics Data System (ADS)
Chanyshev, AI; Belousova, OE
2018-03-01
The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.
Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering.
Ranganathan, Shivakumar I; Yoon, Diana M; Henslee, Allan M; Nair, Manitha B; Smid, Christine; Kasper, F Kurtis; Tasciotti, Ennio; Mikos, Antonios G; Decuzzi, Paolo; Ferrari, Mauro
2010-09-01
Mechanical stiffness is a fundamental parameter in the rational design of composites for bone tissue engineering in that it affects both the mechanical stability and the osteo-regeneration process at the fracture site. A mathematical model is presented for predicting the effective Young's modulus (E) and shear modulus (G) of a multi-phase biocomposite as a function of the geometry, material properties and volume concentration of each individual phase. It is demonstrated that the shape of the reinforcing particles may dramatically affect the mechanical stiffness: E and G can be maximized by employing particles with large geometrical anisotropy, such as thin platelet-like or long fibrillar-like particles. For a porous poly(propylene fumarate) (60% porosity) scaffold reinforced with silicon particles (10% volume concentration) the Young's (shear) modulus could be increased by more than 10 times by just using thin platelet-like as opposed to classical spherical particles, achieving an effective modulus E approximately 8 GPa (G approximately 3.5 GPa). The mathematical model proposed provides results in good agreement with several experimental test cases and could help in identifying the proper formulation of bone scaffolds, reducing the development time and guiding the experimental testing. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Microstructural Design for Stress Wave Energy Management
2013-04-01
Polyurea based foam 7 4) Controlling transmission and reflection of pressure and shear waves in a multilayered anisotropic structure 10 5... Polyurea based foam consists of several factors including high energy absorption, light weight, higher elastic modulus to density ratio (compared with... Polyurea ), and collapsible voids under extreme loading. Pure Polyurea offers unique properties such as increased shear stiffness under large pressure
First-principles calculations of shear moduli for Monte Carlo-simulated Coulomb solids
NASA Technical Reports Server (NTRS)
Ogata, Shuji; Ichimaru, Setsuo
1990-01-01
The paper presents a first-principles study of the shear modulus tensor for perfect and imperfect Coulomb solids. Allowance is made for the effects of thermal fluctuations for temperatures up to the melting conditions. The present theory treats the cases of the long-range Coulomb interaction, where volume fluctuations should be avoided in the Ewald sums.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady
2017-09-01
Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (˜ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (˜ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.
Seguin, Johanne; Mignet, Nathalie; Latorre Ossa, Heldmuth; Tanter, Mickaël; Gennisson, Jean-Luc
2017-10-01
A recent ultrasound imaging technique-shear wave elastography-showed its ability to image and quantify the mechanical properties of biological tissues, such as prostate or liver tissues. In the present study this technique was used to evaluate the relationship among tumor growth, stiffness and reduction of treatment with combretastatin (CA4 P) in allografted colon tumor CT26 in mice. During 12 d, CT26 tumor growth (n = 52) was imaged by ultrasound, and shear modulus was quantified, showing a good correlation between tumor volume and stiffness (r = 0.59). The treatment was initiated at d 12 and monitored every d during 4 d. Following the treatment, the tumor volume had decreased, while the elasticity of the tumor volume remained steady throughout the treatment. After segmentation using the shear modulus map, a detailed analysis showed a decrease in the stiffness after treatment. This reduction in the mechanical properties was shown to correlate with tissue reorganization, particularly, fibrosis and necrosis, assessed by histology. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Measurements of vocal fold tissue viscoelasticity: Approaching the male phonatory frequency range
NASA Astrophysics Data System (ADS)
Chan, Roger W.
2004-06-01
Viscoelastic shear properties of human vocal fold tissues have been reported previously. However, data have only been obtained at very low frequencies (<=15 Hz). This necessitates data extrapolation to the frequency range of phonation based on constitutive modeling and time-temperature superposition. This study attempted to obtain empirical measurements at higher frequencies with the use of a controlled strain torsional rheometer, with a design of directly controlling input strain that introduced significantly smaller system inertial errors compared to controlled stress rheometry. Linear viscoelastic shear properties of the vocal fold mucosa (cover) from 17 canine larynges were quantified at frequencies of up to 50 Hz. Consistent with previous data, results showed that the elastic shear modulus (G'), viscous shear modulus (G''), and damping ratio (ζ) of the vocal fold mucosa were relatively constant across 0.016-50 Hz, whereas the dynamic viscosity (ɛ') decreased monotonically with frequency. Constitutive characterization of the empirical data by a quasilinear viscoelastic model and a statistical network model demonstrated trends of viscoelastic behavior at higher frequencies generally following those observed at lower frequencies. These findings supported the use of controlled strain rheometry for future investigations of the viscoelasticity of vocal fold tissues and phonosurgical biomaterials at phonatory frequencies.
