Sample records for shear viscosity coefficient

  1. Shear Viscosity Coefficient of 5d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.

  2. Extraction of shear viscosity in stationary states of relativistic particle systems

    NASA Astrophysics Data System (ADS)

    Reining, F.; Bouras, I.; El, A.; Wesp, C.; Xu, Z.; Greiner, C.

    2012-02-01

    Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.

  3. Viscoelastic properties of the small intestinal and caecal contents of the chicken.

    PubMed

    Takahashi, T; Goto, M; Sakata, T

    2004-06-01

    We measured the coefficients of viscosity, shear rates and shear stresses of chicken small intestinal and caecal contents, including solid particles, using a tube-flow viscometer. The coefficients of viscosity of chicken small intestinal and caecal contents were correlated negatively with their shear rates, a characteristic typical of non-Newtonian fluids. The coefficient of viscosity of the small intestinal contents was lower than that of the caecal contents at a shear rate of 1 s(-1). Chicken caecal contents were more viscous than pig caecal contents. The exponential relationship between shear stress and shear rate showed that chicken small intestinal and caecal contents had an apparent Herschel-Bulkley fluid nature. These results indicate that solid particles, including uric acid crystals, are mainly responsible for the viscosity of the digesta in the chicken.

  4. Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes

    PubMed Central

    den Otter, W. K.; Shkulipa, S. A.

    2007-01-01

    The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168

  5. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    PubMed

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  6. Shear viscosity coefficient of liquid lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakore@rediffmail.com; Prajapati, A. V., E-mail: anand0prajapati@gmail.com

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  7. Shear viscosity coefficient of liquid lanthanides

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.; Prajapati, A. V.

    2015-05-01

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  8. Shear rheological characterization of motor oils

    NASA Technical Reports Server (NTRS)

    Bair, Scott; Winer, Ward O.

    1988-01-01

    Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.

  9. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puglisi, A.; Plumari, S.; Scardina, F.

    2014-05-09

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particlesmore » interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow.« less

  10. Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1988-04-01

    This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.

  11. DSMC Evaluation of the Navier-Stokes Shear Viscosity of a Granular Fluid

    DTIC Science & Technology

    2005-07-13

    transport coefficients of the HCS have been measured from DSMC by using the associated Green – Kubo formulas [8]. In the case of a system heated by the action...DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid José María Montanero∗, Andrés Santos† and Vicente Garzó† ∗Departamento de...proposed to measure the Navier–Stokes shear viscosity in a granular fluid described by the Enskog equation. The method is implemented in DSMC

  12. Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes

    NASA Astrophysics Data System (ADS)

    El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.

    2014-05-01

    We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.

  13. Steady flow on to a conveyor belt - Causal viscosity and shear shocks

    NASA Technical Reports Server (NTRS)

    Syer, D.; Narayan, Ramesh

    1993-01-01

    Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.

  14. Computation of shear viscosity of colloidal suspensions by SRD-MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laganapan, A. M. K.; Videcoq, A., E-mail: arnaud.videcoq@unilim.fr; Bienia, M.

    2015-04-14

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  15. Shear Viscosity of Aluminium under Shock Compression

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Sheng; Yang, Mei-Xia; Liu, Qi-Wen; Chen, Jun-Xiang; Jing, Fu-Qian

    2005-03-01

    Based on the Newtonian viscous fluid model and the analytic perturbation theory of Miller and Ahrens for the oscillatory damping of a sinusoidal shock front, a flyer-impact technique is developed to investigate the effective viscosity of shocked aluminium. The shear viscosity coefficient is determined to be about 5000 poises at 42 GPa with strain rate of 1.27×106 s-1, which is a reasonable estimation compared with the results of other measurement methods.

  16. Shear viscosity in monatomic liquids: a simple mode-coupling approach

    NASA Astrophysics Data System (ADS)

    Balucani, Umberto

    The value of the shear-viscosity coefficient in fluids is controlled by the dynamical processes affecting the time decay of the associated Green-Kubo integrand, the stress autocorrelation function (SACF). These processes are investigated in monatomic liquids by means of a microscopic approach with a minimum use of phenomenological assumptions. In particular, mode-coupling effects (responsible for the presence in the SACF of a long-lasting 'tail') are accounted for by a simplified approach where the only requirement is knowledge of the structural properties. The theory readily yields quantitative predictions in its domain of validity, which comprises ordinary and moderately supercooled 'simple' liquids. The framework is applied to liquid Ar and Rb near their melting points, and quite satisfactory agreement with the simulation data is found for both the details of the SACF and the value of the shear-viscosity coefficient.

  17. Research on viscosity of metal at high pressure

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, F.; Ma, X.; Zhang, M.

    2016-11-01

    A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.

  18. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.

  19. Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier-Stokes theory in nano-confined geometries.

    PubMed

    Hansen, J S; Daivis, Peter J; Todd, B D

    2009-10-01

    In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.

  20. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  1. Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models

    NASA Technical Reports Server (NTRS)

    Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    1999-01-01

    The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.

  2. Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework

    NASA Astrophysics Data System (ADS)

    Saengow, Chaimongkol; Giacomin, A. Jeffrey

    2018-03-01

    In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

  3. Pressure-viscosity measurements for several lubricants to 5.5 x 10 to the 8th power Newtons per square meter (8 x 10 to the 4th psi) and 149 C (300 F)

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Johnson, R. L.; Winer, W. O.; Sanborn, D. M.

    1974-01-01

    A capillary viscometer was used to measure viscosity as a function of pressure, temperature, and shear stress for a number of lubricants. The conditions under which the measurements were made are specified. The results obtained for each material are analyzed. It was determined that all pressure-viscosity coefficients decreased with increasing temperature. Data from other techniques such as optical elastohydrodynamics, oscillating crystal, and low shear capillary viscometry were compared with the results obtained.

  4. Transport coefficients of liquid CF4 and SF6 computed by molecular dynamics using polycenter Lennard-Jones potentials

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.

    1989-01-01

    For several liquid states of CF4 and SF4, the shear and the bulk viscosity as well as the thermal conductivity were determined by equilibrium molecular dynamics (MD) calculations. Lennard-Jones four- and six-center pair potentials were applied, and the method of constraints was chosen for the MD. The computed Green-Kubo integrands show a steep time decay, and no particular longtime behavior occurs. The molecule number dependence of the results is found to be small, and 3×105 integration steps allow an accuracy of about 10% for the shear viscosity and the thermal conductivity coefficient. Comparison with experimental data shows a fair agreement for CF4, while for SF6 the transport coefficients fall below the experimental ones by about 30%.

  5. Non-constant link tension coefficient in the tumbling-snake model subjected to simple shear

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Kröger, Martin

    2017-11-01

    The authors of the present study have recently presented evidence that the tumbling-snake model for polymeric systems has the necessary capacity to predict the appearance of pronounced undershoots in the time-dependent shear viscosity as well as an absence of equally pronounced undershoots in the transient two normal stress coefficients. The undershoots were found to appear due to the tumbling behavior of the director u when a rotational Brownian diffusion term is considered within the equation of motion of polymer segments, and a theoretical basis concerning the use of a link tension coefficient given through the nematic order parameter had been provided. The current work elaborates on the quantitative predictions of the tumbling-snake model to demonstrate its capacity to predict undershoots in the time-dependent shear viscosity. These predictions are shown to compare favorably with experimental rheological data for both polymer melts and solutions, help us to clarify the microscopic origin of the observed phenomena, and demonstrate in detail why a constant link tension coefficient has to be abandoned.

  6. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Measurement on Effective Shear Viscosity Coefficient of Iron under Shock Compression at 100 GPa

    NASA Astrophysics Data System (ADS)

    Li, Yi-Lei; Liu, Fu-Sheng; Zhang, Ming-Jian; Ma, Xiao-Juan; Li, Ying-Lei; Zhang, Ji-Chun

    2009-03-01

    The oscillatory damping curve of a shock front propagating in iron shocked to 103 GPa is measured by use of two-stage light-gas gun and electric pin techniques. The corresponding effective shear viscosity coefficient is deduced to be about 2000 Pa·s from Miller and Ahrens' formula. The result is consistent with that of Mineev's data at 31GPa, while it is higher by five orders than the predictions based on the static measurements at about 5 GPa and 2000 K and molecular dynamic simulation up to 135-375 GPa and 4300-6000 K, and the discussions are presented.

  7. Flow properties of liquid crystal phases of the Gay-Berne fluid

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1998-05-01

    We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.

  8. Shear flow simulations of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  9. Shear viscosity for a heated granular binary mixture at low density.

    PubMed

    Montanero, José María; Garzó, Vicente

    2003-02-01

    The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed. The mixture is heated by the action of an external driving force (Gaussian thermostat) that exactly compensates for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat, and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free cooling case [V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002)], practical evaluation requires a Sonine polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow, using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement between theory and simulation over a wide range of values of the restitution coefficients and the parameters of the mixture (masses, concentrations, and sizes).

  10. Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.

    2018-05-01

    The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.

  11. Energy-absorption spectroscopy of unitary Fermi gases in a uniform potential

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2018-04-01

    We propose to use the energy absorption spectroscopy to measure the kinetic coefficients of unitary Fermi gases in a uniform potential. We show that, in our scheme, the energy absorption spectrum is proportional to the dynamic structure factor of the system. The profile of the spectrum depends on the shear viscosity η , the thermal conductivity κ , and the superfluid bulk viscosity ξ3. We show that extraction of these coefficients from the spectrum is achievable in present experiments.

  12. Production of photons in relativistic heavy-ion collisions

    DOE PAGES

    Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; ...

    2016-04-18

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less

  13. Self-Diffusion of Drops in a Dilute Sheared Emulsion

    NASA Technical Reports Server (NTRS)

    Loewenberg, Michael; Hinch, E. J.

    1996-01-01

    Self-diffusion coefficients that describe cross-flow migration of non-Brownian drops in a dilute sheared emulsion were obtained by trajectory calculations. A boundary integral formulation was used to describe pairwise interactions between deformable drops; interactions between undeformed drops were described with mobility functions for spherical drops. The results indicate that drops have large anisotropic self-diffusivities which depend strongly on the drop viscosity and modestly on the shear-rate. Pairwise interactions between drops in shear-flow do not appreciably promote drop breakup.

  14. Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey

    2012-01-01

    We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbonemore » deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.« less

  15. Viscoelastic properties of healthy achilles tendon are independent of isometric plantar flexion strength and cross-sectional area.

    PubMed

    Suydam, Stephen M; Soulas, Elizabeth M; Elliott, Dawn M; Silbernagel, Karin Gravare; Buchanan, Thomas S; Cortes, Daniel H

    2015-06-01

    Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2 kPa and 141.0 Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p = 0.013, 0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Viscoelastic Properties of Healthy Achilles Tendon are Independent of Isometric Plantar Flexion Strength and Cross-Sectional Area

    PubMed Central

    Suydam, Stephen M.; Soulas, Elizabeth M.; Elliott, Dawn M.; Silbernagel, Karin Gravare; Buchanan, Thomas S.; Cortes, Daniel H.

    2015-01-01

    Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2kPa and 141.0Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p=0.013,0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. PMID:25882209

  17. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  18. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozas, R. E.; Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción; Demiraǧ, A. D.

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss themore » validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.« less

  19. Structure-rheology relationship in a sheared lamellar fluid.

    PubMed

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.

  20. RAS one-equation turbulence model with non-singular eddy-viscosity coefficient

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Agarwal, R. K.; Siikonen, T.

    2016-02-01

    A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.

  1. Transport coefficients for dense hard-disk systems.

    PubMed

    García-Rojo, Ramón; Luding, Stefan; Brey, J Javier

    2006-12-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results are analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity with density is obtained in this region, while all other examined transport coefficients show a drop in that density range in relation to the Enskog's prediction. Finally, the deviations are related to shear band instabilities and the concept of dilatancy.

  2. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.

  3. Comparative evaluation of aqueous humor viscosity.

    PubMed

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P < 0.0001). The aqueous humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  4. Injection dynamics of gelled propellants

    NASA Astrophysics Data System (ADS)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow, unsteady and asymmetric flow structures are revealed as a series of vortices generated from the unstable vena contracta. Here, flows are characterized by an orifice design, manifold/core injection velocity ratio, Reynolds number and rheology. A significant decrease of discharge coefficients is noted with increasing the manifold flow. As the manifold crossflow increases, stronger friction losses are exerted on the leeward, and lead to larger hydraulic losses across the injector. In addition, calculations show that discharge coefficients decrease and the unsteadiness is mitigated as the viscosity increases by fluid rheology variations. A larger and more distinct horseshoe vortex is observed, and pulsation magnitude and viscosity fluctuations are mitigated with increasing viscosity. The oscillation frequency, however, remains unchanged even though the viscosity curves at the high shear rate are modified. All these observations confirm the conclusion that the role of viscous damping and flow resistance is more critical in cross-fed injection conditions than in axially-fed one.

  5. New Hydrodynamic Flows in Fluctuating Superconductors

    NASA Astrophysics Data System (ADS)

    Delacretaz, Luca; Lucas, Andy; Hartnoll, Sean; SITP Collaboration

    Recent advances, both theoretical and experimental, have made it possible to observe hydrodynamic flow in electron systems such as graphene and extract hydrodynamic transport coefficients such as the shear viscosity. Following the same logic, I will show how certain flows in superconductors could show signatures of fluctuating superconductivity.

  6. Determination of relationship between sensory viscosity rating and instrumental flow behaviour of soluble dietary fibers.

