Meniscal shear stress for punching.
Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek
2009-01-01
Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.
Shear Punch Testing on ATR Irradiated MA956 FeCrAl Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.
2017-06-13
The shear punch testing of irradiated and control MA956 (FeCrAl) Alloy from the NSUF-ATR-UCSB irradiation is presented. This is the first data taken on a new shear punch fixture design to test three 1.5mm punches from each 8mm x 0.5mm Disc Multipurpose Coupon (DMC). Samples were irradiated to 6.1dpa at a temperature of 315°C and 6.2 dpa at 400°C.
3. INTERIOR VIEW LOOKING SOUTH SHOWING PUNCH AND SHEAR MACHINE ...
3. INTERIOR VIEW LOOKING SOUTH SHOWING PUNCH AND SHEAR MACHINE (manufactured by Cleveland Punch and Shear Works Company, USA) - Cambria & Indiana Railroad, Blacksmith Shop, .25 miles northwest of Colver, Colver, Cambria County, PA
Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Mohamed, Osama A.; Khattab, Rania
2017-10-01
Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.
23. NORTHEAST TO CIRCA 1875 POWER SHEAR, PUNCH, AND RIVETING ...
23. NORTHEAST TO CIRCA 1875 POWER SHEAR, PUNCH, AND RIVETING MACHINE SET UP TO DEMONSTRATE USE IN RIVETING COMPONENTS OF WHEEL ARMS FOR ELI WINDMILLS. HISTORIC DEBRIS FROM PUNCHING WORK IS VISIBLE BENEATH THE MACHINE IN THE OPERATOR'S PIT.' ON THE LEFT IS A U-SHAPED LOVEJOY FIELD PUNCH FOR USE IN INSTALLING STEEL WINDMILL/TOWER COMPONENTS. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE
Experimental and Computational Study of Ductile Fracture in Small Punch Tests
Bargmann, Swantje; Hähner, Peter
2017-01-01
A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results. PMID:29039748
Experimental and Computational Study of Ductile Fracture in Small Punch Tests.
Gülçimen Çakan, Betül; Soyarslan, Celal; Bargmann, Swantje; Hähner, Peter
2017-10-17
A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.
Evaluation of punching shear strength of flat slabs supported on rectangular columns
NASA Astrophysics Data System (ADS)
Filatov, Valery
2018-03-01
The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.
NASA Astrophysics Data System (ADS)
Nemani, Ravi Dakshina Murthy; Rao, M. V. S.; Grandhe, Veera Venkata Satya Naranyana
2016-09-01
The present work is an effort to quantify the punching shear load resistance effect on two way simply supported slab specimens with replacement of cement by Ground Granulated Blast Furnace Slag (GGBS) with different edge conditions at various replacement levels and evaluate its efficiency. GGBS replacement has emerged as a major alternative to conventional concrete and has rapidly drawn the concrete industry attention due to its cement savings, cost savings, environmental and socio-economic benefits. The two way slab specimens were subjected to punching shear load by in house fabricated apparatus. The slab specimens were cast using M30 grade concrete with HYSD bars. The cement was partially replaced with GGBS at different percentages i.e., 0 to 30 % at regular intervals of 10 %. The test results indicate that the two way slab specimens with partial replacement of cement by GGBS exhibit high resistance against punching shear when compared with conventional concretes slab specimens.
Zanatta, Rayssa Ferreira; Barreto, Bruno de Castro Ferreira; Xavier, Tathy Aparecida; Versluis, Antheunis; Soares, Carlos José
2015-02-01
This study evaluated the influence of punch and base orifice diameters on push-out test results by means of finite element analysis (FEA). FEA was performed using 3D models of the push-out test with 3 base orifice diameters (2.5, 3.0, and 3.5 mm) and 3 punch diameters (0.5, 1.0, and 1.5 mm) using MARC/MENTAT (MSC.Software). The image of a cervical slice from a root restored with a fiberglass post was used to construct the models. The mechanical properties of dentin, post, and resin cement were obtained from the literature. Bases and punches were constructed as rigid bodies. A 10-N force was applied by the punch in the center of the post in a nonlinear contact analysis. Modified von Mises stress, maximum principal stress, as well as shear and normal stress components were calculated. Both punch and base orifice sizes influenced the stress distribution of the push-out test. Bases with larger diameters and punches with smaller diameters caused higher stress in dentin and at the dentin/cement interface. FEA showed that the diameter of the orifice base had a more significant influence on the stress distribution than did the punch diameter. For this reason, both factors should be taken into account during push-out experimental tests.
NASA Astrophysics Data System (ADS)
Shinohara, K.; Lucas, G. E.; Odette, G. R.
1985-08-01
The irradiation hardening response of five metals irradiated in RTNS-II was investigated using a combination of ball microhardness and shear punch test techniques. The specimens were transmission electron microscopy disks of pure nickel, Ni-5wt%Si, pure iron, solution annealed prime candidate alloy (PCA) for Path A, and 40% cold worked MFE 316 stainless steel. Specimens were irradiated in RTNS-II to fluences in the range 6 × 10 16 to 6 × 10 17 n/cm 2. Only limited ball microhardness data could be obtained because of disk thickness. However, the ball microhardness data obtained were in good agreement with shear punch data. It was found that the pure metals exhibited little hardening after exposure to fluences of ~1 × 10 17 n/cm 2, but Ni-5 Si exhibited significant hardening after 6 × 10 17 n/cm 2. Hardening in PCA was similar to that observed in solution annealed 316 stainless steel; and hardening in 40% cold worked MFE 316 was relatively small after 6 × 10 17 n/cm 2. The Ni-5 Si response may be due to irradiation induced precipitation.
Fahmy, Amal Ezzeldin; Farrag, Nadia Moustafa
2010-01-01
This in vitro study aimed to evaluate the gingival microleakage in class II cavities in primary molars restored with a low shrink silorane resin composite (Filtek P90) or a nanohybride composite resin (Filtek supreme XT) using three different techniques, (total bonding, closed or open sandwich techniques) lined by nano-filled resin modified glass ionomer cement RMGIC (Ketac N100). Additionally, the shear punch bond strength between the two types of composite and KNIO0 was also examined. For microleakage test, two standardized class II slot cavities were prepared in proximal surfaces of 60 sound extracted primary molars which were divided into 2 groups of 30 each according to the type of composite. Each group was subdivided into 3 groups (n = 10) according to the restorative technique used. The restored teeth were examined for microleakage after immersion in 2% methylene blue dye using stereomicroscope at 20 X. Microleakage scores among the groups were compared using Kruskal Wallis test followed by pair wise Mann Whitney U test at P < or = 0.05. Thirty disc specimens were prepared for determining the shear punch bond strength between the two composite materials and the KN100. Specimens were divided into 5 groups (n = 6) according to the adhesive protocol. The differences in mean bond strength values in MPa between groups were statistically analyzed using ANOVA followed by pair wise Tukey Post hoc test at P < or = 0. 05. Mode of failure was also evaluated for all groups. Both the silorane resin and nano-composite resin showed superior marginal seal with the total bonding technique compared to closed and open sandwich techniques. The recorded mean shear punch bond strength values showed no statistical significant difference between the two resin composites without or with their adhesive bonding systems when bonded to the nano-ionomer. All specimens showed cohesive mode of failures except for silorane resin with Adper Easy Bond Self Etch Adhesive (AEBSEA) which showed
Study on In-mold Punching during PPS/GF Injection Molding
NASA Astrophysics Data System (ADS)
Inuzuka, Takayuki; Fujita, Akihiro; Nakai, Asami; Hamada, Hiroyuki
The influence of the punching condition on strength and the amount of shear droop was investigated to optimize the processing condition for punching in the mold during glass fiber reinforced polyphenylenesulfide (PPS/GF) injection molding. For in-mold punching part during cooling process, the tensile strength was constant because the pressure loss by the punch did not occur. The amount of the shear droop decreased in line with the increase in delay time because the rigidity of injection molded part in the mold increased when the resin was cooled. Moreover, when the resin temperature lowered more than the glass transition temperature, the amount of the shear droop was constant because the rigidity became constant. It is necessary to begin punching when the resin temperature lowers more than the glass transition temperature after holding pressure process is completed, to secure high strength and to assume 0.05 mm or less, at which level the shear droop cannot be visually recognized. The shortest delay time for PPS/GF is 8 sec. The delay time to minimize the amount of the shear droop can be guessed by analyzing the temperature change of the resin in the mold by injection molding CAE.
Roberts, Matthew; Ford, James L; MacLeod, Graeme S; Fell, John T; Smith, George W; Rowe, Philip H; Dyas, A Mark
2004-07-01
The sticking of a model ibuprofen-lactose formulation with respect to compaction force, punch tip geometry and punch tip embossment was assessed. Compaction was performed at 10, 25 or 40 kN using an instrumented single-punch tablet press. Three sets of 'normal' concave punches were used to evaluate the influence of punch curvature and diameter. The punches were 10, 11 and 12 mm in diameter, respectively. The 10-mm punch was embossed with a letter 'A' logo to assess the influence of an embossment on sticking. Flat-faced punches (12.5 mm) were used for comparison with the concave tooling. Surface profiles (Taylor Hobson Talysurf 120) of the upper punch faces were obtained to evaluate the surface quality of the tooling used. Following compaction, ibuprofen attached to the upper punch face was quantified by spectroscopy. Increasing punch curvature from flat-faced punches to concave decreased sticking. Altering punch diameter of the concave punches had no effect on sticking when expressed as microg mm(-2). The embossed letter 'A' logo increased sticking considerably owing to the probable concentration of shear stresses at the lateral faces of the embossed logo.
Deformation field heterogeneity in punch indentation
Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid
2014-01-01
Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521
Effects of laser power density and initial grain size in laser shock punching of pure copper foil
NASA Astrophysics Data System (ADS)
Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin
2018-06-01
The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.
NASA Astrophysics Data System (ADS)
Sigvant, M.; Falk, J.; Pilthammar, J.
2017-09-01
Dual-Phase (DP) steels are today used in the automotive industry due to its large strength to weight ratio. However, the high strength of DP-steel does have a negative impact on the general formability in sheet metal forming. Unfavourable process conditions in the press shop will, on top of this, reduce the formability of DP-steels even more. This paper addresses the problem of edge fracture in stretch flanges in sheet metal parts made of DP-steel. The experimental part involves tests of ten different DP590 and DP780 steel grades with three different shear cut qualities. The influence on the fracture strain of the sample orientation of the shear cut are also studied by facing the burr away or towards the punch and testing samples with the cut edge parallel with the rolling direction and the transverse direction. The strains are measured with an ARAMIS system in each test, together with punch displacement and punch force. All tests are then simulated with AutoFormplus R7 and the results from these simulations are compared with the experimental results in order to find the appropriate failure strain for each combination of supplier, coating, thickness and shear cut quality.
Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba
2010-04-01
*When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or bending rolls; and hot or cold rolling mills. (ii) All pressing or punching machines, such as... presses; and plate punches. (iii) All bending machines, such as apron brakes and press brakes. (iv) All...
NASA Astrophysics Data System (ADS)
Pilewska, Wiesława; Buśko, Krzysztof; Nikolaidis, Pantelis Theodoros
2017-11-01
The main aim of the study was to design a new system to measure punching forces in boxers. In addition, the study examined whether there were any relationship between force of punches and power of jump. A total of 9 boxers (age: 17.5±1.2 years, body height: 174.1±8.1 cm, body mass: 73.9±11.8 kg) participated in the study. The punching bag was equipped with acceleration transducers and gyroscopes embedded in a cylinder covered with a layer to absorb shock as well as a set of colour signal diodes. Value of the punching bag's acceleration was used for calculating: strike force; the punching location on the bag; and time of a strike. The relative error of force calculation was 3%; the relative error in acceleration measurement was less than 1%. The maximal straight of rear and lead punching forces were 1702.4±497.8 N and 1262.0±417.7 N in boxers, respectively. Strong correlations were found between the punching force and power of lower limbs developed for the ACMJ, CMJ and SPJ jump. Height of rise of the body mass centre and punching force correlated insignificantly. Based on these findings, it was concluded that the modified punching bag is a good diagnostic tool for combat sports. The measurement of power during the jump may be a good diagnostic test in boxers.
Mayer, Carl; Li, Nan; Mara, Nathan Allan; ...
2014-11-07
Nanolaminate composites show promise as high strength and toughness materials. Still, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50nm andmore » 100nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred along the Al-SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.« less
NASA Astrophysics Data System (ADS)
Hassan, A.-P.
2014-07-01
The small-punch testing (SPT) method is used for determining the mechanical properties of AISI 410 (0.14% C, 12% Cr) stainless steel. A thin disc-shaped specimen with known mechanical properties is pressed with a small ball until the appearance of cracks in the former. The load - displacement curves are recorded. Computation of the yield strength and fracture energy by the curve obtained and by known formulas shows good convergence with the characteristics obtained by standard testing.
Kurtz, S M; Siskey, R; Reitman, M
2010-05-01
The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.
Super Dielectric Material Based Capacitors: Punched Membrane/Gel
NASA Astrophysics Data System (ADS)
Petty, C. W.; Phillips, J.
2018-05-01
Extensive testing showed, as predicted, that punched membranes, filled with a gel containing aqueous salt solutions, behave as superdielectric materials (SDM). Punched membrane superdielectrics employed herein consisted of a commercial cellulose based membrane material, Celgard 16 μ thick, a material frequently used as a separator material in supercapacitors, into which macroscopic holes (ca. 2.5 mm) were punched with a laser cutter, and the holes subsequently filled with a gel-like material composed of fumed silica, NaCl and water. The gross dielectric constants measured, generally > 105, and the energy densities, > 40 J/cm3 during slow discharge, were in the range expected for superdielectric materials. The measured capacitance and energy density tracked the number of holes punched/area filled with the dielectric gel. Also, the observed power law decrease in all parameters including energy, power and capacitance, followed the same trends observed in other classes of SDM. Control studies included testing dielectrics composed of Celgard into which no holes were punched, but the SDM gel spread, also produced values consistent with the SDM model: no measurable capacitance using the standard protocol. Finally, the values measured suggest these materials rival the energy density of some common battery types at low discharge rates, and surpass the best commercial supercapacitors at low discharge rates.
A new virtual instrument for estimating punch velocity in combat sports.
Urbinati, K S; Scheeren, E; Nohama, P
2013-01-01
For improving the performance in combat sport, especially percussion, it is necessary achieving high velocity in punches and kicks. The aim of this study was to evaluate the applicability of 3D accelerometry in a Virtual Instrumentation System (VIS) designed for estimating punch velocity in combat sports. It was conducted in two phases: (1) integration of the 3D accelerometer with the communication interface and software for processing and visualization, and (2) applicability of the system. Fifteen karate athletes performed five gyaku zuki type punches (with reverse leg) using the accelerometer on the 3rd metacarpal on the back of the hand. It was performed nonparametric Mann-Whitney U-test to determine differences in the mean linear velocity among three punches performed sequentially (p <0.05). The maximum velocities measured varied in the range of 10 and 10.2 m/s and the mean velocities from 6 to 6.8 m/s. There was no difference on the mean velocity for the tested punches. The VIS demonstrated regularity and proper functionality for assessing punches in combat sport.
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
21 CFR 882.4750 - Skull punch.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates or...
Hole punch clouds over the Bahamas
2017-12-08
In elementary school, students learn that water freezes at 0 degrees Celsius (32 degrees Fahrenheit). That is true most of the time, but there are exceptions to the rule. For instance, water with very few impurities (such as dust or pollution particles, fungal spores, bacteria) can be chilled to much cooler temperatures and still remain liquid—a process known as supercooling. Supercooling may sound exotic, but it occurs pretty routinely in Earth’s atmosphere. Altocumulus clouds, a common type of mid-altitude cloud, are mostly composed of water droplets supercooled to a temperature of about -15 degrees C. Altocumulus clouds with supercooled tops cover about 8 percent of Earth’s surface at any given time. Supercooled water droplets play a key role in the formation of hole-punch and canal clouds, the distinctive clouds shown in these satellite images. Hole-punch clouds usually appear as circular gaps in decks of altocumulus clouds; canal clouds look similar but the gaps are longer and thinner. This true-color image shows hole-punch and canal clouds off the coast of Florida, as observed on December 12, 2014, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Both types of cloud form when aircraft fly through cloud decks rich with supercooled water droplets and produce aerodynamic contrails. Air expands and cools as it moves around the wings and past the propeller, a process known as adiabatic cooling. Air temperatures over jet wings often cool by as much as 20 degrees Celsius, pushing supercooled water droplets to the point of freezing. As ice crystals form, they absorb nearby water droplets. Since ice crystals are relatively heavy, they tend to sink. This triggers tiny bursts of snow or rain that leave gaps in the cloud cover. Whether a cloud formation becomes a hole-punch or canal depends on the thickness of the cloud layer, the air temperature, and the degree of horizontal wind shear. Both descending and ascending
NASA Astrophysics Data System (ADS)
Abdullah, A. B.; Zain, M. S. M.; Abdullah, M. S.; Samad, Z.
2017-07-01
Structural materials, such as composite panels, must be assembled, and such panels are typically constructed via the insertion of a fastener through a drilled hole. The main problem encountered in drilling is delamination, which affects assembly strength. The cost of drilling is also high because of the severe wear on drill bits. The main goal of this research is to develop a new punching method as an alternative to drilling during hole preparation. In this study, the main objective is to investigate the effect of different puncher profiles on the quality of holes punched into carbon fiber reinforcement polymer (CFRP) composite panels. Six types of puncher profiles were fabricated with minimum die clearance (1%), and two quality aspects, namely, incomplete shearing and delamination factor, were measured. The conical puncher incurred the least defects in terms of delamination and yielded an acceptable amount of incomplete shearing in comparison with the other punchers.
Science in mid-Victorian Punch.
Noakes, Richard
2002-09-01
This article examines the scientific content of the most famous comic journal of the Victorian period: Punch. Concentrating on the first three decades of the periodical (1841-1871), I show that Punch usually engaged with science that was highly topical, of consequence to the lives of its bourgeois readers, and suitable for comic interpretation. But Punch's satire of scientific topics was highly complex. It often contained allusions to non-scientific topics, and its engagement with science ranged from the utterly comic to the sharply critical. Punch prompted readers to think as well as laugh about science, and probably shaped their scientific education more than we think.
Comparison of tissue loss by different punches: A new A-design.
Ahmad, Muhammad
2018-06-19
To compare the amount of tissue loss using different FUE punches. The study was conducted in 5 patients undergoing hair restoration surgery by FUE. Four different kinds of punches were used, that is, sharp, blunt, serrated, and new "A-design." All the punches had a total cutting edge of 0.8 mm. In each patient, 4 punches were used to make insertion at right angle with the skin. Immediately after the punch use, the diameter of the hole was measured. The same areas were also measured after 24 hours and after 1 month. The data were collected and analyzed by Multiple t test (with Bonferroni's correction). The average size of the wound immediately at the end of the procedure was 0.826 mm for sharp, 0.858 mm for blunt, 0.892 mm for serrated, and 0.932 mm for A-design. Similarly, the wounds decreased to 0.752, 0.778, 0.774, and 0.696 mm for sharp, blunt, serrated, and A-design, respectively, after 24 hours. The final wound/scar size was 0.640 mm for punch, 0.660 mm for blunt punch, 0.668 mm for serrated punch, and 0.598 mm for A-design punch after 1 month. The new A-design resulted in the minimum scar size after 1 month. © 2018 Wiley Periodicals, Inc.
21 CFR 882.4750 - Skull punch.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull punch. 882.4750 Section 882.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is...
Lewandowski, Edward F.; Anderson, Petrus A.
1978-01-01
A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... beading, straightening, corrugating, flanging, or bending rolls; and hot or cold rolling mills. (ii) All... area between the dies; power presses; and plate punches. (iii) All bending machines, such as apron...
Buśko, Krzysztof; Staniak, Zbigniew; Szark-Eckardt, Mirosława; Nikolaidis, Pantelis Theodoros; Mazur-Różycka, Joanna; Łach, Patrycja; Michalski, Radosław; Gajewski, Jan; Górski, Michał
2016-01-01
The main aim of the study was to design a new system to measure punching and kicking forces as well as reaction times in combat sport athletes. In addition, the study examined whether there were any intergender differences in the force of punches thrown by boxers and kicking forces delivered by taekwondo athletes. Boxers (male, n = 13; female, n = 7) were examined for the force of single straight punches and taekwondo athletes (male, n = 14; female, n = 14) for force of single Apdolio and Dwit Chagi kicks. The punching bag was equipped with acceleration transducers and gyroscopes embedded in a cylinder covered with a layer to absorb shock as well as a set of colour signal diodes. Value of the punching bag's acceleration was used for calculating: strike force; the punching location on the bag; and time of a strike. The relative error of force calculation was 3%; the relative error in acceleration measurement was less than 1%. The force of a straight rear-hand punch was greater than the force of a lead-hand punch among male and female boxers. The force of Apdolio kick delivered with a rear leg was greater compared to a lead leg among female and male taekwondo athletes. Significant gender differences were noticed in the force in both types of kicks. In boxers, intergender differences were reported only for the force of a punch thrown with the rear hand. Based on these findings, it was concluded that the modified punching bag is a good diagnostic tool for combat sports.
Atha, J; Yeadon, M R; Sandover, J; Parsons, K C
1985-01-01
The mechanical properties of a boxing punch have been determined using several techniques. The results are consistent with the medical consequences of boxing discussed in the report of the Board of Science and Education Working Party on boxing. Data were gathered from a world ranked British professional heavyweight, Frank Bruno, as he punched an instrumented, padded target mass suspended as a ballistic pendulum. Within 0.1 s of the start the punch had travelled 0.49 m and attained a velocity on impact of 8.9 m/s. The peak force on impact of 4096N (0.4 ton), attained within 14 ms of contact, represents a blow to the human head of up to 6320N (0.63 ton). The transmitted impulse generated an acceleration of 520 m/s2 (53 g) in the target head. For comparison an equivalent blow would be delivered by a padded wooden mallet with a mass of 6 kg (13 lbs) if swung at 20 mph. Images FIG 1 FIG 2 PMID:3936571
Bruzas, Vidas; Kamandulis, Sigitas; Venckunas, Tomas; Snieckus, Audrius; Mockus, Pranas
2018-03-01
During competition, a boxer must continue to deliver high-impact punches despite increasing fatigue. It is unclear whether the effects of plyometric training using external weights are transferred to sport-specific movements such as punching. The aim of the study was to investigate the effects of a 4-week cycle of plyometric training with external weights on punching ability. The study involved eight male amateur boxers aged 22.3±2.5 years with at least 7 years of competitive experience. They performed 12 plyometric training sessions, each comprising eight exercises of various muscle groups performed at maximum movement velocity. Six drills were performed with external weights, and two drills were performed using the body weight as resistance. All exercises required coordination. The punching ability was tested at baseline and after the 4 weeks of training using the Kiktest-100 boxing bag. The force of single punches and the frequency of punches within a series did not change from before to after the 4 weeks, except for increased power in the rear-hand low punch (P<0.05). However, there was an increase in summative force and energy output within 3 s and 8 s, and in a series of eight 8-s tests (P<0.05). Four weeks of plyometric training with external weights did not change the maximum punching power or movement frequency significantly, but had a beneficial effect on punching power endurance in boxers.
Single maximal versus combination punch kinematics.
Piorkowski, Barry A; Lees, Adrian; Barton, Gabor J
2011-03-01
The aim of this study was to determine the influence of punch type (Jab, Cross, Lead Hook and Reverse Hook) and punch modality (Single maximal, 'In-synch' and 'Out of synch' combination) on punch speed and delivery time. Ten competition-standard volunteers performed punches with markers placed on their anatomical landmarks for 3D motion capture with an eight-camera optoelectronic system. Speed and duration between key moments were computed. There were significant differences in contact speed between punch types (F(2,18,84.87) = 105.76, p = 0.001) with Lead and Reverse Hooks developing greater speed than Jab and Cross. There were significant differences in contact speed between punch modalities (F(2,64,102.87) = 23.52, p = 0.001) with the Single maximal (M+/- SD: 9.26 +/- 2.09 m/s) higher than 'Out of synch' (7.49 +/- 2.32 m/s), 'In-synch' left (8.01 +/- 2.35 m/s) or right lead (7.97 +/- 2.53 m/s). Delivery times were significantly lower for Jab and Cross than Hook. Times were significantly lower 'In-synch' than a Single maximal or 'Out of synch' combination mode. It is concluded that a defender may have more evasion-time than previously reported. This research could be of use to performers and coaches when considering training preparations.
Fundamental studies on a novel die concept for round-point shear-clinching
NASA Astrophysics Data System (ADS)
Hörhold, Réjane; Müller, Martin; Merklein, Marion; Meschut, Gerson
2016-10-01
A newly-developed round-point shear-clinching technology could increase the use of different materials like well formable aluminium and hardly formable ultra-high-strength steels (UHSS). This innovative technology joins in a single-stage process without any pilot-hole, surface pre-treatment or auxiliary joining part. The combination of an inner and outer punch realises an indirect cutting operation of the die-sided material, whereas the punch-sided material remains unharmed. The current die-sided tool set acts as a cutting die and enables a radial extrusion of the punch-sided material after being drawn though the created hole in the UHSS. The die has a fixed die depth. After ejecting the joined components, the slug has to be removed from the top of the spring-loaded anvil. The novel die concept investigated in this paper offers the possibility to push the slug continuously through the die in the joining direction. The removed slugs remain inside the die, so manual removal is unnecessary. The one-parted tool is supposed to be more robust than the multi-parted one that is currently used. This paper represents the task to evaluate the geometry of a useful shear-clinching die concept. To reduce the experimental effort, FEM should assist the development of the most promising approach. To quantify the success, conventional shear-clinching with opening die acts as a reference. The results show the high potential and the raison d'être of shear-clinching technologies as a mechanical joining technology for future multimaterial applications especially for UHSS.
NASA Astrophysics Data System (ADS)
Popoveniuc, Stefan; Hosp, Ben
PunchScan is a precinct-read optical-scan balloting system that allows voters to take their ballot with them after scanning. This does not violate the secret ballot principle because the ballots cannot be read without secret information held by the distributed authority in charge of the election. In fact, this election authority will publish the ballots for everyone to see, allowing voters whose ballots were incorrectly omitted to complain. PunchScan vote-counting is performed in private by the election authority - who uses their secret information to decode the ballots - but is verified in public by an auditor.In this paper we describe how and why PunchScan works. We have kept most of the description at an outline level so that it may be used as a straw model of a cryptographic voting system.
Punch Card Programmable Microfluidics
Korir, George; Prakash, Manu
2015-01-01
Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834
Punch card programmable microfluidics.
Korir, George; Prakash, Manu
2015-01-01
Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.
NASA Astrophysics Data System (ADS)
Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan
2012-01-01
Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.
Wiring harnesses documented by punched-card technique
NASA Technical Reports Server (NTRS)
Hicks, W. W.; Kloezeman, W. G.
1970-01-01
Cards representing a connector are punched, sorted, and then used to printout wiring documentation for that connector. When wiring changes are made, new cards are punched and the wiring documentation is reprinted to reflect the latest configuration.
To determine the slow shearing rate for consolidation drained shear box tests
NASA Astrophysics Data System (ADS)
Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah
2017-08-01
Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.
Analysis of shear test method for composite laminates
NASA Technical Reports Server (NTRS)
Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.
1977-01-01
An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.
Tablet compression tooling - Impact of punch face edge modification.
Anbalagan, Parthiban; Heng, Paul Wan Sia; Liew, Celine Valeria
2017-05-30
The influence of punch face edge geometry modification on tablet compression and the properties of the resultant tablets produced on a rotary press were investigated. The results revealed that tablets produced from the punches with radius edge face geometry consistently displayed better physical quality; higher tensile strength and lower capping tendency. Modification of the angled edge of the bevel face to the curved edge of the radius face, enabled deeper punch penetration in the die cavity during the compression cycle, bringing about greater compact densification. Improved die fill packing increased interparticulate bond formation and helped to dissipate destructive elasticity within the compact, consequently reduced tablet expansion during the decompression phase. The positive impact of punch face edge modification was also more noticeable at a higher turret speed. The application of the precompression force along with dwell time extension amplified the tableting performance of radius edge punch face design to a greater extent when compared to bevel edge punch face design. This could be attributed to the enhanced packing efficiency at both precompression and main compression stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimization of fruit punch using mixture design.