Schuldt, Carsten; Karl, Anett; Körber, Nicole; Koch, Christian; Liu, Qing; Fritsch, Anatol W; Reichenbach, Andreas; Wiedemann, Peter; Käs, Josef A; Francke, Mike; Iseli, Hans Peter
2015-08-01
To determine the visco-elastic properties of isolated rabbit scleral tissue and dose-dependent biomechanical and morphological changes after collagen cross-linking by riboflavin/blue light treatment. Scleral patches from 87 adult albino rabbit eyes were examined by dynamic shear rheology. Scleral patches were treated by riboflavin and different intensities of blue light (450 nm), and the impact on the visco-elastic properties was determined by various rheological test regimes. The relative elastic modulus was calculated from non-treated and corresponding treated scleral patches, and treatments with different blue light intensities were compared. Shear rheology enables us to study the material properties of scleral tissue within physiological relevant parameters. Cross-linking treatment increased the viscous as well as the elastic modulus and changed the ratio of the elastic versus viscous proportion in scleral tissue. Constant riboflavin application combined with different blue light intensities from 12 mW/cm(2) up to 100 mW/cm(2) increased the relative elastic modulus of scleral tissue by factors up to 1.8. Further enhancement of the applied light intensity caused a decline of the relative elastic modulus. This might be due to destructive changes of the collagen bundle structure at larger light intensities, as observed by histological examination. Collagen cross-linking by riboflavin/blue light application increases the biomechanical stiffness of the sclera in a dose-dependent manner up to certain light intensities. Therefore, this treatment might be a suitable therapeutic approach to stabilize the biomechanical properties of scleral tissue in cases of pathological eye expansion. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Rosskopf, Andrea B; Bachmann, Elias; Snedeker, Jess G; Pfirrmann, Christian W A; Buck, Florian M
2016-11-01
The purpose of this study is to compare the reliability of SW velocity measurements of two different ultrasound systems and their correlation with the tangent traction modulus in a non-static tendon strain model. A bovine tendon was fixed in a custom-made stretching device. Force was applied increasing from 0 up to 18 Newton. During each strain state the tangent traction modulus was determined by the stretcher device, and SW velocity (m/s) measurements using a Siemens S3000 and a Supersonic Aixplorer US machine were done for shear modulus (kPa) calculation. A strong significant positive correlation was found between SW velocity assessed by the two ultrasound systems and the tangent traction modulus (r = 0.827-0.954, p < 0.001), yet all SW velocity-based calculations underestimated the reference tissue tangent modulus. Mean difference of SW velocities with the S3000 was 0.44 ± 0.3 m/s (p = 0.002) and with the Aixplorer 0.25 ± 0.3 m/s (p = 0.034). Mean difference of SW velocity between the two US-systems was 0.37 ± 0.3 m/s (p = 0.012). In conclusion, SW velocities are highly dependent on mechanical forces in the tendon tissue, but for controlled mechanical loads appear to yield reproducible and comparable measurements using different US systems.
Comparative study of viscoelastic properties using virgin yogurt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimonte, G.; Nelson, D.; Weaver, S.
We describe six different tests used to obtain a consistent set of viscoelastic properties for yogurt. Prior to yield, the shear modulus {mu} and viscosity {eta} are measured nondestructively using the speed and damping of elastic waves. Although new to foodstuffs, this technique has been applied to diverse materials from metals to the earth{close_quote}s crust. The resultant shear modulus agrees with {mu}{approximately}E/3 for incompressible materials, where the Young{close_quote}s modulus E is obtained from a stress{endash}strain curve in compression. The tensile yield stress {tau}{sub o} is measured in compression and tension, with good agreement. The conventional vane and cone/plate rheometers measuredmore » a shear stress yield {tau}{sub os}{approximately}{tau}{sub o}/{radical} (3) , as expected theoretically, but the inferred {open_quotes}apparent{close_quotes} viscosity from the cone/plate rheometer is much larger than the wave measurement due to the finite yield ({tau}{sub os}{ne}0). Finally, we inverted an open container of yogurt for 10{sup 6} s{gt}{eta}/{mu} and observed no motion. This demonstrates unequivocally that yogurt possesses a finite yield stress rather than a large viscosity. We present a constitutive model with a pre-yield viscosity to describe the damping of the elastic waves and use a simulation code to describe yielding in complex geometry. {copyright} {ital 1998 Society of Rheology.}« less
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
Cao, Zhen; Stevens, Mark J.; Carrillo, Jan-Michael Y.; ...
2015-01-16
We use a combination of the molecular dynamics simulations and scaling analysis to study interactions between gel-like nanoparticles and substrates covered with rectangular shape posts. Our simulations have shown that nanoparticle in contact with substrate undergo first order transition between Wenzel and Cassie-Baxter state which location depends on nanoparticle shear modulus, the strength of nanoparticle-substrate interactions, height of the substrate posts and nanoparticle size, R p. There is a range of system parameters where these two states coexist such that the average indentation δ produced by substrate posts changes monotonically with nanoparticle shear modulus, G p. We have developed amore » scaling model that describes deformation of nanoparticle in contact with patterned substrate. In the framework of this model the effect of the patterned substrate can be taken into account by introducing an effective work of adhesion, W eff, which describes the first order transition between Wenzel and Cassie-Baxter states. There are two different shape deformation regimes for nanoparticles with shear modulus G p and surface tension γ p. Shape of small nanoparticles with size R p < γ p 3/2G p -1 W eff -1/2 is controlled by capillary forces while deformation of large nanoparticles, R p > γ p 3/2G p -1 W eff -1/2« less
Chen, Da; Zheng, Xiaoyu
2018-06-14
Nature has evolved with a recurring strategy to achieve unusual mechanical properties through coupling variable elastic moduli from a few GPa to below KPa within a single tissue. The ability to produce multi-material, three-dimensional (3D) micro-architectures with high fidelity incorporating dissimilar components has been a major challenge in man-made materials. Here we show multi-modulus metamaterials whose architectural element is comprised of encoded elasticity ranging from rigid to soft. We found that, in contrast to ordinary architected materials whose negative Poisson's ratio is dictated by their geometry, these type of metamaterials are capable of displaying Poisson's ratios from extreme negative to zero, independent of their 3D micro-architecture. The resulting low density metamaterials is capable of achieving functionally graded, distributed strain amplification capabilities within the metamaterial with uniform micro-architectures. Simultaneous tuning of Poisson's ratio and moduli within the 3D multi-materials could open up a broad array of material by design applications ranging from flexible armor, artificial muscles, to actuators and bio-mimetic materials.
The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw
2014-05-15
The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less
Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition
NASA Astrophysics Data System (ADS)
Baity-Jesi, Marco; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.; Sethna, James P.