    PubMed

    Arora, Simran Kaur; Patel, A A; Kumar, Naveen; Chauhan, O P

    2016-04-01

    The shear-thinning low, medium and high-viscosity fiber preparations (0.15-1.05 % psyllium husk, 0.07-0.6 % guar gum, 0.15-1.20 % gum tragacanth, 0.1-0.8 % gum karaya, 0.15-1.05 % high-viscosity Carboxy Methyl Cellulose and 0.1-0.7 % xanthan gum) showed that the consistency coefficient (k) was a function of concentration, the relationship being exponential (R(2), 0.87-0.96; P < 0.01). The flow behaviour index (n) (except for gum karaya and CMC) was exponentially related to concentration (R(2), 0.61-0.98). The relationship between k and sensory viscosity rating (SVR) was essentially linear in nearly all cases. The SVR could be predicted from the consistency coefficient using the regression equations developed. Also, the relationship of k with fiber concentration would make it possible to identify the concentration of a particular gum required to have desired consistency in terms of SVR.

  7. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin; Hemmat Esfe, Mohammad; Afrand, Masoud

    2017-08-01

    In the present paper, the dynamic viscosity of 10W40 lubricant containing hybrid nano-materials has been examined. Hybrid nano-materials were composed of 90% of silica (SiO2) with 20-30 nm mean particle size and 10% of multi-walled carbon nanotubes (MWCNTs) with inner diameter of 2-6 nm and outer diameter of 5-20 nm. Nano-lubricant samples were prepared by two-step method with solid volume fractions of 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1%. Dynamic viscosity of the samples was measured at temperatures between 5 and 55 °C and at shear rates of 666.5 s-1 up to 11,997 s-1. Experimental results indicated that the nano-lubricant had non-Newtonian behavior at all temperatures, while 10w40 oil was non-Newtonian only at high temperatures. With the use of the curve fitting technique of experimental data, power law and consistency indexes were obtained; furthermore, these coefficients were assessed by shear stress and viscosity diagram.

  8. The forward undulatory locomotion of Ceanorhabditis elegans in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Shen, Amy; Ulrich, Xialing

    2013-11-01

    Caenorhabditis elegans is a soil dwelling roundworm that has served as model organisms for studying a multitude of biological and engineering phenomena. We study the undulatory locomotion of nematode in viscoelastic fluids with zero-shear viscosity varying from 0.03-75 Pa .s and relaxation times ranging from 0-350 s. We observe that the averaged normalized wavelength of swimming worm is essentially the same as that in Newtonian fluids. The undulatory frequency f shows the same reduction rate with respect to zero-shear viscosity in viscoelastic fluids as that found in the Newtonian fluids, meaning that the undulatory frequency is mainly controlled by the fluid viscosity. However, the moving speed Vm of the worm shows more distinct dependence on the elasticity of the fluid and exhibits a 4% drop with each 10-fold increase of the Deborah number De, a dimensionless number characterizing the elasticity of a fluid. To estimate the swimming efficiency coefficient and the ratio K =CN /CL of resistive coefficients of the worm in various viscoelastic fluids, we show that whereas it would take the worm around 7 periods to move a body length in a Newtonian fluid, it would take 27 periods to move a body length in a highly viscoelastic fluid.

  9. Scaling behavior of immersed granular flows

    NASA Astrophysics Data System (ADS)

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-06-01

    The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.

  10. Simulations of shear-thinning frictional non-Brownian suspensions

    NASA Astrophysics Data System (ADS)

    Lemaire, Elisabeth; Lobry, Laurent; Blanc, Frederic; Peters, Francois; RSC Team

    2017-11-01

    Most non-Brownian suspensions exhibit non-Newtonian behaviours such as anisotropic normal stresses, shear-thickening or shear-thinning. The later is still largely an open question. Acrivos wet al. (JoR 1994) proposed that particle resuspension is responsible for the apparent shear-thinning behavior in a cylindrical Couette rheometer. Another explanation has been suggested by Vasquez-Quesada et al. (PRL 2017), who noticed that some polymeric suspending liquids themselves are shear-thinning for the high shear-rate values involved in the narrow gaps between particles. Here we propose that the shear-thinning behaviour is directly connected to the solid contact between particles that has been shown to play a crucial role in the rheological behaviour of concentrated non-Brownian suspensions. In particular, it has been recently shown that frictional contact between particles greatly enhances the viscosity. Even though the friction coefficient between macroscopic surfaces does not depend on the load, it may be not the case at the scale of the low load contact between particles in suspensions. Here, we present discrete numerical simulations where the friction coefficient decreases with the interparticle forces. The obtained shear-thinning behaviour is in good agreement with our experiments.

  11. Rheology of concentrated suspensions of non-colloidal rigid fibers

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier

    2017-11-01

    Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.

  12. Shear viscosity of a hadron gas and influence of resonance lifetimes on relaxation time

    NASA Astrophysics Data System (ADS)

    Rose, J.-B.; Torres-Rincon, J. M.; Schäfer, A.; Oliinychenko, D. R.; Petersen, H.

    2018-05-01

    We address a discrepancy between different computations of η /s (shear viscosity over entropy density) of hadronic matter. Substantial deviations of this coefficient are found between transport approaches mainly based on resonance propagation with finite lifetime and other (semianalytical) approaches with energy-dependent cross sections, where interactions do not introduce a timescale. We provide an independent extraction of this coefficient by using the newly developed SMASH (Simulating Many Accelerated Strongly interacting Hadrons) transport code, which is an example of a mainly resonance-based approach. We compare the results from SMASH with numerical solutions of the Boltzmann equation for simple systems using the Chapman-Enskog expansion, as well as previous results in the literature. Our conclusion is that the hadron interaction via resonance formation/decay strongly affects the transport properties of the system, resulting in significant differences in η /s with respect to other approaches where binary collisions dominate. We argue that the relaxation time of the system—which characterizes the shear viscosity—is determined by the interplay between the mean free time and the lifetime of resonances. We show how an artificial shortening of the resonance lifetimes, or the addition of a background elastic cross section nicely interpolate between the two discrepant results.

  13. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  14. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  15. Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.

    PubMed

    Heyes, D M; Brańka, A C

    2008-07-21

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).

  16. Shear thinning and shear thickening of a confined suspension of vesicles

    NASA Astrophysics Data System (ADS)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  17. Green-Kubo relations for the viscosity of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1996-09-01

    We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.

  18. Transport in thin polarized Fermi-liquid films

    NASA Astrophysics Data System (ADS)

    Li, David Z.; Anderson, R. H.; Miller, M. D.

    2015-10-01

    We calculate expressions for the state-dependent quasiparticle lifetime τσ, the thermal conductivity κ , the shear viscosity η , and discuss the spin diffusion coefficient D for Fermi-liquid films in two dimensions. The expressions are valid for low temperatures and arbitrary polarization. In two dimensions, as in three dimensions, the integrals over the transition rates factor into energy and angular parts. However, the angular integrations contain a weak divergence. This problem is addressed using the method of K. Miyake and W. J. Mullin [Phys. Rev. Lett. 50, 197 (1983), 10.1103/PhysRevLett.50.197; J. Low Temp. Phys. 56, 499 (1984), 10.1007/BF00681808]. The low-temperature expressions for the transport coefficients are essentially exact. We find that κ-1˜T lnT , and η-1˜T2 for arbitrary polarizations 0 ≤P ≤1 . These results are in agreement with earlier zero-polarization results of H. H. Fu and C. Ebner [Phys. Rev. A 10, 338 (1974)., 10.1103/PhysRevA.10.338], but differ from the temperature dependence of the shear viscosity found by D. S. Novikov (arXiv:cond-mat/0603184). They also differ from the discontinuous change of temperature dependence in D from zero to nonzero polarization that was discovered by Miyake and Mullin. We note that in two dimensions the shear viscosity requires a unique analysis. We obtain predictions for the density, temperature, and polarization dependence of κ ,η , and D for second-layer 3He films on graphite, and thin 3He-4He superfluid mixtures. For 3He on graphite, we find roughly an order of magnitude increase in magnitude for κ and η as the polarization is increased from 0 to 1. For D a similar large increase is predicted from zero polarization to the polarization where D is a maximum (˜0.74 ). We discuss the applicability of 3He thin films to the question of the existence of a universal lower bound for the ratio of the shear viscosity to the entropy density.

  19. Measurement of rheology of distiller's grain slurries using a helical impeller viscometer.

    PubMed

    Houchin, Tiffany L; Hanley, Thomas R

    2004-01-01

    Current research is focused on developing a process to convert the cellulose and hemicellulose in distiller's grains into fermentable sugars, increasing both ethanol yield and the amount of protein in the remaining solid product. The rheologic properties of distiller's grain slurries were determined for concentrations of 21, 23, and 25%. Distiller's grain slurries are non-Newtonian, heterogeneous fluids subject to particle settling. Traditional methods of viscosity measurement, such as cone-and-plate and concentric cylinder viscometers, are not adequate for these fluids. A helical impeller viscometer was employed to measure impeller torque over a range of rotational speeds. Newtonian and non-Newtonian calibration fluids were utilized to obtain constants that relate shear stresses and shear rates to the experimental data. The Newtonian impeller constant, c, was 151; the non-Newtonian shear rate constant, k, was 10.30. Regression analysis of experimental data was utilized for comparison to power law, Herschel-Bulkley, and Casson viscosity models with regression coefficients exceeding 0.99 in all cases.

  20. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using DPPC as the insoluble surfacant monolayer and measured for it a surface dilatational viscosity in the LE phase that is 20 surface poise.

  1. Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    NASA Astrophysics Data System (ADS)

    Wesp, C.; El, A.; Reining, F.; Xu, Z.; Bouras, I.; Greiner, C.

    2011-11-01

    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the perturbation-QCD- (pQCD-) based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3 to 8 compared to elastic scatterings. The shear viscosity scales with the coupling as η˜1/[αs2log(1/αs)]. For constant αs the shear viscosity to entropy density ratio η/s has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.

  2. Effect of interactions between multiple interfaces on the rheological characteristics of double emulsions

    NASA Astrophysics Data System (ADS)

    Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang

    2018-06-01

    In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.

  3. Numerical studies of the polymer melt flow in the extruder screw channel and the forming tool

    NASA Astrophysics Data System (ADS)

    Ershov, S. V.; Trufanova, N. M.

    2017-06-01

    To date, polymer compositions based on polyethylene or PVC is widely used as insulating materials. These materials processing conjugate with a number of problems during selection of the rational extrusion regimes. To minimize the time and cost when determining the technological regime uses mathematical modeling techniques. The paper discusses heat and mass transfer processes in the extruder screw channel, output adapter and the cable head. During the study were determined coefficients for three rheological models based on obtained viscosity vs. shear rate experimental data. Also a comparative analysis of this viscosimetric laws application possibility for studying polymer melt flow during its processing on the extrusion equipment was held. As a result of numerical study the temperature, viscosity and shear rate fields in the extruder screw channel and forming tool were obtained.

  4. Flow behavior characteristics of ice cream mix made with buffalo milk and various stabilizers.

    PubMed

    Minhas, Kuldip S; Sidhu, Jiwan S; Mudahar, Gurmail S; Singh, A K

    2002-01-01

    Ice cream made with buffalo milk, using optimum levels of various stabilizers of plant origin, was evaluated for its flow behavior characteristics, with the objective of producing an acceptable quality product. The minimum variation in the viscosity of mix was observed at three rates of shear (348.88, 523.33 and 1046.66 S(-1)) for all ice cream mixes. The flow behavior index (n) of all the mixes having optimum levels of various stabilizers was observed to be less than 1; indicating their pseudoplastic nature. Consistency coefficient (m) of sodium alginate was found to be 1.19; highest among all the stabilizers, followed by gelatin (1.17), karaya (1.08), guar gum (0.75), acacia gum (0.70), ghatti gum (0.36), and the control (0.29). The consistency coefficient (m) signifies the apparent viscosity of the pseudoplastic fluid. The viscosity of the mixes having various stabilizers (optimum levels) was found to be in descending order: Sodium alginate, gelatin, karaya, guar gum, acacia, ghatti and control.

  5. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  6. Hemorheological changes and characteristic parameters derived from whole blood viscometry in chronic heroin addicts.

    PubMed

    Antonova, N; Zvetkova, E; Ivanov, I; Savov, Y

    2008-01-01

    A group of 15 chronic opioid addicts (DA) with mean age 26.5+/-7.3 years was studied by means of a rotational Contraves Low Shear 30 viscometer and the results have been compared with a control group of 19 healthy subjects. It was found that the mean whole blood viscosity values of the investigated group of heroin abusers (n=15) were elevated compared to that of healthy persons (n=19) over the whole shear rate range and fell by more than ten orders of magnitude (Savov et al., 2006). The present investigation uses the coefficients of the models of Ostwald-de-Walle (power law) and Herschel-Bulkley law, which describe whole blood flow curves (tau-gamma) within the shear rates range from 10(-2) to 10(2) s(-1) and itself incorporate whole blood viscosity data in the entire shear rate range. A significant difference in the mean yield shear stress tau(0) values of the drug abusers' group compared to the controls was found. A strong positive linear correlation was determined between the parameters of RBC aggregation in the group of heroin addicts confirming our previous results (Ivanov and Antonova, 2005; Savov, Zvetkova et al., 2007; Savov, Antonova et al., 2007) for intensive RBC and platelet aggregation and morphological changes in DA group.

  7. Long-time tails of the green-kubo integrands for a binary mixture

    NASA Astrophysics Data System (ADS)

    Wood, W. W.

    1989-11-01

    The long-time tails for the mutual diffusion coefficient, the thermal diffusivity, the thermal conductivity, and the shear and longitudinal viscosities (from which the tail of the bulk viscosity can be calculated) of a nonreactive binary mixture are calculated from mode-coupling theory, and compared with a prior calculation by Pomeau. Three different choices of the thermal forces and currents are considered, with the results found to take their simplest form in the case of the de Groot "double-primed set". The decompositions into the kinetic, potential, and cross terms are given.

  8. Shear viscosity and out of equilibrium dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El, Andrej; Xu Zhe; Greiner, Carsten

    2009-04-15

    Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio {eta}/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with {eta}/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling {alpha}{sub s}{approx}0.3 (withmore » {eta}/s{approx_equal}0.18) and is a factor of 2-3 larger at a small coupling {alpha}{sub s}{approx}0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on {eta}/s, except when employing a small {alpha}{sub s}. On the other hand, we demonstrate that for such small {alpha}{sub s}, the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large {alpha}{sub s} (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p{sub T} > or approx. 3 GeV but is still a reasonably good approximation.« less

  9. Rheological equations in asymptotic regimes of granular flow

    USGS Publications Warehouse

    Chen, C.-L.; Ling, C.-H.