Kumar, S Bharath; Ravi, R; Saraswathi, G
2010-01-01
A highly acceptable dehydrated fruit punch was developed with selected fruits, namely lemon, orange, and mango, using a mixture design and optimization technique. The fruit juices were freeze dried, powdered, and used in the reconstitution studies. Fruit punches were prepared according to the experimental design combinations (total 10) based on a mixture design and then subjected to sensory evaluation for acceptability. Response surfaces of sensory attributes were also generated as a function of fruit juices. Analysis of data revealed that the fruit punch prepared using 66% of mango, 33% of orange, and 1% of lemon had highly desirable sensory scores for color (6.00), body (5.92), sweetness (5.68), and pleasantness (5.94). The aroma pattern of individual as well as combinations of fruit juices were also analyzed by electronic nose. The electronic nose could discriminate the aroma patterns of individual as well as fruit juice combinations by mixture design. The results provide information on the sensory quality of best fruit punch formulations liked by the consumer panel based on lemon, orange, and mango.
Applying a punch with microridges in multistage deep drawing processes.
Lin, Bor-Tsuen; Yang, Cheng-Yu
2016-01-01
The developers of high aspect ratio components aim to minimize the processing stages in deep drawing processes. This study elucidates the application of microridge punches in multistage deep drawing processes. A microridge punch improves drawing performance, thereby reducing the number of stages required in deep forming processes. As an example, the original eight-stage deep forming process for a copper cylindrical cup with a high aspect ratio was analyzed by finite element simulation. Microridge punch designs were introduced in Stages 4 and 7 to replace the original punches. In addition, Stages 3 and 6 were eliminated. Finally, these changes were verified through experiments. The results showed that the microridge punches reduced the number of deep drawing stages yielding similar thickness difference percentages. Further, the numerical and experimental results demonstrated good consistency in the thickness distribution.
Ogden, Samantha J; Horton, Jeffrey K; Stubbs, Simon L; Tatnell, Peter J
2015-01-01
The 1.2 mm Electric Coring Tool (e-Core™) was developed to increase the throughput of FTA(™) sample collection cards used during forensic workflows and is similar to a 1.2 mm Harris manual micro-punch for sampling dried blood spots. Direct short tandem repeat (STR) DNA profiling was used to compare samples taken by the e-Core tool with those taken by the manual micro-punch. The performance of the e-Core device was evaluated using a commercially available PowerPlex™ 18D STR System. In addition, an analysis was performed that investigated the potential carryover of DNA via the e-Core punch from one FTA disc to another. This contamination study was carried out using Applied Biosystems AmpflSTR™ Identifiler™ Direct PCR Amplification kits. The e-Core instrument does not contaminate FTA discs when a cleaning punch is used following excision of discs containing samples and generates STR profiles that are comparable to those generated by the manual micro-punch. © 2014 American Academy of Forensic Sciences.
Scaling effects in direct shear tests
Orlando, A.D.; Hanes, D.M.; Shen, H.H.
2009-01-01
Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.
Double-Lap Shear Test For Honeycomb Core
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Hodge, Andrew J.
1992-01-01
Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.
Verification and application of the Iosipescu shear test method
NASA Technical Reports Server (NTRS)
Walrath, D. E.; Adams, D. F.
1984-01-01
Finite element models were used to study the effects of notch angle variations on the stress state within an Iosipescu shear test speciment. These analytical results were also studied to determine the feasibility of using strain gage rosettes and a modified extensometer to measure shear strains in this test specimen. Analytical results indicate that notch angle variations produced only small differences in simulated shear properties. Both strain gage rosettes and the modified extensometer were shown to be feasible shear strain transducers for the test method. The Iosipoescu shear test fixture was redesigned to incorporate several improvements. These improvements include accommodation of a 50 percent larger specimen for easier measurement of shear train, a clamping mechanism to relax strict tolerances on specimen width, and a self contained alignment tool for use during specimen installation. A set of in-plane and interlaminar shear properties were measured for three graphite fabric/epoxy composites of T300/934 composite material. The three weave patterns were Oxford, 5-harness satin, and 8-harness satin.
Strength and Power Qualities Are Highly Associated With Punching Impact in Elite Amateur Boxers.
Loturco, Irineu; Nakamura, Fabio Y; Artioli, Guilherme G; Kobal, Ronaldo; Kitamura, Katia; Cal Abad, Cesar C; Cruz, Igor F; Romano, Felipe; Pereira, Lucas A; Franchini, Emerson
2016-01-01
This study investigated the relationship between punching impact and selected strength and power variables in 15 amateur boxers from the Brazilian National Team (9 men and 6 women). Punching impact was assessed in the following conditions: 3 jabs starting from the standardized position, 3 crosses starting from the standardized position, 3 jabs starting from a self-selected position, and 3 crosses starting from a self-selected position. For punching tests, a force platform (1.02 × 0.76 m) covered by a body shield was mounted on the wall at a height of 1 m, perpendicular to the floor. The selected strength and power variables were vertical jump height (in squat jump and countermovement jump), mean propulsive power in the jump squat, bench press (BP), and bench throw, maximum isometric force in squat and BP, and rate of force development in the squat and BP. Sex and position main effects were observed, with higher impact for males compared with females (p ≤ 0.05) and the self-selected distance resulting in higher impact in the jab technique compared with the fixed distance (p ≤ 0.05). Finally, the correlations between strength/power variables and punching impact indices ranged between 0.67 and 0.85. Because of the strong associations between punching impact and strength/power variables (e.g., lower limb muscle power), this study provides important information for coaches to specifically design better training strategies to improve punching impact.
Paul, Shubhajit; Taylor, Lisa J; Murphy, Brendan; Krzyzaniak, Joseph F; Dawson, Neil; Mullarney, Matthew P; Meenan, Paul; Sun, Changquan Calvin
2017-04-15
Punch sticking is a frequently occurring problem that challenges successful tablet manufacturing. A mechanistic understanding of the punch sticking phenomenon facilitates the design of effective strategies to solve punch sticking problems of a drug. The first step in this effort is to identify process parameters and particle properties that can profoundly affect sticking performance. This work was aimed at elucidating the key material properties and compaction parameters that influence punch sticking by statistically analyzing punch sticking data of 24 chemically diverse compounds obtained using a set of tooling with removable upper punch tip. Partial least square (PLS) analysis of the data revealed that particle surface area and tablet tensile strength are the most significant factors attributed to punch sticking. Die-wall pressure, ejection force, and take-off force also correlate with sticking, but to a lesser extent. Copyright © 2017 Elsevier B.V. All rights reserved.
EDXRF study of Indian punch-marked silver coins
NASA Astrophysics Data System (ADS)
Vijayan, V.; Rautray, T. R.; Basa, D. K.
2004-09-01
Coins are important archaeological objects that can provide valuable information regarding coin minting methodology and provenance as well as politics and economics of the time. Punch-marked coins are the oldest known numismatics used in ancient India. 23 Indian punch-marked silver coins were analysed, for the first time, by using multi-elemental non-destructive energy dispersive X-ray fluorescence (EDXRF) technique. Our study reveals that silver, copper, iron, gold and lead are the significant constituents of the Indian punch marked silver coins, with minor/trace of elements like Ti, Cr, Co, Ni, As and Y also seems to indicate the fragmentation as well as the impoverishment of the power for the regimes that had produced the studied coins.
Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test
NASA Astrophysics Data System (ADS)
Bahaaddini, M.
2017-05-01
The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.
Athletic fashion, "Punch," and the creation of the new woman.
Collins, Tracy J R
2010-01-01
Between 1885-1900 "Punch" satirized the personality of the New Woman. However, virtually single-handedly it also gave a body and emancipated culture to this otherwise socially abstract personality. Using illustrations from "Punch," this essay argues that using sport specific clothing and equipment in its cartoons, "Punch" completely unintentionally created a liberating picture of women while simultaneously using its captions and border texts to make the New Woman's body signify the anxieties patriarchal culture had about her social personality and politics.
Shear-Panel Test Fixture Eliminates Corner Stresses
NASA Technical Reports Server (NTRS)
Kiss, J. J.; Farley, G. L.; Baker, D. J.
1984-01-01
New design eliminates corner stresses while maintaining uniform stress across panel. Shear panel test fixture includes eight frames and eight corner pins. Fixture assembled in two halves with shear panel sandwiched in between. Results generated from this fixture will result in good data base for design of efficient aircraft structures and other applications.
Shear Band Formation in Plastic-Bonded Explosives (PBX)
NASA Astrophysics Data System (ADS)
Dey, Thomas N.; Johnson, James N.
1997-07-01
Adiabatic shear bands can be a source of ignition and lead to detonation. At low to moderate deformation rates, 10--1000 s-1, two other mechanisms can also give rise to shear bands. These mechanisms are: softening caused by micro-cracking and (2) a constitutive response with a non-associated flow rule as is observed in granular material such as soil. Brittle behavior at small strains and the granular nature of HMX suggest that PBX-9501 constitutive behavior may be similar to sand. A constitutive model for each of these mechanims is studied in a series of calculations. A viscoelastic constitutive model for PBX-9501 softens via a statistical crack model, based on the work of Dienes (1986). A sand model is used to provide a non-associated flow rule. Both models generate shear band formation at 1--2% strain at nominal strain rates at and below 1000 s-1. Shear band formation is suppressed at higher strain rates. The sand model gives qualitative agreement for location and orientation of shear bands observed in a punch experiment. Both mechanisms may accelerate the formation of adiabatic shear bands.
A novel method of testing the shear strength of thick honeycomb composites
NASA Technical Reports Server (NTRS)
Hodge, A. J.; Nettles, A. T.
1991-01-01
Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.
Star Catalogs on Punched Cards and Magnetic Tape
NASA Technical Reports Server (NTRS)
Berbert, J. H.
1961-01-01
In connection with the calibration of the Minitrack satellite tracking stations, the Goddard Space Flight Center has had the contents of a number of star catalogs put on punched cards and magnetic tape. This report discusses the plate data reduction procedures, briefly describes the information on the punched cards and magnetic tape, and calls attention to other applications of the card and tape star catalogs. The Goddard Space Flight Center has offered to prepare duplicate catalogs for qualified organizations.
Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre
2015-09-30
Finite elements method was used to study the influence of tablet thickness and punch curvature on the density distribution inside convex faced (CF) tablets. The modeling of the process was conducted on 2 pharmaceutical excipients (anhydrous calcium phosphate and microcrystalline cellulose) by using Drucker-Prager Cap model in Abaqus(®) software. The parameters of the model were obtained from experimental tests. Several punch shapes based on industrial standards were used. A flat-faced (FF) punch and 3 convex faced (CF) punches (8R11, 8R8 and 8R6) with a diameter of 8mm were chosen. Different tablet thicknesses were studied at a constant compression force. The simulation of the compaction of CF tablets with increasing thicknesses showed an important change on the density distribution inside the tablet. For smaller thicknesses, low density zones are located toward the center. The density is not uniform inside CF tablets and the center of the 2 faces appears with low density whereas the distribution inside FF tablets is almost independent of the tablet thickness. These results showed that FF and CF tablets, even obtained at the same compression force, do not have the same density at the center of the compact. As a consequence differences in tensile strength, as measured by diametral compression, are expected. This was confirmed by experimental tests. Copyright © 2015 Elsevier B.V. All rights reserved.
Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraris, Monica; Ventrella, Andrea; Salvo, Milena
2014-03-17
A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less
Configurational phases in elastic foams under lengthscale-free punching
NASA Astrophysics Data System (ADS)
Sabuwala, Tapan; Dai, Xiangyu; Gioia, Gustavo
2016-08-01
We carry out experiments with brick-like specimens of elastic open-cell (EOC) foams of three relative densities. Individual specimens may be "tall" (height = width = depth) or "short" (2 height = width = depth). We place each specimen on a supporting plate and use a lengthscale-free (wedge-shaped or conical) punch to apply forces downward along the specimen's height. Regardless of the type of specimen, the force-penetration curves remain linear, for the wedge-shaped punch, or quadratic, for the conical punch, up to a sizable penetration commensurate with the smallest lengthscale of the specimen. After that there is an abrupt, all-but-discontinuous change in stiffness: if the specimen is tall, the stiffness drops; if the specimen is short, the stiffness shoots up. To analyze these curious experimental results, we posit that EOC foams can be found in either of two configurational phases, here termed the low-strain phase and the high-strain phase, which share a two-dimensional interface (a surface of strain discontinuity). The analysis may be outlined as follows. In the first part of an experiment, there obtains a "similarity regime" in which the penetration of the punch and the radius of the interface are the only prevailing lengthscales (because the punch is lengthscale free). In this case, it is possible to show that the force-penetration curve must be linear, or quadratic, depending on whether the punch be wedge-shaped or conical, respectively. This prediction of the analysis is consistent with the experiments. In time, the similarity regime breaks down when the interface reaches one of the specimen's boundaries distal to the tip of the punch. If the specimen is tall, the soft, stress-free lateral boundary is reached first, and the stiffness must drop; if the specimen is short, the hard boundary in contact with the supporting plate is reached first, and the stiffness must shoot up. These predictions too are consistent with the experiments. To provide direct
Powers, Philip S.
1983-01-01
This report is intended to provide internal documentation for the U.S. Geological Survey laboratory's automatic data acquisition system. The operating procedures for each type of test are designed to independently lead a first-time user through the various stages of using the computer to control the test. Continuing advances in computer technology and the availability of desktop microcomputers with a wide variety of peripheral equipment at a reasonable cost can create an efficient automated geotechnical testing environment. A geotechnical testing environment is shown in figure 1. Using an automatic data acquisition system, laboratory test data from a variety of sensors can be collected, and manually or automatically recorded on a magnetic device at the same apparent time. The responses of a test can be displayed graphically on a CRT in a matter of seconds, giving the investigator an opportunity to evaluate the test data, and to make timely, informed decisions on such matters as whether to continue testing, abandon a test, or modify procedures. Data can be retrieved and results reported in tabular form, or graphic plots, suitable for publication. Thermistors, thermocouples, load cells, pressure transducers, and linear variable differential transformers are typical sensors which are incorporated in automated systems. The geotechnical tests which are most practical to automate are the long-term tests which often require readings to be recorded outside normal work hours and on weekends. Automation applications include incremental load consolidation tests, constant-rate-of-strain consolidation tests, direct shear tests, ring shear tests, and triaxial shear tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, K.; Meng, W. J.; Mei, F.
2011-02-01
A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less
Micromechanics of soil responses in cyclic simple shear tests
NASA Astrophysics Data System (ADS)
Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George
2017-06-01
Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen; Akinlabi, Esther
2017-08-01
Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.
An ear punch model for studying the effect of radiation on wound healing.
Deoliveira, Divino; Jiao, Yiqun; Ross, Joel R; Corbin, Kayla; Xiao, Qizhen; Toncheva, Greta; Anderson-Evans, Colin; Yoshizumi, Terry T; Chen, Benny J; Chao, Nelson J
2011-08-01
Radiation and wound combined injury represents a major clinical challenge because of the synergistic interactions that lead to higher morbidity and mortality than either insult would produce singly. The purpose of this study was to develop a mouse ear punch model to study the physiological mechanisms underlying radiation effects on healing wounds. Surgical wounds were induced by a 2 mm surgical punch in the ear pinnae of MRL/MpJ mice. Photographs of the wounds were taken and the sizes of the ear punch wounds were quantified by image analysis. Local radiation to the ear was delivered by orthovoltage X-ray irradiator using a specially constructed jig that shields the other parts of body. Using this model, we demonstrated that local radiation to the wound area significantly delayed the healing of ear punch wounds in a dose-dependent fashion. The addition of sublethal whole body irradiation (7 Gy) further delayed the healing of ear punch wounds. These results were replicated in C57BL/6 mice; however, wound healing in MRL/MpJ mice was accelerated. These data indicate that the mouse ear punch model is a valuable model to study radiation and wound combined injury.
Design and finite element analysis of micro punch CNC machine modeling for medical devices
NASA Astrophysics Data System (ADS)
Pranoto, Sigiet Haryo; Mahardika, Muslim
2018-03-01
Research on micromanufacturing has been conducted. Miniaturization and weight reduction of various industrial products continue to be developed, machines with high accuracy and good quality of machining results are needed recently. This research includes design and simulation of Micro Punch CNC Machine using Abaqus with pneumatic system. This article concern of modeling simulation of punching miniplate titanium with 0.6 MPa of pressure and 500 µm of thickness. This study explaining von misses stress, safety factor and displacement analysis while the machine had the load of punching. The result gives the reaction forced of punching is 0.5 MPa on punch tip and maximum displacement is 3.237 × 10-1 mm. The safety factor is over than 12, and considered it safe for manufacturing process.
Design study of the geometry of the blanking tool to predict the burr formation of Zircaloy-4 sheet
NASA Astrophysics Data System (ADS)
Ha, Jisun; Lee, Hyungyil; Kim, Dongchul; Kim, Naksoo
2013-12-01
In this work, we investigated factors that influence burr formation for zircaloy-4 sheet used for spacer grids of nuclear fuel roads. Factors we considered are geometric factors of punch. We changed clearance and velocity in order to consider the failure parameters, and we changed shearing angle and corner radius of L-shaped punch in order to consider geometric factors of punch. First, we carried out blanking test with failure parameter of GTN model using L-shaped punch. The tendency of failure parameters and geometric factors that affect burr formation by analyzing sheared edges is investigated. Consequently, geometric factor's influencing on the burr formation is also high as failure parameters. Then, the sheared edges and burr formation with failure parameters and geometric factors is investigated using FE analysis model. As a result of analyzing sheared edges with the variables, we checked geometric factors more affect burr formation than failure parameters. To check the reliability of the FE model, the blanking force and the sheared edges obtained from experiments are compared with the computations considering heat transfer.
Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades
NASA Astrophysics Data System (ADS)
Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.
2018-04-01
Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.
Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades
NASA Astrophysics Data System (ADS)
Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.
2018-06-01
Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.
An ear punch model for studying the effect of radiation on wound healing
DeOLIVEIRA, DIVINO; JIAO, YIQUN; ROSS, JOEL R.; CORBIN, KAYLA; XIAO, QIZHEN; TONCHEVA, GRETA; ANDERSON-EVANS, COLIN; YOSHIZUMI, TERRY T.; CHEN, BENNY J.; CHAO, NELSON J.
2011-01-01
Purpose Radiation and wound combined injury represents a major clinical challenge because of the synergistic interactions that lead to higher morbidity and mortality than either insult would produce singly. The purpose of this study was to develop a mouse ear punch model to study the physiological mechanisms underlying radiation effects on healing wounds. Materials and methods Surgical wounds were induced by a 2 mm surgical punch in the ear pinnae of MRL/MpJ mice. Photographs of the wounds were taken and the sizes of the ear punch wounds were quantified by image analysis. Local radiation to the ear was delivered by orthovoltage X-ray irradiator using a specially constructed jig that shields the other parts of body. Results Using this model, we demonstrated that local radiation to the wound area significantly delayed the healing of ear punch wounds in a dose-dependent fashion. The addition of sublethal whole body irradiation (7 Gy) further delayed the healing of ear punch wounds. These results were replicated in C57BL/6 mice; however, wound healing in MRL/MpJ mice was accelerated. Conclusions These data indicate that the mouse ear punch model is a valuable model to study radiation and wound combined injury. PMID:21480768
Effect of G-Coat Plus on the mechanical properties of glass-ionomer cements.
Bagheri, R; Taha, N A; Azar, M R; Burrow, M F
2013-12-01
Although various mechanical properties of tooth-coloured materials have been described, little data have been published on the effect of ageing and G-Coat Plus on the hardness and strength of the glass-ionomer cements (GICs). Specimens were prepared from one polyacid-modified resin composite (PAMRC; Freedom, SDI), one resin-modified glass-ionomer cement; (RM-GIC; Fuji II LC, GC), and one conventional glass-ionomer cement; (GIC; Fuji IX, GC). GIC and RM-GIC were tested both with and without applying G-Coat Plus (GC). Specimens were conditioned in 37 °C distilled water for either 24 hours, four and eight weeks. Half the specimens were subjected to a shear punch test using a universal testing machine; the remaining half was subjected to Vickers Hardness test. Data analysis showed that the hardness and shear punch values were material dependent. The hardness and shear punch of the PAMRC was the highest and GIC the lowest. Applying the G-Coat Plus was associated with a significant decrease in the hardness of the materials but increase in the shear punch strength after four and eight weeks. The mechanical properties of the restorative materials were affected by applying G-Coat Plus and distilled water immersion over time. The PAMRC was significantly stronger and harder than the RM-GIC or GIC. © 2013 Australian Dental Association.
Tyagi, Natasha; Suneja, Amita; Mishra, Kiran; Jain, Sandhya; Vaid, Neelam Bala; Guleria, Kiran
2017-01-01
To assess the feasibility and efficacy of Keyes punch biopsy instrument (KP) in diagnosing cervical lesions and compare it with cervical punch biopsy forceps (CP). 75 women having satisfactory colposcopy with abnormal transformation zone were included and paired colposcopic directed biopsies were taken using KP followed by CP from the same target area. It was feasible in all cases to take cervical biopsy with KP after increasing its effective length. The volume of gross specimen obtained by KP was less than CP (0.076 ± 0.097 vs. 0.101 ± 0.156 cm3, p = 0.061), however on microscopic examination, mean length and mean depth of tissue in KP was greater than CP by 0.06 mm (p = 0.810) and 0.14 mm (p = 0.634) respectively. Exact agreement was found with the final surgical specimen in 42% of cases in both the biopsy forceps. KP is almost at par with CP for diagnosing preinvasive cervical lesions and is a useful adjunct to the existing armamentarium of biopsy forceps. © 2016 S. Karger AG, Basel.
Analysis of direct punch velocity in professional defence
NASA Astrophysics Data System (ADS)
Lapkova, Dora; Adamek, Milan
2016-06-01
This paper is focused on analysis of a direct punch. Nowadays, professional defence is basic part of effective protection of people and property. There are many striking techniques and the goal of this research was to analyze the direct punch. The analysis is aimed to measure the velocity with help of high speed camera Olympus i-Speed 2 and then find the dependences of this velocity on input parameters. For data analysis two pieces of software were used - i-Speed Control Software and MINITAB. 111 participants took part in this experiment. The results are presented in this paper - especially dependence of mean velocity on time and difference in velocity between genders.
Development and Validation of a Shear Punch Test Fixture
2013-08-01
composites (MMC) manufactured by friction stir processing (FSP) that are being developed as part of a Technology Investment Fund (TIF) project, as the...leading a team of government departments and academics to develop a friction stir processing (FSP) based procedure to create metal matrix composite... friction stir process to fabricate surface metal matrix composites in aluminum alloys for potential application in light armoured vehicles. The
Lap Shear Testing of Candidate Radiator Panel Adhesives
NASA Technical Reports Server (NTRS)
Ellis, David; Briggs, Maxwell; McGowan, Randy
2013-01-01
During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.
Blakeman, J. M.
1983-01-01
The skin punch biopsy is a simple and safe office procedure which is a valuable aid in diagnosing many skin diseases. It can be performed in a few minutes and offers in most situations a very suitable histological specimen with a minimum amount of scarring and little or no pain or discomfort to the patient. The indications for skin biopsy, selection of a proper site and the technique are described. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7 PMID:21283375
Push-out tests and evaluation of FRP perfobond rib shear connectors performance
NASA Astrophysics Data System (ADS)
Kolpasky, Ludvik; Ryjacek, Pavel
2017-09-01
The behavioural characteristics of FRP (fibre-reinforced polymer) perfobond rib shear connector was examined through push-out tests in order to verify the applicability for pedestrian bridge structure. The aim of this study is to determine interaction between high performance concrete slab and handmade FRP plate which represent web of the composite beam. Combination of these modern materials leads to structural system with both great load bearing capacity and also sufficient flexural stiffness of the composite element. Openings cut into the GFRP plate at a variable spacing allow GFRP reinforcement bars to be inserted to act as shear studs. Hand lay-up process can increase suitable properties of FRP for connection by perfobond rib shear connectors. In this study, three push-out tests on fiber-reinforced polymer were performed to investigate their shear behaviour. The results of the push-out tests on FRP perfobond rib shear connector indicates great promise for application in full scale structures.
Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion
NASA Astrophysics Data System (ADS)
Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.
2011-01-01
In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.
A comparative evaluation of in-plane shear test methods for laminated graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Morton, John; Ho, Henjen
1992-01-01
The objectives were to evaluate popular shear test methods for various forms of graphite-epoxy composite materials and to determine the shear response of graphite-epoxy composites with various forms of fiber architecture. Numerical and full-field experimental stress analyses were performed on four shear test configurations for unidirectional and bidirectional graphite-epoxy laminates to assess the uniformity and purity of the shear stress (strain) fields produced in the specimen test section and to determine the material in-plane shear modulus and shear response. The test methods were the 10 deg off-axis, the +/- 45 deg tension, the Iosipescu V-notch, and a compact U-notch specimen. Specimens were prepared from AS4/3501-6 graphite-epoxy panels, instrumented with conventional strain gage rosettes and with a cross-line moire grating, and loaded in a convenient testing machine. The shear responses obtained for each test method and the two methods of specimen instrumentation were compared. In a second phase of the program the shear responses obtained from Iosipescu V-notch beam specimens were determined for woven fabric geometries of different weave and fiber architectures. Again the responses of specimens obtained from strain gage rosettes and moire interferometry were compared. Additional experiments were performed on a bidirectional cruciform specimen which was also instrumented with strain gages and a moire grating.
NASA Astrophysics Data System (ADS)
Kazakov, K. E.; Kurdina, S. P.
2018-04-01
We study the contact interaction between a system of rigid annular punches and a viscoelastic two-layer foundation. The upper layer is thin compared with the punch width. We study the case where the punch shapes are described by a rapidly varying functions. We use special methods for constructing the solutions, because the standard methods are inefficient.
Three-dimensional finite element analysis of the shear bond test.
DeHoff, P H; Anusavice, K J; Wang, Z
1995-03-01
The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test
High-speed high-stress ring shear tests on granular sods and clayey soils
Hiroshi Fukuoka; Kyoji Sassa
1991-01-01
The purposes of this study is to obtain exact knowledge of the influences on friction angle during shear by shearing speeds. Ring shear tests on sandy and clayey materials have been carried out with a newly developed High-speed High-Stress Ring Shear Apparatus to examine if there are some changes in the frictional behaviors of these materials at high shearing speeds of...
Love-type wave propagation in a pre-stressed viscoelastic medium influenced by smooth moving punch
NASA Astrophysics Data System (ADS)
Singh, A. K.; Parween, Z.; Chatterjee, M.; Chattopadhyay, A.
2015-04-01
In the present paper, a mathematical model studying the effect of smooth moving semi-infinite punch on the propagation of Love-type wave in an initially stressed viscoelastic strip is developed. The dynamic stress concentration due to the punch for the force of a constant intensity has been obtained in the closed form. Method based on Weiner-hopf technique which is indicated by Matczynski has been employed. The study manifests the significant effect of various affecting parameters viz. speed of moving punch associated with Love-type wave speed, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, frequency parameter, and viscoelastic parameter on dynamic stress concentration due to semi-infinite punch. Moreover, some important peculiarities have been traced out and depicted by means of graphs.
Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J.H.; Kim, M.S.
The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less
NASA Astrophysics Data System (ADS)
Cen, Duofeng; Huang, Da
2017-06-01
Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.
NASA Astrophysics Data System (ADS)
Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna
2015-11-01
This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.
Treatment of Die-Punch Fractures with 3D Printing Technology.
Chen, Chunhui; Cai, Leyi; Zhang, Chuanxu; Wang, Jianshun; Guo, Xiaoshan; Zhou, Yifei
2017-07-19
We evaluated the feasibility, accuracy and effectiveness of applying three-dimensional (3D) printing technology for preoperative planning for die-punch fractures. A total of 107 patients who underwent die-punch fracture surgery were enrolled in the study. They were randomly divided into two groups: 52 cases in the 3D model group and 55 cases in the routine group. A 3D digital model of each die-punch fracture was reconstructed in the 3D group. The 3D digital model was imported to a 3D printer to build the full solid model. The operation time, blood loss volume, and the number of intraoperative fluoroscopy were recorded. Follow-up was performed to evaluate the patients' surgical outcomes. Treatment of die-punch fractures using the 3D printing approach reduced the number of intraoperative fluoroscopy, blood loss volume, and operation time, but did not improve wrist function compared to those in the routine group. The patients wanted the doctor to use the 3D model to introduce the condition and operative plan because it was easier for them to understand. The orthopedic surgeons thought that the 3D model was useful for communicating with their patients, but their satisfaction with the preoperative plan was much lower than the benefit of using the 3D model to communicate with their patients. 3D printing technology produced more accurate morphometric information for orthopedists to provide personalized surgical planning and communicate better with their patients. However, it is difficult to use widely in the department of orthopedics.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1989-01-01
The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.