2017-05-01
We study the shear jamming of athermal frictionless soft spheres, and find that in the thermodynamic limit, a shear-jammed state exists with different elastic properties from the isotropically-jammed state. For example, shear-jammed states can have a non-zero residual shear stress in the thermodynamic limit that arises from long-range stress-stress correlations. As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems vanishes as the jamming transition is approached from above, instead approaches a constant. Despite these striking differences, we argue that in a deeper sense, the shear jamming and isotropic jamming transitions actually have the same symmetry, and that the differences can be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.
A mathematical model of force transmission from intrafascicularly terminating muscle fibers.
Sharafi, Bahar; Blemker, Silvia S
2011-07-28
Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Experimental Validation of the Transverse Shear Behavior of a Nomex Core for Sandwich Panels
NASA Astrophysics Data System (ADS)
Farooqi, M. I.; Nasir, M. A.; Ali, H. M.; Ali, Y.
2017-05-01
This work deals with determination of the transverse shear moduli of a Nomex® honeycomb core of sandwich panels. Their out-of-plane shear characteristics depend on the transverse shear moduli of the honeycomb core. These moduli were determined experimentally, numerically, and analytically. Numerical simulations were performed by using a unit cell model and three analytical approaches. Analytical calculations showed that two of the approaches provided reasonable predictions for the transverse shear modulus as compared with experimental results. However, the approach based upon the classical lamination theory showed large deviations from experimental data. Numerical simulations also showed a trend similar to that resulting from the analytical models.
Chan, R W
2001-09-01
Empirical data on the viscoelastic shear properties of human vocal-fold mucosa (cover) were recently reported at relatively low frequency (0.01-15 Hz). For the data to become relevant to voice production, attempts have been made to parametrize and extrapolate the data to higher frequencies using constitutive modeling [Chan and Titze, J. Acoust. Soc. Am. 107, 565-580 (2000)]. This study investigated the feasibility of an alternative approach for data extrapolation, namely the principle of time-temperature superposition (TTS). TTS is a hybrid theoretical-empirical approach widely used by rheologists to estimate the viscoelastic properties of polymeric systems at time or frequency scales not readily accessible experimentally. It is based on the observation that for many polymers, the molecular configurational changes that occur in a given time scale at a low temperature correspond to those that occur in a shorter time scale at a higher temperature. Using a rotational rheometer, the elastic shear modulus (G') and viscous shear modulus (G'') of vocal-fold cover (superficial layer of lamina propria) tissue samples were measured at 0.01-15 Hz at relatively low temperatures (5 degrees-37 degrees C). Data were empirically shifted according to TTS, yielding composite "master curves" for predicting the magnitude of the shear moduli at higher frequencies at 37 degrees C. Results showed that TTS may be a feasible approach for estimating the viscoelastic shear properties of vocal-fold tissues at frequencies of phonation (on the order of 100-1000 Hz).
NASA Astrophysics Data System (ADS)
Becker, Matthew Rand
I present a new algorithm, CALCLENS, for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift- dependent shear signals including corrections to the Born approximation by using multiple- plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (~10,000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy ( ≲ 1%) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogs to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
NASA Astrophysics Data System (ADS)
Becker, Matthew R.
2013-10-01
I present a new algorithm, Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS (CALCLENS), for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (˜10 000 square degrees) can be ray traced efficiently at high resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy (≲1 per cent) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogues to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Modeling and optimization of an elastic arthroplastic disc for a degenerated disc
NASA Astrophysics Data System (ADS)
Ghouchani, Azadeh; Ravari, Mohammad; Mahmoudi, Farid
2011-10-01
A three-dimensional finite element model (FEM) of the L3-L4 motion segment using ABAQUS v 6.9 has been developed. The model took into account the material nonlinearities and is imposed different loading conditions. In this study, we validated the model by comparison of its predictions with several sets of experimental data. Disc deformation under compression and segmental rotational motions under moment loads for the normal disc model agreed well with the corresponding in vivo studies. By linking ABAQUS with MATLAB 2010.a, we determined the optimal Young s modulus as well as the Poisson's ratio for the artificial disc under different physiologic loading conditions. The results of the present study confirmed that a well-designed elastic arthroplastic disc preferably has an annulus modulus of 19.1 MPa and 1.24 MPa for nucleus section and Poisson ratio of 0.41 and 0.47 respectively. Elastic artificial disc with such properties can then achieve the goal of restoring the disc height and mechanical function of intact disc under different loading conditions and so can reduce low back pain which is mostly caused due to disc degeneration.
Influence of metal bonding layer on strain transfer performance of FBG
NASA Astrophysics Data System (ADS)
Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun
2013-01-01
Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.
NASA Astrophysics Data System (ADS)
Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie
2007-10-01
We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.
Bao-lin, Liu; Hai-yan, Zhu; Chuan-liang, Yan; Zhi-jun, Li; Zhi-qiao, Wang
2014-01-01
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations. PMID:24778592
Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao
2014-01-01
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.
Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam
2013-02-01
Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al(2)O(3) particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al(2)O(3). The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al(2)O(3) phantom at a depth of 52.4 and 36.6 mm, respectively. PAA mixed with Al(2)O(3) provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue.
Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam
2013-01-01
Purpose: Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Methods: Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Results: Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al2O3 particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al2O3. The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al2O3 phantom at a depth of 52.4 and 36.6 mm, respectively. Conclusions: PAA mixed with Al2O3 provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue. PMID:23387774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Xiaoma; Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906; Wang, Ziru
2016-05-15
The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement withmore » experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.« less
Cell model and elastic moduli of disordered solids - Low temperature limit
NASA Technical Reports Server (NTRS)
Peng, S. T. J.; Landel, R. F.; Moacanin, J.; Simha, Robert; Papazoglou, Elisabeth
1987-01-01
The cell theory has been previously employed to compute the equation of state of a disordered condensed system. It is now generalized to include anisotropic stresses. The condition of affine deformation is adopted, transforming an orginally spherical into an ellipsoidal cell. With a Lennard-Jones n-m potential between nonbonded centers, the formal expression for the deformational free energy is derived. It is to be evaluated in the limit of the linear elastic range. Since the bulk modulus in this limit is already known, it is convenient to consider a uniaxial deformation. To begin with, restrictions are made to the low-temperature limit in the absence of entropy contributions. Young's modulus and Poisson's ratio then follow.