    1998-01-01

    This paper assesses the validity of the generalized viscoplastic fluid (GVF) model in light of the established constitutive relations in two asymptotic flow regimes, namely, the macroviscous and grain-inertia regimes. A comprehensive review of the literature on constitutive relations in both regimes reveals that except for some material constants, such as the coefficient of restitution, the normalized shear stress in both regimes varies only with the grain concentration, C. It is found that Krieger-Dougherty's relative viscosity, ??*(C), is sufficiently coherent among the monotonically nondecreasing functions of C used in describing the variation of the shear stress with C in both regimes. It not only accurately represents the C-dependent relative viscosity of a suspension in the macroviscous regime, but also plays a role of the radial distribution function that describes the statistics of particle collisions in the grain-inertia regime. Use of ??*(C) alone, however, cannot link the two regimes. Another parameter, the shear-rate number, N, is needed in modelling the rheology of neutrally buoyant granular flows in transition between the two asymptotic regimes. The GVF model proves compatible with most established relations in both regimes.

  10. Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Poletto, Flavio

    2013-12-01

    It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle-ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress-strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle-ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.

  11. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-11-01

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.

  12. Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolper, Thomas J.; He, Yifeng; Delferro, Massimiliano

    2016-08-11

    This study investigates the rheological properties, elastohydrodynamic (EHD) film-forming capability, and friction coefficients of low molecular mass poly-alpha-olefin (PAO) base stocks with varying contents of high molecular mass olefin copolymers (OCPs) to assess their shear stability and their potential for energy-efficient lubrication. Several PAO-OCP mixtures were blended in order to examine the relationship between their additive content and tribological performance. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the molecular masses and structures, respectively. Density, viscosity, EHD film thickness, and friction were measured at 303 K, 348 K, and 398 K. Film thickness andmore » friction were studied at entrainment speeds relevant to the boundary, mixed, and full-film lubrication regimes. The PAO-OCP mixtures underwent temporary shear-thinning resulting in decreases in film thickness and hydrodynamic friction. These results demonstrate that the shear characteristics of PAO-OCP mixtures can be tuned with the OCP content and provide insight into the effects of additives on EHD characteristics.« less

  13. Transport coefficients of hard-sphere mixtures. III. Diameter ratio 0. 4 and mass ratio 0. 03 at high fluid density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erpenbeck, J.J.

    1993-07-01

    The equation of state and the transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutal diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4 and a mass ratio of 0.03 at volumes in the range 1.7[ital V][sub 0] to 3[ital V][sub 0] ([ital V][sub 0]=1/2 [radical]2 N[ital tsum][sub [ital a]x[ital a

  14. Shear viscosities of photons in strongly coupled plasmas

    DOE PAGES

    Yang, Di-Lun; Müller, Berndt

    2016-07-18

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N=4 super Yang–Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  15. Mechanisms for the Crystallization of ZBLAN

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Tucker, Dennis S.; Kaukler, William; Antar, Basil

    2003-01-01

    The objective of this ground based study is to test the hypothesis that shear thinning (the non-Newtonian response of viscosity to shear rate) is a viable mechanism to explain the observation of enhanced glass formation in numerous low-g experiments. In 1-g, fluid motion results from buoyancy forces and surface tension driven convection. This fluid flow will introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids can be extremely low. It is believed that some fluids may have weak structure in the absence of flow. Very small shear rates could cause this structure to collapse in response to shear resulting in a lowering of the viscosity of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids decreases the viscosity, increasing the rate of nucleation and crystallization of glass forming melts. Shear in the melt can be reduced in low-g, thus enhancing undercooling and glass formation. The viscosity of a model glass (lithium di-silicate, L2S) often used for crystallization studies has been measured at very low shear rates using a dynamic mechanical thermal analyzer. Our results are consistent with increasing viscosity with a lowering of shear rates. The viscosity of L2S may vary as much as an order of magnitude depending on the shear rate in the temperature region of maximum nucleation and crystal growth. Classical equations for nucleation and crystal growth rates, are inversely related to the viscosity and viscosity to the third power respectively. An order of magnitude variation in viscosity (with shear) at a given temperature would have dramatic effects on glass crystallization Crystallization studies with the heavy metal fluoride glass ZBLAN (ZrF2-BaF2-LaF3-AlF3-NaF) to examine the effect of shear on crystallization are being initiated. Samples are to be melted and quenched under quiescent conditions at different shear rates to determine the effect on crystallization. The results from this study are expected to advance the current scientific understanding of glass formation in low-g and glass crystallization under glass molding conditions and will improve the scientific understanding of technological processes such as fiber pulling, bulk amorphous alloys, and glass fabrication processes.

  16. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  17. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.

    PubMed

    Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung

    2017-06-20

    In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip.

  18. Communication: Appearance of undershoots in start-up shear: Experimental findings captured by tumbling-snake dynamics

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Schweizer, Thomas; Kröger, Martin

    2017-04-01

    Our experimental data unambiguously show (i) a damping behavior (the appearance of an undershoot following the overshoot) in the transient shear viscosity of a concentrated polymeric solution, and (ii) the absence of a corresponding behavior in the transient normal stress coefficients. Both trends are shown to be quantitatively captured by the bead-link chain kinetic theory for concentrated polymer solutions and entangled polymer melts proposed by Curtiss and Bird, supplemented by a non-constant link tension coefficient that we relate to the nematic order parameter. The observed phenomena are attributed to the tumbling behavior of the links, triggered by rotational fluctuations, on top of reptation. Using model parameters deduced from stationary data, we calculate the transient behavior of the stress tensor for this "tumbling-snake" model after startup of shear flow efficiently via simple Brownian dynamics. The unaltered method is capable of handling arbitrary homogeneous flows and has the promising capacity to improve our understanding of the transient behavior of concentrated polymer solutions.

  19. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marín-Santibáñez, Benjamín M.; Pérez-González, José, E-mail: jpg@esfm.ipn.mx; Rodríguez-González, Francisco

    2014-11-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shearmore » stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.« less

  20. A flyer-impact technique for measuring viscosity of metal under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Yilei; Liu, Fusheng; Ma, Xiaojuan; Li, Yinglei; Yu, Ming; Zhang, Jichun; Jing, Fuqian

    2009-01-01

    A flyer-impact technique, different from the explosive method of [Sakharov et al., Sov. Phys. Dokl. 9, 1091 (1965)], is developed to investigate the viscosity of shocked metals. The shock wave with a front of sinusoidal perturbation is induced by the sinusoidal profile of the impact surface of the sample by use of two-stage light-gas gun. The oscillatory damping process of the perturbation amplitude is monitored by electric pins. Two damping curves (perturbation amplitude relative to its initial value versus propagated distance relative to the wavelength of sinusoidal perturbation) of aluminum are determined at 78 and 101 GPa. The effective shear viscosity coefficients are deduced to be about 1300 and 800 Pa s based on the Miller and Ahrens analytic solution for viscous fluid.

  1. Anisotropic flow of identified particles in Pb-Pb collisions at √SNN = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Bertens, Redmer Alexander

    2018-02-01

    Anisotropic flow is sensitive to the shear (η/s) and bulk (ζ/s) viscosity of the quark-gluon plasma created in heavy-ion collisions, as well as the initial state of such collisions and hadronization mechanisms. In these proceedings, elliptic (υ2) and higher harmonic (υ3, υ4) flow coefficients of π±, K±, p(p) and the ϕ-meson, are presented for Pb—Pb collisions at the highest-ever center-of-mass energy of = 5.02 TeV. Comparisons to hydrodynamic calculations (IP-Glasma, MUSIC, UrQMD) are shown to constrain the initial conditions and viscosity of the medium.

  2. Rheology of dilute cohesive granular gases

    NASA Astrophysics Data System (ADS)

    Takada, Satoshi; Hayakawa, Hisao

    2018-04-01

    Rheology of a dilute cohesive granular gas is theoretically and numerically studied. The flow curve between the shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles having square-well potentials in a simple shear flow. It is found that (i) the stable uniformly sheared state only exists above a critical shear rate and (ii) the viscosity in the uniformly sheared flow is almost identical to that for uniformly sheared flow of hard core granular particles. Below the critical shear rate, clusters grow with time, in which the viscosity can be approximated by that for the hard-core fluids if we replace the diameter of the particle by the mean diameter of clusters.

  3. Do Clustering Monoclonal Antibody Solutions Really Have a Concentration Dependence of Viscosity?

    PubMed Central

    Pathak, Jai A.; Sologuren, Rumi R.; Narwal, Rojaramani

    2013-01-01

    Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions. PMID:23442970

  4. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. The effect of shear and extensional viscosity on atomization in medical inhaler.

    PubMed

    Broniarz-Press, L; Ochowiak, M; Matuszak, M; Włodarczak, S

    2014-07-01

    The paper contains the results of experimental studies of water, aqueous solutions of glycerol and aqueous solutions of glycerol-polyethylene oxide (PEO) atomization process in a medical inhaler obtained by the use of the digital microphotography method. The effect of the shear and extensional viscosity on the drop size, drop size histogram and mean drop diameter has been analyzed. The obtained results have shown that the drop size increases with the increase in shear and extensional viscosity of liquid atomized. Extensional viscosity has a greater impact on the spraying process. It has been shown that the change in liquid viscosity leads to significant changes in drop size distribution. The correlation for Sauter mean diameter as function of the shear and extensional viscosity was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    PubMed

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  7. Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach.

    PubMed

    Tchouar, N; Ould-Kaddour, F; Levesque, D

    2004-10-15

    The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.

  8. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  9. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate

    PubMed Central

    Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung

    2017-01-01

    In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip. PMID:28632151

  10. Effect of Bulk Viscosity on the Oscillating Screen Viscometer

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Close to the critical temperature, the bulk viscosity of the xenon sample will exceed the shear viscosity by more than a factor of a billion. Nevertheless, the viscometer's low operating frequency ensures that the only significant force on the oscillating screen will be due to the shear viscosity.

  11. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all of these effects when estimating the shear elasticity. This new approach simulates shear wave particle velocities using a Green's function-based approach for the Voigt model, where the shear elasticity and viscosity values are estimated using an optimization-based approach that compares measured shear wave particle velocities with simulated shear wave particle velocities in the time-domain. The results are evaluated on a point-by-point basis to generate images. There is good agreement between the simulated and measured shear wave particle velocities, where the new approach yields much better images of the shear elasticity and shear viscosity than the TOF method. The new estimation approach is accelerated with an approximate viscoelastic Green's function model that is evaluated with shear wave data obtained from in vivo human livers. Instead of calculating shear waves with combinations of different shear elasticities and shear viscosities, shear waves are calculated with different shear elasticities on the GPU and then convolved with a viscous loss model, which accelerates the calculation dramatically. The shear elasticity and shear viscosity values are then estimated using an optimization-based approach by minimizing the difference between measured and simulated shear wave particle velocities. Shear elasticity and shear viscosity images are generated at every spatial point in a two-dimensional (2D) field-of-view (FOV). The new approach is applied to measured shear wave data obtained from in vivo human livers, and the results show that this new approach successfully generates shear elasticity and shear viscosity images from this data. The results also indicate that the shear elasticity values estimated with this approach are significantly smaller than the values estimated with the conventional TOF method and that the new approach demonstrates more consistent values for these estimates compared with the TOF method. This experience suggests that the new method is an effective approach for estimating the shear elasticity and the shear viscosity in liver and in other soft tissue.

  12. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    NASA Astrophysics Data System (ADS)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  13. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  14. Estimation of viscosity based on transverse momentum correlations

    NASA Astrophysics Data System (ADS)

    Sharma, Monika

    2010-02-01

    The heavy ion program at RHIC created a paradigm shift in the exploration of strongly interacting hot and dense matter. An important milestone achieved is the discovery of the formation of strongly interacting matter which seemingly flows like a perfect liquid at temperatures on the scale of T ˜ 2 x10^12 K [1]. As a next step, we consider measurements of transport coefficients such as kinematic, shear or bulk viscosity? Many calculations based on event anisotropy measurements indicate that the shear viscosity to the entropy density ratio (η/s) of the fluid formed at RHIC is significantly below that of all known fluids including the superfluid ^4He [2]. Precise determination of η/s ratio is currently a subject of extensive study. We present an alternative technique for the determination of medium viscosity proposed by Gavin and Aziz [3]. Preliminary results of measurements of the evolution of the transverse momentum correlation function with collision centrality of Au + Au interactions at √sNN = 200 GeV will be shown. We present results on differential version of the correlation measure and describe its use for the experimental determination of η/s.[4pt] [1] J. Adams et al., [STAR Collaboration], Nucl. Phys. A 757 (2005) 102.[0pt] [2] R. A. Lacey et al., Phys. Rev. Lett. 98 (2007) 092301.[0pt] [3] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302. )

  15. Mass Transfer and Rheology of Fiber Suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Jianghui

    Rheological and mass transfer properties of non-Brownian fiber suspensions are affected by fiber characteristics, fiber interactions, and processing conditions. In this thesis we develop several simulation methods to study the dynamics of single fibers in simple shear flow, as well as the rheology and mass transfer of fiber suspensions. Isolated, rigid, neutrally-buoyant, non-Brownian, slightly curved, nonchiral fibers in simple shear flow of an incompressible Newtonian fluid at low Reynolds number can drift steadily in the gradient direction without external forces or torques. The average drift velocity and direction depend on the fiber aspect ratio, curvature and initial orientation. The drift results from the coupling of rotational and translational dynamics, and the combined effects of flipping, scooping, and spinning motions of the fiber. Irreversible fiber collisions in the suspensions cause shear-induced diffusion. The shear-induced self-diffusivity of dilute suspensions of fibers increases with increasing concentration and increasing static friction between contacts. The diffusivities in both the gradient and vorticity directions are larger for suspensions of curved fibers than for suspensions of straight fibers. For suspensions of curved fibers, significant enhancements in the diffusivity in the gradient direction are attributed to fiber drift in the gradient direction. The shear-induced self-diffusivity of concentrated suspensions of fibers increases with increasing concentration before fiber networks or flocs are formed, after which the diffusivity decreases with increasing concentration. The diffusivity increases with increasing fiber equilibrium bending angle, effective stiffness, coefficient of static friction, and rate of collisions. The specific viscosity of fiber suspensions increases with increasing fiber curvature, friction coefficient between mechanical contacts, and solids concentration. The specific viscosity increases linearly with concentration in the dilute regime, and increases with the cube of the concentration in the semi-dilute regime. Concentrated fiber suspensions are highly viscous, shear thinning, and exhibit significant yield stresses and normal stress differences. Yield stresses scale with volume concentration and fiber aspect ratio in the same way as that observed in experiments. The first normal stress difference increases linearly with shear rate. The shear-induced diffusivity increases linearly with the derivative of the particle contribution to stress for dilute suspensions with respective to concentration. This correlation between rheology and shear-induced diffusion makes it possible to predict diffusivity from easily measured rheological properties.