Study on shear properties of coral sand under cyclic simple shear condition
NASA Astrophysics Data System (ADS)
Ji, Wendong; Zhang, Yuting; Jin, Yafei
2018-05-01
In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.
Factors governing hole expansion ratio of steel sheets with smooth sheared edge
NASA Astrophysics Data System (ADS)
Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Gyo-Sung; Kim, Hyoung Seop
2016-11-01
Stretch-flangeability measured using hole expansion test (HET) represents the ability of a material to form into a complex shaped component. Despite its importance in automotive applications of advanced high strength steels, stretch-flangeability is a less known sheet metal forming property. In this paper, we investigate the factors governing hole expansion ratio (HER) by means of tensile test and HET. We correlate a wide range of tensile properties with HERs of steel sheet specimens because the stress state in the hole edge region during the HET is almost the same as that of the uniaxial tensile test. In order to evaluate an intrinsic HER of steel sheet specimens, the initial hole of the HET specimen is produced using a milling process after punching, which can remove accumulated shearing damage and micro-void in the hole edge region that is present when using the standard HER evaluation method. It was found that the intrinsic HER of steel sheet specimens was proportional to the strain rate sensitivity exponent and post uniform elongation.
Petousis, Stamatios; Christidis, Panagiotis; Margioula-Siarkou, Chrysoula; Sparangis, Nikolaos; Athanasiadis, Apostolos; Kalogiannidis, Ioannis
2018-05-01
Τo estimate the discrepancy rate between colposcopy, punch biopsy histology and surgical specimen histology as well as the positive (PPV) and negative predictive value (NPV) of colposcopic diagnosis for high-grade squamous intraepithelial lesions (HGSIL). A prospective study was conducted during the period of 2012-2016. Αll cases in which surgical treatment had been applied and histopathological diagnosis of those surgical specimens was available were included. Cases in which ablation was performed and cases with incomplete data or conservative approach were excluded. Primary outcome was the agreement rate between histologic diagnosis of surgical specimen, histologic diagnosis of punch biopsy and colposcopic diagnosis according to REID Colposcopic Index. PPV and NPV of colposcopy and biopsy to diagnose HGSIL were also assessed. Τhere were 120 cases meeting our inclusion criteria, while biopsy was obtained in 104 cases. Mean age of women was 32.7 ± 9.0. Colposcopic diagnosis was CIN2 in 65 cases, CIN3 in 11 cases, CIN1 or less in 44 cases. Τhe level of agreement was fair between colposcopy-surgical specimen histology (κ value 0.443), fair between colposcopy-punch biopsy (κ value 0.34) and moderate between punch biopsy-cone specimen histology (κ value 0.443). PPV of colposcopy to detect HGSIL was 72.3%, while NPV was only 47.7%. Punch biopsy and surgical specimen histology present the highest agreement between the different diagnostic procedures. Colposcopy presented satisfying PPV for HGSIL cases, but its NPV was poor. In contrary, punch biopsy was characterized by both satisfying PPV and NPV for HGSIL cases.
Determination of Material Strengths by Hydraulic Bulge Test.
Wang, Hankui; Xu, Tong; Shou, Binan
2016-12-30
The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.
Aircraft-Induced Hole Punch and Canal Clouds
NASA Astrophysics Data System (ADS)
Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.
2009-12-01
The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.
Halperin, Israel; Chapman, Dale W; Martin, David T; Abbiss, Chris
2017-03-01
Research indicates that instructing athlete's to focus on bodily movements (internal focus of attention [IFA]) may hinder performance, whereas instructing them to focus on the movement outcome (external focus of attention [EFA]) often enhances performance. Despite the importance of instructions in striking combat sports, limited research has examined the influence of IFA and EFA on performance in well-trained combat athletes. This study investigated the effects of different instructional cues on punching velocity (m · s -1 ) and normalised impact forces (N · kg -1 ) among intermediate (n = 8) and expert (n = 7) competitive boxers and kickboxers. Athletes completed three rounds of 12 maximal effort punches delivered to a punching integrator on three separate days. Day one was a familiarisation session with only control instructions provided. In the following two days athletes randomly received IFA, EFA or control instructions prior to each of the three rounds. Athletes punching with EFA were 4% faster and 5% more forceful than IFA (P < 0.05), and 2% faster and 3% more forceful than control (P < 0.05). Furthermore, experts punched 11% faster and with 13% greater force compared with intermediate athletes (P < 0.05). EFA led to a positive effect on punching performance and should be favoured over IFA and control instructions.
High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs.
Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus; Morling, Niels
2016-01-01
Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards with buccal swabs and compared the results with those obtained with DNA extracted using the EZ1 DNA Investigator Kit. Concordant profiles were obtained for all samples. Our protocol includes simple punch, wash, and PCR steps, reducing cost and hands-on time in the laboratory. Furthermore, it facilitates automation of DNA sequencing.
Campbell, Ian W
2016-07-01
During the 1640s, the Irish Franciscan theologian John Punch taught his theology students in Rome that war against Protestants was made just by their religion alone. Jesuits like Luis de Molina identified the holy war tradition in which Punch stood as a Scotist one, and insisted that the Scotists had confused the natural and supernatural spheres. Among Irishmen, Punch was unusual. The main Irish Catholic revolutionary tradition employed Jesuit and Thomist theory. They argued that the Stuarts had lost the right to rule Ireland for natural reasons, not supernatural ones; because the Stuarts were tyrants, not because they were Protestants.
NASA Astrophysics Data System (ADS)
Pathak, N.; Butcher, C.; Worswick, M.
2016-11-01
The edge formability of ferritic-martensitic DP (dual-phase) and ferritic-bainitic CP (complex-phase) steels was evaluated using a hole expansion test for different edge conditions. Hole expansion tests involving the standard conical punch as well as a custom flat punch were performed to investigate formability when the hole is expanded out-of-plane (conical punch) and in-plane using the flat punch. A range of edge conditions were considered, in order to isolate the influence of a range of factors thought to influence edge formability. The results demonstrate that work hardening and void damage at the sheared edge govern formability, while the sheared surface quality plays a minor or secondary role. A comparison of the edge stretching limits of DP and CP steels demonstrates the advantages of a ferritic-bainitic microstructure for forming operations with severe local deformation as in a stretch-flanging operation. A comparison of a traditional DP780 steel with a CP steel of similar strength showed that the edge stretching limit of the CP steel was three times larger than that of the DP780.
Punching influence on magnetic properties of the stator teeth of an induction motor
NASA Astrophysics Data System (ADS)
Kedous-Lebouc, A.; Cornut, B.; Perrier, J. C.; Manfé, Ph.; Chevalier, Th.
2003-01-01
In order to study the effects of punching of electrical steel sheets, a suitable geometrical structure able to characterize the stator teeth behavior of an induction motor is proposed and validated. The influence of the punching on a fully processed M330-65A is then characterized. A spectacular degradation of loss and B( H) curves is observed. This leads to a perceptible increase of the no-load machine current.
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls
NASA Astrophysics Data System (ADS)
Lu, Xilin; Yang, Boya; Zhao, Bin
2018-04-01
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellen M. Rabenberg; Brian J. Jaques; Bulent H. Sencer
The mechanical properties of AISI 304 stainless steel irradiated for over a decade in the Experimental Breeder Reactor (EBR-II) were measured using miniature mechanical testing methods. The shear punch method was used to evaluate the shear strengths of the neutron-irradiated steel and a correlation factor was empirically determined to predict its tensile strength. The strength of the stainless steel slightly decreased with increasing irradiation temperature, and significantly increased with increasing dose until it saturated above approximately 5 dpa. Ferromagnetic measurements were used to observe and deduce the effects of the stress-induced austenite to martensite transformation as a result of shearmore » punch testing.« less
NASA Astrophysics Data System (ADS)
Sharma, Ankush; Patnaik, Amar
2018-03-01
The present investigation evaluates the effects of waste marble dust, collected from the marble industries of Rajasthan, India, on the mechanical properties of needle-punched nonwoven jute fiber/epoxy composites. The composites with varying filler contents from 0 wt.% to 30 wt.% marble dust were prepared using vacuum-assisted resin-transfer molding. The influences of the filler material on the void content, tensile strength, flexural strength, interlaminar shear strength (ILSS), and thermal conductivity of the hybrid composites have been analyzed experimentally under the desired optimal conditions. The addition of marble dust up to 30 wt.% increases the flexural strength, ILSS, and thermal conductivity, but decreases the tensile strength. Subsequently, the fractured surfaces of the particulate-filled jute/epoxy composites were analyzed microstructurally by field-emission scanning electron microscopy.
Shear Ram Verification Test Protocol (VTP) Best Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindley, Roy A.; Braun, Joseph C.
A blowout preventer (BOP) is a critical component used on subsea oil and gas wells during drilling, completion, and workover operations on the U. S. outer continental shelf (OCS). The purpose of the BOP is to seal oil and gas wells, and in the case of an emergency well-control event, to prevent the uncontrolled release of hydrocarbons. One of the most important components of the BOP is the hydraulically operated blind shear ram (BSR) that shears drilling-related components, such as drill pipes, casings, tubings, and wire-related tools that may have been placed in the well. In addition to shearing thesemore » components, the BSR must form a seal to keep hydrocarbons within the well bore, even when under the highest well-fluid pressures expected. The purpose of this document is for Argonne National Laboratory (ANL) to provide an independent view, based on current regulations, and best practices for testing and confirming the operability and suitability of BSRs under realistic (or actual) well conditions.« less
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
Design and testing of a rotational brake with shear thickening fluids
NASA Astrophysics Data System (ADS)
Tian, Tongfei; Nakano, Masami
2017-03-01
A rotational brake working with shear thickening fluid (STF) was designed and tested in this study. With the optimisation in design, most of the STF in the brake can receive the same shear rate when the brake rotates. The parts of this brake were fabricated with a 3D printer and then assembled manually. Three types of STFs with various carrier fluids and different particles were fabricated and tested with a rheometer. Then the brake with each STF was separately tested with the rheometer. The estimated and measured torques as a function of the angular velocity fit each other well. The stability of the rotational STF brake was investigated in repeated tests, which proved the function of the brake for a long time.
NASA Astrophysics Data System (ADS)
Voss, B. M.; Pereira, M. P.; Rolfe, B. F.; Doolan, M. C.
2017-09-01
The growth in use of Advanced High Strength Steels in the automotive industry for light-weighting and safety has increased the rates of tool wear in sheet metal stamping. This is an issue that adds significant costs to production in terms of manual inspection and part refinishing. To reduce these costs, a tool condition monitoring system is required and a firm understanding of process signal variation must form the foundation for any such monitoring system. Punch force is a stamping process signal that is widely collected by industrial presses and has been linked closely to part quality and tool condition, making it an ideal candidate as a tool condition monitoring signal. In this preliminary investigation, the variation of punch force due to different lubrication conditions and progressive wear are examined. Linking specific punch force signature changes to developing lubrication and wear events is valuable for die wear and stamping condition monitoring. A series of semi-industrial channel forming trials were conducted under different lubrication regimes and progressive die wear. Punch force signatures were captured for each part and Principal Component Analysis (PCA) was applied to determine the key Principal Components of the signature data sets. These Principal Components were linked to the evolution of friction conditions over the course of the stroke for the different lubrication regimes and mechanism of galling wear. As a result, variation in punch force signatures were correlated to the current mechanism of wear dominant on the formed part; either abrasion or adhesion, and to changes in lubrication mechanism. The outcomes of this study provide important insights into punch force signature variation, that will provide a foundation for future work into the development of die wear and lubrication monitoring systems for sheet metal stamping.
NASA Astrophysics Data System (ADS)
Silva, P. C. G.; Porto-Neto, S. T.; Lizarelli, R. F. Z.; Bagnato, V. S.
2008-03-01
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
41 CFR 101-26.703 - Marginally punched continuous forms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Marginally punched continuous forms. 101-26.703 Section 101-26.703 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT...
Shear-Sensitive Liquid Crystal Coating Method Applied Through Transparent Test Surfaces
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Wilder, Michael C.
1999-01-01
Research conducted at NASA Ames Research Center has shown that the color-change response of a shear-sensitive liquid crystal coating (SSLCC) to aerodynamic shear depends on both the magnitude of the local shear vector and its direction relative to the observer's in-plane line of sight. In conventional applications, the surface of the SSLCC exposed to aerodynamic shear is illuminated with white light from the normal direction and observed from an oblique above-plane view angle of order 30 deg. In this top-light/top-view mode, shear vectors with components directed away from the observer cause the SSLCC to exhibit color-change responses. At any surface point, the maximum color change (measured from the no-shear red or orange color) always occurs when the local vector is aligned with, and directed away from, the observer. The magnitude of the color change at this vector-observer-aligned orientation scales directly with shear stress magnitude. Conversely, any surface point exposed to a shear vector with a component directed toward the observer exhibits a non-color-change response, always characterized by a rusty-red or brown color, independent of both shear magnitude and direction. These unique, highly directional color-change responses of SSLCCs to aerodynamic shear allow for the full-surface visualization and measurement of continuous shear stress vector distributions. The objective of the present research was to investigate application of the SSLCC method through a transparent test surface. In this new back-light/back-view mode, the exposed surface of the SSLCC would be subjected to aerodynamic shear stress while the contact surface between the SSLCC and the solid, transparent wall would be illuminated and viewed in the same geometrical arrangement as applied in conventional applications. It was unknown at the outset whether or not color-change responses would be observable from the contact surface of the SSLCC, and, if seen, how these color-change responses might
Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.
Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P
2008-05-01
To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p < 0.001). When the nature of failure was assessed with the ARI Index, 83 per cent of the enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.
2003-01-01
Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.
Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson
2014-07-01
This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed.
Air/ground wind shear information integration: Flight test results
NASA Technical Reports Server (NTRS)
Hinton, David A.
1992-01-01
An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.
An experimental study on the shear strength of FRP perfobond shear connector
NASA Astrophysics Data System (ADS)
Gwon, S. C.; Kim, S. H.; Yoon, S. J.; Choi, C. W.
2018-06-01
In this study, push-out tests were conducted to investigate shear behaviour of FRP perfobond shear connector. The parameters influencing shear capacity of FRP perfobond shear connector are concrete dowel effect, shear resistance effect of the laterally reinforced FRP re- bar, and frictional effect between shear connector and concrete. The specimens were designed to consider these parameters. The specimens coated with sand to increase frictional resistance between the FRP re-bar and concrete. Based on the test results and the parameters, new equation was suggested to predict shear strength of FRP perfobond shear connectors. The predicted results and the experimental results were compared to check the feasibility of prediction.
"One can't shake off the women": images of sport and gender in Punch, 1901-10.
Constanzo, Marilyn
2002-01-01
Examining the manner in which the popular press portrayed middle-class Edwardian women's activity in sport provides insight into the social liberation of English women. The popular middle-class British journal Punch included thousands of images of sportswomen. Despite the misogynistic satirizing of inept women, Punch's cartoons and articles depict distinct changes in women's behavior and social expectations that are linked to their increasing involvement in sport. By engaging in sport, women unconsciously challenged and permanently altered the pervasive middle-class Victorian ideology. The contents of Punch suggests that middle-class women's participation in sport, though perhaps begun in a conservative manner, completely altered and expanded their social role and changed the traditional image of womanhood.
Ten Deg Off-Axis Test for Shear Properties in Fiber Composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1977-01-01
A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization, and it is recommended that it should be considered as a possible standard test specimen for such a characterization.
NASA Astrophysics Data System (ADS)
Kedous-Lebouc, A.; Messal, O.; Youmssi, A.
2017-03-01
Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.
Nordberg, Rachel C; Charoenpanich, Adisri; Vaughn, Christopher E; Griffith, Emily H; Fisher, Matthew B; Cole, Jacqueline H; Spang, Jeffrey T; Loboa, Elizabeth G
2016-10-28
The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo.
Comparison of shear bond strength relative to two testing devices.
Pecora, Nikole; Yaman, Peter; Dennison, Joseph; Herrero, Alberto
2002-11-01
Dentin adhesives are characterized on the basis of their bond strength to dentin; however, great variation exists within the same material depending on the testing apparatus. To realistically compare bond strengths, the testing mechanisms must be the same. The purpose of this investigation was to use 2 testing devices to evaluate the shear bond strength of 3 single-bottle adhesives with their multistep counterparts. The occlusal surfaces of 120 freshly extracted third molars were ground to expose the dentin and polished with 600-grit silicon carbide paper. Three single-bottle, (Optibond Solo Plus, 3M Single Bond, and Excite) and 3 multistep adhesives (Optibond FL, 3M MultiPurpose Plus, and Syntac) were each used to bond a composite cylinder (made from a 2.379 +/-.001-mm diameter by 4-mm-high mold) of Tetric Ceram to 20 teeth. The specimens were stored in 100% humidity for 24 hours. The shear bond strength at failure was measured in kilograms and converted to megapascals for each material, using a knife (conventional method) and an Ultradent testing device on a universal testing machine (Instron) at a loading rate of 0.5 mm/min. A 2-way analysis of variance (ANOVA) test was performed comparing the 2 testing devices and the materials at P<.05. Where significant, a 1-way ANOVA test was conducted among the materials for each test group, and a Tukey multiple comparison test was used to determine significant differences among the materials tested (P<.05). An independent Student t test at P<.05 was used to determine significance between testing devices. The results showed that Optibond Solo Plus (26.85 +/- 8.76 MPa), Optibond FL (25.40 +/- 4.44 MPa), 3M Single Bond (28.12 +/- 5.01 MPa), and 3M MultiPurpose Plus (34.40 +/- 7.90 MPa) had significantly higher bond strengths when tested with the Ultradent testing device. The mean values for Excite (19.47 +/- 6.17 MPa) and Syntac (20.20 +/- 7.07 MPa) were also higher with the Ultradent testing device, but the difference was
Improved self-reliance shearing interferometric technique for collimation testing
NASA Astrophysics Data System (ADS)
Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi
1995-06-01
Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.
An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation
NASA Astrophysics Data System (ADS)
Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.
2004-12-01
The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.
NASA Technical Reports Server (NTRS)
Gentz, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.; Kumosa, M.
2004-01-01
Iosipescu shear tests were performed at room temperature and at 316 C (600 F) o woven composites with either M40J or M60J graphite fibers and PMR-II-50 polyimide resin matrix. The composites were tested as supplied and after thermo-cycling, with the thermo-cycled composites being tested under dry and wet conditions. Acoustic emission (AE) was monitored during the room and high temperature Iosipescu experiments. The shear stresses at the maximum loads and the shear stresses at the significant onset of AE were determined for the composites as function of temperature and conditioning. The combined effects of thermo-cycling and moisture on the strength and stiffness properties of the composites were evaluated. It was determined that the room and high temperature shear stresses at the maximum loads were unaffected by conditioning. However, at room temperature the significant onset of AE was affected by conditioning; the thermal conditioned wet specimens showed the highest shear stress at the onset of AE followed by thermal-conditioned and then as received specimens. Also, at igh temperature the significant onset of AE occurred in some specimens after the maximum load due to the viscoelastoplastic nature of the matrix material.
Hayashi, Yoshihiro; Kosugi, Atsushi; Miura, Takahiro; Takayama, Kozo; Onuki, Yoshinori
2018-01-01
The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (μ) and lower by internal friction angle (α y ) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by α y . On the other hand, the pressure transmissibility rate of punches value was affected not only by the α y value, but also by μ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that μ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.
NASA Astrophysics Data System (ADS)
Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.
2011-10-01
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.
Okamoto, R J; Clayton, E H; Bayly, P V
2011-10-07
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G″ (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.
Mitsunaga, Erin M
2006-05-01
During the Korean War, International Business Machines (IBM) punch cards were created for every individual involved in military combat. Each card contained all pertinent personal information about the individual and was utilized to keep track of all soldiers involved. However, at present, all of the information known about these punch cards reveals only their format and their significance; there is little to no information on how these cards were created or how to interpret the information contained without the aid of the computer system used during the war. Today, it is believed there is no one available to explain this computerized system, nor do the original computers exist. This decode strategy is the result of an attempt to decipher the information on these cards through the use of all available medical and dental records for each individual examined. By cross-referencing the relevant personal information with the known format of the cards, a basic guess-and-check method was utilized. After examining hundreds of IBM punch cards, however, it has become clear that the punch card method of recording information was not infallible. In some cases, there are gaps of information on cards where there are data recorded on personal records; in others, information is punched incorrectly onto the cards, perhaps as the result of a transcription error. Taken all together, it is clear that the information contained on each individual's card should be taken solely as another form of personal documentation.
Hukkanen, Esa; Häkkinen, Keijo
2017-06-01
Seven, male, national-level boxers (age, 20.3 ± 2.7 years; height, 1.80 ± 0.06 m; mass, 73.8 ± 11.1 kg) participated in this study to investigate the effects of sparring on reaction time and punch force of straight punches measured during the precompetition and competition periods. Heart rate and blood lactate concentrations were also monitored. Sparring load was chosen in accordance with the current rules: 3 × 3-minute bouts with 1-minute break in between. Reaction time of rear straight lengthened (p < 0.01) during the sparring load of the precompetition period after the third round (to 390 milliseconds) in comparison to the competition period (to 310 milliseconds). Reaction time of lead straight lengthened (p ≤ 0.05) between the first and third round during the precompetition with no differences during the competition period. Both rear and lead straight punch forces were greater at all measurement points during the precompetition compared with the competition period. Punch forces increased for both rear and lead straight between the first and third rounds with the highest forces after third round during the precompetition (rear straight, 209 kg) and competition (rear straight, 176 kg) periods. Blood lactate levels increased after every round during both periods being at its greatest after the third round (17 mmol·L during the precompetition and 13 mmol·L during the competition period). The present sparring-induced differences in reaction time and punch forces of straight punches during the precompetition compared with the competition period may be the result of different volume and intensity of training with different goals in boxing-specific and explosive strength training.
Using Teamcenter engineering software for a successive punching tool lifecycle management
NASA Astrophysics Data System (ADS)
Blaga, F.; Pele, A.-V.; Stǎnǎşel, I.; Buidoş, T.; Hule, V.
2015-11-01
The paper presents studies and researches results of the implementation of Teamcenter (TC) integrated management of a product lifecycle, in a virtual enterprise. The results are able to be implemented also in a real enterprise. The product was considered a successive punching and cutting tool, designed to materialize a metal sheet part. The paper defines the technical documentation flow (flow of information) in the process of constructive computer aided design of the tool. After the design phase is completed a list of parts is generated containing standard or manufactured components (BOM, Bill of Materials). The BOM may be exported to MS Excel (.xls) format and can be transferred to other departments of the company in order to supply the necessary materials and resources to achieve the final product. This paper describes the procedure to modify or change certain dimensions of sheet metal part obtained by punching. After 3D and 2D design, the digital prototype of punching tool moves to following lifecycle phase of the manufacturing process. For each operation of the technological process the corresponding phases are described in detail. Teamcenter enables to describe manufacturing company structure, underlying workstations that carry out various operations of manufacturing process. The paper revealed that the implementation of Teamcenter PDM in a company, improves efficiency of managing product information, eliminating time working with search, verification and correction of documentation, while ensuring the uniqueness and completeness of the product data.
Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet
NASA Technical Reports Server (NTRS)
Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew
2010-01-01
High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.
Fabrikant, I.; Karapetian, E.; Kalinin, S. V.
2017-12-09
Here, we consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Bothmore » methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, I.; Karapetian, E.; Kalinin, S. V.
Here, we consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Bothmore » methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.« less
NASA Astrophysics Data System (ADS)
Wang, Peitao; Cai, Meifeng; Ren, Fenhua; Li, Changhong; Yang, Tianhong
2017-07-01
This paper develops a numerical approach to determine the mechanical behavior of discrete fractures network (DFN) models based on digital image processing technique and particle flow code (PFC2D). A series of direct shear tests of jointed rocks were numerically performed to study the effect of normal stress, friction coefficient and joint bond strength on the mechanical behavior of joint rock and evaluate the influence of micro-parameters on the shear properties of jointed rocks using the proposed approach. The complete shear stress-displacement curve of the DFN model under direct shear tests was presented to evaluate the failure processes of jointed rock. The results show that the peak and residual strength are sensitive to normal stress. A higher normal stress has a greater effect on the initiation and propagation of cracks. Additionally, an increase in the bond strength ratio results in an increase in the number of both shear and normal cracks. The friction coefficient was also found to have a significant influence on the shear strength and shear cracks. Increasing in the friction coefficient resulted in the decreasing in the initiation of normal cracks. The unique contribution of this paper is the proposed modeling technique to simulate the mechanical behavior of jointed rock mass based on particle mechanics approaches.
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.
Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test
NASA Astrophysics Data System (ADS)
Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang
2017-12-01
Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Morgan, R. C.
1985-01-01
A model of crustal deformation from continental collision that involves the penetration of a rigid punch into a deformable sheet is investigated. A linear viscous flow law is used to compute the magnitude and rate of change of crustal thickness, the velocity of mass points, strain rates and their principal axes, modes of deformation, areal changes, and stress. In general, a free lateral boundary reduces the magnitude of changes in crustal thickening by allowing material to more readily escape the advancing punch. The shearing that occurs diagonally in front of the punch terminates in compression or extension depending on whether the lateral boundary is fixed or free. When the ratio of the diameter of the punch to that of the sheet exceeds one-third, the deformation is insenstive to the choice of lateral boundary conditions. When the punch is rigid with sharply defined edges, deformation is concentrated near the punch corners. With non-rigid punches, shearing results in deformation being concentrated near the center of the punch. Variations with respect to linearity and nonlinearity of flow are discussed.
CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.
2014-01-01
This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.
NASA Astrophysics Data System (ADS)
Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves
2017-11-01
We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.
PUNCHED CARD SYSTEM NEEDN'T BE COMPLEX TO GIVE COMPLETE CONTROL.
ERIC Educational Resources Information Center
BEMIS, HAZEL T.
AT WORCESTER JUNIOR COLLEGE, MASSACHUSETTS, USE OF A MANUALLY OPERATED PUNCHED CARD SYSTEM HAS RESULTED IN (1) SIMPLIFIED REGISTRATION PROCEDURES, (2) QUICK ANALYSIS OF CONFLICTS AND PROBLEMS IN CLASS SCHEDULING, (3) READY ACCESS TO STATISTICAL INFORMATION, (4) DIRECTORY INFORMATION IN A WIDE RANGE OF CLASSIFICATIONS, (5) EASY VERIFICATION OF…
Lawson, A J; Bernstone, L; Hall, S K
2016-03-01
In dried blood spot analysis, punch location and variations in applied sample volume and haematocrit can produce different measured concentrations of analytes. We investigated the magnitude of these effects in newborn screening in the UK. Heparinized blood spiked with thyroid stimulating hormone (TSH), phenylalanine, tyrosine, leucine, methionine, octanoyl carnitine (C8), and immunoreactive trypsinogen (IRT) was spotted onto filter paper: (i) at a constant haematocrit of 50% at various volumes, and (ii) at a range of haematocrits using a constant volume. Subpunches (3.2 mm) of the dried blood spots were then analysed. Compared with a central punch from a 50 µL blood spot with 50% haematocrit, 10 µL spots can have significantly lower measured concentrations of all analytes, with decreases of 15% or more observed for leucine, methionine, phenylalanine, and tyrosine. Punching at the edge of a spot can increase measured concentrations up to 35%. Higher haematocrit decreased measured TSH and C8 yet increased amino acids and IRT by 15% compared with 50% haematocrit. Lower haematocrits had the opposite effect, but only with higher concentrations of some analytes. Differences in blood spot size, haematocrit and punch location substantially affect measured concentrations for analytes used in the UK newborn screening programme, and this could affect false positive and negative rates. To minimize analytical bias, these variables should be controlled or adjusted for where possible. © The Author(s) 2015.
Experimental study of shear rate dependence in perpetually sheared granular matter
NASA Astrophysics Data System (ADS)
Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai
2017-06-01
We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators
NASA Astrophysics Data System (ADS)
Khanoknaiyakarn, C.; Promvonge, P.; Thianpong, C.; Skullong, S.