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.
David E. Kretschmann
2008-01-01
Forest products from improved trees grown on managed plantations and harvested in short rotations will contain higher proportions of juvenile wood than in current harvests. More information is needed on the influence of juvenile wood on lumber properties. Most information developed to date has concentrated on ultimate tensile stress, modulus of rupture, and modulus of...
Stress Wave Interactions with Tunnels Buried in Well-Characterized Jointed Media.
1980-06-01
27 14 Particle Velocity and Principal Stress Fields at 62 jisec for the Elastic- Plastic Media Model (Case 1, 0.8 kbar...is used; the basic formulation is similar to the HEMP code (Ref. 3) . Tn numerical solutions and material properties are luscriben in Section 3. 3...media is 16A rock simulant. The elastic- plastic properties are modeled with the following parameters: Bulk Modulus K = .131 Mbar Shear Modulus G
Exploratory Development of Improved Fatigue Strength Adhesives
1974-11-01
fiber reinforced adhesives. A fifty-fold in-j crease in fatigue life at equivalent stress levels was achieved when a woven high modulus graphite...the stress level which could survive 10’ fatigue cycles was increased from approximately 30 percent of the ultimate shear strength with nylor knit...supports to as much as fifty percent with the high modulus fiber bond line reinforcement. The stress level which could withstand 10’ fatigue cycles
Elastography Study of Hamstring Behaviors during Passive Stretching
Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine
2015-01-01
Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862
Nusheng Chen; Junyong Zhu; Zhaohui Tong
2016-01-01
This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...
Imaging Feedback of Histotripsy Treatments Using Ultrasound Shear Wave Elastography
Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.
2013-01-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young’s modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young’s modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions’ Young’s modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change. PMID:22711412
Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2012-06-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change.
Elastic properties of gas hydrate-bearing sediments
Lee, M.W.; Collett, T.S.
2001-01-01
Downhole-measured compressional- and shear-wave velocities acquired in the Mallik 2L-38 gas hydrate research well, northwestern Canada, reveal that the dominant effect of gas hydrate on the elastic properties of gas hydrate-bearing sediments is as a pore-filling constituent. As opposed to high elastic velocities predicted from a cementation theory, whereby a small amount of gas hydrate in the pore space significantly increases the elastic velocities, the velocity increase from gas hydrate saturation in the sediment pore space is small. Both the effective medium theory and a weighted equation predict a slight increase of velocities from gas hydrate concentration, similar to the field-observed velocities; however, the weighted equation more accurately describes the compressional- and shear-wave velocities of gas hydrate-bearing sediments. A decrease of Poisson's ratio with an increase in the gas hydrate concentration is similar to a decrease of Poisson's ratio with a decrease in the sediment porosity. Poisson's ratios greater than 0.33 for gas hydrate-bearing sediments imply the unconsolidated nature of gas hydrate-bearing sediments at this well site. The seismic characteristics of gas hydrate-bearing sediments at this site can be used to compare and evaluate other gas hydrate-bearing sediments in the Arctic.
Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1974-01-01
Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.
Use of the laboratory tests of soil modulus in modelling pile behaviour
NASA Astrophysics Data System (ADS)
Dyka, Ireneusz
2012-10-01
This article deals with the question of theoretical description of behaviour of a single pile rested in a layered soil medium. Particular attention is paid to soil modulus which is used in calculation method for pile load-settlement curve. A brief analysis of the results obtained by laboratory tests to assess soil modulus and its nonlinear variability has been presented. The results of tests have been used in triaxial apparatus and resonant column/torsional shear device. There have also been presented the results of load-settlement calculation for a single pile under axial load with implementation of different models of soil modulus degradation. On this basis, possibilities of using particular kinds of laboratory tests in calculation procedure of foundation settlement have been presented as well as further developments of them.
Elasticity of Pargasite Amphibole: A Hydrous Phase at Mid Lithospheric Discontinuity
NASA Astrophysics Data System (ADS)
Peng, Y.; Mookherjee, M.
2017-12-01
Mid Lithospheric Discontinuity (MLD) is characterized by a low shear wave velocity ( 3 to 10 %). In cratons, the depth of MLD varies between 80 and 100 km. The reduction of the shear wave velocity at MLD is similar to what is observed in the lithosphere-asthenosphere boundary (LAB). Such low velocity at MLD could be caused by partial melting, temperature induced grain boundary sliding, changes in the elastic anisotropy, and/or metasomatism which may lead to the formation of hydrous phases including mica and amphibole. Thus, it is clear that in order to assess the role of metasomatism at MLD, we need better constraints on the elasticity of hydrous phases. However, such elasticity data are scarce. In this study, we explore elasticity of pargasite amphibole [NaCa2(Mg4Al)(Si6Al2)O22(OH)2] using density functional theory (DFT) with local density approximation (LDA) and generalized gradient approximation (GGA). We find that the pressure-volume results can be adequately described by a finite strain equation with the bulk modulus, K0 being 102 and 85 GPa for LDA and GGA respectively. We also determined the full elastic constant tensor (Cij) using the finite difference method. The bulk modulus, K0 determined from the full elastic constant tensor is 104 GPa for LDA and 87 GPa for GGA. The shear modulus, G0 determined from the full elastic constant tensor is 64 GPa for LDA and 58 GPa for GGA. The bulk and shear moduli predicted with LDA are 5 and 1 % stiffer than the recent results [1]. In contrast, the bulk and shear moduli predicted with GGA are 12 and 10 % softer compared to the recent results [1]. The full elastic constant tensor for pargasite shows significant anisotropy. For instance, LDA predicts compressional (AVP) and shear (AVS) wave anisotropy of 22 and 20 % respectively. At higher pressure, elastic moduli stiffen. However, temperature is likely to have an opposite effect on the elasticity and this remains largely unknown for pargasite. Compared to the major mantle minerals, pargasite has softer elastic constants and significant anisotropy and may explain the reduction in shear wave velocity at MLD. Reference: [1] Brown, J. M., Abramson, E. H.,2016, Phys. Earth Planet. Int., 261, 161-171. Acknowledgement: This work is supported by US NSF award EAR 1639552.