  16. Localized stress fluctuations drive shear thickening in dense suspensions

    NASA Astrophysics Data System (ADS)

    Rathee, Vikram; Blair, Daniel L.; Urbach, Jeffrey S.

    2017-08-01

    Dense particulate suspensions exhibit a dramatic increase in average viscosity above a critical, material-dependent shear stress. This thickening changes from continuous to discontinuous as the concentration is increased. Using direct measurements of spatially resolved surface stresses in the continuous thickening regime, we report the existence of clearly defined dynamic localized regions of substantially increased stress that appear intermittently at stresses above the critical stress. With increasing applied stress, these regions occupy an increasing fraction of the system, and the increase accounts quantitatively for the observed shear thickening. The regions represent high-viscosity fluid phases, with a size determined by the distance between the shearing surfaces and a viscosity that is nearly independent of shear rate but that increases rapidly with concentration. Thus, we find that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between distinct fluid phases with widely differing viscosities.

  17. Rheological Behavior of Xanthan Gum Solution Related to Shear Thinning Fluid Delivery for Subsurface Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus; Truex, Michael J.

    Xanthan gum, a biopolymer, forms shear thinning fluids which can be used as delivery media to improve the distribution of remedial amendments injected into heterogeneous subsurface environments. The rheological behavior of the shear thinning solution needs to be known to develop an appropriate design for field injection. In this study, the rheological properties of xanthan gum solutions were obtained under various chemical and environmental conditions relevant to delivery of remedial amendments to groundwater. Higher xanthan concentration raised the absolute solution viscosity and increased the degree of shear thinning. Addition of remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) caused themore » dynamic viscosity of xanthan gum to decrease, but the solutions maintained shear-thinning properties. Use of simple salt (e.g. Na+, Ca2+) to increase the solution ionic strength also decreased the dynamic viscosity of xanthan and the degree of shear thinning, although the effect is a function of xanthan gum concentration and diminished as the xanthan gum concentration was increased. At high xanthan concentration, addition of salt to the solution increased dynamic viscosity. In the absence of sediments, xanthan gum solutions maintain their viscosity properties for months. However, xanthan gum solutions were shown to lose dynamic viscosity over a period of days to weeks when contacted with saturated site sediment. Loss of viscosity is attributed to physical and biodegradation processes.« less

  18. Mesoscopic model for the viscosities of nematic liquid crystals.

    PubMed

    Chrzanowska, A; Kröger, M; Sellers, S

    1999-10-01

    Based on the definition of the mesoscopic concept by Blenk et al. [Physica A 174, 119 (1991); J. Noneq. Therm. 16, 67 (1991); Mol. Cryst. Liq. Cryst. 204, 133 (1991)] an approach to calculate the Leslie viscosity coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor, whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear viscosity alpha(4). In the nematic phase alpha(4) is shown to have two contributions: isotropic and nematic. There exists an indication that the influence of the isotropic part is dominant over the nematic part. The so-called microscopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent representation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transformation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the same. The difference is caused by the hindered diffusion in the affine model case.

  19. Numerical simulation of transport processes in injection mold-filling during production of a cylindrical object under isothermal and non-isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.; Ghoshdastidar, P.S.

    1999-07-01

    In this paper, numerical simulation of injection mold-filling during the production of a cylindrical object under isothermal and non-isothermal conditions is presented. The material of the object is low density polyethylene (LDPE) following power-law viscosity model for non-zero shear rate zone. However, where shear rate becomes zero, zero-shear viscosity value has been used. Three cases have been considered, namely (1) Isothermal filling at constant injection pressure, (2) Isothermal filling at constant flow rate, and (3) Non-isothermal filling at constant flow rate. For the case-(3), the viscosity of LDPE is also a function of temperature. The material of the mold ismore » steel. For the non-isothermal filling, the concept of melt-mold thermal contact resistance coefficient has been incorporated in the model. The length and diameter of the body in all three cases have been taken as 0.254 m and 0.00508 m respectively. The finite-difference method has been used to solve the governing differential equations for the processes. The results show excellent agreement with the corresponding equations for the processes. The results show excellent agreement with the corresponding analytical solutions for the first two cases showing the correctness of the numerical method. The simulation results for non-isothermal filling show physically realistic trends and lend insight into various important aspects of mold-filling including frozen skin layer.« less

  20. Evaluation of Heating and Shearing on the Viscoelastic Properties of Calcium Hydroxyapatite Used in Injection Laryngoplasty.

    PubMed

    Mahboubi, Hossein; Mohraz, Ali; Verma, Sunil P

    2016-03-01

    To compare the viscoelastic properties of calcium hydroxyapatite (CaHA) to carboxymethylcellulose (CMC) injectables used for injection laryngoplasty and determine if they are affected by heating and shearing. Experimental. University laboratory. Vocal fold injection laryngoplasty with CaHA is oftentimes challenging due to the amount of pressure necessary to push the injectate through a needle. Anecdotal techniques, such as heating the product, have been suggested to facilitate injection. The viscoelastic properties of CaHA and CMC were measured with a rheometer. The effects of heating and shearing on sample viscoelasticity were recorded. CaHA was 9.5 times more viscous than CMC (43,100 vs 4540 Pa·s). Heating temporarily decreased the viscosity of CaHA by 32%. However, it also caused the viscosity to subsequently increase after time. Shearing of CaHA reduced its viscosity by 26%. Heating and shearing together temporarily reduced the viscosity of CaHA by 52%. A combination of heating and shearing had a more profound effect than heating or shearing alone on the viscosity of CaHA, potentially making it easier to inject temporarily. Long-term and in vivo studies are required to further analyze the effect of heating and shearing on CaHA injectables. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  1. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide.

    PubMed

    Zhong, Xiujuan; Liu, Zhiping; Cao, Dapeng

    2011-08-25

    A cost-effective, classical united-atom (UA) force field for ionic liquids (ILs) was proposed, which can be used in simulations of ILs composed by 1-alkyl-3-methyl-imidazolium cations ([C(n)mim](+)) and seven kinds of anions, including tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)), methylsulfate ([CH(3)SO(4)](-)), trifluoromethylsulfonate ([CF(3)SO(3)](-)), acetate ([CH(3)CO(2)](-)), trifluoroacetate ([CF(3)CO(2)](-)), and bis(trifluoromethylsulfonyl)amide ([NTf(2)](-)). The same strategy in our previous work (J. Phys. Chem. B 2010, 114, 4572) was used to parametrize the force field, in which the effective atom partial charges are fitted by the electrostatic potential surface (ESP) of ion pair dimers to account for the overall effects of polarization in ILs. The total charges (absolute values) on the cation/anion are in the range of 0.64-0.75, which are rescaled to 0.8 for all kinds of ions by a compromise between transferability and accuracy. Extensive molecular dynamics (MD) simulations were performed over a wide range of temperatures to validate the force field, especially on the enthalpies of vaporization (ΔH(vap)) and transport properties, including the self-diffusion coefficient and shear viscosity. The liquid densities were predicted very well for all of the ILs studied in this work with typical deviations of less than 1%. The simulated ΔH(vap) at 298 and 500 K are also in good agreement with the measured values by different experimental methods, with a slight overestimation of about 5 kJ/mol. The influence of ΔC(p) (the difference between the molar heat capacity at constant pressure of the gas and that of liquid) on the calculation of ΔH(vap) is also discussed. The transport coefficients were estimated by the equilibrium MD method using 20-60 ns trajectories to improve the sampling. The proposed force field gives a good description of the self-diffusion coefficients and shear viscosities, which is comparable to the recently developed polarizable force field. Although slightly lower dynamics is found in simulations by our force field, the order of magnitude of the self-diffusion coefficient and viscosity are reproduced for all the ILs very well over a wide temperature range. The largest underestimation of the self-diffusion coefficient is about one-third of the experimental values, while the largest overestimation of the viscosity is about two times the experimental values. © 2011 American Chemical Society

  2. Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    NASA Astrophysics Data System (ADS)

    Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.

    2018-03-01

    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.

  3. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  4. Bianchi I cosmology in the presence of a causally regularized viscous fluid

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Venanzi, Marta

    2017-07-01

    We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced.

  5. Effect of Qing Nao tablet on blood stasis model of mice

    NASA Astrophysics Data System (ADS)

    Kong, Xuejun; Hao, Shaojun; Wang, Hongyu; Liu, Xiaobin; Xie, Guoqi; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To investigate the effect of Qing Nao tablet on mouse model of blood stasis syndrome, 60 mice, male and female, were randomly divided into 6 groups, were fed with large, small doses of Qing Nao tablet suspension, Naoluotong saline suspension and the same volume (group 2, 0.1ml/10g), administer 1 times daily, orally for 15 days. Intragastric administration for first days, in addition to the 1 group saline group every day in the hind leg intramuscular saline, the other 5 groups each rat day hind leg muscle injection of dexamethasone 0.8mg/kg intramuscular injection every day, 1 times, 15 days. 1 hour continuous intramuscular injection and intramuscular drug perfusion on the sixteenth day after mice. The eyeball blood, heparin after whole blood viscosity test. Compared with the control group, model group, high and low shear viscosity were significantly increased (P<0.01), indicating that the model was successful. Compared with the model group, high dose group and Qing Nao tablet Naoluotong group can significantly reduce the viscosity at high shear and (P<0.01), middle dose Qing Nao tablet group can significantly reduce high shear and shear viscosity (P<0.05); large, middle dose Qing Nao tablet group can significantly reduce the low shear viscosity (P<0.05), Naoluotong group can significantly reduce the low shear viscosity (P<0.01); low dose Qing Nao tablet group were lower high cut, low shear viscosity and trend The potential (P>0.05). The Qing Nao tablet has a good effect on the model of blood stasis in mice.

  6. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm 3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  7. Radiating gravitational collapse with shear viscosity

    NASA Astrophysics Data System (ADS)

    Chan, R.

    2000-08-01

    A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6Msolar.

  8. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  9. Semiclassical law for the apparent viscosity of non-Newtonian fluids: An analogy between thixotropy of fluids and sintering of solids

    NASA Astrophysics Data System (ADS)

    Mezzasalma, Stefano A.

    2000-08-01

    A theory is presented to describe the apparent viscosity of thixotropic fluids as a function of the rate of shear. It represents the extension of a semiclassical approach that was previously formulated to deal with matter densification phenomena in solids starting from the state equation of the medium. In this context, the Debye expression for the Helmholtz free energy has been provided with a density of vibrational modes that accounts for atomic and microstructural changes occurring at the frequency scale of momentum transport (see diffusion). Working out the steady-state condition with respect to time gives an equation relating reduced apparent viscosity (η˜) and shear rate (γ˜) through the temperature value (θ*) that is energetically equivalent to the medium vibrations implied. Viscosity also turns out to depend on the Debye temperature θD (see φ˜θ*/θD) and an equivalent Gruneisen parameter (μ), defined with respect to viscosity variations. Increasing φ in pseudoplastic and dilatant media, respectively, increases and decreases η˜, which always increases with increasing μ. The analogy between dilatancy/sintering and pseudoplasticity/desintering is suggested, and a correspondence between matter and momentum transports is traced on the basis of the phononic spectrum properties. Application to experimental measurements are presented and discussed for aqueous monodispersions of polystyrene (PS) latex particles, aqueous glycerol solutions of partially hydrolyzed polyacrylamide (PHPAA) at different sodium chloride (NaCl) concentrations, polymethylmethacrylate (PMMA) suspensions in dioctylphthalate (DOP), and for a molecularly thin liquid film of octamethylciclotetrasiloxane (OMCTS). Best fit coefficients for φ and μ have been constrained to the Debye temperature and the effective low-shear viscosity (η0) according to their dependences upon the suspended volume fraction (φ), θD=θD(φ), and η0=η0(φ), and the agreement with experimental data is quite satisfactory in all cases here examined. It is then suggested that the viscous character of a liquid can be described in terms of a coupling between Brownian diffusion and phonon wave motion.

  10. Results of the Fluid Merging Viscosity Measurement International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William; Antar, Basil

    2009-01-01

    The purpose of FMVM is to measure the rate of coalescence of two highly viscous liquid drops and correlate the results with the liquid viscosity and surface tension. The experiment takes advantage of the low gravitational free floating conditions in space to permit the unconstrained coalescence of two nearly spherical drops. The merging of the drops is accomplished by deploying them from a syringe and suspending them on Nomex threads followed by the astronaut s manipulation of one of the drops toward a stationary droplet till contact is achieved. Coalescence and merging occurs due to shape relaxation and reduction of surface energy, being resisted by the viscous drag within the liquid. Experiments were conducted onboard the International Space Station in July of 2004 and subsequently in May of 2005. The coalescence was recorded on video and down-linked near real-time. When the coefficient of surface tension for the liquid is known, the increase in contact radius can be used to determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Recent fluid dynamical numerical simulations of the coalescence process will be presented. The results are important for a better understanding of the coalescence process. The experiment is also relevant to liquid phase sintering, free form in-situ fabrication, and as a potential new method for measuring the viscosity of viscous glass formers at low shear rates.