2018-01-01
A novel tubular heat exchanger incorporated with punched delta-winglet vortex generators (called perforated delta-winglet vortex generator, P-DWVG) is proposed for improving its thermal performance and energy saving. The P-DWVG elements are punched out from a straight tape having its width nearly equal to the tube diameter before insertion. The main aim at employing the P-DWVG insert is to produce counter-rotating vortices along the tube to promote turbulence intensity inside as well as to transport the cold fluid at the central core to the near-wall regions. The experiment was performed to study thermal behaviors in a uniform heat-fluxed tube inserted with P-DWVGs. The P-DWVGs with the attack angle of 45° were mounted periodically with three different blockage ratios (BR = 0.1, 0.2 and 0.3) and two pitch ratios (PR = 2 and 3). Air as the test fluid was varied to obtain turbulent airflow for Reynolds number (Re) in a range of 4,150-25,500. The experimental results show that the P-DWVG provides a considerable increase in the rate of heat transfer around 3.1-4.01 times whereas friction factor increases around 11.44- 34.23 times higher than the plain tube. To assess the real benefits of P-DWVGs, thermal performance factor (TEF) is examined and in the range of 1.39-1.48 where its maximum is at BR = 0.1 and PR = 2.
Ten deg off-axis tensile test for intralaminar shear characterization of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1976-01-01
A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite element analysis were used to determine theoretically the stress-strain variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization and it is recommended that it should be considered as a possible standard test specimen for such a characterization.
Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder
NASA Technical Reports Server (NTRS)
Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm
1996-01-01
This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed
Punched belt hole position deviation analysis of float type water level gauge
NASA Astrophysics Data System (ADS)
Mao, Chunlei; Wang, Tao; Fu, Weijie; Li, Lianhui
2018-03-01
The key parts of the float type water level gauge instrument is perforated belt, The size and tolerance requirements of its aperture is: (1) alternation of 100+0.2 and 100-0.2, (2) 200±0.1, (3) 1000±0.15, (4) 10000±0.2. The single hole position: alternation of 100+0.2 and 100-0.2; double: 200±0.1, and ensure the best hole position error avoidance tends to be one-way, that is to say: when the punched belt combined with a water wheel rotating line moving, The hole position error to single direction increase or decrease, caused the water level nail gradually and close to the edge of the hole, and then edge and final punched belt was lifted. This paper uses the laser drilling process of steel strip for data collection and analysis. It is found that this method cannot meet the tolerance requirements and the double stamping processing method with adjustable cylindrical pin is feasible.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen
2017-10-01
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
Compact forced simple-shear sample for studying shear localization in materials
Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica
2015-11-06
In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less
Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography.
Long, Zaiyang; Tradup, Donald J; Song, Pengfei; Stekel, Scott F; Chen, Shigao; Glazebrook, Katrina N; Hangiandreou, Nicholas J
2018-03-15
Because of the rapidly growing use of ultrasound shear wave elastography (SWE) in clinical practices, there is a significant need for development of clinical physics performance assessment methods for this technology. This study aims to report two clinical medical physicists' tasks: (a) acceptance testing (AT) of SWE function on ten commercial ultrasound systems for clinical liver application and (b) comparison of SWE measurements of targets across vendors for clinical musculoskeletal application. For AT, ten GE LOGIQ E9 XDclear 2.0 scanners with ten C1-6-D and ten 9L-D transducers were studied using two commercial homogenous phantoms. Five measurements were acquired at two depths for each scanner/transducer pair by two operators. Additional tests were performed to access effects of different coupling media, phantom locations and operators. System deviations were less than 5% of group mean or three times standard deviation; therefore, all systems passed AT. A test protocol was provided based on results that no statistically significant difference was observed between using ultrasound gel and salt water for coupling, among different phantom locations, and that interoperator and intraoperator coefficient of variation was less than 3%. For SWE target measurements, two systems were compared - a Supersonic Aixplorer scanner with a SL10-2 and a SL15-4 transducer, and an abovementioned GE scanner with 9L-D transducer. Two stepped cylinders with diameters of 4.05-10.40 mm were measured both longitudinally and transaxially. Target shear wave speed quantification was performed using an in-house MATLAB program. Using the target shear wave speed deduced from phantom specs as a reference, SL15-4 performed the best at the measured depth. However, it was challenging to reliably measure a 4.05 mm target for either system. The reported test methods and results could provide important information when dealing with SWE-related tasks in the clinical environment. © 2018 The Authors
NASA Technical Reports Server (NTRS)
Laakso, J. H.; Straayer, J. W.
1973-01-01
Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.
Shear test on viscoelastic granular material using Contact Dynamics simulations
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille
2017-06-01
By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.
NASA Astrophysics Data System (ADS)
Mishra, J. S.; Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H.
2011-02-01
A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii Rc = 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.
NASA Astrophysics Data System (ADS)
Mahalder, B.; Schwartz, J. S.; Palomino, A.; Papanicolaou, T.
2016-12-01
Cohesive soil erodibility and threshold shear stress for stream bed and bank are dependent on both soil physical and geochemical properties in association with the channel vegetative conditions. These properties can be spatially variable therefore making critical shear stress measurement in cohesive soil challenging and leads to a need for a more comprehensive understanding of the erosional processes in streams. Several in-situ and flume-type test devices for estimating critical shear stress have been introduced by different researchers; however reported shear stress estimates per device vary widely in orders of magnitude. Advantages and disadvantages exist between these devices. Development of in-situ test devices leave the bed and/or bank material relatively undisturbed and can capture the variable nature of field soil conditions. However, laboratory flumes provide a means to control environmental conditions that can be quantify and tested. This study was conducted to observe differences in critical shear stress using jet tester and a well-controlled conduit flume. Soil samples were collected from the jet test locations and tested in a pressurized flume following standard operational procedure to calculate the critical shear stress. The results were compared using statistical data analysis (mean-separation ANOVA procedure) to identify possible differences. In addition to the device comparison, the mini jet device was used to measure critical shear stress across geologically diverse regions of Tennessee, USA. Statistical correlation between critical shear stress and the soil physical, and geochemical properties were completed identifying that geological origin plays a significant role in critical shear stress prediction for cohesive soils. Finally, the critical shear stress prediction equations using the jet test data were examined with possible suggestions to modify based on the flume test results.
Shear fatigue crack growth - A literature survey
NASA Technical Reports Server (NTRS)
Liu, H. W.
1985-01-01
Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.
Computing Gross Pay from Punched Time Cards. Student Manual and Instructor's Manual.
ERIC Educational Resources Information Center
McElveen, Peggy C.
Supporting performance objective 30 of the V-TECS (Vocational-Technical Education Consortium of States) Secretarial Catalog, both a set of student materials and an instructor's manual on computing gross pay from punched time cards are included in this packet, which is part of a series. The student materials include a group of time cards,…
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
Iosipescu shear properties of graphite fabric/epoxy composite laminates
NASA Technical Reports Server (NTRS)
Walrath, D. E.; Adams, D. F.
1985-01-01
The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2017-04-01
In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.
NASA Astrophysics Data System (ADS)
Lee, Hoyoon; Kim, Gyehyu; Choi, Seawhan; Shin, Sehyun; Korea University Department of Mechanical Engineering Team
2015-11-01
Platelet is a crucial blood cell on hemostasis. As platelet exposed to high shear stress, it can be activated showing morphological and functional changes to stop bleeding. When platelet is abnormal, there is high risk of cardiovascular diseases. Thus, quick and precise assay for platelet function is important in clinical treatment. In this study, we design a microfluidic system, which can test platelet function exposed with the stimulation of shear and agonists. The microfluidic system consists of three parts: 1) a shear mechanism with rotating stirrer; 2) multiple microchannels to flow samples and to stop; 3) camera-interfaced migration distance(MD) analyzing system. When sheared blood is driven by pressure through the microchannel, shear-activated platelets adhere to a collagen-coated surface, causing blood flow to significantly slow and eventually stop. As the micro-stirrer speed increases, MD decreases exponentially at first, but it increases beyond a critical rpm after all. These results are coincident with data measured by FACS flowcytometry. These results imply that the present system could quantitatively measure the degree of activation, aggregation and adhesion of platelets and that blood MD is potent index for measuring the shear-dependence of platelet function.
On double shearing in frictional materials
NASA Astrophysics Data System (ADS)
Teunissen, J. A. M.
2007-01-01
This paper evaluates the mechanical behaviour of yielding frictional geomaterials. The general Double Shearing model describes this behaviour. Non-coaxiality of stress and plastic strain increments for plane strain conditions forms an important part of this model. The model is based on a micro-mechanical and macro-mechanical formulation. The stress-dilatancy theory in the model combines the mechanical behaviour on both scales.It is shown that the general Double Shearing formulation comprises other Double Shearing models. These models differ in the relation between the mobilized friction and dilatancy and in non-coaxiality. In order to describe reversible and irreversible deformations the general Double Shearing model is extended with elasticity.The failure of soil masses is controlled by shear mechanisms. These shear mechanisms are determined by the conditions along the shear band. The shear stress ratio of a shear band depends on the orientation of the stress in the shear band. There is a difference between the peak strength and the residual strength in the shear band. While peak stress depends on strength properties only, the residual strength depends upon the yield conditions and the plastic deformation mechanisms and is generally considerably lower than the maximum strength. It is shown that non-coaxial models give non-unique solutions for the shear stress ratio on the shear band. The Double Shearing model is applied to various failure problems of soils such as the direct simple shear test, the biaxial test, infinite slopes, interfaces and for the calculation of the undrained shear strength. Copyright
Nadir Ayrilmis; Jerrold E. Winandy
2007-01-01
The influence of four fire-retardant systems on the planar (rolling) shear properties of structural hardwood plywood is evaluated using two possible ASTM D2718 test methodologies: the plate-shear method and the five-point flexural shear method. Knowing the planar shear properties and the potential of the various fire-retardant systems to affect properties is critical...
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Dutta, B. K.; Chattopadhyay, J.
2017-04-01
The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (JIC) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine JIC using available empirical correlations. The correlations between JIC and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (εqf) and crack initiation toughness (Ji) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (εqf) and analysis of TPB specimen generated value of Ji. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in Ji for the same value of biaxial fracture strain (εqf) within a limit. Such variation in the value of Ji has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get Ji by using newly developed correlation. A reasonable
Stress concentration in periodically rough Hertzian contact: Hertz to soft-flat-punch transition
Raphaël, E.; Léger, L.; Restagno, F.; Poulard, C.
2016-01-01
We report on the elastic contact between a spherical lens and a patterned substrate, composed of a hexagonal lattice of cylindrical pillars. The stress field and the size of the contact area are obtained by means of numerical methods: a superposition method of discrete pressure elements and an iterative bisection-like method. For small indentations, a transition from a Hertzian to a soft-flat-punch behaviour is observed when the surface fraction of the substrate that is covered by the pillars is increased. In particular, we present a master curve defined by two dimensionless parameters, which allows one to predict the stress at the centre of the contact region in terms of the surface fraction occupied by pillars. The transition between the limiting contact regimes, Hertzian and soft-flat-punch, is well described by a rational function. Additionally, a simple model to describe the Boussinesq–Cerruti-like contact between the lens and a single elastic pillar, which takes into account the pillar geometry and the elastic properties of the two bodies, is presented. PMID:27713659
Göktay, Fatih; Altan, Zeynep Müzeyyen; Talas, Anıl; Akpınar, Esma; Özdemir, Ekin Özge; Aytekin, Sema
2016-01-01
Patient anxiety about nail surgery relates mainly to pain associated with needle puncture, anesthetic flow during the procedure, and postoperative care, as well as possible past traumatic experience. The aims of this study were to compare anxiety levels among patients undergoing nail surgery and skin punch biopsy and to assess the effects of demographic characteristics on anxiety. Forty-eight consecutive patients who were referred to a dermatological surgery unit for nail surgery intervention (group 1) and 50 age- and sex-matched patients referred to the same unit for skin punch biopsy (group 2) were enrolled in the study. Patients' anxiety levels were measured using Spielberger's State-Trait Anxiety Inventory. There was no significant difference in median anxiety level between group 1 (42.00; interquartile range, 6.50) and group 2 (41.00; interquartile range, 8.25) (P = .517). The demographic factors of patient sex, educational status, and prior surgery showed no significant effects on anxiety levels. Nail surgery does not seem to cause significantly greater anxiety than skin punch biopsy. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Dok, A.; Fukuoka, H.
2010-12-01
Landslides are complex geo-disaters that frequently occur due to certain causes, but only one trigger such as earthquake or heavy rainfall or other related natural phenomenas. A slope failure seldom occurs without any creep deformation. Failure time of a slope as found by Fukuzono (1985) and Siato (1965) based on graphical analysis of extensometer monitoring data through large scale flume test for landslide studies, logarithm of acceleration is proportional to the logarithm of velocity of surface displacement immediately before the failure. It is expressed as d2x/dt2 = A(dx/dt)α, where x is surface displacement, t is time, and A and α are constant. And, Fukuzono (1985, 1989) proposed a simple method of predicting the time of falure by the inverse velocity (1/v) mean. The curve of inverse velocity is concave at 1< α<2, linear at α=2, and convex at α>2. Recently, Minamitani (2007) have researched on mechanism of Tertiary Creep deformation for landslide failure time prediction by increasing shear-stress development in order to understand the story behind the empirical relationship found by senior researcher Fukozono. He found a strong relationshp between constants A and α, expressed as α = 0.1781A+ 1.814. For deeper understanding, this study aims at learning in more detail on mechanism of landslides in tropical soils by ring shear apparatus (invented by DPRI, Disaster Prevention Research Institute) based on Tertiary Creep deformation theory in help issue warning on rainfall-induced landslides through back (pore-water) pressure control tests under combined conditions of particular normal stress and shear stress with pore-water pressure changes to simulate the potential sliding surface condition in the heavy rainfall, which no body experiences conducting such a test series, particularly by applying cyclic and actual groundwater change pattern to the soils. To reach the archivement, serie of back pressure control test were implemented by utilising stress
Shape optimization of shear fracture specimen considering plastic anisotropy
NASA Astrophysics Data System (ADS)
Zhang, S.; Yoon, J. W.; Lee, S.; Lou, Y.
2017-10-01
It is important to fabricate fracture specimens with minimum variation of triaxiality in order to characterize the failure behaviors experimentally. Fracture in ductile materials is usually calibrated by uniaxial tensile, shear and plane strain tests. However, it is often observed that triaxiality for shear specimen changes severely during shear fracture test. The nonlinearity of triaxiality is most critical for shear test. In this study, a simple in-plane shear specimen is optimized by minimizing the variation of stress triaxiality in the shear zone. In the optimization, the Hill48 and Yld2000-2d criteria are employed to model the anisotropic plastic deformation of an aluminum alloy of 6k21. The evolution of the stress triaxiality of the optimized shear specimen is compared with that of the initial design of the shear specimen. The comparison reveals that the stress triaxiality changes much less for the optimized shear specimen than the evolution of the stress triaxiality with the original design of the shear specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerstenberg, H.; Kraehling, E.; Katheder, H.
1997-06-01
The shear strengths of various fibre reinforced resins being promising candidate insulators for superconducting coils to be used tinder a strong radiation load, e.g. in future fusion reactors were investigated prior and subsequent to reactor in-core irradiation at liquid helium temperature. A large number of sandwich-like (steel-bonded insulation-steel) specimens representing a widespread variety of materials and preparation techniques was exposed to irradiation doses of up to 5 x 10{sup 7} Gy in form of fast neutrons and {gamma}-radiation. In a systematic study several experimental parameters including irradiation dose, postirradiation storage temperature and measuring temperature were varied before the determination ofmore » the ultimate shear strength. The results obtained from the different tested materials are compared. In addition an upgrade of the in-situ test rig installed at the Munich research reactor is presented, which allows combined shear/compression loading of low temperature irradiated specimens and provides a doubling of the testing rate.« less
Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, John Edward; Unal, Cetin
A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.
Simulating direct shear tests with the Bullet physics library: A validation study.
Izadi, Ehsan; Bezuijen, Adam
2018-01-01
This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.
A test of the double-shearing model of flow for granular materials
Savage, J.C.; Lockner, D.A.
1997-01-01
The double-shearing model of flow attributes plastic deformation in granular materials to cooperative slip on conjugate Coulomb shears (surfaces upon which the Coulomb yield condition is satisfied). The strict formulation of the double-shearing model then requires that the slip lines in the material coincide with the Coulomb shears. Three different experiments that approximate simple shear deformation in granular media appear to be inconsistent with this strict formulation. For example, the orientation of the principal stress axes in a layer of sand driven in steady, simple shear was measured subject to the assumption that the Coulomb failure criterion was satisfied on some surfaces (orientation unspecified) within the sand layer. The orientation of the inferred principal compressive axis was then compared with the orientations predicted by the double-shearing model. The strict formulation of the model [Spencer, 1982] predicts that the principal stress axes should rotate in a sense opposite to that inferred from the experiments. A less restrictive formulation of the double-shearing model by de Josselin de Jong [1971] does not completely specify the solution but does prescribe limits on the possible orientations of the principal stress axes. The orientations of the principal compression axis inferred from the experiments are probably within those limits. An elastoplastic formulation of the double-shearing model [de Josselin de Jong, 1988] is reasonably consistent with the experiments, although quantitative agreement was not attained. Thus we conclude that the double-shearing model may be a viable law to describe deformation of granular materials, but the macroscopic slip surfaces will not in general coincide with the Coulomb shears.
Precision hole punching on composite fiber reinforced polymer panels
NASA Astrophysics Data System (ADS)
Abdullah, A. B.; Zain, M. S. M.; Chan, H. Y.; Samad, Z.
2017-12-01
Structural materials, such as composite panels, can only be assembled, and in most cases through the use of fasteners, which are fitted into the drilled holes. However, drilling is costly and time consuming, thus affecting productivity. This research aims to develop an alternative method to drilling. In this paper, the precision of the holes was measured and the effects of the die clearance to the areas around the holes were evaluated. Measurement and evaluation were performed based on the profile of the holes constructed using Alicona IFM, a 3D surface measurement technique. Results showed that punching is a potential alternative to drilling but still requires improvements.
NASA Astrophysics Data System (ADS)
Bang, Sungsik; Rickhey, Felix; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo
2013-12-01
In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.
Axisymmetric problem of fretting wear for a foundation with a nonuniform coating and rough punch
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.; Kazakov, K. E.
2018-05-01
The axisymmetric contact problem with fretting wear for an elastic foundation with a longitudinally nonuniform (surface nonuniform) coating and a rigid punch with a rough foundation has been solved for the first time. The case of linear wear is considered. The nonuniformity of the coating and punch roughness are described by a different rapidly changing functions. This strong nonuniformity arises when coatings are deposited using modern additive manufacturing technologies. The problem is reduced the solution of an integral equation with two different integral operators: a compact self-adjoint positively defined operator with respect to the coordinate and the non-self-adjoint integral Volterra operator with respect to time. The solution is obtained in series using the projection method of the authors. The efficiency of the proposed approach for constructing a high-accuracy approximate solution to the problem (with only a few expansion terms retained) is demonstrated.
Behavior of Tilted Angle Shear Connectors.
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Zhang, Ri-Hui; Kang, Zhi-Xin
2011-05-01
To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.
Bonavina, Luigi; Laface, Letizia; Picozzi, Stefano; Nencioni, Marco; Siboni, Stefano; Bona, Davide; Sironi, Andrea; Sorba, Francesca; Clemente, Claudio
2010-09-01
With the development of tissue banking, a need for homogeneous methods of collection, processing, and storage of tissue has emerged. We describe the implementation of a biological bank in a high-volume, tertiary care University referral center for esophageal cancer surgery. We also propose an original punch biopsy technique of the surgical specimen. The method proved to be simple, reproducible, and not expensive. Unified standards for specimen collection are necessary to improve results of specimen-based diagnostic testing and research in surgical oncology.
Bonilla, Alfonso; Magri, Carlos; Juan, Eulalia
To compare the punch technique and linear incision with soft tissue reduction for the placement of auditory osseointegrated implants (AOI) and analyze results of osseointegration obtained with the punch technique as measured with the Implant Stability Quotient (ISQ). Case review of 34 patients who received auditory osseointegrated implants between January 2010 and July 2015 and were divided into two groups according to the surgical technique: 18 with the punch technique (PT) and 16 with the linear incision technique (LI). Minimum follow-up was four months (mean: 24 months; range 4-64 months). Included in the analysis were patient profiles and records of the demographic data, surgical indications, surgical technique, implant placement, surgical time, intraoperative complications, as well as postsurgical complications (Holgers classification) and implant stability quotients (ISQ). Use of larger abutments was significantly greater in the PT group (PT, 10mm; LI, 6mm, p<0.001). The PT technique resulted in a shorter procedure than the LI (PT, 20min; LI, 45min, p<0.001). Holgers classification scores identified significantly fewer skin complications one week after surgery for the PT group; however, only small differences were seen between the two groups at the one- and three-month control visits. As shown for our cohort, the punch technique for surgical placement of AOI is faster and presents fewer immediate postoperative complications when compared to the linear incision technique. The clinical application of the ISQ is a useful, easy method to demonstrate the status of osseointegration and, thus, the stability of the device. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Zheng, Naiyu; Yuan, Long; Ji, Qin C; Mangus, Heidi; Song, Yan; Frost, Charles; Zeng, Jianing; Aubry, Anne-Françoise; Arnold, Mark E
2015-04-15
Apixaban (Eliquis™) was developed by Bristol-Myers Squibb (BMS) and Pfizer to use as an antithrombotic/anticoagulant agent and has been recently approved for the prevention of stroke and systemic embolism in patients with nonvalvular atrial fibrillation. A clinical study of apixaban, sponsored by BMS and Pfizer, included a pilot exploratory portion to evaluate the potential for future drug concentration monitoring using dried blood spot (DBS) sample collection. For DBS sample collection, a fixed blood volume was dispensed onto a DBS card by either regular volumetric pipette (venous blood collection) or capillary dispenser (finger prick blood collection). A 96-well semi-automated liquid-liquid extraction sample preparation procedure was developed to provide clean extracts for UHPLC-MS/MS quantitation. Assays using both partial-spot center punch and whole spot punch were developed and validated. The linear dynamic ranges for all the analyses were from 0.5 to 500 ng/mL. The coefficient of determination (r(2)) values was >0.9944 for all the validation runs. For the center punch approach, the intra-assay precision (%CV) was within 4.4% and inter-assay precision was within 2.6%. The assay accuracy, expressed as %Dev., was within ± 5.4% of the nominal concentrations. One accuracy and precision run was performed using the whole spot approach, the intra-assay precision (%CV) was within 7.1% and the accuracy was within ± 8.0% of the nominal concentrations. In contrast to the center punch approach, the whole spot approach eliminated the effect of hematocrit and high lipids on the analysis of apixaban in human DBS when an accurate sample blood volume was collected on DBS cards. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rewoldt, G.; Tang, W.M.; Lao, L.L.
1997-03-01
The microinstability properties of discharges with negative (reversed) magnetic shear in the Tokamak Fusion Test Reactor (TFTR) and DIII-D experiments with and without confinement transitions are investigated. A comprehensive kinetic linear eigenmode calculation employing the ballooning representation is employed with experimentally measured profile data, and using the corresponding numerically computed magnetohydrodynamic (MHD) equilibria. The instability considered is the toroidal drift mode (trapped-electron-{eta}{sub i} mode). A variety of physical effects associated with differing q-profiles are explained. In addition, different negative magnetic shear discharges at different times in the discharge for TFTR and DIII-D are analyzed. The effects of sheared toroidal rotation,more » using data from direct spectroscopic measurements for carbon, are analyzed using comparisons with results from a two-dimensional calculation. Comparisons are also made for nonlinear stabilization associated with shear in E{sub r}/RB{sub {theta}}. The relative importance of changes in different profiles (density, temperature, q, rotation, etc.) on the linear growth rates is considered.« less
Laker-Oketta, Miriam O; Wenger, Megan; Semeere, Aggrey; Castelnuovo, Barbara; Kambugu, Andrew; Lukande, Robert; Asirwa, F Chite; Busakhala, Naftali; Buziba, Nathan; Diero, Lameck; Wools-Kaloustian, Kara; Strother, Robert Matthew; Bwana, Mwebesa; Muyindike, Winnie; Amerson, Erin; Mbidde, Edward; Maurer, Toby; Martin, Jeffrey
2015-01-01
Fueled by HIV, sub-Saharan Africa has the highest incidence of Kaposi's sarcoma (KS) in the world. Despite this, KS diagnosis in the region is based mostly on clinical grounds. Where biopsy is available, it has traditionally been excisional and performed by surgeons, resulting in multiple appointments, follow-up visits for suture removal, and substantial costs. We hypothesized that a simpler approach - skin punch biopsy - would make histologic diagnosis more accessible. To address this, we provided training and equipment for skin punch biopsy of suspected KS to three HIV clinics in East Africa. The procedure consisted of local anesthesia followed by a disposable cylindrical punch blade to obtain specimens. Hemostasis is facilitated by Gelfoam®. Patients removed the dressing after 4 days. From 2007 to 2013, 2,799 biopsies were performed. Although originally targeted to be used by physicians, biopsies were performed predominantly by nurses (62%), followed by physicians (15%), clinical officers (12%) and technicians (11%). There were no reports of recurrent bleeding or infection. After minimal training and provision of inexpensive equipment (USD 3.06 per biopsy), HIV clinics in East Africa can integrate same-day skin punch biopsy for suspected KS. Task shifting from physician to non-physician greatly increases access. Skin punch biopsy should be part of any HIV clinic's essential procedures. This example of task shifting may also be applicable to the diagnosis of other cancers (e.g., breast) in resource-limited settings.
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Using Force to Punch Holes: Mechanics of Contractile Nanomachines.
Brackmann, Maximilian; Nazarov, Sergey; Wang, Jing; Basler, Marek
2017-09-01
Using physical force to translocate macromolecules across a membrane has the advantage of being a universal solution independent of the properties of the target membrane. However, physically punching a stiff membrane is not a trivial task and three things are necessary for success: a sharp tip, a source of energy, and the ability to strongly bind to the target. In this review we describe the basic mechanism of membrane puncturing by contractile nanomachines with a focus on the T4 phage, R-type pyocin, and the bacterial Type VI secretion system (T6SS) based on recent studies of the structures and dynamics of their assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Offi, D. L.; Lewis, W.; Lee, T.; Delamarche, A.
1980-08-01
A wind shear detection system developed by the Wave Propagation Laboratory (WPL) to operate with the Federal Aviation Administration (FAA) Airport Surveillance Radar (ASR)-8 was installed and is being tested at the FAA technical Center. Initial efforts, previously reported in Report NA-78-59-LR, were directed toward hardware and software shakedown and feasibility determination. Second phase tests compared radar with aircraft and tower winds, evaluated the wind shear measurement capability under various weather conditions, and investigated the effectiveness of a simple two-azimuth pointing strategy and system capabilities and limitations. Results showed the system to be compatible with and to operate satisfactorily with the ASR-8. The processing and spectral display of clear air and precipitation returns is feasible. The accuracy of agreement between radar-measured winds and components of the aircraft-measured winds in both radially oriented flights and runway offset flights, using a two-azimuth pointing technique, was examined. Radar versus tower wind agreement was also examined. Potentially dangerous wind shears associated with weather during these tests were detectable. Certain system limitations also have been defined and considered. It is recommended that tests continue to complete definition of and demonstrate capabilities in all weather situations, to optimize performance, and to provide information to specify system design for possible development of a prototype model.
Shear properties of pultruded fiber reinforced polymer composite materials
NASA Astrophysics Data System (ADS)
Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.
2018-06-01
This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil
2017-11-22
Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.
Moran, Richard; Smith, Joshua H; García, José J
2014-11-28
The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution of allowable stresses in shear for lumber
Robert L. Ethington; William L. Galligan; Henry M. Montrey; Alan D. Freas
1979-01-01
This paper surveys research leading to allowable shear stress parallel to grain for lumber. In early flexure tests of lumber, some pieces failed in shear. The estimated shear stress at time of failure was generally lower than shear strength measured on small, clear, straight-grained specimens. This and other engineering observations gave rise to adjustments that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, A.
2008-03-03
A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less
Longitudinal shear behavior of several oxide dispersion strengthened alloys
NASA Technical Reports Server (NTRS)
Glasgow, T. K.
1978-01-01
Two commercial oxide dispersion strengthened (ODS) alloys, MA-753 and MA-754, and three experimental ODS alloys, MA-757E, MA-755E, and MA-6000E, were tested in shear at 760 C. Comparisons were made with other turbine blade and vane alloys. All of the ODS alloys exhibited less shear strength than directionally solidified Mar-M 200 = Hf or then conventionally cast B-1900. The strongest ODS alloy tested, MA-755E, was comparable in both shear and tensile strength to the lamellar directionally solidified eutectic alloy gamma/gamma prime - delta. Substantial improvements in shear resistance were found for all alloys tested when the geometry of the specimen was changed from one generating a transverse tensile stress in the shear area to one generating a transverse compressive stress. Finally, 760 C shear strength as a fraction of tensile strength was found to increase linearly with the log of the transverse tensile ductility.
Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices
NASA Astrophysics Data System (ADS)
Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo
This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.
Steel Shear Walls, Behavior, Modeling and Design
NASA Astrophysics Data System (ADS)
Astaneh-Asl, Abolhassan
2008-07-01
In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of
The shear fracture toughness, KIIc, of graphite
Burchell, Timothy D.; Erdman, III, Donald L.
2015-11-05
In this study, the critical shear stress intensity factor, KIIc, here-in referred to as the shear fracture toughness, KIIc (MPa m), of two grades of graphite are reported. The range of specimen volumes was selected to elucidate any specimen size effect, but smaller volume specimen tests were largely unsuccessful, shear failure did not occur between the notches as expected. This was probably due to the specimen geometry causing the shear fracture stress to exceed the compressive failure stress. In subsequent testing the specimen geometry was altered to reduce the compressive footprint and the notches (slits) made deeper to reduce themore » specimen's ligament length. Additionally, we added the collection of Acoustic Emission (AE) during testing to assist with the identification of the shear fracture load. The means of KIIc from large specimens for PCEA and NBG-18 are 2.26 MPa m with an SD of 0.37 MPa m and 2.20 MPa m with an SD of 0.53 MPa m, respectively. The value of KIIc for both graphite grades was similar, although the scatter was large. In this work we found the ratio of KIIc/ KIc ≈ 1.6. .« less
Kozowyk, P R B; Langejans, G H J; Poulis, J A
2016-01-01
The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.
2016-01-01
The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080
Shear Elasticity and Shear Viscosity Imaging in Soft Tissue
NASA Astrophysics Data System (ADS)
Yang, Yiqun
In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all
A comparison of simple shear characterization methods for composite laminates
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Brinson, H. F.
1978-01-01
Various methods for the shear stress/strain characterization of composite laminates are examined and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the (+/- 45 deg)s tensile test method and the (0/90 deg)s symmetric rail shear test method. It is shown that the first technique indicates the shear properties of the graphite/epoxy laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that these laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress/strain curves utilizing the various different shear behaviour methods as input information are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Young Ho; Han, Myoung Soo; Han, Jong Man
2007-05-17
Doubly curved thick plate forming in shipbuilding industries is currently performed by a thermal forming process, called as Line Heating by using gas flame torches. Due to the empirical manual work of it, the industries are eager for an alternative way to manufacture curved thick plates for ships. It was envisaged in this study to manufacture doubly curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Single and segmented multiple step forming procedures were considered from both forming efficiency andmore » accuracy. Configuration of the multi-punch dies suitable for the segmented multiple step forming was also explored. As a result, Segmented multiple step forming with matched dies had a limited formability when the objective shapes become complicate, while a unmatched die configuration provided better possibility to manufacture large curved plates for ships.« less
Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading
NASA Technical Reports Server (NTRS)
Steeve, B. E.; Wingate, R. J.
2012-01-01
A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.
Depth-Dependent Transverse Shear Properties of the Human Corneal Stroma
Petsche, Steven J.; Chernyak, Dimitri; Martiz, Jaime; Levenston, Marc E.
2012-01-01
Purpose. To measure the transverse shear modulus of the human corneal stroma and its profile through the depth by mechanical testing, and to assess the validity of the hypothesis that the shear modulus will be greater in the anterior third due to increased interweaving of lamellae. Methods. Torsional rheometry was used to measure the transverse shear properties of 6 mm diameter buttons of matched human cadaver cornea pairs. One cornea from each pair was cut into thirds through the thickness with a femtosecond laser and each stromal third was tested individually. The remaining intact corneas were tested to measure full stroma shear modulus. The shear modulus from a 1% shear strain oscillatory test was measured at various levels of axial compression for all samples. Results. After controlling for axial compression, the transverse shear moduli of isolated anterior layers were significantly higher than central and posterior layers. Mean modulus values at 0% axial strain were 7.71 ± 6.34 kPa in the anterior, 1.99 ± 0.45 kPa in the center, 1.31 ± 1.01 kPa in the posterior, and 9.48 ± 2.92 kPa for full thickness samples. A mean equilibrium compressive modulus of 38.7 ± 8.6 kPa at 0% axial strain was calculated from axial compression measured during the shear tests. Conclusions. Transverse shear moduli are two to three orders of magnitude lower than tensile moduli reported in the literature. The profile of shear moduli through the depth displayed a significant increase from posterior to anterior. This gradient supports the hypothesis and corresponds to the gradient of interwoven lamellae seen in imaging of stromal cross-sections. PMID:22205608
Time-dependent behavior of rough discontinuities under shearing conditions
NASA Astrophysics Data System (ADS)
Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao
2018-02-01
The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.
Zhao, Jisong
2018-05-17
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.
Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating
Zhao, Jisong
2018-01-01
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822
Controlled shear/tension fixture
Hsueh, Chun-Hway [Knoxville, TN; Liu, Chain-tsuan [Knoxville, TN; George, Easo P [Knoxville, TN
2012-07-24
A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.
Optimal design of a main driving mechanism for servo punch press based on performance atlases
NASA Astrophysics Data System (ADS)
Zhou, Yanhua; Xie, Fugui; Liu, Xinjun
2013-09-01
The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.
Wall shear measurement in sand-water mixture flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yucel, O.; Grad, W.H.
1975-07-01
The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less
Fracture behaviors under pure shear loading in bulk metallic glasses
NASA Astrophysics Data System (ADS)
Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang
2016-12-01
Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.
Fracture behaviors under pure shear loading in bulk metallic glasses.
Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang
2016-12-23
Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.
Experimental study and FEM simulation of the simple shear test of cylindrical rods
NASA Astrophysics Data System (ADS)
Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.
A comparison of simple shear characterization methods for composite laminates
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Brinson, H. F.
1977-01-01
Various methods for the shear stress-strain characterization of composite laminates are examined, and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the + or - 45 degs tensile test method and the 0 deg/90 degs symmetric rail shear test method. It is shown that the first technique indicates that the shear properties of the G/E laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that the G/E laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress-strain curves utilizing the various different shear behavior methods as input information are presented and discussed.
Effects of shear coupling on shear properties of wood
Jen Y. Liu
2000-01-01
Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...
NASA Astrophysics Data System (ADS)
Stavropoulou, Eleni; Briffaut, Matthieu; Dufour, Frédéric; Camps, Guillaume; Boulon, Marc
2017-06-01
A new experimental apparatus is presented for testing the time-dependent behaviour of interfaces, including in particular interfaces of geomaterials, under constant loading. This apparatus allows the application of two orthogonal loads normal and tangential to the mean plane of the interface, as well as the measurement of the axial and tangential relative displacements. The sample is moulded inside two half shear boxes and the system is designed in such a way that the shear force is applied along the mean plane of the interface. Some preliminary testing was carried out on a clay rock/concrete interface, under a controlled temperature environment. Preliminary results are presented, showing the evolution of the delayed displacements.
Effects of Fluid Shear Stress on Cancer Stem Cell Viability
NASA Astrophysics Data System (ADS)
Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun
2014-11-01
Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.
High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates
NASA Astrophysics Data System (ADS)
Becnel, Andrew C.
crew seat. Characterization tests were carried out on the LMEAS using a 40 vol% MRF used in the previous magnetorheometer tests. These were analyzed using both flow curves and apparent viscosity vs. Mason number diagrams. The nondimensionalized Mason number analysis resulted in data for all conditions of temperature, fluid composition, and shear rate, to collapse onto a single characteristic or master curve. Significantly, the temperature corrected Mason number results from both the bench top magnetorheometer and full scale rotary vane MREA collapse to the same master curve. This enhances the ability of designers of MRFs and MREAs to safely and effectively apply characterization data collected in low shear rate, controlled temperature environments to operational environments that may be completely different. Finally, the Searle cell magnetorheometer was modified with an enforced eccentricity to work in both squeeze and shear modes simultaneously to achieve so called squeeze strengthening of the working MRF, thereby increasing the apparent yield stress and the specific energy absorption. By squeezing the active MR fluid, particles undergo compression-assisted aggregation into stronger, more robust columns which resist shear better than single chains. A hybrid model describing the squeeze strengthening behavior is developed, and recommendations are made for using squeeze strengthening to improve practical MREA devices.
Ficken, James H.; Scott, Carl T.
1988-01-01
This manual describes the U.S. Geological Survey Minimonitor Water Quality Data Measuring and Recording System. Instructions for calibrating, servicing, maintaining, and operating the system are provided. The Survey Minimonitor is a battery-powered , multiparameter water quality monitoring instrument designed for field use. A watertight can containing signal conditioners is connected with cable and waterproof connectors to various water quality sensors. Data are recorded on a punched paper-tape recorder. An external battery is required. The operation and maintenance of various sensors and signal conditioners are discussed, for temperature, specific conductance, dissolved oxygen, and pH. Calibration instructions are provided for each parameter, along with maintenance instructions. Sections of the report explain how to connect the Minimonitor to measure direct-current voltages, such as signal outputs from other instruments. Instructions for connecting a satellite data-collection platform or a solid-state data recorder to the Minimonitor are given also. Basic information is given for servicing the Minimonitor and trouble-shooting some of its electronic components. The use of test boxes to test sensors, isolate component problems, and verify calibration values is discussed. (USGS)
Analysis of lubricating oils in shear friction tests using infrared thermography
NASA Astrophysics Data System (ADS)
Da Silva, José Jorge; Maribondo, Juscelino de Farias
2018-03-01
The aim of this work is to analyze the ability of Thermography to monitor the behavior of SAE 20 W50 API SJ and ISO VG 10 lubricating oils from the thermal point of view until the moment of the lubricant film rupture, characterized by the sudden increase in friction, noise, vibration and Temperature in a shear friction test. The methodology used is based on the analysis of thermograms that indicate temperature profiles during the friction tests and at the moment of mechanical failure, comparing these results with those obtained by a thermocouple. The specimens, consisting of SAE 1045 steel cylindrical pins, are rubbed against a wear ring consisting of a weld-locked bearing under the condition of a boundary lubrication regime. Tests were performed by increasing load conditions up to 180 N at 10, 15 and 20 Hz rotations (600, 900 and 1200 rpm). The results show the qualitative and quantitative capacity of the Thermography in the detection of scuffing considering the emissivity of the lubricating oil film equal to 0,82. It is concluded that the Thermography can be used for the detection of the breaking of the lubricating film in pin-on-ring friction tests.
2014-07-01
5,9], W [16], Zr [17] and Nb [18]. These systems have shown moderate to extraordinarily high microstructural stability at elevated temperatures...cans were then either serial sectioned for shear punch testing or cut into compression samples using wire electric discharge machining. Through SEM...to resist deformation, but do not necessarily alter the dislocation mechanism operating during plastic deformation. There are a number of challenges
NASA Technical Reports Server (NTRS)
Laakso, J. H.; Smith, D. D.; Zimmerman, D. K.
1973-01-01
The fabrication of two shear web test elements and three large scale shear web test components are reported. In addition, the fabrication of test fixtures for the elements and components is described. The center-loaded beam test fixtures were configured to have a test side and a dummy or permanent side. The test fixtures were fabricated from standard extruded aluminum sections and plates and were designed to be reuseable.
Blanking and piercing theory, applications and recent experimental results
NASA Astrophysics Data System (ADS)
Zaid, Adnan l. O.
2014-06-01
Blanking and piercing are manufacturing processes by which certain geometrical shapes are sheared off a sheet metal. If the sheared off part is the one required, the processes referred to as blanking and if the remaining part in the sheet is the one required, the process is referred to as piercing. In this paper, the theory and practice of these processes are reviewed and discussed The main parameters affecting these processes are presented and discussed. These include: the radial clearance percentage, punch and die geometrical parameters, for example punch and die profile radii. The abovementioned parameters on the force and energy required to effect blanking together with their effect on the quality of the products are also presented and discussed. Recent experimental results together with photomacrographs and photomicrographs are also included and discussed. Finally, the effect of punch and die wear on the quality of the blanks is alsogiven and discussed.
Tensile and shear strength of adhesives
NASA Technical Reports Server (NTRS)
Stibolt, Kenneth A.
1990-01-01
This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.
High temperature integrated ultrasonic shear and longitudinal wave probes
NASA Astrophysics Data System (ADS)
Ono, Y.; Jen, C.-K.; Kobayashi, M.
2007-02-01
Integrated ultrasonic shear wave probes have been designed and developed using a mode conversion theory for nondestructive testing and characterization at elevated temperatures. The probes consisted of metallic substrates and high temperature piezoelectric thick (>40μm) films through a paint-on method. Shear waves are generated due to mode conversion from longitudinal to shear waves because of reflection inside the substrate having a specific shape. A novel design scheme is proposed to reduce the machining time of substrates and thick film fabrication difficulty. A probe simultaneously generating and receiving both longitudinal and shear waves is also developed and demonstrated. In addition, a shear wave probe using a clad buffer rod consisting of an aluminum core and stainless steel cladding has been developed. All the probes were tested and successfully operated at 150°C.
Effects of shear load on frictional healing
NASA Astrophysics Data System (ADS)
Ryan, K. L.; Marone, C.
2014-12-01
During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating
Shear transfer capacity of reinforced concrete exposed to fire
NASA Astrophysics Data System (ADS)
Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay
2018-04-01
Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.
Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen
2015-01-01
Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695
Practical Weak-lensing Shear Measurement with Metacalibration
Sheldon, Erin S.; Huff, Eric M.
2017-05-19
We report that metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observemore » that for images with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Finally, using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.« less
Practical Weak-lensing Shear Measurement with Metacalibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, Erin S.; Huff, Eric M.
2017-05-20
Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observe that for imagesmore » with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.« less
Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon
2014-11-01
This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.
Ultrasonic shear wave couplant
Kupperman, David S.; Lanham, Ronald N.
1985-01-01
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Ultrasonic shear wave couplant
Kupperman, D.S.; Lanham, R.N.
1984-04-11
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Interlaminar shear properties of graphite fiber, high-performance resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.; Kourtides, D. A.; Fish, R. H.; Varma, D. S.
1983-01-01
Short beam testing was used to determine the shear properties of laminates consisting of T-300 and Celion 3000 and 6000 graphite fibers, in epoxy, hot melt and solvent bismaleimide, polyimide and polystyrylpyridine (PSP). Epoxy, composites showed the highest interlaminar shear strength, with values for all other resins being substantially lower. The dependence of interlaminar shear properties on the fiber-resin interfacial bond and on resin wetting characteristics and mechanical properties is investigated, and it is determined that the lower shear strength of the tested composites, by comparison with epoxy resin matrix composites, is due to their correspondingly lower interfacial bond strengths. An investigation of the effect of the wettability of carbon fiber tow on shear strength shows wetting variations among resins that are too small to account for the large shear strength property differences observed.
Gabaude, C M; Guillot, M; Gautier, J C; Saudemon, P; Chulia, D
1999-07-01
Compressibility properties of pharmaceutical materials are widely characterized by measuring the volume reduction of a powder column under pressure. Experimental data are commonly analyzed using the Heckel model from which powder deformation mechanisms are determined using mean yield pressure (Py). Several studies from the literature have shown the effects of operating conditions on the determination of Py and have pointed out the limitations of this model. The Heckel model requires true density and compacted mass values to determine Py from force-displacement data. It is likely that experimental errors will be introduced when measuring the true density and compacted mass. This study investigates the effects of true density and compacted mass on Py. Materials having different particle deformation mechanisms are studied. Punch displacement and applied pressure are measured for each material at two compression speeds. For each material, three different true density and compacted mass values are utilized to evaluate their effect on Py. The calculated variation of Py reaches 20%. This study demonstrates that the errors in measuring true density and compacted mass have a greater effect on Py than the errors incurred from not correcting the displacement measurements due to punch elasticity.
Correlating off-axis tension tests to shear modulus of wood-based panels
Edmond P. Saliklis; Robert H. Falk
2000-01-01
The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear modulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new relationship is proposed that performs better than existing equations found in the literature. This relationship can be manipulated to calculate the shear modulus...
Tuning Shear Jamming by Basal Assisted Couette Shear
NASA Astrophysics Data System (ADS)
Zhao, Yiqiu; Barés, Jonathan; Behringer, Robert
Granular matter with packing fraction ϕS < ϕ <ϕJ can be jammed by applying shear strain. However, the stress-strain relation in shear jamming transition is not very well understood. Part of the difficulty is that the strain inside the granular system is very complicated and hard to control. In this work, by using a novel Couette shear apparatus capable of generating arbitrary shear profiles, we study the stress-strain relation during shear jamming transition for granular system under different kinds of controlled interior strain. The novel Couette shear apparatus consists of 21 independently movable rings and two circular boundaries. The apparatus can shear the granular sample not only from the boundaries but also from the bottom. The granular sample is made of about 2000 bi-disperse photo elastic disks, making it possible to extract force information. This work is supported by NSF-DMR1206351, DMS1248071, NASA NNX15AD38G.
López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J
2014-04-01
We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.
Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for
Boxing headguard performance in punch machine tests.
McIntosh, Andrew S; Patton, Declan A
2015-09-01
The paper presents a novel laboratory method for assessing boxing headguard impact performance. The method is applied to examine the effects of headguards on head impact dynamics and injury risk. A linear impactor was developed, and a range of impacts was delivered to an instrumented Hybrid III head and neck system both with and without an AIBA (Association Internationale de Boxe Amateur)-approved headguard. Impacts at selected speeds between 4.1 and 8.3 m/s were undertaken. The impactor mass was approximately 4 kg and an interface comprising a semirigid 'fist' with a glove was used. The peak contact forces were in the range 1.9-5.9 kN. Differences in head impact responses between the Top Ten AIBA-approved headguard and bare headform in the lateral and forehead tests were large and/or significant. In the 8.3 m/s fist-glove impacts, the mean peak resultant headform accelerations for bare headform tests was approximately 130 g compared with approximately 85 g in the forehead impacts. In the 6.85 m/s bare headform impacts, mean peak resultant angular head accelerations were in the range of 5200-5600 rad/s(2) and almost halved by the headguard. Linear and angular accelerations in 45° forehead and 60° jaw impacts were reduced by the headguard. The data support the opinion that current AIBA headguards can play an important role in reducing the risk of concussion and superficial injury in boxing competition and training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Thrombus Formation at High Shear Rates.
Casa, Lauren D C; Ku, David N
2017-06-21
The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.
Smoothing and roughening of slip surfaces in direct shear experiments
NASA Astrophysics Data System (ADS)
Sagy, Amir; Badt, Nir; Hatzor, Yossef H.
2015-04-01
Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength
Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit
NASA Astrophysics Data System (ADS)
Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.
2014-12-01
This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.
Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout
2007-10-01
We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.
Effects of edaravone on a rat model of punch-drunk syndrome.
Nomoto, Jun; Kuroki, Takao; Nemoto, Masaaki; Kondo, Kosuke; Harada, Naoyuki; Nagao, Takeki
2011-01-01
Punch-drunk syndrome (PDS) refers to a pathological condition in which higher brain dysfunction occurs in a delayed fashion in boxers who have suffered repeated blows to the head. However, the underlying mechanisms remain unknown. This study attempted to elucidate the mechanism of higher brain dysfunction observed following skull vibration in two experiments involving a rat model of PDS. Experiment 1 evaluated the effects of edaravone on histological changes in the rat brain tissue after skull vibration (frequency 20 Hz, amplitude 4 mm, duration 60 minutes). The amount of free radicals formed in response to skull vibration was very small, and edaravone administration reduced the number of glial fibrillary acidic protein and advanced glycation end product-positive cells. Experiment 2 examined the time course of change in learning ability following skull vibration in Tokai High Avoider rats. The learning ability of individual rats was evaluated by the Sidman-type electric shock avoidance test 5 days after the last session of skull vibration or final anesthesia and once a month for 9 consecutive months. Delayed learning disability was not observed in rats administered edaravone immediately after skull vibration. These results suggest that free radical-induced astrocyte activation and subsequent glial scar formation contribute to the occurrence of delayed learning disabilities. Edaravone administration after skull vibration suppressed glial scar formation, thereby inhibiting the occurrence of delayed learning disabilities.
ERIC Educational Resources Information Center
Sedaghat, Ahmad; AlJundub, Mohammad; Eilaghi, Armin; Bani-Hani, Ehab; Sabri, Farhad; Mbarki, Raouf; Assad, M. El Haj
2017-01-01
The PBL unit of fluid and electrical drive systems is taught in final semester of undergraduates in mechanical engineering department of the Australian College of Kuwait (ACK). The recent project on an automated punching machine is discovered more appealing to both students and instructors in triggering new ideas and satisfaction end results. In…
Ito, Manabu; Aoki, Shigeru; Uchiyama, Jumpei; Yamato, Keisuke
2018-04-20
Sticking is a common observation in the scale-up stage on the punch tip using a commercial tableting machine. The difference in the total compression time between a laboratory and a commercial tableting machine is considered one of the main root causes of scale up issues in the tableting processes. The proposed Size Adjusted for Scale-up (SAS) punch can be used to adjust the consolidation and dwell times for commercial tableting machine. As a result, the sticking phenomenon is able to be replicated at the pilot scale stage. As reported in this paper, the quantification of sticking was measured using a 3D laser scanning microscope to check the tablet surface. It was shown that the sticking area decreased with the addition of magnesium stearate in the formulation, but the sticking depth was not affected by the additional amount of magnesium stearate. It is proposed that use of a 3D laser scanning microscope can be applied to evaluate sticking as a process analytical technology (PAT) tool and so sticking can be monitored continuously without stopping the machine. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Bingul, Bergun Meric; Bulgun, Cigdem; Tore, Ozlem; Bal, Erdal; Aydin, Mensure
2018-01-01
The aim of this study was to investigate the effects of biomechanic factors to teach different hook punches in boxing. Eight light middleweight boxing athletes (mean age ± SD 19.00 ± 2.00 yrs, mean height ± SD 173.88 ± 3.89 cm, mean weight ± SD 64.25 ± 4.66 kg) participated in this study. Athletes performed a trial using three different hook punch…
An evaluation of the Iosipescu specimen for composite materials shear property measurement
NASA Technical Reports Server (NTRS)
Morton, J.; Ho, H.; Tsai, M. Y.; Farley, G. L.
1992-01-01
A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. A linear finite element model of the specimen is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon strain gage measurements used for the determination of composite shear moduli. Based upon test results from graphite-epoxy laminates, the proximity of the load introduction point to the test section and the material orthotropy greatly influence the individual gage readings, however, shear modulus determination is not significantly affected by the lack of pure shear. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors are determined for the region occupied by the strain gage rosette. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and spurious shear stress-strain curves. The discovery of specimen twisting explains the apparently inconsistent shear property data found in the literature. Recommendations for improving the reliability and accuracy of the shear modulus values are made, and the implications for shear strength measurement discussed.
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951
Electrochemical wall shear rate microscopy of collapsing bubbles
NASA Astrophysics Data System (ADS)
Reuter, Fabian; Mettin, Robert
2018-06-01
An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.
Prediction of residual shear strength of corroded reinforced concrete beams
NASA Astrophysics Data System (ADS)
Imam, Ashhad; Azad, Abul Kalam
2016-09-01
With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.
Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders
NASA Astrophysics Data System (ADS)
Mohammadi, A.; Mahmudi, R.
2018-02-01
Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.
Three dimensional fabric evolution of sheared sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Alsidqi; Alshibli, Khalid
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess themore » mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.« less
The Need for a Shear Stress Calibration Standard
NASA Technical Reports Server (NTRS)
Scott, Michael A.
2004-01-01
By surveying current research of various micro-electro mechanical systems (MEMS) shear stress sensor development efforts we illustrate the wide variety of methods used to test and characterize these sensors. The different methods of testing these sensors make comparison of results difficult in some cases, and also this comparison is further complicated by the different formats used in reporting the results of these tests. The fact that making these comparisons can be so difficult at times clearly illustrates a need for standardized testing and reporting methodologies. This need indicates that the development of a national or international standard for the calibration of MEMS shear stress sensors should be undertaken. As a first step towards the development of this standard, two types of devices are compared and contrasted. The first type device is a laminar flow channel with two different versions considered: the first built with standard manufacturing techniques and the second with advanced precision manufacturing techniques. The second type of device is a new concept for creating a known shear stress consisting of a rotating wheel with the sensor mounted tangentially to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. Additionally, issues related to the development of a standard for shear stress calibration are identified and discussed.
Compressive and shear properties of commercially available polyurethane foams.
Thompson, Mark S; McCarthy, Ian D; Lidgren, Lars; Ryd, Leif
2003-10-01
The shear properties of rigid polyurethane (PU-R) foams, routinely used to simulate cancellous bone, are not well characterized. The present assessment of the shear and compressive properties of four grades of Sawbones "Rigid cellular" PU-R foam tested 20 mm gauge diameter dumb-bell specimens in torsion and under axial loading. Shear moduli ranged from 13.3 to 99.7 MPa, shear strengths from 0.7 MPa to 4.2 MPa. Compressive yield strains varied little with density while shear yield strains had peak values with "200 kgm-3" grade. PU-R foams may be used to simulate the elastic but not failure properties of cancellous bone.
Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils
NASA Astrophysics Data System (ADS)
Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi
2015-04-01
On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
1983-07-01
July 1983 Washington DC 20472 1s. NUMBER OP PAGES 287 14. MONITORING AGENCY NAME A AODRESSý./ dif.erent from Controlling Office) IS. SECURITY CLASS... controlling parameter used in the design of the upgrading scheme. However, the flat plate test indicated that more concern should be directed to punching shear...and type of structure. Very little duplication of experiments for control purposes has been performed. SUGGESTED RESEARCH After some thirty years of
Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
NASA Astrophysics Data System (ADS)
Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan
2016-07-01
This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.
Dynamic shear deformation in high purity Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P
2009-01-01
The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen ismore » highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirilli, J.; DeRose, N.
1995-09-01
The site is a pharmaceutical facility located in Newark, New Jersey. The facility which has been in operation for approximately 90 years, previously contained a 15,000 gallon underground tank used to store TCE. Upon the tanks removal in the early 1980`s the tank integrity was found to have been compromised. In compliance with the NJDEP Industrial Site Recovery Act, the responsible party was required to locate DNAPL in the aquifer. Due to TCE`s relative density, vertical migration to depths greater than 80 feet has occurred. Lateral migration over distances greater than 500 feet has been documented. Currently, the investigation hasmore » focused on the neighboring cemetery, where approximately 20 deep soil borings have been advanced at selected locations downslope of the TCE source area. The soil borings were drilled by mud rotary methods to a depth that was determined in the field to be proximal to the bottom of the heterogeneous unconsolidated aquifer. Continuous split spoon soil sampling for detailed geologic interpretation and field screening utilizing an organic vapor instrument was performed. The Hydro Punch (HP II) sampler was used in the aqueous sampling model to collect a discrete ground water sample from the interface between the aquifer and the till.« less
Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Thomas, Job; Ramadass, S.
2016-09-01
Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.
Experimental shear strength of unchecked solid-sawn Douglas-fir
D. R. Rammer; L. A. Soltis; P. K. Lebow
This report presents experimental results of modulus of rupture and shear strength tests on unsplit, green, sawn Douglas-fir lumber. Five different size-matched specimens, ranging from nominal 2-by 4-in (standard 38- by 89-mm) to nominal 4- by 14-in (standard 95-by 343-mm), were tested in third-point bending and five-point beam shear. A total of 120 bending and 160...
High shear microfluidics and its application in rheological measurement
NASA Astrophysics Data System (ADS)
Kang, Kai; Lee, L. James; Koelling, Kurt W.
2005-02-01
High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.
Calculation and analysis of shear resistance of segment ring joint with shear pin
NASA Astrophysics Data System (ADS)
Wu, Shengzhi; Huang, Haibin; Wang, Mingnian; Xiao, Shihui; Liu, Dagang
2018-03-01
In order to get the effect of shear pins between segments on the shear resistance of segment girth joints. Take the Maliuzhou traffic tunnel project of Zhuhai which with super large diameter and Marine Composite strata as the research object, the longitudinal shear stiffness of tunnel shear considering the shear rigidity of shear pins was obtained through the finite element shear experiment of segment ring. By comparing the calculation results of shear pin and non shear pin between segment ring connections, the conclusion that shear pin setting can effectively decompose and transfer shear force and control the dislocation between segment ring blocks is obtained. The study can be used as reference for the design and construction of shield tunnel.