NASA Astrophysics Data System (ADS)
Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves
2017-12-01
Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es
The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less
Investigation of the phase velocities of guided acoustic waves in soft porous layers.
Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F
2005-02-01
A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.
Preparation and elastic moduli of germanate glass containing lead and bismuth.
Sidek, Hj A A; Bahari, Hamid R; Halimah, Mohamed K; Yunus, Wan M M
2012-01-01
This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
Ghanbari, J; Naghdabadi, R
2009-07-22
We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.
Research of carbon composite material for nonlinear finite element method
NASA Astrophysics Data System (ADS)
Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon
2012-04-01
Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.
Scaling Problems for Wave Propagation in Layered Systems. Volume 2
1989-09-01
PROPERTIES OF ALUMINIUM , LEXAN AND CONCRETE ^lumiunui Lexan Concrete* Bulk Modulus (Gpa) 80 3.47 13.1 Shear Modulus (Gpa) 30 0.90 9.4 Density (kg/’m3...783 TXXii3. TZZW=O. SzX11=0. EhiO. S 0J . zDKiEi=xD (LVABI5) YDliki!D WLAF.4) F T 3. 1 8011 = 0. 1ASSSD. L 3= LVIRS C-PI1, THE COOBD. OF CELLS AROUND
Density and mechanical properties of calcium aluminate cement
NASA Astrophysics Data System (ADS)
Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem
2018-04-01
Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.
Three-dimensional motion and deformation of a red blood cell in bifurcated microvessels
NASA Astrophysics Data System (ADS)
Ye, Ting; Peng, Lina; Li, Yu
2018-02-01
Microvessels are generally not simple straight tubes, but rather they continually bifurcate (namely, diverging bifurcation) and merge with other microvessels (namely, converging bifurcation). This paper presents a simulation study on the three-dimensional motion and deformation of a red blood cell (RBC) in a bifurcated microvessel with both diverging and converging bifurcations. The motion of the fluids inside and outside of the RBC is modeled by smooth dissipative particle dynamics. The RBC membrane is modeled as a triangular network, having the ability to not only resist the stretching and bending deformations, but also to conserve the RBC volume and surface area. The bifurcation configurations have been studied, including the bifurcated angle and the branch diameter, as well as the RBC properties, including the initial shape, shear modulus, and bending modulus. The simulation results show that the RBC deformation can be divided into five stages, when the RBC flows through a diverging-converging bifurcated microvessel. In these five stages, the RBCs have similar deformation trends but different deformation indices, subject to different bifurcation configurations or different RBC properties. If the shear modulus is large enough, the RBC membrane presents several folds; if the bending modulus is large enough, the RBC loses the symmetry completely with the long shape. These results are helpful in understanding the motion and deformation of healthy or unhealthy cells in blood microcirculation.
Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_
NASA Astrophysics Data System (ADS)
Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.
This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.
NASA Astrophysics Data System (ADS)
Jha, Praveen Kumar; Mahto, Vikas; Saxena, Vinod Kumar
2018-05-01
A new type of oil-in-water (O/W) Pickering emulsion systems, which were prepared by polymers such as xanthan gum, carboxymethyl cellulose (CMC), and sodium lignosulfonate have been investigated for their properties as multifunctional emulsion muds with respect to rheological control and filtration control properties. Diesel oil was used as dispersed phase and KCl-brine as continuous phase in the developed emulsions. Initially, rheological parameters like apparent viscosity, plastic viscosity, gel strength, and filtration control properties were measured using recommended practices. Emulsion stability was analyzed using steady state shear stress-shear rate and oscillatory (dynamic) rheological measurement techniques. The emulsions were found to exhibit shear-thinning (pseudoplastic) behavior. Experiments conducted for oscillatory rheological measurements have shown that emulsions are stable as per the stability criteria G' (elastic modulus) > G'' (loss modulus) and both are independent of changing ω (Frequency). These fluids have shown stable properties upto 70°C which shows that they can be used as drilling muds for drilling oil and gas wells.
Thermomechanical Testing Techniques for Microcircuits.
1975-05-01
nodel thermal resistances ana the thermal capacitance (Wcp) for each node were determined. In order to calculate these values , the thermophysical ...present analysis by substituting the appropriate property values for methyl alcohol in place of those for Freon. A check was then made to determine... properties were assumed: GLASS ALLOY 42 ALTJMINA Elastic Modulus, psi 7.34 x 106 22 x 106 48 x 106 Poisson’s Ratio .294
Phase transition and strength of vanadium under shock compression up to 88 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuying, E-mail: yuyinyu@caep.cn; Tan, Ye; Dai, Chengda
A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than themore » BCC phase, which is contrast to the findings from DAC experiments and theoretical work.« less
NASA Astrophysics Data System (ADS)
Xu, H.; Wittmer, J. P.; Polińska, P.; Baschnagel, J.
2012-10-01
The truncation of a pair potential at a distance rc is well known to imply, in general, an impulsive correction to the pressure and other moments of the first derivatives of the potential. That, depending on rc, the truncation may also be of relevance to higher derivatives is shown theoretically for the Born contributions to the elastic moduli obtained using the stress-fluctuation formalism in d dimensions. Focusing on isotropic liquids for which the shear modulus G must vanish by construction, the predicted corrections are tested numerically for binary mixtures and polydisperse Lennard-Jones beads in, respectively, d=3 and 2 dimensions. Both models being glass formers, we comment briefly on the temperature (T) dependence of the (corrected) shear modulus G(T) around the glass transition temperature Tg.
Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems
NASA Astrophysics Data System (ADS)
Sandwell, David; Smith-Konter, Bridget
2018-05-01
We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.
NASA Astrophysics Data System (ADS)
Zaikin, Yu. A.; Kozhamkulov, B. A.; Koztaeva, U. P.
1997-07-01
A study is made of mechanical relaxation mechanisms and the correlation between parameters characterizing the temperature dependence of internal friction and shear modulus when the mechanical and electrical properties of glass-textolites of grades ST-11 and ST-ETF are altered by exposure to different doses of high-energy electrons. High-temperature α- and α'- transformation are observed, these transformations being due to the unfreezing of segmental mobility in the polymer matrix and the boundary layers at the surfaces of the glass fibers under the influence of the radiation. A discussion is presented of features of radiation-induced degradation processes in the polymer binder and at points where it contacts the filler. The data that is obtained shows that glass-texolites ST-ETF and ST-11 are highly resistant to radiation.
Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.
Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai
2013-05-01
Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.
Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.
Kugge, C; Vanderhoek, N; Bousfield, D W
2011-06-01
Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamics of Bottlebrush Networks
NASA Astrophysics Data System (ADS)
Cao, Zhen; Daniel, William; Vatankhah-Varnosfaderani, Mohammad; Sheiko, Sergei; Dobrynin, Andrey
The deformation dynamics of bottlebrush networks in a melt state is studied using a combination of theoretical, computational, and experimental techniques. Three main molecular relaxation processes are identified in these systems: (i) relaxation of the side chains, (ii) relaxation of the bottlebrush backbones on length scales shorter than the bottlebrush Kuhn length (bK) , and (iii) relaxation of the bottlebrush network strands between cross-links. The relaxation of side chains having a degree of polymerization (DP), nsc, dominates the network dynamics on the time scales τ0 < t <=τsc , where τ0 and τsc τ0 (nsc + 1)2 are the characteristic relaxation times of monomeric units and side chains, respectively. In this time interval, the shear modulus at small deformations decays with time as G0BB (t) t - 1 / 2. On time scales t >τsc, bottlebrush elastomers behave as networks of filaments with a shear modulus G0BB (t) (nsc + 1)- 1 / 4t - 1 / 2 . Finally, the response of the bottlebrush networks becomes time independent at times scales longer than the Rouse time of the bottlebrush network strands. In this time interval, the network shear modulus depends on the network molecular parameters as G0BB (t) (nsc + 1)-1N-1 . Analysis of the simulation data shows that the stress evolution in the bottlebrush networks during constant strain-rate deformation can be described by a universal function. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
Spinning optical resonator sensor for torsional vibrational applications measurements
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.
2016-03-01
Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.
Analysis of Local Variations in Free Field Seismic Ground Motion.
1981-01-01
analysis) can conveniently account for material damping through the introduction of complex moduli into the equations of motion. This method can...determined, and the total response is obtained by superposition. This technique, however, can not properly account for the spatial variation of damping...2.9. Most available data only consider the variation of shear modulus and damping ratio with shear strain amplitude. In principle , two moduli and two
Fault Wear by Damage Evolution During Steady-State Slip
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev
2014-11-01
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.
Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg
2016-12-01
Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.
Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouared, Abderrahmane; Kazemirad, Siavash; Montagnon, Emmanuel
2016-04-15
Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagationmore » problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.« less
Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study
Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki
2017-01-01
Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657
Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.
Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan
2013-12-01
This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.
NASA Astrophysics Data System (ADS)
Tatlier, Mehmet Seha
Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.
NASA Astrophysics Data System (ADS)
Lin, Kevin K.; Young, Lai-Sang
2008-05-01
Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.
Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.
Le Crom, Bénédicte; Castaings, Michel
2010-04-01
This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.
Naya, Hugo; Urioste, Jorge I; Chang, Yu-Mei; Rodrigues-Motta, Mariana; Kremer, Roberto; Gianola, Daniel
2008-01-01
Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP) models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep. PMID:18558072
Origin of the Low Rigidity of the Earth's Inner Core
NASA Astrophysics Data System (ADS)
Belonoshko, A. B.; Skorodumova, N. V.; Davis, S.; Osiptsov, A. N.; Rosengren, A.; Johansson, B.
2007-12-01
The solid iron Earth's inner core has a low rigidity which manifests itself in the anomalously low velocities of shear waves as compared to those in iron alloys. Normally, when estimating elastic properties of a polycrystal one calculates an average over different orientations of a single crystal. This approach does not take into account the grain boundaries and defects likely to be abundant at high temperatures relevant for the inner core conditions. We show, by molecular dynamics simulations that if defects are considered, the calculated shear modulus and shear wave velocity decrease dramatically compared to the averaged single crystal values. Thus, the low shear wave velocity in the inner core receives its explanation (Science 316, 1603 (2007)).
Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki
2015-12-01
Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
Validation of Shear Wave Elastography in Skeletal Muscle
Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan
2013-01-01
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670
NASA Astrophysics Data System (ADS)
Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong
2017-12-01
The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.
Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains
NASA Astrophysics Data System (ADS)
Mandare, Prashant N.
2007-12-01
Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.
Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms.
Ziemba, Christopher; Shabtai, Yael; Piatkovsky, Maria; Herzberg, Moshe
2016-01-01
Cellulose effects on Vibrio fischeri biofilm morphology were tested for the wild-type and two of its isogenic mutants that either exhibit increased cellulose production or do not produce cellulose at all. Confocal laser scanning microscopy imaging of each biofilm revealed that total sessile volume increases with cellulose expression, but the size of colonies formed with cellulose was smaller, creating a more diffuse biofilm. These morphological differences were not attributed to variations in bacterial deposition, extracellular polymeric substances affinity to the surface or bacterial growth. A positive correlation was found between cellulose expression, Young's (elastic) modulus of the biofilm analyzed with atomic force microscope and shear modulus of the related extracellular polymeric substances layers analyzed with quartz crystal microbalance with dissipation monitoring. Cellulose production also correlated positively with concentrations of extracellular DNA. A significant negative correlation was observed between cellulose expression and rates of diffusion through the extracellular polymeric substances. The difference observed in biofilm morphology is suggested as a combined result of cellulose and likely extracellular DNA (i) increasing biofilm Young's modulus, making shear removal more difficult, and (ii) decreased diffusion rate of nutrients and wastes into and out of the biofilm, which effectively limits colony size.