  11. Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater.

    PubMed

    Wang, Shibin; He, Le; Guo, Jianchun; Zhao, Jinzhou; Tang, Hongbiao

    2015-05-01

    The intrinsic viscosity and rheological properties of guar gum (GG), hydroxypropyl guar (HPG) and carboxymethyl guar (CMG) in seawater and the effects of shear rate, concentration, temperature and pH on these properties were investigated. An intrinsic viscosity-increasing effect was observed with GG and HPG in seawater (SW) compared to deionized water (DW), whereas the intrinsic viscosity of CMG in seawater was much lower than that in DW due to a screening effect that reduced the repulsion between the polymer chains. Regardless of the functional groups, all sample solutions was well characterized by a modified Cross model that exhibited the transition from Newtonian to pseudoplastic in the low shear rate range at the concentrations of interest to industries, and their viscosity increased with the increase in their concentration but decreased with the increase in temperature. In contrast to nonionic GG or HPG, anionic CMG had a slightly decreased viscosity property in SW, exhibiting polyelectrolyte viscosity behavior. The α value in the zero-shear rate viscosity vs. concentration power-law equation for the samples gave the order of CMG>HPG>GG while the SW solution of CMG had the lowest viscous flow activation energy and exhibited a strong pH-dependent viscosity by a different shear rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Complex formation of beta-cyclodextrin in aqueous media with poly(N,N-dimethylacrylamide)containing pendent perfluorooctanesulfonamido groups. Final Report, September 15, 1998 - September 14, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Thieo Hogen-Esch

    1999-11-01

    The effect of time on the viscosity of solutions of 0.50--1.0 weight % polyacrylamide copolymers containing 2-(N-ethylperfluorooctanesulfonamido)ethyl acrylate (FOSA) comonomer units was monitored at constant shear rates varying from 0.60 to 3.0 sec{sup {minus}1}. The viscosities decreased to a plateau over a period of about thirty minutes. The copolymer solutions sheared at much higher shear rates of 24 sec{sup {minus}1} showed pronounced shear thinning but regained most of their original viscosities after standing for 20 minutes. Heating the solutions less than one hour caused an increase in the low shear viscosity whereas longer heating times decreased solution viscosities presumably duemore » to hydrolysis of the acrylate groups. Addition of beta-cyclodextrin to solutions of the hydrophobically modified polyacrylamide resulted in sharply decreased copolymer viscosities at cyclodextrin concentrations on the order of about 10{sup {minus}3} M. The above is consistent with competitive hydrophobic association of the perfluorocarbon groups of the copolymer with the cyclodextrin disrupting the mutual association of the perfluorocarbon groups.« less

  13. Capillary Viscometer for Fully Automated Measurement of the Concentration and Shear Dependence of the Viscosity of Macromolecular Solutions

    PubMed Central

    Grupi, Asaf; Minton, Allen P.

    2014-01-01

    The construction and operation of a novel viscometer/rheometer are described. The instrument is designed to measure the viscosity of a macromolecular solution while automatically varying both solute concentration and shear rate. Viscosity is calculated directly from Poiseuille's Law, given the measured difference in pressure between two ends of a capillary tube through which the solution is flowing at a known rate. The instrument requires as little as 0.75 ml of a solution to provide a full profile of viscosity as a function of concentration and shear rate, and can measure viscosities as high as 500 cP and as low as 1 cP, at shear rates between 10 and 2 × 103 s-1. The results of control experiments are presented to document the accuracy and precision of measurement at both low and high concentration of synthetic polymers and proteins. PMID:23130673

  14. Transport coefficients of Quark-Gluon plasma with full QCD potential

    NASA Astrophysics Data System (ADS)

    J. P., Prasanth; Bannur, Vishnu M.

    2018-05-01

    The shear viscosity η, bulk viscosity ζ and their ratio with the entropy density, η / s, ζ / s have been studied in a quark-gluon plasma (QGP) within the cluster expansion method. The cluster expansion method allows us to include the interaction between the partons in the deconfined phase and to calculate the equation of state of quark-gluon plasma. It has been argued that the interactions present in the equation of state, the modified Cornell potential significantly contributes to the viscosity. The results obtained within our approaches agree with lattice quantum chromodynamics (LQCD) equation of state. We obtained η / s ≈ 0 . 128 within the temperature range T /Tc ∈ [ 0 . 9 , 1 . 5 ] which is very close to the theoretical lower bound η / s ≥ 1 /(4 π) in Yang-Mills theory. We also demonstrate that the effects of ζ / s at freezeout are possibly large.

  15. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles

    NASA Astrophysics Data System (ADS)

    Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji

    2014-09-01

    The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.

  16. Fitting mathematical models to describe the rheological behaviour of chocolate pastes

    NASA Astrophysics Data System (ADS)

    Barbosa, Carla; Diogo, Filipa; Alves, M. Rui

    2016-06-01

    The flow behavior is of utmost importance for the chocolate industry. The objective of this work was to study two mathematical models, Casson and Windhab models that can be used to fit chocolate rheological data and evaluate which better infers or previews the rheological behaviour of different chocolate pastes. Rheological properties (viscosity, shear stress and shear rates) were obtained with a rotational viscometer equipped with a concentric cylinder. The chocolate samples were white chocolate and chocolate with varying percentages in cacao (55%, 70% and 83%). The results showed that the Windhab model was the best to describe the flow behaviour of all the studied samples with higher determination coefficients (r2 > 0.9).

  17. Behavior of a supercooled chalcogenide liquid in the non-Newtonian regime under steady vs. oscillatory shear

    NASA Astrophysics Data System (ADS)

    Sen, S.; Zhu, W.; Aitken, B. G.

    2017-07-01

    The steady and oscillatory shear rate dependence of viscosity of a supercooled chalcogenide liquid of composition As10Se90 is measured at Newtonian viscosities ranging between 103 and 107 Pa s using capillary and parallel plate rheometry. The liquid displays strong violation of the Cox-Merz rule in the non-Newtonian regime where the viscosity under steady shear is nearly an order of magnitude lower than that under oscillatory shear. This behavior is argued to be related to the emergence of unusually large (6-8 nm) cooperatively rearranging regions with long relaxation times in the liquid that result from significant structural rearrangements under steady shear.

  18. F-actin and microtubule suspensions as indeterminate fluids.

    PubMed

    Buxbaum, R E; Dennerll, T; Weiss, S; Heidemann, S R

    1987-03-20

    The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.

  19. On the phase lag of turbulent dissipation in rotating tidal flows

    NASA Astrophysics Data System (ADS)

    Zhang, Qianjiang; Wu, Jiaxue

    2018-03-01

    Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

  20. A multiple-scale turbulence model for incompressible flow

    NASA Technical Reports Server (NTRS)

    Duncan, B. S.; Liou, W. W.; Shih, T. H.

    1993-01-01

    A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.

  1. Rotational Diffusion Depends on Box Size in Molecular Dynamics Simulations.

    PubMed

    Linke, Max; Köfinger, Jürgen; Hummer, Gerhard

    2018-06-07

    We show that the rotational dynamics of proteins and nucleic acids determined from molecular dynamics simulations under periodic boundary conditions suffer from significant finite-size effects. We remove the box-size dependence of the rotational diffusion coefficients by adding a hydrodynamic correction k B T/6 ηV with k B Boltzmann's constant, T the absolute temperature, η the solvent shear viscosity, and V the box volume. We show that this correction accounts for the finite-size dependence of the rotational diffusion coefficients of horse-heart myoglobin and a B-DNA dodecamer in aqueous solution. The resulting hydrodynamic radii are in excellent agreement with experiment.

  2. Mode-coupling theoretical analysis of transport and relaxation properties of liquid dimethylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Koda, S.

    2010-03-01

    The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.

  3. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.

  4. Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Yuen, D. A.; Reuteler, D. M.

    1995-01-01

    We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.

  5. Dissipative hydrodynamics for multi-component systems

    NASA Astrophysics Data System (ADS)

    El, Andrej; Bouras, Ioannis; Wesp, Christian; Xu, Zhe; Greiner, Carsten

    2012-11-01

    Second-order dissipative hydrodynamic equations for each component of a multi-component system are derived using the entropy principle. Comparison of the solutions with kinetic transport results demonstrates validity of the obtained equations. We demonstrate how the shear viscosity of the total system can be calculated in terms of the involved cross-sections and partial densities. The presence of the inter-species interactions leads to a characteristic time dependence of the shear viscosity of the mixture, which also means that the shear viscosity of a mixture cannot be calculated using the Green-Kubo formalism the way it has been done recently. This finding is of interest for understanding of the shear viscosity of a quark-gluon plasma extracted from comparisons of hydrodynamic simulations with experimental results from RHIC and LHC.

  6. Online shear viscosity measurement of starchy melts enriched in wheat bran.

    PubMed

    Robin, Frédéric; Bovet, Nicolas; Pineau, Nicolas; Schuchmann, Heike P; Palzer, Stefan

    2011-01-01

    Addition of wheat bran to flours modifies their expansion properties after cooking extrusion. This can be attributed to changes in the melt shear viscosity at the die. The effect of wheat bran concentration added to achieve 2 levels of dietary fibers of 12. 6% and 24.4%, and process conditions on the shear viscosity of wheat flour was therefore assessed using an online twin-slit rheometer. The shear viscosity measured at 30 s⁻¹ ranged from 9.5 × 10³ to 53.4 × 10³ Pa s. Regardless of the process conditions and bran concentration, the extruded melts showed a pseudoplastic behavior with a power law index n ranging from 0.05 to 0.27. Increasing the barrel temperature of the extruder from 120 to 180 °C, the water content from 18% to 22% or the screw speed from 400 to 800 rpm significantly decreased the melt shear viscosity at the extruder exit. The addition of bran significantly increased the melt shear viscosity only at the highest bran concentration. The effect was process condition dependant. Mathematical interpretations, based upon observations, of the experimental data were carried out. They can be used to predict the effect of the process conditions on the melt shear viscosity at the die of extruded wheat flour with increasing bran concentration. The viscosity data will be applied in future works to study the expansion properties of extruded wheat flour supplemented with bran. Incorporation of wheat bran, a readily available and low cost by-product, in extruded puffed foods is constrained due to its negative effect on the product texture. Understanding the effect of wheat bran on rheological properties of extruded melts, driving the final product properties, is essential to provide solutions to the food industry and enhance its use. © 2011 Institute of Food Technologists®

  7. Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine

    NASA Astrophysics Data System (ADS)

    Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (P<0.01), Can significantly reduce Naoluotong qingnaopian group, high dose group (P<0.01), plasma viscosity decreased qingnaopian plasma viscosity in low dose group (P<0.05). Conclusion: qingnaopian could improve the blood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.

  8. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method

    PubMed Central

    Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang

    2015-01-01

    The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747

  9. Impact of gas injection on the apparent viscosity and viscoelastic property of waste activated sewage sludge.

    PubMed

    Bobade, Veena; Baudez, Jean Christophe; Evans, Geoffery; Eshtiaghi, Nicky

    2017-05-01

    Gas injection is known to play a major role on the particle size of the sludge, the oxygen transfer rate, as well as the mixing efficiency of membrane bioreactors and aeration basins in the waste water treatment plants. The rheological characteristics of sludge are closely related to the particle size of the sludge floc. However, particle size of sludge floc depends partly on the shear induced in the sludge and partly on physico-chemical nature of the sludge. The objective of this work is to determine the impact of gas injection on both the apparent viscosity and viscoelastic property of sludge. The apparent viscosity of sludge was investigated by two methods: in-situ and after sparging. Viscosity curves obtained by in-situ measurement showed that the apparent viscosity decreases significantly from 4000 Pa s to 10 Pa s at low shear rate range (below 10 s -1 ) with an increase in gas flow rate (0.5LPM to 3LPM); however the after sparging flow curve analysis showed that the reduction in apparent viscosity throughout the shear rate range is negligible to be displayed. Torque and displacement data at low shear rate range revealed that the obtained lower apparent viscosity in the in-situ method is not the material characteristics, but the slippage effect due to a preferred location of the bubbles close to the bob, causing an inconsistent decrease of torque and increase of displacement at low shear rate range. In linear viscoelastic regime, the elastic and viscous modulus of sludge was reduced by 33% & 25%, respectively, due to gas injection because of induced shear. The amount of induced shear measured through two different tests (creep and time sweep) were the same. The impact of this induced shear on sludge structure was also verified by microscopic images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Pleiner, Harald; Svenšek, Daniel; Brand, Helmut R.

    2018-04-01

    We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we study the coupled dynamics of the magnetization, M , the director field, n , associated with the liquid crystalline orientational order, and the velocity field, v . We evaluate how simple shear flow in a ferromagnetic nematic is modified in the presence of small external magnetic fields, and we make experimentally testable predictions for the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.

  11. Utility of Squeeze Flow in the Food Industry

    NASA Astrophysics Data System (ADS)

    Huang, T. A.

    2008-07-01

    Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.

  12. The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.

    2018-01-01

    A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.

  13. Low-shear red blood cell oxygen transport effectiveness is adversely affected by transfusion and further worsened by deoxygenation in sickle cell disease patients on chronic transfusion therapy.

    PubMed

    Detterich, Jon; Alexy, Tamas; Rabai, Miklos; Wenby, Rosalinda; Dongelyan, Ani; Coates, Thomas; Wood, John; Meiselman, Herbert

    2013-02-01

    Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen-carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vasoocclusion, including percent hemoglobin (Hb)S, reticulocyte count, and circulating cell-free Hb, it increases blood viscosity, which reduces microvascular flow. The hematocrit-to-viscosity ratio (HVR) is an index of red blood cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear. To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately before transfusion and again 12 to 120 hours after transfusion. Comparable changes in Hb, hematocrit (Hct), reticulocyte count, and HbS with transfusion were observed in all subjects. Viscosity, Hct, and high-shear HVR increased with transfusion while low-shear HVR decreased significantly. Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by CTT and others may be made worse. © 2012 American Association of Blood Banks.