The DES Science Verification Weak Lensing Shear Catalogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, M.
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less
The DES Science Verification Weak Lensing Shear Catalogs
Jarvis, M.
2016-05-01
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less
NASA Technical Reports Server (NTRS)
Hill, Charles S.; Oliveras, Ovidio M.
2011-01-01
Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.
Mechanical shear and tensile characteristics of selected biomass stems
USDA-ARS?s Scientific Manuscript database
Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.
As a part of the project “High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation” an Integrated Research Program (IRP) project from the U.S. Department of Energy, Nuclear Energy University Programs (NEUP), TEM geometry samples of ferritic cladding alloys, Ni based super alloys and model alloys were irradiated in the BOR-60 reactor to ~16 dpa at ~370°C and ~400°C. Samples were sent to Los Alamos National Laboratory and subjected to shear punch testing. This report presents the results from this testing.
Constant load and constant volume response of municipal solid waste in simple shear.
Zekkos, Dimitrios; Fei, Xunchang
2017-05-01
Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.
2016-11-01
Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.
The effect of shearing strain-rate on the ultimate shearing resistance of clay
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1975-01-01
An approach for investigating the shearing resistance of cohesive soils subjected to a high rate of shearing strain is described. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies, the shearing resistance increases initially with shearing velocity, but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results of this investigation are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.
Direct Simple Shear Test Data Analysis using Jupyter Notebooks on DesignSafe-CI
NASA Astrophysics Data System (ADS)
Eslami, M.; Esteva, M.; Brandenberg, S. J.
2017-12-01
Due to the large number of files and their complex structure, managing data generated during natural hazards experiments requires scalable and specialized tools. DesignSafe-CI (https://www.designsafe-ci.org/) is a web-based research platform that provides computational tools to analyze, curate, and publish critical data for natural hazards research making it understandable and reusable. We present a use case from a series of Direct Simple Shear (DSS) experiments in which we used DS-CI to post-process, visualize, publish, and enable further analysis of the data. Current practice in geotechnical design against earthquakes relies on the soil's plasticity index (PI) to assess liquefaction susceptibility, and cyclic softening triggering procedures, although, quite divergent recommendations on recommended levels of plasticity can be found in the literature for these purposes. A series of cyclic and monotonic direct simple shear experiments was conducted on three low-plasticity fine-grained mixtures at the same plasticity index to examine the effectiveness of the PI in characterization of these types of materials. Results revealed that plasticity index is an insufficient indicator of the cyclic behavior of low-plasticity fine-grained soils, and corrections for pore fluid chemistry and clay minerology may be necessary for future liquefaction susceptibility and cyclic softening assessment procedures. Each monotonic, or cyclic experiment contains two stages; consolidation and shear, which include time series of load, displacement, and corresponding stresses and strains, as well as equivalent excess pore-water pressure. Using the DS-CI curation pipeline we categorized the data to display and describe the experiment's structure and files corresponding to each stage of the experiments. Two separate notebooks in Python 3 were created using the Jupyter application available in DS-CI. A data plotter aids visualizing the experimental data in relation to the sensor from which it was
Kinematics of self-initiated and reactive karate punches.
Martinez de Quel, Oscar; Bennett, Simon J
2014-03-01
This study investigated whether within-task expertise affects the reported asymmetry in execution time exhibited in reactive and self-initiated movements. Karate practitioners and no-karate practitioners were compared performing a reverse punch in reaction to an external stimulus or following the intention to produce a response (self-initiated). The task was completed following the presentation of a specific (i.e., life-size image of opponent) or general stimulus and in the presence of click trains or white noise. Kinematic analyses indicated reactive movement had shorter time to peak velocity and movement time, as well as greater accuracy than self-initiated movement. These differences were independent of participant skill level although peak velocity was higher in the karate practice group than in the no-karate practice group. Reaction time (RT) of skilled participants was facilitated by a specific stimulus. There was no effect on RT or kinematic variables of the different type of auditory cues. The results of this study indicate that asymmetry in execution time of reactive and self-initiated movement holds irrespective of within-task expertise and stimulus specificity. This could have implications for training of sports and/or relearning of tasks that require rapid and accurate movements to intercept/contact a target.
An Apparatus to Quantify Anteroposterior and Mediolateral Shear Reduction in Shoe Insoles
Belmont, Barry; Wang, Yancheng; Ammanath, Peethambaran; Wrobel, James S.; Shih, Albert
2013-01-01
Background Many of the physiological changes that lead to diabetic foot ulceration, such as muscle atrophy and skin hardening, are manifested at the foot–ground interface via pressure and shear points. Novel shear-reducing insoles have been developed, but their magnitude of shear stiffness has not yet been compared with regular insoles. The aim of this study was to develop an apparatus that would apply shear force and displacement to an insole’s forefoot region, reliably measure deformation, and calculate insole shear stiffness. Methods An apparatus consisting of suspended weights was designed to test the forefoot region of insoles. Three separate regions representing the hallux; the first and second metatarsals; and the third, fourth, and fifth metatarsals were sheared at 20 mm/min for displacements from 0.1 to 1.0 mm in both the anteroposterior and mediolateral directions for two types of insoles (regular and shear reducing). Results Shear reduction was found to be significant for the intervention insoles under all testing conditions. The ratio of a regular insole’s effective stiffness and the experimental insole’s effective stiffness across forefoot position versus shear direction, gait instance versus shear direction, and forefoot position versus gait instance was 270% ± 79%, 270% ± 96%, and 270% ± 86%, respectively. The apparatus was reliable with an average measured coefficient of variation of 0.034 and 0.069 for the regular and shear-reducing insole, respectively. Conclusions An apparatus consisting of suspended weights resting atop three locations of interest sheared across an insole was demonstrated to be capable of measuring the insole shear stiffness accurately, thus quantifying shear-reducing effects of a new type of insole. PMID:23567000
Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung
2017-06-20
In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip.
Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate
Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung
2017-01-01
In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip. PMID:28632151
Deformation measurements of composite multi-span beam shear specimens by Moire interferometry
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Joh, D.; Wood, J.
1984-01-01
Experimental analyses were performed for determination of in plane deformations and shear strains in unidirectional and quasi-isotropic graphite-epoxy beams. Forty-eight ply beams were subjected to 5 point and 3 point flexure. Whole field measurements were recorded at load levels from about 20% to more than 90% of failure loads. Contour maps of U and W displacement fields were obtained by moire interferometry, using reference gratings of 2400 lines/mm. Clearly defined fringes with fringe orders exceeding 1000 were obtained. Whole field contour maps of shear strains were obtained by a method developed for these tests. Various anomalous effects were detected in the displacement fields. Their analysis indicated excess shear strains in resin rich zones in regions of shear tractions; free edge shear strains in quasi-isotropic specimens in regions of normal stresses; and shear stresses associated with cyclic shear compliances of quasi-isotropic plies in regions of shear tractions. Their contributions could occur independently or in superposition. Qualitative analyses addressed questions of relaxation; influence of contact stress distribution; specimen failure; effect of specimen overhang; nonlinearity; and qualities of 5 and 3 point flexure tests.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.
2006-01-01
Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.
Wu, Li-Wei; Lin, Wen-Jie; Hsu, Yu-Feng
2018-01-01
Abstract The Tailed Punch, Dodona eugenes, is widely distributed in East Asia with seven subspecies currently recognized. However, two of them, namely ssp. formosana and ssp. esakii found in Taiwan, are hard to distinguish from each other due to ambiguous diagnostic characters. In this study, their taxonomic status is clarified by comparing genitalia characters and phylogenetic relationships based on mitochondrial sequences, COI and COII (total 2211 bps). Our results show that there is no reliable feature to separate these two subspecies. Surprisingly we found that Dodona in Taiwan is more closely related to the Orange Punch, D. egeon, than to other subspecies of D. eugenes. Therefore, the following nomenclatural changes are proposed: Dodona eugenes formosana is revised to specific status as Dodona formosana Matsumura, 1919, stat. rev, and ssp. esakii is sunk to a junior synonym of Dodona formosana syn. n. PMID:29674868
Behaviour of steel-concrete composite beams using bolts as shear connectors
NASA Astrophysics Data System (ADS)
Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh
2018-04-01
The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.
NASA Astrophysics Data System (ADS)
Liu, Ke; Wang, Jiannian; Wang, Hai; Li, Yanqiu
2018-07-01
For the multi-lateral shearing interferometers (multi-LSIs), the measurement accuracy can be enhanced by estimating the wavefront under test with the multidirectional phase information encoded in the shearing interferogram. Usually the multi-LSIs reconstruct the test wavefront from the phase derivatives in multiple directions using the discrete Fourier transforms (DFT) method, which is only suitable to small shear ratios and relatively sensitive to noise. To improve the accuracy of multi-LSIs, wavefront reconstruction from the multidirectional phase differences using the difference Zernike polynomials fitting (DZPF) method is proposed in this paper. For the DZPF method applied in the quadriwave LSI, difference Zernike polynomials in only two orthogonal shear directions are required to represent the phase differences in multiple shear directions. In this way, the test wavefront can be reconstructed from the phase differences in multiple shear directions using a noise-variance weighted least-squares method with almost no extra computational burden, compared with the usual recovery from the phase differences in two orthogonal directions. Numerical simulation results show that the DZPF method can maintain high reconstruction accuracy in a wider range of shear ratios and has much better anti-noise performance than the DFT method. A null test experiment of the quadriwave LSI has been conducted and the experimental results show that the measurement accuracy of the quadriwave LSI can be improved from 0.0054 λ rms to 0.0029 λ rms (λ = 632.8 nm) by substituting the DFT method with the proposed DZPF method in the wavefront reconstruction process.
Shear thinning and shear thickening of a confined suspension of vesicles
NASA Astrophysics Data System (ADS)
Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.
2018-01-01
Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.
An experimental investigation for external RC shear wall applications
NASA Astrophysics Data System (ADS)
Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.
2010-09-01
The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
Liu, C.; Roddatis, V.; Kenesei, P.; ...
2017-08-14
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Roddatis, V.; Kenesei, P.
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
NASA Technical Reports Server (NTRS)
Ho, Henjen
1991-01-01
A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. An experimental investigation using conventional strain gage instrumentation and moire interferometry is performed. A finite element analysis of the Iosipescu shear test for unidirectional and cross-ply composites is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon the strain gage measurements used for the determination of composite shear moduli. From the test results for graphite-epoxy laminates, it is shown that the proximity of the load introduction point to the test section greatly influences the individual gage readings for certain fiber orientations but the effect upon shear modulus measurement is relatively unimportant. A numerical study of the load contact effect shows the sensitivity of some fiber configurations to the specimen/fixture contact mechanism and may account for the variations in the measured shear moduli. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and yielded spurious shear stress-strain curves. In the numerical analysis, it is shown that the Iosipescu specimens for different fiber orientations have to be modeled differently in order to closely approximate the true loading conditions. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors, which are determined for the region occupied by the strain gage rosette, are found to be dependent upon the material orthotropic ratio and the finite element models. Based upon the experimental and numerical results, recommendations for improving the reliability and
Transport in sheared stochastic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanden Eijnden, E.; Balescu, R.
1997-02-01
The transport of test particles in a stochastic magnetic field with a sheared component is studied. Two stages in the particle dynamics are distinguished depending on whether the collisional effects perpendicular to the main field are negligible or not. Whenever the perpendicular collisions are unimportant, the particles show a subdiffusive behavior which is slower in the presence of shear. The particle dynamics is then inhomogeneous and non-Markovian and no diffusion coefficient may be properly defined. When the perpendicular collision frequency is small, this subdiffusive stage may be very long. In the truly asymptotic stage, however, the perpendicular collisions must bemore » accounted for and the particle motion eventually becomes diffusive. Here again, however, the shear is shown to reduce the anomalous diffusion coefficient of the system. {copyright} {ital 1997 American Institute of Physics.}« less
Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis
NASA Astrophysics Data System (ADS)
Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya
2018-03-01
In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.
Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils
NASA Astrophysics Data System (ADS)
Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi
2017-02-01
This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.
Cavitt, L C; Meullenet, J F; Gandhapuneni, R K; Youm, G W; Owens, C M
2005-01-01
In each of 2 trials, 75 female and 75 male broilers of different sizes (large and small) were obtained from a commercial grower and were commercially processed. Breast fillets were deboned at 0.25, 1.5, 3, 6, and 24 h postmortem (total n = 15 per treatment per time point). Muscle pH and L* value were determined for each deboning time. Breast fillets were subjected to texture analysis using Allo-Kramer (10-blade), needle puncture (2 mm diameter), or razor blade shear (8.9 mm wide) methods. Allo-Kramer tests were performed on a strip (40 x 20 x 7 mm); needle puncture and razor blade shear were performed on intact muscles. Body size and sex had no effect on rigor development or color as indicated by no significant difference in breast muscle pH, R-value, or L* value. Allo-Kramer and razor blade tests exhibited significant shear value differences among samples deboned early (<1.5 h) and late (>6 h) PM. Allo-Kramer shear and razor blade tests performed similarly for differentiating breast meat of different toughness though Allo-Kramer shear force and razor blade energy were only moderately correlated (r = 0.72). Although both instrumental tests were performed in the same approximate area on each breast, it is possible that variation within the breast would have caused this marginal correlation. Although further studies would be necessary to compare the performance of both tests for assessing poultry meat toughness, the proposed razor blade test has the advantage of requiring no sample preparation (i.e., cutting a strip of constant dimensions) other than cooking.
Shear bond strength of one-step self-etch adhesives: pH influence
Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco
2015-01-01
Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459
Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls
NASA Astrophysics Data System (ADS)
Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu
2017-10-01
In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.
NASA Astrophysics Data System (ADS)
Ye, Shigong; Wu, Junru
2000-05-01
Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.
Full-scale shear wall tests for force transfer around openings
Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker
2010-01-01
Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...
Symmetry Breaking by Parallel Flow Shear
NASA Astrophysics Data System (ADS)
Li, Jiacong; Diamond, Patrick
2015-11-01
Plasma rotation is important in reducing turbulent transport, suppressing MHD instabilities, and is beneficial to confinement. Intrinsic rotation without an external momentum input is of interest for its plausible application on ITER. k∥ spectrum asymmetry is required for residual Reynolds stress that drives the intrinsic rotation. Parallel flows are reported in linear devices without magnetic shear. In CSDX, parallel flows are mostly peaked in the core [Thakur et al., 2014]; more robust flows and reversed profiles are seen in PANTA [Oldenburger, et al. 2012]. A novel mechanism for symmetry breaking in momentum transport is proposed. Magnetic shear or mean flow profile are not required. A seed parallel flow shear (PFS) sets the sign of residual stress by selecting certain modes to grow faster. The resulted spectrum imbalance leads to a nonzero residual stress, which further drives a parallel flow with ∇n as the free energy source, adding to the shear until saturated by diffusion. Balanced flow gradient is set by Π∥Res /χϕ . Residual stress is calculated for ITG turbulence and collisional drift wave turbulence where electron-ion and electron-neutral collisions are discussed and compared. Numerical simulation is proposed for testing the effect of PFS.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.
2007-01-01
The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.
NASA Astrophysics Data System (ADS)
Park, Kwangsoo
In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw
2008-07-08
There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixingmore » are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.
2017-10-01
Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2014-01-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636
Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Knight, N. F., Jr.; Reddy, J. N.
1990-01-01
The influence of shear flexibility on overall postbuckling response was assessed, and transverse shear stress distributions in relation to panel failure were examined. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented analytically substantiate the experimentally observed failure mode.
NASA Astrophysics Data System (ADS)
West, Loyd Travis
Site characterization is an essential aspect of hazard analysis and the time-averaged shear-wave velocity to 30 m depth "Vs30" for site-class has become a critical parameter in site-specific and probabilistic hazard analysis. Yet, the general applicability of Vs30 can be ambiguous and much debate and research surround its application. In 2007, in part to mitigate the uncertainty associated with the use of Vs30 in Las Vegas Valley, the Clark County Building Department (CCBD) in collaboration with the Nevada System of Higher Education (NSHE) embarked on an endeavor to map Vs30 using a geophysical methods approach for a site-class microzonation map of over 500 square miles (1500 km2) in southern Nevada. The resulting dataset, described by Pancha et al. (2017), contains over 10,700 1D shear-wave-velocity-depth profiles (SWVP) that constitute a rich database of 3D shear-wave velocity structure that is both laterally and vertical heterogenous. This study capitalizes on the uniquely detailed and spatially dense CCBD database to carry out sensitivity tests on the detailed shear-wave-velocity-profiles and the Vs30 utilizing 1D and 3D site-response approaches. Sensitivity tests are derived from the 1D oscillator response of a single-degree-of-freedom-oscillator and from 3D finite-difference deterministic simulations up to 15 Hz frequency using similar model parameters. Results demonstrate that the detailed SWVP are amplifying ground motions by roughly 50% over the simple Vs30 models, above 4.6 Hz frequency. Numerical simulations also depict significant lateral resonance, focusing, and scattering from seismic energy attributed to the 3D small-scale heterogeneities of the shear-wave-velocity profiles that result in a 70% increase in peak ground velocity. Additionally, PGV ratio maps clearly establish that the increased amplification from the detailed SWVPs is consistent throughout the model space. As a corollary, this study demonstrates the use of finite-differencing numerical
Shear stress in magnetorheological finishing for glasses.
Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D
2009-05-01
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.
NASA Astrophysics Data System (ADS)
Kelemen, P. B.; Hirth, G.
2004-12-01
creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.
NASA Astrophysics Data System (ADS)
Che, Ailan; Luo, Xianqi; Qi, Jinghua; Wang, Deyong
Shear wave velocity (Vs) of soil is one of the key parameters used in assessment of liquefaction potential of saturated soils in the base with leveled ground surface; determination of shear module of soils used in seismic response analyses. Such parameter can be experimentally obtained from laboratory soil tests and field measurements. Statistical relation of shear wave velocity with soil properties based on the surface wave survey investigation, and resonant column triaxial tests, which are taken from more than 14 sites within the depth of 10 m under ground surface, is obtained in Tianjin (China) area. The relationship between shear wave velocity and the standard penetration test N value (SPT-N value) of silt and clay in the quaternary formation are summarized. It is an important problem to research the effect of shear wave velocity on liquefaction resistance of saturated silts (sandy loams) for evaluating liquefaction resistance. According the results of cyclic triaxial tests, a correlation between liquefaction resistance and shear wave velocity is presented. The results are useful for ground liquefaction investigation and the evaluation of liquefaction resistance.
Direct shear mapping - a new weak lensing tool
NASA Astrophysics Data System (ADS)
de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.
2015-08-01
We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).
Ji, S.; Hanes, D.M.; Shen, H.H.
2009-01-01
In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.
Investigating failure behavior and origins under supposed "shear bond" loading.
Sultan, Hassam; Kelly, J Robert; Kazemi, Reza B
2015-07-01
This study evaluated failure behavior when resin-composite cylinders bonded to dentin fractured under traditional "shear" testing. Failure was assessed by scaling of failure loads to changes in cylinder radii and fracture surface analysis. Three stress models were examined including failure by: bonded area; flat-on-cylinder contact; and, uniformly-loaded, cantilevered-beam. Nine 2-mm dentin occlusal dentin discs for each radii tested were embedded in resin and bonded to resin-composite cylinders; radii (mm)=0.79375; 1.5875; 2.38125; 3.175. Samples were "shear" tested at 1.0mm/min. Following testing, disks were finished with silicone carbide paper (240-600grit) to remove residual composite debris and tested again using different radii. Failure stresses were calculated for: "shear"; flat-on-cylinder contact; and, bending of a uniformly-loaded cantilevered beam. Stress equations and constants were evaluated for each model. Fracture-surface analysis was performed. Failure stresses calculated as flat-on-cylinder contact scaled best with its radii relationship. Stress equation constants were constant for failure from the outside surface of the loaded cylinders and not with the bonded surface area or cantilevered beam. Contact failure stresses were constant over all specimen sizes. Fractography reinforced that failures originated from loaded cylinder surface and were unrelated to the bonded surface area. "Shear bond" testing does not appear to test the bonded interface. Load/area "stress" calculations have no physical meaning. While failure is related to contact stresses, the mechanism(s) likely involve non-linear damage accumulation, which may only indirectly be influenced by the interface. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@riken.jp
We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematicmore » error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.« less
Variable-amplitude oscillatory shear response of amorphous materials.
Perchikov, Nathan; Bouchbinder, Eran
2014-06-01
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W; Greenleaf, James F; Chen, Shigao
2014-06-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. Applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. Decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. Using a robust 2-D shear wave speed calculation to reconstruct 2-D shear elasticity maps from each filter direction; and 4. Compounding these 2-D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view, 2-D and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Laakso, J. H.; Straayer, J. W.
1974-01-01
A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.
Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates
NASA Astrophysics Data System (ADS)
Liu, Yanxiong; Liaw, Benjamin
2010-02-01
Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.
Effects of dentin surface treatments on shear bond strength of glass-ionomer cements
Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco
2014-01-01
Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797
Macromolecular Origins of Harmonics Higher than the Third in Large-Amplitude Oscillatory Shear Flow
NASA Astrophysics Data System (ADS)
Giacomin, Alan; Jbara, Layal; Gilbert, Peter; Chemical Engineering Department Team
2016-11-01
In 1935, Andrew Gemant conceived of the complex viscosity, a rheological material function measured by "jiggling" an elastic liquid in oscillatory shear. This test reveals information about both the viscous and elastic properties of the liquid, and about how these properties depend on frequency. The test gained popularity with chemists when John Ferry perfected instruments for measuring both the real and imaginary parts of the complex viscosity. In 1958, Cox and Merz discovered that the steady shear viscosity curve was easily deduced from the magnitude of the complex viscosity, and today oscillatory shear is the single most popular rheological property measurement. With oscillatory shear, we can control two things: the frequency (Deborah number) and the shear rate amplitude (Weissenberg number). When the Weissenberg number is large, the elastic liquids respond with a shear stress over a series of odd-multiples of the test frequency. In this lecture we will explore recent attempts to deepen our understand of the physics of these higher harmonics, including especially harmonics higher than the third. Canada Research Chairs program of the Government of Canada for the Natural Sciences and Engineering Research Council of Canada (NSERC) Tier 1 Canada Research Chair in Rheology.
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
NASA Technical Reports Server (NTRS)
Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.
2005-01-01
The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, J.D.
1970-03-12
The Control Data 405 card reader, modified by the Control Data 3649 card read controller, is the primary mechanism for transferring information from a deck of punched cards into the CDC 6600 and CDC 7600 computers of the LLL Octopus system. The card reader operates at a maximum rate of 1200 cards per minute. A description of the card reader and its operation is given. A discussion of formates is included. (RWR)
Calibration of weak-lensing shear in the Kilo-Degree Survey
NASA Astrophysics Data System (ADS)
Fenech Conti, I.; Herbonnet, R.; Hoekstra, H.; Merten, J.; Miller, L.; Viola, M.
2017-05-01
We describe and test the pipeline used to measure the weak-lensing shear signal from the Kilo-Degree Survey (KiDS). It includes a novel method of 'self-calibration' that partially corrects for the effect of noise bias. We also discuss the 'weight bias' that may arise in optimally weighted measurements, and present a scheme to mitigate that bias. To study the residual biases arising from both galaxy selection and shear measurement, and to derive an empirical correction to reduce the shear biases to ≲1 per cent, we create a suite of simulated images whose properties are close to those of the KiDS survey observations. We find that the use of 'self-calibration' reduces the additive and multiplicative shear biases significantly, although further correction via a calibration scheme is required, which also corrects for a dependence of the bias on galaxy properties. We find that the calibration relation itself is biased by the use of noisy, measured galaxy properties, which may limit the final accuracy that can be achieved. We assess the accuracy of the calibration in the tomographic bins used for the KiDS cosmic shear analysis, testing in particular the effect of possible variations in the uncertain distributions of galaxy size, magnitude and ellipticity, and conclude that the calibration procedure is accurate at the level of multiplicative bias ≲1 per cent required for the KiDS cosmic shear analysis.
Flexible Micropost Arrays for Shear Stress Measurement
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.
2015-01-01
of delicate micro-electromechanical devices impede the use of most direct shear sensors. Similarly, the cavity required for sensing element displacement is sensitive to particulate obstruction. This work was focused on developing a shear stress sensor for use in subsonic wind tunnel test facilities applicable to an array of test configurations. The non-displacement shear sensors described here have minimal packaging requirements resulting in minimal or no disturbance of boundary layer flow. Compared to previous concepts, device installation could be simple with reduced cost and down-time. The novelty lies in the creation of low profile (nanoscale to 100 µm) micropost arrays that stay within the viscous sub-layer of the airflow. Aerodynamic forces, which are related to the surface shear stress, cause post deflection and optical property changes. Ultimately, a reliable, accurate shear stress sensor that does not disrupt the airflow has the potential to provide high value data for flow physics researchers, aerodynamicists, and aircraft manufacturers leading to greater flight efficiency arising from more in-depth knowledge on how aircraft design impacts near surface properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.
1997-04-01
The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appmmore » over 7 dpa appears to have little effect on the mechanical properties of the alloys.« less
Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.
Kim, Daehyeon; Ha, Sungwoo
2014-02-07
In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.
Importance of Tensile Strength on the Shear Behavior of Discontinuities
NASA Astrophysics Data System (ADS)
Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.
2012-05-01
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.
Tensile and shear methods for measuring strength of bilayer tablets.
Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin
2017-05-15
Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.
Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure
NASA Astrophysics Data System (ADS)
Xu, Jiang; Liu, Yixin; Peng, Shoujian
2016-12-01
In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.
The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone
NASA Astrophysics Data System (ADS)
Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf
2014-05-01
Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within
NASA Astrophysics Data System (ADS)
Plachý, Jan; Vysoká, Jana; Vejmelka, Radek; Horský, Jan; Vacek, Vítězslav
2017-10-01
This paper is based on research dealing with defects that appear on concrete bridge decks with an insulating layer from asphalt strips on the interface between the asphalt strip and its basis. The durability and lifespan of the bearing structure of concrete bridge is determined by insulating layer that constitutes, together with the primary layer and a protective layer, the insulation system of the concrete bridge deck. Paints based on low viscosity epoxy resigns are one of the possibilities of primary layer implementation. These paints may be performed as anchoring-impregnation paints that usually represent single layer paint on the bridge deck surface. Sealing layer is another variant. Sealing layer is a multilayer consisting of anchoring- impregnation paint and sealing paint. The primary layers mainly provide vapour closing of the concrete surface, and partly, through roughening the surface, contribute to adhesion of bitumen (asphalt) insulation (waterproofing) layer. Application of the primary layer has been spreading in the Czech Republic since the 1990s. Now, after approximately 30 years of use defects in these epoxy based sealing layers at the interface between primary layer and waterproofing layer of reinforced bitumen sheets (RBS) are being solved in the Czech Republic. After performance of the first test focusing on breaking-strength, it was found that the strength between the asphalt and the primary belt layer in some types of low-viscosity resin-epoxy decreases and after a certain period of time again increases, depending on the time. Tensile strength test is carried out on a sample of asphalt strip, which is fused onto the substrate with a primer coat. It was therefore proceeded to test the shear adhesion. Testing of the shear adhesion is conducted on the entire concrete deck waterproofing system. It was supposed that the decrease of adhesion at this test become evident in higher extent. Adhesion tests in shear were performed on the primary layer
An apparatus to measure the crosscut shearing strength of roots
Robert R. Ziemer
1978-01-01
Loss of tree root strength after timber cutting is a principal mechanism leading to slope failure and landslides. Measurement of root shear strength changes can be useful in evaluating effects of logging on slope stability. The simple apparatus described measures shear strength directly on roots up to 50 mm diameter. Tests on live roots showed excellent correlation...
Stress intensity factors in a cracked infinite elastic wedge loaded by a rigid punch
NASA Technical Reports Server (NTRS)
Erdogan, F.; Civelek, M. B.
1978-01-01
A plane elastic wedge-shaped solid was split through the application of a rigid punch. It was assumed that the coefficient of friction on the the contact area was constant, and the problem had a plane of symmetry with respect to loading and geometry, with the crack in the plane of symmetry. The problem was formulated in terms of a system of integral equations with the contact stress and the derivative of the crack surface displacement as the unknown functions. The solution was obtained for an internal crack and for an edge crack. The results include primarily the stress intensity factors at the crack tips, and the measure of the stress singularity at the wedge apex, and at the end points of the contact area.