NASA Technical Reports Server (NTRS)
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary
NASA Astrophysics Data System (ADS)
El Sayed, Abdel Moktader A.; El Sayed, Nahla A.
2017-12-01
Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.
MEASUREMENT OF THE VISCOELASTIC PROPERTIES OF WATER-SATURATED CLAY SEDIMENTS.
The complex shear modulus of both kaolin -water and bentonite-water mixtures has been determined in the laboratory. The method involved measuring the...range two to forty-three kHz. Dispersed sediments behaved like Newtonian liquids. Undispersed sediments, however, were viscoelastic in character, and...their shear moduli exhibited no dependence on frequency. For undispersed kaolin mixtures, a typical result is (21.6 + i 1.2) x 1,000 dynes per square
On the eigenfrequencies of elastic shear waves propagating in an inhomogeneous layer
NASA Astrophysics Data System (ADS)
Khachatryan, V. M.
2018-04-01
In this work, we consider the problem of eigenfrequencies of elastic shear waves propagating in a layer whose Young’s modulus and density are functions of the longitudinal coordinate. Taking into account the material inhomogeneity makes the problem of the eigenfrequencies of the waves propagating in the layer more complicated. In this paper, the problem of pure shear is considered. To solve the problem, we use an integral formula which allows us to represent the general solution of the original equation with variable coefficients in terms of the general solution of the accompanying equation with constant coefficients.
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Gajjar, P. N.; Thakore, B. Y.; Jani, A. R.
2013-04-01
A phonon modes and elastic properties of two different rare-earth based bulk metallic glasses Sc36Al24Co20Y20 and Gd36Al24Co20Y20 are computed using Hubbard-Beeby approach and our well established model potential. The local field correlation functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar Sen et al (S) are employed to investigate the influence of the screening effects on the vibrational dynamics of Sc36Al24Co20Y20 and Gd36Al24Co20Y20 bulk metallic glasses. The results for bulk modulus BT, modulus of rigidity G, Poisson's ratio ξ, Young's modulus Y, Debye temperature ΘD, propagation velocity of elastic waves and dispersion curves are reported. The computed elastic properties are found to be in good agreement with experimental and other available data.
The effect of transverse shear in a cracked plate under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The problem of an elastic plate containing a through crack and subjected to twisting moments or transverse shear loads is considered. By using a bending theory which allows the satisfaction of the boundary conditions on the crack surface regarding the normal and the twisting moments and the transverse shear load separately, it is found that the resulting asymptotic stress field around the crack tip becomes identical to that given by the elasticity solutions of the plane strain and antiplane shear problems. The problem is solved for uniformly distributed or concentrated twisting moment or transverse shear load and the normalized Mode II and Mode III stress-intensity factors are tabulated. The results also include the effect of the Poisson's ratio and material orthotropy for specially orthotropic materials on the stress-intensity factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe; Zhang, Peng; Chen, Dong
2015-02-28
The thermodynamic, elastic, and electronic properties of D0{sub 22}-type Al{sub 3}V and Al{sub 3}Nb intermetallics were studied using the first-principle method. The results showed the pressure has profound effects on the structural, mechanical and electronic properties in both Al{sub 3}V and Al{sub 3}Nb. Thermodynamically, the formation enthalpies for Al{sub 3}V and Al{sub 3}Nb were derived, which agreed well with available experimental and theoretical values. Comparably, Al{sub 3}Nb was a more stable phase with the more negative H{sub f} than Al{sub 3}V. Mechanically, the calculated elastic constants showed linearly increasing tendencies, and satisfied the Born's criteria from 0–20 GPa, indicating the mechanicallymore » stability of Al{sub 3}V and Al{sub 3}Nb under this pressure range. Further, the mechanical parameters (i.e., bulk modulus (B), shear modulus (G), and Young's modulus (E)) were derived using the Voigt-Reuss-Hill (VRH) method, and in good agreement with available experimental results at the ground state. All these parameters presented the linearly increasing dependences on the external pressure. The B/G ratios and Poisson's ratio indicated that the Al{sub 3}V and Al{sub 3}Nb crystals should exhibit brittle behavior at 0–20 GPa. Additionally, the bulk modulus can be obtained through fitting the Birch-Murnaghan equation (B{sub 0}), computing by VRH method (B{sub H}), and deriving from the elastic theory (B{sub relax}) in both intermetallics. The uniformity of these calculated bulk moduli in each compound exhibited the excellent reliability and self-consistency. In addition, Debye temperature was estimated from the average sound velocity. The Debye temperature showed an increasing dependence on the pressures. Finally, through density of states analysis, Al{sub 3}V and Al{sub 3}Nb were suggested to possess naturally metallic behavior. Under pressures, it was noted that the shapes of peaks and pseudogaps exhibited relative few changes, suggesting Al{sub 3}V and Al{sub 3}Nb has kept structurally stable up to 20 GPa. At zero pressure, Al{sub 3}Nb was considered as a more structurally stable phase with the more number of bonding electrons per atom than Al{sub 3}V. This conclusion was in consistent with the one drawn from the thermodynamic analysis.« less
Investigation of the Failure Modes in a Metal Matrix Composite under Thermal Cycling
1989-12-01
Material Characteristics. . .......... ... 76 Sectioning and SEN Photograp’... . ........ . 86 Residual Stress Analysis using .TCAN ... ....... 99 i VI...Specimen Fitted with Strain Gages ..... ........... 77 39. Modulus and Poisson’s Ratio versus Thermal Cycles . . 79 1 40 Stress /Strain Curve for Uncycled...Specimen .... ......... 82 1 41. Stress /Strain Curve for Specimen 8 (5250 Cycles) ..... .83 42. Comparison of Uncycled to Cycled Stress /Strain Curves
Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study.