  14. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.

    PubMed

    Zhu, Ying; Dong, Changfeng; Yin, Yin; Chen, Xin; Guo, Yanrong; Zheng, Yi; Shen, Yuanyuan; Wang, Tianfu; Zhang, Xinyu; Chen, Siping

    2015-02-01

    Shear wave based ultrasound elastography utilizes mechanical excitation or acoustic radiation force to induce shear waves in deep tissue. The tissue response is monitored to obtain elasticity information about the tissue. During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. However, biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In this study, two shear wave-based elasticity imaging methods, shear wave dispersion ultrasound vibrometry (SDUV) and acoustic radiation force impulsive (ARFI) imaging, were compared. The discrepancy between the measurements obtained by the two methods was analyzed, and the role of viscosity was investigated. To this end, four types of gelatin phantoms containing 0%, 20%, 30% and 40% castor oil were fabricated to mimic different viscosities of soft tissue. For the SDUV method, the shear elasticity μ1 was 3.90 ± 0.27 kPa, 4.49 ± 0.16 kPa, 2.41 ± 0.33 kPa and 1.31 ± 0.09 kPa; and the shear viscosity μ2 was 1.82 ± 0.31 Pa•s, 2.41 ± 0.35 Pa•s, 2.65 ± 0.13 Pa•s and 2.89 ± 0.14 Pa•s for 0%, 20%, 30% and 40% oil, respectively in both cases. For the ARFI measurements, the shear elasticity μ was 7.30 ± 0.20 kPa, 8.20 ± 0.31 kPa, 7.42 ± 0.21 kPa and 5.90 ± 0.36 kPa for 0%, 20%, 30% and 40% oil, respectively. The SDUV results demonstrated that the elasticity first increased from 0% to 20% oil and then decreased for the 30% and 40% oil. The viscosity decreased consistently as the concentration of castor oil increased from 0% to 40%. The elasticity measured by ARFI showed the same trend as that of the SDUV but exceeded the results measured by SDUV. To clearly validate the impact of viscosity on the elasticity estimation, an independent measurement of the elasticity and viscosity by dynamic mechanical analysis (DMA) was conducted on these four types of gelatin phantoms and then compared with SDUV and ARFI results. The shear elasticities obtained by DMA (3.44 ± 0.31 kPa, 4.29 ± 0.13 kPa, 2.05 ± 0.29 kPa and 1.06 ± 0.18 kPa for 0%, 20%, 30% and 40% oil, respectively) were lower than those by SDUV, whereas the shear viscosities obtained by DMA (2.52 ± 0.32 Pa·s, 3.18 ± 0.12 Pa·s, 3.98 ± 0.19 Pa·s and 4.90 ± 0.20 Pa·s for 0%, 20%, 30% and 40% oil, respectively) were greater than those obtained by SDUV. However, the DMA results showed that the trend in the elasticity and viscosity data was the same as that obtained from the SDUV and ARFI. The SDUV results demonstrated that adding castor oil changed the viscoelastic properties of the phantoms and resulted in increased dispersion of the shear waves. Viscosity can provide important and independent information about the inner state of the phantoms, in addition to the elasticity. Because the ARFI method ignores the dispersion of the shear waves, namely viscosity, it may bias the estimation of the true elasticity. This study sheds further light on the significance of the viscosity measurements in shear wave based elasticity imaging methods. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    NASA Astrophysics Data System (ADS)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  16. Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang

    1996-03-01

    Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.

  17. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  18. Effect of renal replacement therapy on viscosity in end-stage renal disease patients.

    PubMed

    Feriani, M; Kimmel, P L; Kurantsin-Mills, J; Bosch, J P

    1992-02-01

    Viscosity, an important determinant of microcirculatory hemodynamics, is related to hematocrit (HCT), and may be altered by renal failure or its treatment. To assess these factors, we studied the effect of dialysis on the viscosity of whole blood, plasma, and reconstituted 70% HCT blood of eight continuous ambulatory peritoneal dialysis (CAPD) and nine hemodialysis (HD) patients under steady shear flow conditions at different shear rates, before and after dialysis, compared with nine normal subjects. The density of the red blood cells (RBCs), a marker of cell hydration, was measured in HD patients by a nonaqueous differential floatation technique. Whole blood viscosity was higher in controls than patients, and correlated with HCT before treatment (P less than 0.05) at shear rates of 11.5 to 230 s-1) in HD patients, and 23 to 230 s-1 in all end-stage renal disease (ESRD) patients. In contrast, whole blood viscosity correlated with HCT in CAPD patients only at the lowest shear rates (2.3 and 5.75 s-1, P less than 0.05). Plasma viscosity was higher in CAPD patients than both HD patients before treatment and controls (P less than 0.05, analysis of variance [ANOVA]), despite lower plasma total protein, albumin, and similar fibrinogen concentration compared with HD patients. When all samples were reconstituted to 70% HCT, CAPD patients had higher whole blood viscosity than control subjects'. The high HCT blood viscosity of the ESRD patients was higher than control subjects' at capillary shear rates, suggesting increased RBC aggregation and decreased RBC deformability in patients with renal disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. A new simple cone-plate viscometer for hemorheology.

    PubMed

    Wang, X; Liao, F L; Stoltz, J F

    1998-09-01

    The aim of this work was to evaluate a new automatic cone-plate viscometer (LBY-N6, PRECIL, Beijing, China) which was designed for clinical measurements of blood and plasma viscosities. Standard calibrating oils of viscosity varying from 1.85 to 20.5 mPas (conforming to ASTM Standard) were used to test the precision and reproducibility of the device. Then the viscometer was used to measure blood and plasma viscosities. The results were compared with those obtained with a conventional Couette viscometer and a capillary viscometer. The results showed that this new viscometer gave good values of viscosity for standard oils with relative errors lower than 10% at shear rates ranging from 20 to 200 s(-1). It also had a good reproducibility (standard deviations < 3% in most cases). Only the results at low shear rates (< 10 s(-1)) were less identical. As for blood, the relative difference between the results given by LBY-N6 and those obtained by Low Shear 30 was less than 10% at high shear rates. This difference decreased with shear rate and could be partly caused by viscoelastic and thixotropic properties of human blood. A small difference between the values of plasma viscosity obtained by LBY-N6 and the capillary viscometer AMTEC was also observed. In conclusion, this new viscometer can be used a routine tool to determine quickly plasma and blood viscosities in clinical practice at shear rates higher than 20 s(-1).

  20. Macromolecular Origins of Harmonics Higher than the Third in Large-Amplitude Oscillatory Shear Flow

    NASA Astrophysics Data System (ADS)

    Giacomin, Alan; Jbara, Layal; Gilbert, Peter; Chemical Engineering Department Team

    2016-11-01

    In 1935, Andrew Gemant conceived of the complex viscosity, a rheological material function measured by "jiggling" an elastic liquid in oscillatory shear. This test reveals information about both the viscous and elastic properties of the liquid, and about how these properties depend on frequency. The test gained popularity with chemists when John Ferry perfected instruments for measuring both the real and imaginary parts of the complex viscosity. In 1958, Cox and Merz discovered that the steady shear viscosity curve was easily deduced from the magnitude of the complex viscosity, and today oscillatory shear is the single most popular rheological property measurement. With oscillatory shear, we can control two things: the frequency (Deborah number) and the shear rate amplitude (Weissenberg number). When the Weissenberg number is large, the elastic liquids respond with a shear stress over a series of odd-multiples of the test frequency. In this lecture we will explore recent attempts to deepen our understand of the physics of these higher harmonics, including especially harmonics higher than the third. Canada Research Chairs program of the Government of Canada for the Natural Sciences and Engineering Research Council of Canada (NSERC) Tier 1 Canada Research Chair in Rheology.

  1. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors

    USGS Publications Warehouse

    Peterson, Donald W.; Tilling, Robert I.

    1980-01-01

    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.

  2. On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Sardar, Humara; Gulzar, M. Mudassar; Alshomrani, Ali Saleh

    2018-03-01

    This paper presents the multiple solutions of a non-Newtonian Carreau fluid flow over a nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The consequential non-linear ODEs are solved numerically by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method accompanied by shooting technique. Multiple solutions are presented graphically and results are shown for various physical parameters. It is important to state that the velocity and momentum boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening fluid while opposite trend is observed for shear thinning fluid. Another important observation is that the wall shear stress is significantly decreased by the viscosity ratio parameter β∗ for the first solution and opposite trend is observed for the second solution.

  3. Does viscosity or structure govern the rate at which starch granules are digested?

    PubMed

    Hardacre, Allan K; Lentle, Roger G; Yap, Sia-Yen; Monro, John A

    2016-01-20

    The rates of in vitro digestion of incompletely or fully gelatinised potato and corn starch were measured at 37 °C over 20 min in a rheometer fitted with cup and vane geometry at shear rates of 0.1, 1 and 10 s(-1). Shear rate did not influence the rate of starch digestion provided it was close to physiological levels. However, rates of digestion were significantly reduced when shear rates were below the physiological range (0.1 s(-1)) or when gelatinisation was incomplete. At physiological shear rates the relationship between starch digestion and viscosity was sigmoid in form and following a short initial slow phase a rapid decline in viscosity occurred as starch was digested and the structural integrity of the granules was lost. Conversely, when shear rate was reduced below physiological levels or gelatinisation was incomplete, digestion was hindered, granule integrity was maintained and the relationship between starch and viscosity became linear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.

  5. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  6. Shear-enhanced compaction in viscoplastic rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2012-04-01

    The phenomenon of mutual influence of compaction and shear deformation was repeatedly reported in the literature over the past years. Dilatancy and shear-enhanced compaction of porous rocks were experimentally observed during both rate-independent and rate-dependent inelastic deformation. Plastic pore collapse was preceding the onset of dilatancy and shear-enhanced compaction. Effective bulk viscosity is commonly used to describe compaction driven fluid flow in porous rocks. Experimental data suggest that bulk viscosity of a fluid saturated rock might be a function of both the effective pressure and the shear stress. Dilatancy and shear-enhanced compaction can alter the transport properties of rocks through their influence on permeability and compaction length scale. Recent investigations show that shear stresses in deep mantle rocks can be responsible for spontaneous development of localized melt-rich bands and segregation of small amounts of melt from the solid rock matrix through shear channeling instability. Usually it is assumed that effective viscosity is a function of porosity only. Thus coupling between compaction and shear deformation is ignored. Spherical model which considers a hollow sphere subjected to homogeneous tractions on the outer boundary as a representative elementary volume succeeded in predicting the volumetric compaction behavior of porous rocks and metals to a hydrostatic pressure in a wide range of porosities. Following the success of this simple model we propose a cylindrical model of void compaction and decompaction due to the non-hydrostatic load. The infinite viscoplastic layer with a cylindrical hole is considered as a representative volume element. The remote boundary of the volume is subjected to a homogeneous non-hydrostatic load such that plane strain conditions are fulfilled through the volume. At some critical values of remote stresses plastic zone develops around the hole. The dependence of the effective bulk viscosity on the properties of individual components as well as on the stress state is examined. We show that bulk viscosity is a function of porosity, effective pressure and shear stress. Decreasing porosity tends to increase bulk viscosity whereas increasing shear stress and increasing effective pressure reduce it.

  7. Periodically sheared 2D Yukawa systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Center for Astrophysics, Space Physics and Engineering Research

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  8. A comparison of capillary and rotational viscometry of aqueous solutions of hypromellose.

    PubMed

    Sklubalová, Z; Zatloukal, Z

    2007-10-01

    A comparison of capillary and rotational viscometry of gentle pseudoplastic solutions of hypromellose (HPMC 4000) by using only single-point value of viscosity is difficult. Single-point comparison becomes topical in consequence to the pharmacopoeial requirement that the apparent viscosity of 2% hypromellose solution should be read at the shear rate of approximately 10 s(-1). This communication is focused on the estimation of the suitable shear rate, D eta, at which the apparent viscosity read using the rotational viscometer is numerically equal to the dynamic viscosity read using a capillary viscometer. For the solutions of HPMC in concentrations up to 2% w/v, the non-linear regression equations generated showed the influencing of the D eta value by the dynamic viscosity and/or by the originally derived linear velocity of the solution flowing through the capillary viscometer tube. To compare the apparent viscosity read using the rotational viscometer with the dynamic viscosity read using capillary viscometer, the exact estimation of the shear rate D eta at which both viscosities are numerically equal is essential since it is markedly affected by the concentration of HPMC solution.

  9. Effect of Greenhouse Gases Dissolved in Seawater

    PubMed Central

    Matsunaga, Shigeki

    2015-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  10. Effect of Greenhouse Gases Dissolved in Seawater.

    PubMed

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  11. On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Sardar, Humara

    2018-03-01

    This paper investigates the steady two-dimensional flow over a moving/static wedge in a Carreau viscosity model with infinite shear rate viscosity. Additionally, heat transfer analysis is performed. Using suitable transformations, nonlinear partial differential equations are transformed into ordinary differential equations and solved numerically using the Runge-Kutta Fehlberg method coupled with the shooting technique. The effects of various physical parameters on the velocity and temperature distributions are displayed graphically and discussed qualitatively. A comparison with the earlier reported results has been made with an excellent agreement. It is important to note that the increasing values of the wedge angle parameter enhance the fluid velocity while the opposite trend is observed for the temperature field for both shear thinning and thickening fluids. Generally, our results reveal that the velocity and temperature distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin the momentum and thermal boundary layer thickness in shear thickening fluid and reverse is true for shear thinning fluid. Moreover, it is noticed that the velocity in case of moving wedge is higher than static wedge.

  12. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.