NASA Astrophysics Data System (ADS)
Launay, Jean; Hivet, Gilles; Vu Duong, Ahn; Boisse, Philippe
2007-04-01
Two tests are mainly used to identify the shear behavior of fabrics. The "picture frame" which uses a lozenge framework made of four rigid and articulated bars and the "bias test" which is a tensile test on a sample with initially a 45° angle between the yarns and the edges. The picture frame test is the more commonly used because the whole specimen is theoretically in a pure shear state. Nevertheless the absence of tension in the woven reinforcement supposes a perfect alignment of fibres and positioning of the clamping point with regards to the framework articulations. In addition, it is often necessary in practice to impose an initial tension which is not quantified and whose consequences are ignored in the classical picture frame test. An experimental device making it possible to measure the tensions during the test is carried out. Different types of teste on different fabrics have been performed. Results presented here concern a twintex fabric that has been selected for a shear benchmark Thanks to this device, it is shown that tensions play an important role in plane shear behaviour.
NASA Astrophysics Data System (ADS)
Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.
2005-12-01
Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and
Is effective mass in combat sports punching above its weight?
Lenetsky, Seth; Nates, Roy J; Brughelli, Matt; Harris, Nigel K
2015-04-01
The segmental and muscular complexity of the human body can result in challenges when examining the kinetics of impacts. To better understand this complexity, combat sports literature has selected effective mass as a measure of an athlete's inertial contribution to the momentum transfer during the impact of strikes. This measure helps to clarify the analysis of striking kinetics in combat sports. This paper will review: (1) effective mass as a concept and its usage as a measure of impact intensity in combat sports, (2) the neuromuscular pattern known as "double peak muscle activation" which has been theorized to help enhance initial hand velocity upon impact and joint stiffening during impact, (3) the methods and equations used to calculate effective mass, and (4) practitioner recommendations based on the literature. We will argue in this manuscript that the act of punching presents unique challenges to the current understanding of effective mass due to additional force application during impact. This review will improve the understanding of effective mass and its roles in effective striking serving to underpin future research into performance enhancement in striking based combat sports. Copyright © 2014 Elsevier B.V. All rights reserved.
Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor
Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas
2017-01-01
The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress—four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)—was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10−16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear. PMID:28207869
Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode
NASA Astrophysics Data System (ADS)
Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun
2011-12-01
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.
Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry
NASA Astrophysics Data System (ADS)
Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo
2008-12-01
In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.
Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.; Knight, N. F., Jr.
1990-01-01
The objectives of the study are to assess the influence of shear flexibility on overall postbuckling response, and to examine transverse shear stress distributions in relation to panel failure. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented in this paper analytically substantiate the experimentally observed failure mode.
Flaw Tolerance in Lap Shear Brazed Joints. Part 1
NASA Technical Reports Server (NTRS)
Flom, Yury; Wang, Li-Qin
2003-01-01
Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.
Shear Lag in Box Beams Methods of Analysis and Experimental Investigations
NASA Technical Reports Server (NTRS)
Kuhn, Paul; Chiarito, Patrick T
1942-01-01
The bending stresses in the covers of box beams or wide-flange beams differ appreciably from the stresses predicted by the ordinary bending theory on account of shear deformation of the flanges. The problem of predicting these differences has become known as the shear-lag problem. The first part of this paper deals with methods of shear-lag analysis suitable for practical use. The second part of the paper describes strain-gage tests made by the NACA to verify the theory. Three tests published by other investigators are also analyzed by the proposed method. The third part of the paper gives numerical examples illustrating the methods of analysis. An appendix gives comparisons with other methods, particularly with the method of Ebner and Koller.
Proton irradiation damage of an annealed Alloy 718 beam window
Bach, H. T.; Anderoglu, O.; Saleh, T. A.; ...
2015-04-01
Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less
Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint
NASA Astrophysics Data System (ADS)
She, Cheng-Xue; Sun, Fu-Ting
2018-03-01
The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.
Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J
2018-05-01
Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
A new technique for the measurement of surface shear stress vectors using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Muratore, J. J., Jr.
1994-01-01
Research has recently shown that liquid crystal coating (LCC) color-change response to shear depends on both shear stress magnitude and direction. Additional research was thus conducted to extend the LCC method from a flow-visualization tool to a surface shear stress vector measurement technique. A shear-sensitive LCC was applied to a planar test surface and illuminated by white light from the normal direction. A fiber optic probe was used to capture light scattered by the LCC from a point on the centerline of a turbulent, tangential-jet flow. Both the relative shear stress magnitude and the relative in-plane view angle between the sensor and the centerline shear vector were systematically varied. A spectrophotometer was used to obtain scattered-light spectra which were used to quantify the LCC color (dominant wavelength) as a function of shear stress magnitude and direction. At any fixed shear stress magnitude, the minimum dominant wavelength was measured when the shear vector was aligned with and directed away from the observer; changes in the relative in-plane view angle to either side of this vector/observer aligned position resulted in symmetric Gaussian increases in measured dominant wavelength. Based on these results, a vector measurement methodology, involving multiple oblique-view observations of the test surface, was formulated. Under present test conditions, the measurement resolution of this technique was found to be +/- 1 deg for vector orientations and +/- 5% for vector magnitudes. An approach t o extend the present methodology to full-surface applications is proposed.
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shear Stress in Magnetorheological FInishing for Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2009-04-28
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by themore » hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.« less
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
NASA Astrophysics Data System (ADS)
Foley, B. J.
2017-12-01
Grain-size reduction is thought to play an important role in shear localization within the lithosphere, as mylonites are commonly seen in regions that have undergone intense deformation. However, flow in lithospheric shear zones can also cause heating due to the energy dissipated by deformation. As grain growth is strongly enhanced by warmer temperatures, shear heating may impede grainsize reduction and the formation of mylonite zones. I use models of simple shear, with length-scales representative of lithospheric shear zones and plate boundaries, including shear heating and grainsize evolution. Grain-damage theory is used to represent the evolution of grainsize. The models are used to determine conditions where grainsize reduction dominates versus those where shear heating dominates; if grainsize reduction dominates, then heating is held in check by the drop in viscosity brought about by small grains. On the other hand, if heating dominates then grain-reduction is prevented by fast grain-growth rates. From the numerical models, simple scaling laws are developed that give the stready-state grainsize and temperature rise as a function of strain-rate, background temperature, and parameters for grain-growth and grain-reduction. I find that for parameter ranges constrained by field observations of shear zones and rock deformation experiments, grainsize reduction dominated over shear heating. Very high strain-rates or driving stresses, above what is typically expected in natural shear zones, are needed for shear heating to dominate over grainsize reduction. Also explored is the timescale to reach steady-state grainsize and temperature conditions in a shear zone. For realistic driving stress or strain-rate, timescales to reach steady-state are often very long, on the order of hundreds of millions of years or longer. This might indicate that natural shear zones do not reach steady-state, or that additional processes are important in initiating lithospheric shear
Role of high shear rate in thrombosis.
Casa, Lauren D C; Deaton, David H; Ku, David N
2015-04-01
Acute arterial occlusions occur in high shear rate hemodynamic conditions. Arterial thrombi are platelet-rich when examined histologically compared with red blood cells in venous thrombi. Prior studies of platelet biology were not capable of accounting for the rapid kinetics and bond strengths necessary to produce occlusive thrombus under these conditions where the stasis condition of the Virchow triad is so noticeably absent. Recent experiments elucidate the unique pathway and kinetics of platelet aggregation that produce arterial occlusion. Large thrombi form from local release and conformational changes in von Willebrand factor under very high shear rates. The effect of high shear hemodynamics on thrombus growth has profound implications for the understanding of all acute thrombotic cardiovascular events as well as for vascular reconstructive techniques and vascular device design, testing, and clinical performance. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Wang, G.; Suemine, A.; Schulz, W.H.
2010-01-01
A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands
1980-05-01
X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments
Anisotropic Shear Dispersion Parameterization for Mesoscale Eddy Transport
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.
2016-02-01
The effects of mesoscale eddies are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale eddy parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.
Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Millqvist-Fureby, Anna; Rutland, Mark W
2017-11-21
Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive
Compound hydraulic shear-modulated vortex amplifiers
NASA Technical Reports Server (NTRS)
Goldschmied, F. R.
1977-01-01
A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.
Remote Sensing Wind and Wind Shear System.
Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.
Post retention and post/core shear bond strength of four post systems.
Stockton, L W; Williams, P T; Clarke, C T
2000-01-01
As clinicians we continue to search for a post system which will give us maximum retention while maximizing resistance to root fracture. The introduction of several new post systems, with claims of high retentive and resistance to root fracture values, require that independent studies be performed to evaluate these claims. This study tested the tensile and shear dislodgment forces of four post designs that were luted into roots 10 mm apical of the CEJ. The Para Post Plus (P1) is a parallel-sided, passive design; the Para Post XT (P2) is a combination active/passive design; the Flexi-Post (F1) and the Flexi-Flange (F2) are active post designs. All systems tested were stainless steel. This study compared the test results of the four post designs for tensile and shear dislodgment. All mounted samples were loaded in tension until failure occurred. The tensile load was applied parallel to the long axis of the root, while the shear load was applied at 450 to the long axis of the root. The Flexi-Post (F1) was significantly different from the other three in the tensile test, however, the Para Post XT (P2) was significantly different to the other three in the shear test and had a better probability for survival in the Kaplan-Meier survival function test. Based on the results of this study, our recommendation is for the Para Post XT (P2).
Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions
NASA Astrophysics Data System (ADS)
Shrivastava, Amit Kumar; Rao, K. Seshagiri
2018-01-01
Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.
Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel
NASA Astrophysics Data System (ADS)
Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.
2017-09-01
The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.
NASA Technical Reports Server (NTRS)
Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.
2009-01-01
We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.
Design of thin shear blades for crosscut shearing of wood.
Rodger A. Arola; Thomas R. Grimm
1974-01-01
Discusses principles and presents formulations for evaluating the elastic stability of thin plates subjected to edge loadings. Three different prestress methods to increase late stability are presented. A procedure is given to evaluate the elastic stability of thin shear blades under expected shearing loads.
Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide
2015-01-01
Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.
NASA Astrophysics Data System (ADS)
Li, Qiang; Argatov, Ivan; Popov, Valentin L.
2018-04-01
A recent paper by Popov, Pohrt and Li (PPL) in Friction investigated adhesive contacts of flat indenters in unusual shapes using numerical, analytical and experimental methods. Based on that paper, we analyze some special cases for which analytical solutions are known. As in the PPL paper, we consider adhesive contact in the Johnson-Kendall-Roberts approximation. Depending on the energy balance, different upper and lower estimates are obtained in terms of certain integral characteristics of the contact area. The special cases of an elliptical punch as well as a system of two circular punches are considered. Theoretical estimations for the first critical force (force at which the detachment process begins) are confirmed by numerical simulations using the adhesive boundary element method. It is shown that simpler approximations for the pull-off force, based both on the Holm radius of contact and the contact area, substantially overestimate the maximum adhesive force.
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao
2018-04-01
The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.
NASA Astrophysics Data System (ADS)
Vâgberg, Daniel; Olsson, Peter; Teitel, S.
2017-05-01
We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.
Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ
2009-07-14
One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.
Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study
NASA Astrophysics Data System (ADS)
Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng
2017-12-01
This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.
NASA Astrophysics Data System (ADS)
Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.
2015-10-01
Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.
NASA Astrophysics Data System (ADS)
Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh
2018-02-01
This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.
NASA Astrophysics Data System (ADS)
Cui, Zhihua; Ai, Chi; Feng, Fuping
2017-01-01
When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.
Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
Bose, Dipan; Bhalla, Kavi S; Untaroiu, Costin D; Ivarsson, B Johan; Crandall, Jeff R; Hurwitz, Shepard
2008-06-01
Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear
An alternative assessment of second-order closure models in turbulent shear flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Gatski, Thomas B.
1994-01-01
The performance of three recently proposed second-order closure models is tested in benchmark turbulent shear flows. Both homogeneous shear flow and the log-layer of an equilibrium turbulent boundary layer are considered for this purpose. An objective analysis of the results leads to an assessment of these models that stands in contrast to that recently published by other authors. A variety of pitfalls in the formulation and testing of second-order closure models are uncovered by this analysis.
NASA Technical Reports Server (NTRS)
Kuhn, P. M.
1985-01-01
The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.
Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength
NASA Astrophysics Data System (ADS)
Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.
2018-02-01
To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.
A platform-based foot pressure/shear sensor
NASA Astrophysics Data System (ADS)
Chang, Chun-Te; Liu, Chao Shih; Soetanto, William; Wang, Wei-Chih
2012-04-01
The proposed research is aimed at developing, fabricating and implementing a flexible fiber optic bend loss sensor for the measurement of plantar pressure and shear stress for diabetic patients. The successful development of the sensor will greatly impact the study of diabetic foot ulcers by allowing clinicians to measure a parameter (namely, shear stress) that has been implicated in ulceration, but heretofore, has not been routinely quantified on high risk patients. A full-scale foot pressure/shear sensor involves a tactile sensor array using intersecting optical waveguides is presented. The basic configuration of the optical sensor systems incorporates a mesh that is comprised of two sets of parallel optical waveguide planes; the planes are configured so the parallel rows of waveguides of the top and bottom planes are perpendicular to each other. The planes are sandwiched together creating one sensing sheet. Two-dimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution. The shifting of the layers relative to each other allows determination of the shear stress in the plane of the sensor. This paper presents latest development and improvement in the sensors design. Fabrication and results from the latest tests will be described.
Mo, Fuhao; Masson, Catherine; Cesari, Dominique; Arnoux, Pierre Jean
2013-01-01
In car-pedestrian accidents, lateral bending and shearing kinematics have been identified as principal injury mechanisms causing permanent disabilities and impairments to the knee joint. Regarding the combined lateral bending and shearing contributions of knee joint kinematics, developing a coupled knee injury criterion is necessary for improving vehicle countermeasures to mitigate pedestrian knee injuries. The advantages of both experimental tests and finite element (FE) simulations were combined to determine the reliable injury tolerances of the knee joint. First, 7 isolated lower limb tests from postmortem human subjects (PMHS) were reported, with dynamic loading at a velocity of 20 km/h. With the intention of replicating relevant injury mechanisms of vehicle-pedestrian impacts, the experimental tests were categorized into 3 groups by the impact locations on the tibia: the distal end to prioritize pure bending, the middle diaphysis to have combined bending and shearing effects, and the proximal end to acquire pure shearing. Then, the corresponding FE model was employed to provide an additional way to determine exact injury occurrences and develop a robust knee injury criterion by the variation in both the lateral bending and shearing contributions through a sensitivity analysis of impact locations. Considering the experimental test results and the subsequent sensitivity analysis of FE simulations, both the tolerances and patterns of knee joint injuries were determined to be influenced by impact locations due to various combined contributions of lateral bending and shearing. Both medial collateral ligament and cruciate ligament failures were noted as the onsets of knee injuries, namely, initial injuries. Finally, a new injury criterion categorized by initial injury patterns of knee joint was proposed by coupling lateral bending and shearing levels. The developed injury criterion correlated the combined joint kinematics to initial knee injuries based on subsegment
Prediction of plantar shear stress distribution by artificial intelligence methods.
Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L
2009-09-01
Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.
Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms
Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.
2011-01-01
Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078
Shear bond strength of a new one-bottle dentin adhesive.
Swift, E J; Bayne, S C
1997-08-01
To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.
The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.
Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph
2013-05-01
To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Shear modulus of porcine coronary artery in reference to a new strain measure.
Zhang, Wei; Lu, Xiao; Kassab, Ghassan S
2007-11-01
To simplify the stress-strain relationship of blood vessels, we define a logarithmic-exponential (log-exp) strain measure to absorb the nonlinearity. As a result, the constitutive relation between the second Piola-Kirchhoff stress and the log-exp strain can be written as a generalized Hooke's law. In this work, the shear modulus of porcine coronary arteries is determined from the experimental data in inflation-stretch-torsion tests. It is found that the shear modulus with respect to the log-exp strain can be viewed as a material constant in the full range of elasticity, and the incremental shear modulus for Cauchy shear stress and small shear strain at various loading levels can be predicted by the proposed Hooke's law. This result further validates the linear constitutive relation for blood vessels when shear deformation is involved.
Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear
NASA Astrophysics Data System (ADS)
Labib, Moheb
The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads
NASA Technical Reports Server (NTRS)
Burley, Richard K.; Guirguis, Kamal S.
1991-01-01
Simple, cheap device locks valve stem so its setting cannot be changed by unauthorized people. Device covers valve stem; cover locked in place with standard padlock. Valve lock made of PVC pipe and packing band. Shears, drill or punch, and forming rod only tools needed.
Spatial correlation of shear-wave velocity within San Francisco Bay Sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2006-01-01
Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.
Validation of Shear Wave Elastography in Skeletal Muscle
Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan
2013-01-01
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670
Dual-domain lateral shearing interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2004-03-16
The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-07-01
We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.
The Critical Criterion on Runaway Shear Banding in Metallic Glasses
Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.
2016-01-01
The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. PMID:26893196
NASA Astrophysics Data System (ADS)
Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo
2002-04-01
Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.
Calibration of DEM parameters on shear test experiments using Kriging method
NASA Astrophysics Data System (ADS)
Bednarek, Xavier; Martin, Sylvain; Ndiaye, Abibatou; Peres, Véronique; Bonnefoy, Olivier
2017-06-01
Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.
NASA Technical Reports Server (NTRS)
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
Seismic behavior of outrigger truss-wall shear connections using multiple steel angles
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang
2016-06-01
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.
Failure of the human lumbar motion-segments resulting from anterior shear fatigue loading
SKRZYPIEC, Daniel M.; NAGEL, Katrin; SELLENSCHLOH, Kay; KLEIN, Anke; PÜSCHEL, Klaus; MORLOCK, Michael M.; HUBER, Gerd
2016-01-01
An in-vitro experiment was designed to investigate the mode of failure following shear fatigue loading of lumbar motion-segments. Human male lumbar motion-segments (age 32–42 years, n=6) were immersed in Ringer solution at 37°C and repeatedly loaded, using a modified materials testing machine. Fatigue loading consisted of a sinusoidal shear load from 0 N to 1,500 N (750 N±750 N) applied to the upper vertebra of the motion-segment, at a frequency of 5 Hz. During fatigue experiments, several failure events were observed in the dynamic creep curves. Post-test x-ray, CT and dissection revealed that all specimens had delamination of the intervertebral disc. Anterior shear fatigue predominantly resulted in fracture of the apophyseal processes of the upper vertebrae (n=4). Exposure to the anterior shear fatigue loading caused motion-segment instability and resulted in vertebral slip corresponding to grade I and ‘mild’ grade II spondylolisthesis, as observed clinically. PMID:26829975
Schulz, William H.; Wang, Gonghui
2014-01-01
Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.
Development of a MEMS dual-axis differential capacitance floating element shear stress sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, Casey; Griffin, Benjamin
A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds rangingmore » up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.« less
Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method
NASA Astrophysics Data System (ADS)
Nakajima, Reiko; Bernstein, Gary
2007-04-01
We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.
NASA Astrophysics Data System (ADS)
Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.
2017-07-01
Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-01-01
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-12-08
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1989-01-01
The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.
Effect of cell size and shear stress on bacterium growth rate
NASA Astrophysics Data System (ADS)
Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team
2015-11-01
Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.
High-Temperature Mechanical Properties of the P/M Extruded Mg -SiCp Composites
NASA Astrophysics Data System (ADS)
Labib, F.; Mahmudi, R.; Ghasemi, H. M.
2018-03-01
In the present study, pure magnesium reinforced with 0, 5, 10 and 15 vol.% SiC particulates was successfully prepared by powder metallurgy technique before being hot extruded. The average 14 μm grain size of the composite specimens remained almost unchanged after addition of SiC particles, while their dimensional stability was improved because of the reduction in the coefficient of thermal expansion (CTE) from 28.6 × 10-6 K-1 in pure Mg to 27.3, 25.3 and 23.4 × 10-6 K-1 in the Mg-5% SiC, Mg-10% SiC and Mg-15% SiC composites, respectively. Mechanical properties of the specimens were investigated in the temperature range of 298-498 K, implementing shear punch testing and hot hardness techniques. Depending on the test temperature, addition of SiC particles to the pure Mg matrix increased shear yield stress and ultimate shear strength of the materials by 5-25 and 6-23 MPa, respectively. The shear strength improvement was mainly attributed to the CTE mismatch strengthening mechanism (9.5-25.5 MPa), and to a lesser extent (1-4.5 MPa), to the load transfer mechanism. Finally, using the modified Clyne model, the contribution of different strengthening mechanisms to the total shear strength improvement in the composites was evaluated.
Microfluidic Thrombosis under Multiple Shear Rates and Antiplatelet Therapy Doses
Ku, David N.; Forest, Craig R.
2014-01-01
The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s−1) and therapy concentrations (0–2.4 µM for eptifibatide, 0–2 mM for acetyl-salicylic acid (ASA), 3.5–40 Units/L for heparin) using a microfluidic device. We also measured complete blood counts (CBC) and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose). Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment. PMID:24404131
Micromechanics of shear localization in granular rocks - effect of temperature
NASA Astrophysics Data System (ADS)
Kanaya, T.; Hirth, G.
2017-12-01
We conducted detailed microscopy on porous sandstones deformed to varying axial strains in the low-temperature, brittle faulting regime and high-temperature, semibrittle faulting regime. This study is aimed to test the hypothsis that macroscopic faulting results from the interaction of distributed microfractures in granular rocks, and to assess how elevated temperature influences these shear loalization processes. We determined the ratio of fracture length vs. spacing for distributed microfractures (away from macroscopic faults) and compared it with fracture mechanics models of crack interaction. At low temperature, both tensile and shear microfractures obtain the critical geometry for crack-tip interaction. Both modes of microfractures occur at initial yielding and continue to lengthen with strain, in which many tensile microfractures propagate across grains. In contrast, at high temperature, only shear microfractures continue to lengthen with strain and reach the critical geometry; almost all tensile microfracutures arrest at grain boundaries. In addition, using the observed microfracture lengths and stresses, we determined the energy release rate (including interaction effects) for the longest shear microfractues characterized. These microfractures show length and stress consistent with Griffith criteria. At low temperature, shear fractures show energy release rate far greater than fracture energy, consistent with the observed dynamic failure. In contrast, at high temperature, shear microfractures show energy release rate similar to fracture energy, consistent with observed stable failire. Taken toghether, our resutls show that the linkage of shear microfracture is far more important for shear localization (macroscopic faulting) in granular rocks than in non-porous rocks. The interaction of both tentile and shear microfractures is important at low temperature, whereas that of teneile fracture is less improtant at high temperature. In addition, structure (desnity
NASA Technical Reports Server (NTRS)
Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.
1987-01-01
The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.
Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls
NASA Astrophysics Data System (ADS)
Radosław, Jasiński
2017-10-01
This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.
NASA Astrophysics Data System (ADS)
Chen, W.; Liu, J.; Fan, W.; Feng, J.; DAO, H.; Yan, J.
2017-12-01
The Ailao Shan-Red River (ASRR) shear zone is a large scale shear zone resulted from collision between India and Euro-Asia Plates in Cenozoic. Magmatisms related to the shear zone evolution took place before, during or after shearing process that contributes to pre-, syn- and post- granitic emplacement. Combined structure, fabric and geochronology analyses of granitic rocks within sheared Proterozoic country rocks along the ASRR shear zone offer important clues on timing of shearing activity and constraining on transformation of types of the shearing. Zircon U-Pb dating results indicate that the granitic intrusions within the ASRR shear zone are broadly grouped into two stages: Permo-Triassic (256.0±6.0 Ma, 244.0±7.6 Ma and 234.0±9.3 Ma) and Cenozoic (27.1±1.5 Ma, 26.34±0.62 Ma and 25.10±0.61 Ma). The Permo-Triassic intrusions show evidences for intensive mylonitization. The older Cenozoic granitic rocks were also strongly sheared, but the younger Cenozoic granites were weakly sheared and they cut across early intrusions (e.g. the Permo-Triassic and older Cenozoic intrusions). Petrographic microscope observations suggest that the Permo-Triassic granitic intrusions show prominent superimposition of high temperature mylonization by low temperature mylonization. Quartz c-axis fabrics of the granites demonstrate that there are multiple maxima due to the superimposition. The older Cenozoic granitic intrusion of 27.1±1.5 Ma shows weak mylonization and possess four symmetrical point maxima in their quartz c-axis fabrics. The EBSD data indicate that the intrusion experienced pure shearing. Intrusions of 26.34±0.62 Ma and 25.10±0.61 Ma show evidences for very weak mylonization. The quartz c-axis patterns of the rocks dominantly resulted from low temperature deformation by simple shearing. It is concluded, in summary, that: (1) Permo-Triassic granitic intrusions experienced superimposed shearing of high and low temperatures; (2) Evidences for both early pure
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1988-01-01
The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.
Influence of Zero-Shear on Yeast Development
NASA Technical Reports Server (NTRS)
McGinnis, Michael R.
1997-01-01
The objective of the research was to begin evaluating the effect of zero-shear on the development of the cell wall of Saccharomyces cerevisiae employing the High Aspect Rotating-Wall Vessel (HARV) NASA bioreactor. This particular yeast has enormous potential for research as a model eukaryotic system on the International Space Station, as well as the production of food stuffs' at the future lunar colony. Because the cell wall is the barrier between the cell and the environment, its form and function as influenced by microgravity is of great importance. Morphologic studies revealed that the circularity and total area of the individual yeast cells were essentially the same in both the control and test HARV's. The growth rates were also essentially the same. In zero-shear, the yeast grew in clumps consisting of rudimentary pseudohyphae in contrast to solitary budding cells in the control. Based upon mechanical and sonic shear applied to the yeast cells, those grown in zero-shear had stronger cell walls and septa. This suggests that there are structural differences, most likely related to the chitin skeleton of the cell wall. From this research further NASA support was obtained to continue the work. Investigations will deal with gene expression and ultrastructure. These will lead to a clearer assessment of the value of S. cerevisiae eukaryotic as a model for space station research.
A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface.
Laszczak, P; McGrath, M; Tang, J; Gao, J; Jiang, L; Bader, D L; Moser, D; Zahedi, S
2016-07-01
A sensor system for measurement of pressure and shear at the lower limb residuum/socket interface is described. The system comprises of a flexible sensor unit and a data acquisition unit with wireless data transmission capability. Static and dynamic performance of the sensor system was characterised using a mechanical test machine. The static calibration results suggest that the developed sensor system presents high linearity (linearity error ≤ 3.8%) and resolution (0.9 kPa for pressure and 0.2 kPa for shear). Dynamic characterisation of the sensor system shows hysteresis error of approximately 15% for pressure and 8% for shear. Subsequently, a pilot amputee walking test was conducted. Three sensors were placed at the residuum/socket interface of a knee disarticulation amputee and simultaneous measurements were obtained during pilot amputee walking test. The pressure and shear peak values as well as their temporal profiles are presented and discussed. In particular, peak pressure and shear of approximately 58 kPa and 27 kPa, respectively, were recorded. Their temporal profiles also provide dynamic coupling information at this critical residuum/socket interface. These preliminary amputee test results suggest strong potential of the developed sensor system for exploitation as an assistive technology to facilitate socket design, socket fit and effective monitoring of lower limb residuum health. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Shear capacity of high-strength concrete pre-stressed girders.
DOT National Transportation Integrated Search
1998-05-01
As part of a project at the University of Minnesota to investigate the application of high-strength concrete in prestressed girders, four shear tests were performed on high-strength concrete prestressed girders.
Pretzel, David; Linss, Stefanie; Ahrem, Hannes; Endres, Michaela; Kaps, Christian; Klemm, Dieter; Kinne, Raimund W
2013-01-01
Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed
Cosmic shear measurements with Dark Energy Survey Science Verification data
Becker, M. R.
2016-07-06
Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulationsmore » to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper.« less
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.
Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P
2015-01-01
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.
Hole expansion test of third generation steels
NASA Astrophysics Data System (ADS)
Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz
2017-10-01
The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.
Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Vermeul, Vincent R.; Adamson, David
2015-03-01
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection ofmore » a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.« less
Characterizing the stretch-flangeability of hot rolled multiphase steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, N.; Butcher, C.; Worswick, M.
2013-12-16
Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)
Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble
NASA Astrophysics Data System (ADS)
Cheng, Yi; Wong, Louis Ngai Yuen
2018-01-01
Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.
Fatigue and shear behavior of HPC bulb-tee girders: final report.