Mahdizadeh, Sayyed Jalil; Goharshadi, Elaheh K; Akhlamadi, Golnoosh
2016-07-01
Thermo-mechanical properties of boron nitride nanoribbons (BNNRs) were computed using molecular dynamics simulation with optimized Tersoff empirical potential. Thermal conductivity (TC) and heat transport properties of BNNRs were calculated as functions of both temperature and nanoribbon's length. The results show that TC of BNNRs decreases with raising temperature by T(-1.5) up to 1000K. The phonon-phonon scattering relaxation time, mean free path of phonons, and contribution of high frequency optical phonons in TC of BNNRs were calculated at various temperatures. TC decreases as nanoribbon size increases and it converges to ∼500Wm(-1)K(-1) for nanoribbons with length longer than 30nm. The mechanical properties, including Gruneisen parameter, stress-strain response curves, Young's modulus, intrinsic strength, critical strain, and poisson's ratio were calculated in the temperature range of 137-1000K. The simulation results show that Gruneisen parameter and poisson's ratio of BNNRs are -0.092 and 0.245, respectively. The Young's modulus of BNNRs decreases with raising temperature and its value is 630GPa at 300K. According to the results, BNNRs duo to their extraordinary thermo-mechanical properties, are the promising candidate for the future nano-device manufacturing. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...
2018-04-11
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.
2009-01-01
The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516
Scaling for hard-sphere colloidal glasses near jamming
NASA Astrophysics Data System (ADS)
Zargar, Rojman; DeGiuli, Eric; Bonn, Daniel
2016-12-01
Hard-sphere colloids are model systems in which to study the glass transition and universal properties of amorphous solids. Using covariance matrix analysis to determine the vibrational modes, we experimentally measure here the scaling behavior of the density of states, shear modulus, and mean-squared displacement (MSD) in a hard-sphere colloidal glass. Scaling the frequency with the boson-peak frequency, we find that the density of states at different volume fractions all collapse on a single master curve, which obeys a power law in terms of the scaled frequency. Below the boson peak, the exponent is consistent with theoretical results obtained by real-space and phase-space approaches to understanding amorphous solids. We find that the shear modulus and the MSD are nearly inversely proportional, and show a singular power-law dependence on the distance from random close packing. Our results are in very good agreement with the theoretical predictions.
Simplified data reduction methods for the ECT test for mode 3 interlaminar fracture toughness
NASA Technical Reports Server (NTRS)
Li, Jian; Obrien, T. Kevin
1995-01-01
Simplified expressions for the parameter controlling the load point compliance and strain energy release rate were obtained for the Edge Crack Torsion (ECT) specimen for mode 3 interlaminar fracture toughness. Data reduction methods for mode 3 toughness based on the present analysis are proposed. The effect of the transverse shear modulus, G(sub 23), on mode 3 interlaminar fracture toughness characterization was evaluated. Parameters influenced by the transverse shear modulus were identified. Analytical results indicate that a higher value of G(sub 23) results in a low load point compliance and lower mode 3 toughness estimation. The effect of G(sub 23) on the mode 3 toughness using the ECT specimen is negligible when an appropriate initial delamination length is chosen. A conservative estimation of mode 3 toughness can be obtained by assuming G(sub 23) = G(sub 12) for any initial delamination length.
NASA Astrophysics Data System (ADS)
Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.
2018-04-01
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.
Analysis of Load Stress for Asphalt Pavement of Lean Concrete Base
NASA Astrophysics Data System (ADS)
Lijun, Suo; Xinwu, Wang
The study revealed that whether it is early distresses in asphalt pavement or not depends largely on working performance of base. In the field of asphalt pavement, it is widely accepted that lean concrete base, compared with the general semi-rigid base, has better working performance, such as high strength and good eroding resistance. Problem of early distresses in asphalt pavement, which caused by more traffic loadings, can be settled effectively when lean concrete is used in asphalt pavement. Traffic loading is important parameter used in the analysis of the new pavement design. However, few studies have done extensive and intensive research on the load stress for asphalt pavement of lean concrete base. Because of that, it is necessary to study the load stress for the asphalt pavement. In the paper, first of all, three-dimension finite element model of the asphalt pavement is created for the aim of doing mechanical analysis for the asphalt pavement. And then, the two main objectives of this study are investigated. One is analysis for load stress of lean concrete base, and the other is analysis for load stress of asphalt surface. The results show that load stress of lean concrete base decreases, decrease and increase with increase of base's thickness, surface's thickness and ratio of base's modulus to foundation's modulus respectively. So far as the asphalt surface is concerned, maximum shearing stress, which is caused by load, is evident in asphalt surface which is located in transverse contraction joint of lean concrete base of asphalt pavement. Maximum shearing stress decrease, decrease, decrease and increase respectively with increase of the surface's modulus, the surface's thickness, base's thickness and ratio of base's modulus to foundation's modulus.
Andonian, Pierre; Viallon, Magalie; Le Goff, Caroline; de Bourguignon, Charles; Tourel, Charline; Morel, Jérome; Giardini, Guido; Gergelé, Laurent; Millet, Grégoire P; Croisille, Pierre
2016-01-01
In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes.
Andonian, Pierre; Viallon, Magalie; Le Goff, Caroline; de Bourguignon, Charles; Tourel, Charline; Morel, Jérome; Giardini, Guido; Gergelé, Laurent; Millet, Grégoire P.; Croisille, Pierre
2016-01-01
In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes. PMID:27579699
Mechanical properties of additively manufactured octagonal honeycombs.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-12-01
Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. Copyright © 2016 Elsevier B.V. All rights reserved.