    2016-05-15

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability.more » Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.« less

  13. Development of viscosity sensor with long period fiber grating technology

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Dong; Wang, Jian-Neng; Chen, Shih-Huang; Wang, Juei-Mao

    2009-03-01

    In this paper, we describe the development of a viscosity sensing system using a simple and low-cost long-period fiber grating (LPFG) sensor. The LPFG sensor was extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator. Viscosity can be simply defined as resistance to flow of a liquid. We have measured asphalt binder, 100-190000 centistokes, in comparison with optical sensing results. The system sensing asphalt binders exhibited increase trend in the resonance wavelength shift when the refractive index of the medium changed. The prototype sensor consisted of a LPFG sensing component and a cone-shaped reservoir where gravitational force can cause asphalt binders flow through the capillary. Thus the measured time for a constant volume of asphalt binders can be converted into either absolute or kinematic viscosity. In addition, a rotational viscometer and a dynamic shear rheometer were also used to evaluate the viscosity of this liquid, the ratio between the applied shear stress and rate of shear, as well as the viscoelastic property including complex shear modulus and phase angle. The measured time could be converted into viscosity of asphalt binder based on calculation. This simple LPFG viscosity sensing system is hopefully expected to benefit the viscosity measurement for the field of civil, mechanical and aerospace engineering.

  14. Radiating gravitational collapse with shearing motion and bulk viscosity

    NASA Astrophysics Data System (ADS)

    Chan, R.

    2001-03-01

    A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.

  15. Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bosko, Jaroslaw T.; Todd, B. D.; Sadus, Richard J.

    2004-12-01

    The viscoelastic properties of dendrimers of generation 1-4 are studied using nonequilibrium molecular dynamics. Flow properties of dendrimer melts under shear are compared to systems composed of linear chain polymers of the same molecular weight, and the influence of molecular architecture is discussed. Rheological material properties, such as the shear viscosity and normal stress coefficients, are calculated and compared for both systems. We also calculate and compare the microscopic properties of both linear chain and dendrimer molecules, such as their molecular alignment, order parameters and rotational velocities. We find that the highly symmetric shape of dendrimers and their highly constrained geometry allows for substantial differences in their material properties compared to traditional linear polymers of equivalent molecular weight.

  16. Modeling of Wall-Bounded Complex Flows and Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope was the first to introduce this kind of constitutive relation to turbulence modeling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k-E eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown an encouraging success in modeling complex turbulent flows.

  17. Models for viscosity and shear localization in bubble-rich magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-09-01

    Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ⁡ηBulk =log10 ⁡η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency, thereby, affecting magma ascent and the potential for explosivity.

  18. Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ishibashi, Hidemi

    2009-03-01

    Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.

  19. Enhanced t -3/2 long-time tail for the stress-stress time correlation function

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.

    1980-01-01

    Nonequilibrium molecular dynamics is used to calculate the spectrum of shear viscosity for a Lennard-Jones fluid. The calculated zero-frequency shear viscosity agrees well with experimental argon results for the two state points considered. The low-frequency behavior of shear viscosity is dominated by an ω 1/2 cusp. Analysis of the form of this cusp reveals that the stress-stress time correlation function exhibits a t -3/2 "long-time tail." It is shown that for the state points studied, the amplitude of this long-time tail is between 12 and 150 times larger than what has been predicted theoretically. If the low-frequency results are truly asymptotic, they imply that the cross and potential contributions to the Kubo-Green integrand for shear viscosity exhibit a t -3/2 long-time tail. This result contradicts the established theory of such processes.

  20. Estimation of shear viscosity based on transverse momentum correlations

    NASA Astrophysics Data System (ADS)

    STAR Collaboration; Sharma, Monika; STAR Collaboration

    2009-11-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  1. A multiple-scale turbulence model for incompressible flow

    NASA Technical Reports Server (NTRS)

    Duncan, B. S.; Liou, W. W.; Shih, T. H.

    1993-01-01

    A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.

  2. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  3. Mechanical properties, microstructure, and specific adhesion of phospholipid monolayer-coated microbubbles

    NASA Astrophysics Data System (ADS)

    Kim, Dennis Heejong

    1999-10-01

    The objective of this study was to characterize properties of phospholipid monolayer shells formed on gas microbubbles, specifically (1)yield shear and shear viscosity as a function of the shell composition, (2)yield shear, shear viscosity, and microstructural domain density as a function of the quenching rate of the microbubbles following production, and (3)the adhesion of a lipid-coated microbubble to a colloidal substrate via receptor-ligand mediated specific interaction, either enhanced or inhibited by the presence of surface-grafted polymeric structures. The primary experimental technique employed was the micromanipulation method, wherein tapered fluid-filled pipets with bores on the order of 4-10 microns were used to (1)capture and maneuver individual micron scale bubbles in aqueous medium, and (2)apply suction pressures over the range of 1 dyn cm-2 to 10 5 dyn cm-2 (10-6 to 10 -1 atm) and track the corresponding deformation of the microbubble under applied pressure. The yield shear and shear viscosity increase with increasing acyl chain length of the lipid; an equivalent statement is that the yield shear and shear viscosity increase with reduced temperature of the shell material. Crystalline lipid domain sizes are dictated by the rate at which the system is (temperature) quenched in a manner predicted by classic materials science and metallurgy: rapidly cooled samples form the smallest grains and exhibit the lowest levels of yield shear and shear viscosity. Slowly cooled samples produce large grains and exhibit high levels of yield and viscosity. The success and strength of adhesion of a microbubble to a substrate is dictated by the identity of the adhesive molecules participating in the adhesion, as well as the surface architecture of the interfaces participating in adhesion. The term surface architecture is used to describe the physical arrangement of the full complement of steric stabilizers, spacers, and binding molecules present at the surface of a typical coated microbubble shell. Adhesion is successful for systems where the binding ligand is not impeded by the presence of surface-grafted poly(ethylene glycol) (PEG) moieties. Like the shell composition itself, the surface construct can be engineered to produce optimal performance in adhesion.

  4. Reprint of "Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms".

    PubMed

    Jones, David S; Margetson, Daniel N; McAllister, Mark S; Andrews, Gavin P

    2015-12-30

    Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200-300s(-1)) and injection moulding (approximately 900s(-1)). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena. Copyright © 2015. Published by Elsevier B.V.

  5. Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms.

    PubMed

    Jones, David S; Margetson, Daniel N; McAllister, Mark S; Andrews, Gavin P

    2015-09-30

    Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200-300 s(-1)) and injection moulding (approximately 900 s(-1)). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena. Copyright © 2015. Published by Elsevier B.V.

  6. Widom line, dynamical crossover, and percolation transition of supercritical oxygen via molecular dynamics simulations.

    PubMed

    Raman, Abhinav S; Li, Huiyong; Chiew, Y C

    2018-01-07

    Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.

  7. Widom line, dynamical crossover, and percolation transition of supercritical oxygen via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Raman, Abhinav S.; Li, Huiyong; Chiew, Y. C.

    2018-01-01

    Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.

  8. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  9. Influence of interfacial viscosity on the dielectrophoresis of drops

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Chakraborty, Suman

    2017-05-01

    The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.

  10. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  11. Bulk viscosity of the Lennard-Jones fluid for a wide range of states computed by equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.; Vogelsang, R.; Schoen, M.

    1987-12-01

    Accurate data for the bulk viscosity ηv have been obtained by molecular dynamics calculations. Many thermodynamic states of the Lennard-Jones fluid were considered. The Green-Kubo integrand of ηv is analyzed in terms of partial correlation functions constituting the total one. These partial functions behave rather differently from those found for the shear viscosity or the thermal conductivity. Generally the total autocorrelation function of ηv shows a steeper initial decay and a more pronounced long time form than those of the shear viscosity or the thermal conductivity. For states near transition to solid phases, like the pseudotriple point of argon, the Green-Kubo integrand of ηv has a significantly longer ranged time behavior than that of the shear viscosity. Hence, for the latter states, a systematic error is expected for ηv using equilibrium molecular dynamics for its computation.

  12. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates.

    PubMed

    Lee, Juhyun; Chou, Tzu-Chieh; Kang, Dongyang; Kang, Hanul; Chen, Junjie; Baek, Kyung In; Wang, Wei; Ding, Yichen; Carlo, Dino Di; Tai, Yu-Chong; Hsiai, Tzung K

    2017-05-16

    Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s -1 ), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s -1 were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.

  13. Shear-rate dependence of the viscosity of the Lennard-Jones liquid at the triple point

    NASA Astrophysics Data System (ADS)

    Ferrario, M.; Ciccotti, G.; Holian, B. L.; Ryckaert, J. P.

    1991-11-01

    High-precision molecular-dynamics (MD) data are reported for the shear viscosity η of the Lennard-Jones liquid at its triple point, as a function of the shear rate ɛ˙ for a large system (N=2048). The Green-Kubo (GK) value η(ɛ˙=0)=3.24+/-0.04 is estimated from a run of 3.6×106 steps (40 nsec). We find no numerical evidence of a t-3/2 long-time tail for the GK integrand (stress-stress time-correlation function). From our nonequilibrium MD results, obtained both at small and large values of ɛ˙, a consistent picture emerges that supports an analytical (quadratic at low shear rate) dependence of the viscosity on ɛ˙.

  14. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  15. The Contribution of Red Blood Cell Dynamics to Intrinsic Viscosity and Functional ATP Release

    NASA Astrophysics Data System (ADS)

    Forsyth, Alison; Abkarian, Manouk; Wan, Jiandi; Stone, Howard

    2010-11-01

    In shear flow, red blood cells (RBCs) exhibit a variety of behaviors such as rouleaux formation, tumbling, swinging, and tank-treading. The physiological consequences of these dynamic behaviors are not understood. In vivo, ATP is known to signal vasodilation; however, to our knowledge, no one has deciphered the relevance of RBC microrheology to the functional release of ATP. Previously, we correlated RBC deformation and ATP release in microfluidic constrictions (Wan et al., 2008). In this work, a cone-plate rheometer is used to shear a low hematocrit solution of RBCs at varying viscosity ratios (λ) between the inner cytoplasmic hemoglobin and the outer medium, to determine the intrinsic viscosity of the suspension. Further, using a luciferin-luciferase enzymatic reaction, we report the relative ATP release at varying shear rates. Results indicate that for λ = 1.6, 3.8 and 11.1, ATP release is constant up to 500 s-1, which suggests that the tumbling-tanktreading transition does not alter ATP release in pure shear. For lower viscosity ratios, λ = 1.6 and 3.8, at 500 s-1 a change in slope occurs in the intrinsic viscosity data and is marked by an increase in ATP release. Based on microfluidic observations, this simultaneous change in viscosity and ATP release occurs within the tank-treading regime.

  16. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.

    PubMed

    Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    PubMed

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious.

  18. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    PubMed Central

    Drury, J L; Dembo, M

    2001-01-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious. PMID:11720983

  19. Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log

    NASA Astrophysics Data System (ADS)

    Li, Shiyong; Yee, Ho-Ung

    2018-03-01

    We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).

  20. Shear-induced aggregation dynamics in a polymer microrod suspension

    NASA Astrophysics Data System (ADS)

    Kumar, Pramukta S.

    A non-Brownian suspension of micron scale rods is found to exhibit reversible shear-driven formation of disordered aggregates resulting in dramatic viscosity enhancement at low shear rates. Aggregate formation is imaged at low magnification using a combined rheometer and fluorescence microscope system. The size and structure of these aggregates are found to depend on shear rate and concentration, with larger aggregates present at lower shear rates and higher concentrations. Quantitative measurements of the early-stage aggregation process are modeled by a collision driven growth of porous structures which show that the aggregate density increases with a shear rate. A Krieger-Dougherty type constitutive relation and steady-state viscosity measurements are used to estimate the intrinsic viscosity of complex structures developed under shear. Higher magnification images are collected and used to validate the aggregate size versus density relationship, as well as to obtain particle flow fields via PIV. The flow fields provide a tantalizing view of fluctuations involved in the aggregation process. Interaction strength is estimated via contact force measurements and JKR theory and found to be extremely strong in comparison to shear forces present in the system, estimated using hydrodynamic arguments. All of the results are then combined to produce a consistent conceptual model of aggregation in the system that features testable consequences. These results represent a direct, quantitative, experimental study of aggregation and viscosity enhancement in rod suspension, and demonstrate a strategy for inferring inaccessible microscopic geometric properties of a dynamic system through the combination of quantitative imaging and rheology.

  1. Photoinduced aging and viscosity evolution in Se-rich Ge-Se glasses

    NASA Astrophysics Data System (ADS)

    Gueguen, Yann; King, Ellyn A.; Keryvin, Vincent; Sangleboeuf, Jean-Christophe; Rouxel, Tanguy; Bureau, Bruno; Lucas, Pierre

    2013-08-01

    We propose here to investigate the non-equilibrium viscosity of Ge-Se glasses under and after light irradiation. Ge10Se90 and Ge20Se80 fibers have been aged in the dark and under ambient light, over months. During aging, both the relaxation of enthalpy and the viscosity have been investigated. The viscosity was measured by shear relaxation-recovery tests allowing the measurement of non-equilibrium viscosity. When Ge10Se90 glass fibers are aged under irradiation, a relatively fast fictive temperature decrease is observed. Concomitantly, during aging under irradiation, the non-equilibrium viscosity increases and reaches an equilibrium after two months of aging. This viscosity increase is also observed in Ge20Se80 fibers. Nevertheless, this equilibrium viscosity is far below the viscosity expected at the configurational equilibrium. As soon as the irradiation ceases, the viscosity increases almost instantaneously by about one order of magnitude. Then, if the fibers are kept in the dark, their viscosity slowly increases over months. The analysis of the shear relaxation functions shows that the aging is thermorheologically simple. On the other side, there is no simple relaxation between the shear relaxation functions measured under irradiation and those measured in the dark. These results clearly suggest that a very specific photoinduced aging process occurs under irradiation. This aging is due to photorelaxation. Nevertheless, the viscosity changes are not solely correlated to photoaging and photorelaxation. A scenario is proposed to explain all the observed viscosity evolutions under and after irradiation, on the basis of photoinduced transient defects.