DOT National Transportation Integrated Search
2005-02-01
Five 96-ft. (29.3-m) long, 72-in. (1.83-m) deep, precast, pretensioned bulb-tee girders were tested to evaluate their behavior under flexural fatigue. Three of the girders were also tested to measure their static shear strength. One girder was tested...
NASA Astrophysics Data System (ADS)
Graham, Rodney
2017-04-01
We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high
Shearing stability of lubricants
NASA Technical Reports Server (NTRS)
Shiba, Y.; Gijyutsu, G.
1984-01-01
Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Matteis, G.; Brando, G.; Panico, S.
An important experimental campaign on pure aluminum shear panels, to develop new devices for the seismic passive protection of buildings, has been recently carried out at the University of Naples 'Federico II' in cooperation with the University 'G. d'Annunzio' of Chieti/Pescara. In particular, several pure aluminum shear panels, suitably reinforced by ribs in order to delay shear buckling in the plastic deformation field, have been tested under cyclic loads. The choice pure aluminium, which is really innovative in the field of civil engineering, is justified by both the nominal low yield strength and the high ductility of such a material,more » which have been further improved through a proper heat treatment. Two different testing layouts have been adopted. In the former, six 'full bay' pure aluminum shear panels, having in-plane dimensions 1500x1000 mm and thickness of 5 mm, have been taken in consideration. In the latter, four 5 mm thick stiffened bracing type pure aluminum shear panels (BTPASPs) with a square shape of 500 mm side length have been cyclically tested under diagonal load. In the whole several plate slenderness ratios have been considered, allowing the evaluation of the most influential factors on the cyclic performance of system. In the current paper a review of the most important results of these recent experimental activities is provided and discussed.« less
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu
2018-01-01
Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation
In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin
Vellanki, Vinay Kumar; Shetty, Vikram K; Kushwah, Sudhanshu; Goyal, Geeta; Chandra, S.M. Sharath
2015-01-01
Aims: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive. Materials and Methods: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM. Results: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM. Conclusion: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used. PMID:25738077
Viscous shear heating instabilities in a 1-D viscoelastic shear zone
NASA Astrophysics Data System (ADS)
Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.
2010-12-01
Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic
A critical review of the experimental data for developed free turbulent shear layers
NASA Technical Reports Server (NTRS)
Birch, S. F.; Eggers, J. M.
1973-01-01
Experimental shear layer data are reviewed and the results are compared to numerical predictions for three test cases. It was concluded from the study that many, if not most, of the apparent inconsistencies which exist in the interpretation of the experimental data for free shear layers result from confusing data taken in developed turbulent flows with those taken in transitional or developing flows. Other conclusions drawn from the study include the following: (1) The effects of Mach number are more uncertain primarily because of limited data and the absence of any turbulence measurements for supersonic shear layers. (2) The data available for heterogeneous shear layers are not sufficient to clearly establish the effect of density ratio on mixing rate.
Determination of Shear Wave Velocity in Offshore Terengganu for Ground Response Analysis
NASA Astrophysics Data System (ADS)
Mazlina, M.; Liew, M. S.; Adnan, A.; Harahap, I. S. H.; Hamid, N. A.
2018-04-01
Amount of vibration received in any location can be analysed by conducting ground response analysis. Even though there are three different methods available in this analysis, One Dimensional ground response analysis method has been widely used. Shear wave velocity is one of the key parameters in this analysis. A lot of correlations have been formulated to determine shear wave velocity with cone penetration test. In this study, correlations developed for Quaternary geological age have been selected. Six equations have been adopted comprise of all soil and soil type dependent correlations. Two platforms sites consist of clay and combination of clay and sand have been analysed. Shear velocity to be used in ground response analysis has been obtained. Results have been illustrated in graphs where shear velocity for each case has been plotted. In avoiding under or over predicting of shear wave velocity, the average of all soil and soil type dependent results will be used as final Vs value.
Shear transfer in concrete reinforced with carbon fibers
NASA Astrophysics Data System (ADS)
El-Mokadem, Khaled Mounir
2001-10-01
Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.
A Piezoelectric Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning
2016-01-01
In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry
Diagnostics of boundary layer transition by shear stress sensitive liquid crystals
NASA Astrophysics Data System (ADS)
Shapoval, E. S.
2016-10-01
Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.
High-speed blanking of copper alloy sheets: Material modeling and simulation
NASA Astrophysics Data System (ADS)
Husson, Ch.; Ahzi, S.; Daridon, L.
2006-08-01
To optimize the blanking process of thin copper sheets ( ≈ 1. mm thickness), it is necessary to study the influence of the process parameters such as the punch-die clearance and the wear of the punch and the die. For high stroke rates, the strain rate developed in the work-piece can be very high. Therefore, the material modeling must include the dynamic effects.For the modeling part, we propose an elastic-viscoplastic material model combined with a non-linear isotropic damage evolution law based on the theory of the continuum damage mechanics. Our proposed modeling is valid for a wide range of strain rates and temperatures. Finite Element simulations, using the commercial code ABAQUS/Explicit, of the blanking process are then conducted and the results are compared to the experimental investigations. The predicted cut edge of the blanked part and the punch-force displacement curves are discussed as function of the process parameters. The evolution of the shape errors (roll-over depth, fracture depth, shearing depth, and burr formation) as function of the punch-die clearance, the punch and the die wear, and the contact punch/die/blank-holder are presented. A discussion on the different stages of the blanking process as function of the processing parameters is given. The predicted results of the blanking dependence on strain-rate and temperature using our modeling are presented (for the plasticity and damage). The comparison our model results with the experimental ones shows a good agreement.
NASA Astrophysics Data System (ADS)
Senn, S.; Liewald, M.
2017-09-01
Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.
NASA Astrophysics Data System (ADS)
Giarola, Diana; Capuani, Domenico; Bigoni, Davide
2018-03-01
A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.
Characterization of Shear Properties for APO/MBI Syntactic Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod
Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative
NASA Technical Reports Server (NTRS)
Goff, R. W.
1978-01-01
The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.
Nagar, Namit; Vaz, Anna C
2013-01-01
To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X Mono(TM♦), a restorative resin with the traditional orthodontic composite Transbond XT(TM†) and to evaluate the site of bond failure using Adhesive Remnant Index. Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XT(TM†) (Group I) and Ceram-X Mono(TM♦) (Group II) according to manufacturer's protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired 't' test and Chi square test. The mean shear bond strength of Group I (Transbond XT(TM†)) was 12.89 MPa ± 2.19 and that of Group II (Ceram-X Mono(TM)) was 7.29 MPa ± 1.76. Unpaired 't' test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Ceram-X Mono(TM♦) had a lesser mean shear bond strength when compared to Transbond XT(TM†) which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X Mono(TM†) and Transbond XT(TM†) showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.
The experimental basis for interpreting particle and magnetic fabrics of sheared till
Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.
2008-01-01
Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 < S1 < 0??94 for three-dimensional data). These strong, steady-state fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a
Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy
2015-10-21
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.
Evaluation of flexural, diametral tensile, and shear bond strength of composite repairs.
Imbery, T A; Gray, T; DeLatour, F; Boxx, C; Best, A M; Moon, P C
2014-01-01
Repairing composite restorations may be a more conservative treatment than replacing the entire restoration. The objective of this in vitro study was to determine the best repair method by measuring flexural, diametral tensile, and shear bond strength of repaired composites in which the surfaces were treated with chemical primers (Add & Bond or Silane Bond Enhancer), a bonding agent (Optibond Solo Plus [OBSP]), or mechanical retention with a bonding agent. Filtek Supreme Ultra shade B1B was placed in special molds to fabricate specimens that served to test the flexural, diametral tensile, or shear strength of the inherent resin substrate. The same molds were modified to make specimens for testing repair strength of the resin. Repairs were made immediately or after aging in deionized water at 37°C for seven days. All repair sites were finished with coarse Sof-Lex discs to simulate finishing new restorations or partially removing aged restorations. Repair surfaces were treated with one of the following: 1) phosphoric-acid etching and OBSP; 2) Add & Bond; 3) phosphoric-acid etching, Silane Bond Enhancer, and OBSP; or 4) quarter round bur, phosphoric-acid etching, and OBSP. Specimens were placed back in the original molds to fabricate specimens for diametral tensile or flexural testing or in an Ultradent jig to make specimens for shear bond testing. Composite resin in shade B5B was polymerized against the treated surfaces to make repairs. Two negative control groups for the three testing methods consisted of specimens in which repairs were made immediately or after aging without any surface treatments. Controls and experimental repairs were aged (water 37°C, 24 hours) before flexural, diametral tensile, or shear testing in an Instron Universal testing machine at a crosshead speed of 0.5 mm/min. Experimental flexural repair strengths ranged from 26.4% to 88.6% of the inherent substrate strength. Diametral tensile repair strengths ranged from 40% to 80% of the inherent
Effect of friction on shear jamming
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert
2014-03-01
Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.
Numerical simulation of systems of shear bands in ductile metal with inclusions
NASA Astrophysics Data System (ADS)
Plohr, Jeeyeon
2017-06-01
We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.
NASA Astrophysics Data System (ADS)
Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing
2017-08-01
Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
Studies of in-plane shear behaviour of braided composite reinforcements
NASA Astrophysics Data System (ADS)
Xiao, Shenglei; Wang, Peng; Soulat, Damien; Legrand, Xavier; Gao, Hang
2018-05-01
Braided fabrics are wildly used as textile reinforcements to manufacture the advanced composite parts. The braids can be used as two-dimensional reinforcement to manufacture the composite reinforced by braided fabrics. This study proposed the analysis on the in-plane shear behavior of braided structure fabric. Firstly, the geometric criterion and analytical model have been developed. Secondly, E-glass fibres reinforced braided fabrics have been performed in bias-extension tests to verify the analytical model. The conclusion was that the change of dimension ratio could influence on the shear load /displacement behavior significantly owing to the increasing area for sustaining load with an increase in ratio. However, varying dimension ratio r in axial direction had nearly no effect on shear moment/angle behavior. And the experimental and theoretical results had a good agreement.
Shear zone junctions: Of zippers and freeways
NASA Astrophysics Data System (ADS)
Passchier, Cees W.; Platt, John P.
2017-02-01
Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.
Study on shear strengthening of RC continuous T-beams using different layers of CFRP strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alferjani, M. B. S.; Samad, A. A. Abdul; Mohamad, Noridah
2015-05-15
Carbon fiber reinforced polymer (CFRP) laminates are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. However, this paper presents the results of an experimental investigation for enhancing the shear capacity of reinforced concrete (RC) continuous T- beams using different layers of CFRP wrapping schemes. A total of three concrete beams were tested and various sheet configurations and layouts were studied to determine their effects on ultimate shear strength and shear capacity of the beams. One beam was kept as control beams, while other beams were strengthened with externally bonded CFRP strips withmore » three side bonding and one or two layers of CFRP strips. From the test results, it was found that all schemes were found to be effective in enhancing the shear strength of RC beams. It was observed that the strength increases with the number of sheet layers provided the most effective strengthening for RC continuous T- beam. Beam strengthened using this scheme showed 23.21% increase in shear capacity as compared to the control beam. Two prediction models available in literature were used for computing the contribution of CFRP strips and compared with the experimental results.« less
Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won
2013-10-23
Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.
Shear-induced intracellular loading of cells with molecules by controlled microfluidics.
Hallow, Daniel M; Seeger, Richard A; Kamaev, Pavel P; Prado, Gustavo R; LaPlaca, Michelle C; Prausnitz, Mark R
2008-03-01
This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50-300 microm diameter drilled through Mylar sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one-third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150-2,000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. Copyright 2007 Wiley Periodicals, Inc.
Shear-induced intracellular loading of cells with molecules by controlled microfluidics
Hallow, Daniel M.; Seeger, Richard A.; Kamaev, Pavel P.; Prado, Gustavo R.; LaPlaca, Michelle C.; Prausnitz, Mark R.
2010-01-01
This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50 – 300 μm diameter drilled through Mylar® sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150 - 2000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. PMID:17879304
NASA Technical Reports Server (NTRS)
Uenal, O.; Bansal, N. P.
2000-01-01
In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.
Effect of grape seed extract against biodegradation of composite resin-dentin shear bond strength
NASA Astrophysics Data System (ADS)
Generosa, D. M.; Suprastiwi, E.; Asrianti, D.
2017-08-01
This study aimed to analyze the effect of grape seed extract (GSE) on resin-dentin shear bond strength. A group of 48 dentin samples were divided into 6 groups. The six groups, each with eight specimens, included group 1 (control), group 2 (control + NaOCl 10%), group 3 (2.9% GSE application before etching), group 4 (2.9% GSE application before etching + NaOCl 10%), group 5 (2.9% GSE application after etching), and group 6 (2.9% GSE application after etching + NaOCl 10%). Shear bond strengths were measured using a universal testing machine. Statistical analysis was done with the Kruskal-Wallis test and the Mann-Whitney U test. The highest median value was in group 3, and the lowest value was in group 5. GSE can improve the shear bond strength (p = 0.002 and 0.001), but it has no effect on reducing biodegradation (p = 0.141).
Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G
2015-05-01
Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shear properties evaluation of a truss core of sandwich beams
NASA Astrophysics Data System (ADS)
Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.
2017-10-01
The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.
Smith, Shannon M.; Dworkin, Robert H.; Turk, Dennis C.; Baron, Ralf; Polydefkis, Michael; Tracey, Irene; Borsook, David; Edwards, Robert R.; Harris, Richard E.; Wager, Tor D.; Arendt-Nielsen, Lars; Burke, Laurie B.; Carr, Daniel B.; Chappell, Amy; Farrar, John T.; Freeman, Roy; Gilron, Ian; Goli, Veeraindar; Haeussler, Juergen; Jensen, Troels; Katz, Nathaniel P.; Kent, Jeffrey; Kopecky, Ernest A.; Lee, David A.; Maixner, William; Markman, John D.; McArthur, Justin C.; McDermott, Michael P.; Parvathenani, Lav; Raja, Srinivasa N.; Rappaport, Bob A.; Rice, Andrew S. C.; Rowbotham, Michael C.; Tobias, Jeffrey K.; Wasan, Ajay D.; Witter, James
2017-01-01
Valid and reliable biomarkers can play an important role in clinical trials as indicators of biological or pathogenic processes or as a signal of treatment response. Currently, there are no biomarkers for pain qualified by the US Food and Drug Administration or the European Medicines Agency for use in clinical trials. This article summarizes an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) meeting in which 3 potential biomarkers were discussed for use in the development of analgesic treatments: (1) sensory testing, (2), skin punch biopsy, and (3) brain imaging. The empirical evidence supporting the use of these tests is described within the context of the 4 categories of biomarkers: (1) diagnostic, (2) prognostic, (3) predictive, and (4) pharmacodynamic. Although sensory testing, skin punch biopsy, and brain imaging are promising tools for pain in clinical trials, additional evidence is needed to further support and standardize these tests for use as biomarkers in pain clinical trials. PMID:28254585
Flaw Tolerance In Lap Shear Brazed Joints. Part 2
NASA Technical Reports Server (NTRS)
Wang, Len; Flom, Yury
2003-01-01
This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.
True Shear Parallel Plate Viscometer
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2010-01-01
This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.
NASA Astrophysics Data System (ADS)
Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.
2016-07-01
The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and
Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao
2017-01-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler; ...
2017-03-31
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the
Shear alters motility of Escherichia coli
NASA Astrophysics Data System (ADS)
Molaei, Mehdi; Jalali, Maryam; Sheng, Jian
2013-11-01
Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.
Nanoscale simple-fluid behavior under steady shear.
Yong, Xin; Zhang, Lucy T
2012-05-01
In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.
Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2012-01-01
Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690
NASA Astrophysics Data System (ADS)
Moore, Johnathan; Crandall, Dustin; Gill, Magdalena; Brown, Sarah; Tennant, Bryan
2018-04-01
Fluid flow in the subsurface is not well understood in the context of "impermeable" geologic media. This is especially true of formations that have undergone significant stress fluctuations due to injection or withdrawal of fluids that alters the localized pressure regime. When the pressure regime is altered, these formations, which are often already fractured, move via shear to reduce the imbalance in the stress state. While this process is known to happen, the evolution of these fractures and their effects on fluid transport are still relatively unknown. Numerous simulation and several experimental studies have been performed that characterize the relationship between shearing and permeability in fractures; while many of these studies utilize measurements of fluid flow or the starting and ending geometries of the fracture to characterize shear, they do not characterize the intermediate stages during shear. We present an experimental apparatus based on slight modifications to a commonly available Hassler core holder that allows for shearing of rocks, while measuring the hydraulic and mechanical changes to geomaterials during intermediate steps. The core holder modification employs the use of semi-circular end caps and structural supports for the confining membrane that allow for free movement of the sheared material while preventing membrane collapse. By integrating this modified core holder with a computed tomography scanner, we show a new methodology for understanding the interdependent behavior between fracture structure and flow properties during intermediate steps in shearing. We include a case study of this device function which is shown here through shearing of a fractured shale core and simultaneous observation of the mechanical changes and evolution of the hydraulic properties during shearing.
Moore, Johnathan; Crandall, Dustin; Gill, Magdalena; Brown, Sarah; Tennant, Bryan
2018-04-01
Fluid flow in the subsurface is not well understood in the context of "impermeable" geologic media. This is especially true of formations that have undergone significant stress fluctuations due to injection or withdrawal of fluids that alters the localized pressure regime. When the pressure regime is altered, these formations, which are often already fractured, move via shear to reduce the imbalance in the stress state. While this process is known to happen, the evolution of these fractures and their effects on fluid transport are still relatively unknown. Numerous simulation and several experimental studies have been performed that characterize the relationship between shearing and permeability in fractures; while many of these studies utilize measurements of fluid flow or the starting and ending geometries of the fracture to characterize shear, they do not characterize the intermediate stages during shear. We present an experimental apparatus based on slight modifications to a commonly available Hassler core holder that allows for shearing of rocks, while measuring the hydraulic and mechanical changes to geomaterials during intermediate steps. The core holder modification employs the use of semi-circular end caps and structural supports for the confining membrane that allow for free movement of the sheared material while preventing membrane collapse. By integrating this modified core holder with a computed tomography scanner, we show a new methodology for understanding the interdependent behavior between fracture structure and flow properties during intermediate steps in shearing. We include a case study of this device function which is shown here through shearing of a fractured shale core and simultaneous observation of the mechanical changes and evolution of the hydraulic properties during shearing.
Effects of posture on shear rates in human brachial and superficial femoral arteries
Newcomer, S. C.; Sauder, C. L.; Kuipers, N. T.; Laughlin, M. H.; Ray, C. A.
2012-01-01
Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm. PMID:18245564
Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation.
Duerkop, Mark; Berger, Eva; Dürauer, Astrid; Jungbauer, Alois
2018-03-25
The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α-lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by +68.9%, hemoglobin +4%, and human serum albumin +2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air-liquid interface induced the aggregation of GCSF by +94.5%, hemoglobin +35.5%, and human serum albumin (HSA) +31.1%. The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid-induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 10 8 s -1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Permeability and shear modulus of articular cartilage in growing mice.
Berteau, J-Ph; Oyen, M; Shefelbine, S J
2016-02-01
Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Understanding the changes in mechanical tissues properties during growth is a critical step in advancing strategies for orthopedics and for cell- and biomaterial- based therapies dedicated to cartilage repair. We hypothesize that at the microscale, the articular cartilage tissue properties of the mouse (i.e., shear modulus and permeability) change with the growth and are dependent on location within the joint. We tested cartilage on the medial femoral condyle and lateral femoral condyle of seven C57Bl6 mice at different ages (2, 3, 5, 7, 9, 12, and 17 weeks old) using a micro-indentation test. Results indicated that permeability decreased with age from 2 to 17 weeks. Shear modulus reached a peak at the end of the growth (9 weeks). Within an age group, shear modulus was higher in the MFC than in the LFC, but permeability did not change. We have developed a method that can measure natural alterations in cartilage material properties in a murine joint, which will be useful in identifying changes in cartilage mechanics with degeneration, pathology, or treatment.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Guo, Wei-Guo; Su, Yu; Wang, Jianjun; Lin, Xin; Huang, Weidong
2017-07-01
To investigate the mechanical properties of the Ti-6Al-4V alloy fabricated by laser solid forming technology, both static and dynamic shear tests were conducted on hat-shaped specimens by a servohydraulic testing machine and an enhanced split Hopkinson pressure bar system, over a temperature range of 173-573 K. The microstructure of both the original and deformed specimens was characterized by optical microscopy and scanning electron microscopy. The results show that: (1) the anisotropy of shear properties is not significant regardless of the visible stratification and the prior- β grains that grow epitaxially along the depositing direction; (2) the ultimate shear strength of this material is lower than that of those Ti-6Al-4V alloys fabricated by forging and extrusion; (3) the adiabatic shear bands of approximately 25.6-36.4 μm in width can develop at all selected temperatures during the dynamic shear deformation; and (4) the observed microstructure and measured microhardness indicate that the grains become refined in adiabatic shear band. Estimation of the temperature rise shows that the temperature in shear band exceeds the recrystallization temperature. The process of rotational dynamic recrystallization is considered to be the cause of the grain refinement in shear band.
Anisotropic shear dispersion parameterization for ocean eddy transport
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor
2015-11-01
The effects of mesoscale eddies are universally treated isotropically in global ocean general circulation models. However, observations and simulations demonstrate that the mesoscale processes that the parameterization is intended to represent, such as shear dispersion, are typified by strong anisotropy. We extend the Gent-McWilliams/Redi mesoscale eddy parameterization to include anisotropy and test the effects of varying levels of anisotropy in 1-degree Community Earth System Model (CESM) simulations. Anisotropy has many effects on the simulated climate, including a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, impacts on the meridional overturning circulation and ocean energy and tracer uptake, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. A process-based parameterization to approximate the effects of unresolved shear dispersion is also used to set the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.
Nucleation of shear bands in amorphous alloys
Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio
2014-01-01
The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599
Resolved shear stress intensity coefficient and fatigue crack growth in large crystals
NASA Technical Reports Server (NTRS)
Chen, Q.; Liu, H. W.
1988-01-01
Fatigue crack growth tests were carried out on large-grain Al 7029 aluminum alloy and the finite element method was used to calculate the stress field near the tip of a zigzag crack. The resolved shear stresses on all 12 slip systems were computed, and the resolved shear stress intensity coefficient (RSSIC) was defined. The RSSIC was used to analyze the irregular crack path and was correlated with the rate of single-slip-plane shear crack growth. Fatigue crack growth was found to be caused primarily by shear decohesion at a crack tip. When the RSSIC on a single-slip system was much larger than all the others, the crack followed a single-slip plane. When the RSSICs on two conjugate slip systems were comparable, a crack grew in a zigzag manner on these planes and the macrocrack-plane bisected the two active slip planes. The maximum RSSIC on the most active slip system is proposed as a parameter to correlate with the shear fatigue crack growth rate in large crystals.
Inductive shearing of drilling pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludtka, Gerard M.; Wilgen, John; Kisner, Roger
Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.
Study of low-velocity impact response of sandwich panels with shear-thickening gel cores
NASA Astrophysics Data System (ADS)
Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu
2018-06-01
The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.
Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli
2015-01-01
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research. PMID:28793741
Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading.
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli
2015-12-12
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.
NASA Astrophysics Data System (ADS)
Dufty, J. W.
1984-09-01
Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.
Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength
Lv, Pin; Yang, Xin; Jiang, Ting
2015-01-01
This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement. PMID:28793699
The `One-Two Punch' of Alcoholism: Role of Central Amygdala Dynorphins / Kappa-Opioid Receptors
Kissler, Jessica L.; Sirohi, Sunil; Reis, Daniel J.; Jansen, Heiko T.; Quock, Raymond M.; Smith, Daniel G.; Walker, Brendan M.
2013-01-01
Background The dynorphin (DYN)/κ-opioid receptor (KOR) system undergoes neuroadaptations following chronic alcohol exposure that promote excessive operant self-administration and negative affective-like states; however, the exact mechanisms are unknown. The present studies tested the hypothesis that an upregulated DYN/KOR system mediates excessive alcohol self-administration that occurs during withdrawal in alcohol-dependent rats by assessing DYN A peptide expression and KOR function, in combination with site-specific pharmacological manipulations. Methods Male Wistar rats were trained to self-administer alcohol using operant behavioral strategies and subjected to intermittent alcohol vapor- or air-exposure. Changes in self-administration were assessed by pharmacological challenges during acute withdrawal. In addition, 22-kHz ultrasonic vocalizations were utilized to measure negative affective-like states. Immunohistochemical techniques assessed DYN A peptide expression and [35S]GTPγS coupling assays were performed to assess KOR function. Results Alcohol-dependent rats displayed increased alcohol self-administration, negative affective-like behavior, DYN A-like immunoreactivity and KOR signaling in the amygdala compared to non-dependent controls. Site-specific infusions of a KOR antagonist selectively attenuated self-administration in dependent rats whereas, a MOR/DOR antagonist cocktail selectively reduced self-administration in non-dependent rats. A MOR antagonist/partial KOR agonist attenuated self-administration in both cohorts. Conclusion Increased DYN A and increased KOR signaling could set the stage for a `one-two punch' during withdrawal that drives excessive alcohol consumption in alcohol-dependence. Importantly, intra-CeA pharmacological challenges functionally confirmed a DYN/KOR system involvement in the escalated alcohol self-administration. Together, the DYN/KOR system is heavily dysregulated in alcohol dependence and contributes to the excessive
Sajadi, Soodabeh Sadat; Eslami Amirabadi, Gholamreza; Sajadi, Sepideh
2014-07-01
Bond failure of brackets during orthodontic treatment is a common problem; which results in treatment interference, increased treatment time and prolonged clinical time for rebonding of failed brackets. The purpose of this study was to evaluate the effects of Coca-Cola and a non-alcoholic beer on the shear bond strength and adhesive remnant index (ARI) of orthodontic metal brackets in vitro. Eighty intact human premolars were divided into two experimental groups of Coca-Cola and non-alcoholic beer (Istak), and a control group of artificial saliva. Over a period of thirty days, the test groups were immersed in the respective soft drinks for 5 minutes, twice a day. For the remainder of the time, they were kept in artificial saliva at 37°C. The control group was stored in artificial saliva during the experiment. All samples were subjected to shearing forces using Universal Testing Machine. ARI was determined with a stereomicroscope at ×12 magnification. The data of shear bond strength were statistically analyzed by one-way ANOVA and Tukey's Post-Hoc test and the data of ARI scores were analyzed by Kruskal-Wallis test. No significant difference was observed in ARIs of the three groups (P≤ 0.552). The shear bond strength of Coke group was significantly lower than that of the two other groups (P≤ 0.035); but there was no significant difference between the shear bond strength of Istak and the control group (P≤ 0.999). Coca-Cola decreased the shear bond strength of orthodontic brackets.
Whitney, G. A.; Mansour, J. M.; Dennis, J. E.
2015-01-01
The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395
A dynamic jamming point for shear thickening suspensions
NASA Astrophysics Data System (ADS)
Brown, Eric; Jaeger, Heinrich
2008-11-01
Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.
Shear layer excitation, experiment versus theory
NASA Technical Reports Server (NTRS)
Bechert, D. W.; Stahl, B.
1984-01-01
The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.
Effect of Friction on Shear Jamming
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert
2015-03-01
Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.
Effect of friction on shear jamming
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert
2014-11-01
Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.
Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea
2013-01-01
The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.
Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.
Le Crom, Bénédicte; Castaings, Michel
2010-04-01
This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.
21. SOUTH THROUGH FACTORY FROM NEAR NORTHEAST CORNER TOWARD SOUTH ...
21. SOUTH THROUGH FACTORY FROM NEAR NORTHEAST CORNER TOWARD SOUTH FRONT OF BUILDING. VISIBLE FROM LEFT TO RIGHT ARE CIRCA 1865 METAL-TURNING LATHE; CIRCA 1875 POWER SHEAR, PUNCH, AND RIVETING MACHINE (WITH FLOORING RAISED TO SHOW OPERATOR'S 'PIT'); LINE SHAFT WITH PULLEYS AND BELTS FOR OPERATING MACHINERY; PERMANENT WOODEN LADDER TO SKYLIGHT AREA (LOCATION OF CIRCA 1920 ELECTRIC MOTOR WHICH POWERED LINE SHAFT); AND BUFFALO FORGE CO. HAND SHEAR FOR ANGLE STEEL. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE
Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA
NASA Astrophysics Data System (ADS)
Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu
Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.
Non-homogeneous flow profiles in sheared bacterial suspensions
NASA Astrophysics Data System (ADS)
Samanta, Devranjan; Cheng, Xiang
Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.