  2. Collective Flow and Mach Cones with transport

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Reining, F.; Uphoff, J.; Wesp, C.; Xu, Z.; Greiner, C.

    2011-04-01

    Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 2 ↔ 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient η from a microscopical picture.

  3. The role of compressional viscoelasticity in the lubrication of rolling contacts.

    NASA Technical Reports Server (NTRS)

    Harrison, G.; Trachman, E. G.

    1972-01-01

    A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.

  4. Computation and analysis of the transverse current autocorrelation function, Ct(k,t), for small wave vectors: A molecular-dynamics study for a Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Vogelsang, R.; Hoheisel, C.

    1987-02-01

    Molecular-dynamics (MD) calculations are reported for three thermodynamic states of a Lennard-Jones fluid. Systems of 2048 particles and 105 integration steps were used. The transverse current autocorrelation function, Ct(k,t), has been determined for wave vectors of the range 0.5<||k||σ<1.5. Ct(k,t) was fitted by hydrodynamic-type functions. The fits returned k-dependent decay times and shear viscosities which showed a systematic behavior as a function of k. Extrapolation to the hydrodynamic region at k=0 gave shear viscosity coefficients in good agreement with direct Green-Kubo results obtained in previous work. The two-exponential model fit for the memory function proposed by other authors does not provide a reasonable description of the MD results, as the fit parameters show no systematic wave-vector dependence, although the Ct(k,t) functions are somewhat better fitted. Similarly, the semiempirical interpolation formula for the decay time based on the viscoelastic concept proposed by Akcasu and Daniels fails to reproduce the correct k dependence for the wavelength range investigated herein.

  5. Galilean-invariant Nosé-Hoover-type thermostats.

    PubMed

    Pieprzyk, S; Heyes, D M; Maćkowiak, Sz; Brańka, A C

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007)] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed.

  6. Galilean-invariant Nosé-Hoover-type thermostats

    NASA Astrophysics Data System (ADS)

    Pieprzyk, S.; Heyes, D. M.; Maćkowiak, Sz.; Brańka, A. C.

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007), 10.1080/08927020601052856] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed.

  7. Factors affecting shear thickening behavior of a concentrated injectable suspension of levodopa.

    PubMed

    Allahham, Ayman; Stewart, Peter; Marriott, Jennifer; Mainwaring, David

    2005-11-01

    Previous clinical studies on a subcutaneous injectable suspension of levodopa showed poor injectability into human tissue. When this formulation was rheologically characterised, a clinical shear thickening interval was observed at increased shear rates. The formulation parameters that contributed to this rheological behavior were systematically evaluated with the aim of removing this flow limitation while maintaining the concentration of 60% levodopa to retain the clinical applicability. The three suspension parameters examined were: levodopa volume fraction, concentration of the HPMC suspending vehicle, and particle size distribution. Shear thickening increased with the drug concentration and the critical shear rate was inversely dependent on the drug concentration. Increasing the vehicle concentration retarded the shear thickening but increased the overall suspension viscosity. There was an increase in shear thickening with increased average particle diameter. Combinations of micronized and non-micronized particles were used to prepare bimodal particle size distributions. The rheology of these bimodal distributions resulted in removal of shear thickening. This allowed the preparation of 60% levodopa formulations that showed a range of flow characteristics spanning near Newtonian flow or shear thinning at initial injectable viscosities of about 0.6 Pa.s and final viscosities in the range of 0.1 Pa.s, alleviating the shear thickening limitation of these levodopa formulations.

  8. Effect of Viscosity on the Crystallization of Undercooled Liquids

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.

  9. Rheology and microstructure of dilute graphene oxide suspension

    NASA Astrophysics Data System (ADS)

    Tesfai, Waka; Singh, Pawan; Shatilla, Youssef; Iqbal, Muhammad Z.; Abdala, Ahmed A.

    2013-10-01

    Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and intrinsic viscosity of aqueous suspension of graphene and use the measured intrinsic viscosity to determine the aspect ratio of graphene oxide. Dilute suspension of graphene oxide (0.05 to 0.5 mg/mL) exhibits a shear thinning behavior at low shear rates followed by a shear-independent region that starts at shear rate between 5 and 100/s depending on the concentration. This shear thinning behavior becomes more pronounced with the increase of particle loading. Moreover, AFM imaging of the dried graphene oxide indicates the evolution of irregular and thin low fractal aggregates of 0.3-1.8 nm thickness at lower concentrations to oblate compact structures of 1-18 nm thickness of nanosheets at higher concentration. These observations elucidate the microstructure growth mechanisms of graphene oxide in multiphase systems, which are important for nanofluids applications and for dispersing graphene and graphene oxide in composite materials. The suspension has a very high intrinsic viscosity of 1661 due to the high graphene oxide aspect ratio. Based on this intrinsic viscosity, we predict graphene oxide aspect ratio of 2445. While the classical Einstein and Batchelor models underestimate the relative viscosity of graphene oxide suspension, Krieger-Dougherty prediction is in a good agreement with the experimental measurement.

  10. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less

  11. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    NASA Astrophysics Data System (ADS)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  12. Rheologic properties of flowable, conventional hybrid, and condensable composite resins.

    PubMed

    Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon

    2003-06-01

    This research was undertaken to investigate the viscoelastic properties related to handling characteristics of five commercial flowable, two conventional hybrid and two condensable composite resins and to investigate the effect on the viscosity of filler volume fraction of composites. A dynamic oscillatory shear test was used to evaluate the storage shear modulus (G'), loss shear modulus (G"), loss tangent (tan delta) and complex viscosity (eta(*)) of the composite resins as a function of frequency (omega)-dynamic frequency sweep test from 0.01 to 100 rad/s at 25 degrees C-using an Advanced Rheometric Expansion System. To investigate the effect on the viscosity of the composites of the filler volume fraction, the filler weight% and filler volume% were measured by the Archimedes' principle using a pyknometer. The complex viscosity eta(*) of flowable composites was lower than that of the hybrid composites and significant differences were observed between brands. The complex viscosity eta(*) of condensable composites was higher than that of hybrid composites. The order of complex viscosity eta(*) at omega=10 rad/s in order of decreasing viscosity was as follows, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it and Revolution. The complex viscosity of flowable composites, normalized with respect to Z-100, was 0.04-0.56 but Synergy compact was 2.158 times higher than that of Z-100. The patterns of the change of loss tangent (tan delta) of the composite resins with increasing frequency were significantly different between brands. Phase angles delta ranged from 30.9 to 78.1 degrees at omega=10 rad/s. All composite resins exhibit pseudoplastic behavior with increasing shear rate. The relationships between the complex shear modulus G(*), the phase angle delta, and the shear rate omega were represented by the frequency domain phasor form, G(*)(omega)=G(*)e(i delta)=G(*) 90 degree angle delta. Only a weak relationship was found between filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.

  13. Bidisperse and polydisperse suspension rheology at large solid fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study ofmore » bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.« less

  14. A study on rheological characteristics of roller milled fenugreek fractions.

    PubMed

    Sakhare, Suresh D; Inamdar, Aashitosh A; Prabhasankar, P

    2016-01-01

    Fenugreek seeds were fractionated by roller milling to get various fractions. The roller milled fractions and whole fenugreek flour (WFF) were evaluated for the flow behavior and time-dependent flow properties using a rotational viscometer at the temperatures of 10-60 (0)C. The samples subjected to a programmed shear rate increase linearly from 0 to 300 s(-1) in 3 min and successive decrease linearly shear rate from 300 s(-1) to 0 in 3 min. The roller milled fractions and WFF paste exhibited non-Newtonian pseudoplastic behavior. Difference in hysteresis loop area was observed among the roller milled fractions and WFF, being more noticeable at lower temperatures. Power law and Casson models were used to predict flow properties of samples. The power law model described well the flow behavior of the roller milled fractions and WFF at temperatures tested. Except flour (FL) fraction, consistency coefficient, m, increased with the temperature both in the forward and backward measurements. The roller milled fractions and WFF exhibited rheopectic behavior that increased viscosity with increasing the shear speed and the temperature. For all the sample tested, initial shear stress increased with increase in shear rate and temperature.

  15. Rheological Behavior Xanthan and SlurryPro Polymer Solutions Evaluated as Shear Thinning Delivery Fluids for Subsurface Remediation

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Oostrom, M.; Truex, M.; Vermeul, V.

    2011-12-01

    Shear thinning fluids can be applied as a delivery means to enhance the uniformity of remedial amendment distribution in heterogeneous aquifers, thereby to improve remediation performance. The rheological behavior of biopolymer xanthan gum and synthetic polymer SlurryPro were tested, and their influence on the amendment delivery performance was evaluated. The impact of polymer concentration, basic water chemistry, salinity (e.g., Br-, Na+, Ca2+ concentrations), remedial amendments (phosphate, sodium lactate, ethyl lactate, lactate oil, whey), sediments, and the mixing approach on the rheological properties of the polymer solutions was determined. The SlurryPro polymer lost shear-thinning properties even at relatively low solution ionic strength. However, the xanthan gum polymer maintained shear-thinning properties under most of the tested conditions, though with some loss in absolute viscosity with increasing ionic strength. Xanthan appeared to be the better candidate for enhanced amendment delivery. Increasing in xanthan concentration not only increased the solution viscosity, but also increased degree of shear thinning. Addition of salt decreased the solution viscosity and the degree of shear thinning, while the influence was diminished when the polymer concentration was higher. After reaching a critical xanthan concentration, addition of salt increased solution viscosity. The degradation of xanthan and SlurryPro in the presence of site aquifer materials and microbes was studied in batch tests in which the field sediment/water ratio was simulated. The viscosity of the polymer solutions dropped 85% or more in the first week, while the solution chemical oxygen demand (COD) decreasing occurred at a much slower rate.

  16. Photoinduced aging and viscosity evolution in Se-rich Ge-Se glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueguen, Yann; Sangleboeuf, Jean-Christophe; Rouxel, Tanguy

    We propose here to investigate the non-equilibrium viscosity of Ge-Se glasses under and after light irradiation. Ge{sub 10}Se{sub 90} and Ge{sub 20}Se{sub 80} fibers have been aged in the dark and under ambient light, over months. During aging, both the relaxation of enthalpy and the viscosity have been investigated. The viscosity was measured by shear relaxation-recovery tests allowing the measurement of non-equilibrium viscosity. When Ge{sub 10}Se{sub 90} glass fibers are aged under irradiation, a relatively fast fictive temperature decrease is observed. Concomitantly, during aging under irradiation, the non-equilibrium viscosity increases and reaches an equilibrium after two months of aging. Thismore » viscosity increase is also observed in Ge{sub 20}Se{sub 80} fibers. Nevertheless, this equilibrium viscosity is far below the viscosity expected at the configurational equilibrium. As soon as the irradiation ceases, the viscosity increases almost instantaneously by about one order of magnitude. Then, if the fibers are kept in the dark, their viscosity slowly increases over months. The analysis of the shear relaxation functions shows that the aging is thermorheologically simple. On the other side, there is no simple relaxation between the shear relaxation functions measured under irradiation and those measured in the dark. These results clearly suggest that a very specific photoinduced aging process occurs under irradiation. This aging is due to photorelaxation. Nevertheless, the viscosity changes are not solely correlated to photoaging and photorelaxation. A scenario is proposed to explain all the observed viscosity evolutions under and after irradiation, on the basis of photoinduced transient defects.« less

  17. Vinpocetine and pyritinol: a new model for blood rheological modulation in cerebrovascular disorders—a randomized controlled clinical study.

    PubMed

    Alkuraishy, Hayder M; Al-Gareeb, Ali I; Albuhadilly, Ali K

    2014-01-01

    Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females) with age range 50-65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P < 0.05), especially on low shear whole blood viscosity (P < 0.01), but they produced insignificant effects on total serum protein and high shear whole blood viscosity (P > 0.05). Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders.

  18. Vinpocetine and Pyritinol: A New Model for Blood Rheological Modulation in Cerebrovascular Disorders—A Randomized Controlled Clinical Study

    PubMed Central

    Alkuraishy, Hayder M.; Al-Gareeb, Ali I.; Albuhadilly, Ali K.

    2014-01-01

    Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females) with age range 50–65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P < 0.05), especially on low shear whole blood viscosity (P < 0.01), but they produced insignificant effects on total serum protein and high shear whole blood viscosity (P > 0.05). Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders. PMID:25548768

  19. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  20. Viscosity measurements of CO2-in-water foam with dodecyl polypropoxy sulfate surfactants for enhanced oil recovery application

    NASA Astrophysics Data System (ADS)

    Pramudita, Ria Ayu; Ryoo, Won Sun

    2016-08-01

    Apparent viscosities of CO2-in-water foams were measured in a wide range of shear rate from 50 to 105 inverse second for enhanced oil recovery (EOR) application. The CO2-in-water dispersions, made of 50:50 weight proportions of CO2 and water with 1 wt.% surfactant concentration, were prepared in high-pressure recirculation apparatus under pressure where CO2 density becomes 0.7, 0.8, and 0.9 g/mL at each temperature of 35, 45, and 55°C. The surfactants used for the foam generation were sodium dodecyl polypropoxy sulfates with average propoxylation degrees of 4.7 and 6.2. The foam viscosity showed shear thinning behaviors with power-law indices ranging from 0.80 to 0.85, and approached a Newtonian regime in the lower shear rate range at several tens of inverse second. Zero-shear viscosity values projected from experimental data based on Ellis model were as high as 57.4 mPa·s and enough to control the mobility of water and CO2 in oil reservoirs.

  1. Fractional time-dependent apparent viscosity model for semisolid foodstuffs

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Chen, Wen; Sun, HongGuang

    2017-10-01

    The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.

  2. Concentration Dependence of Solution Shear Viscosity and Solute Mass Diffusivity in Crystal Growth from Solutions

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1995-01-01

    The physical properties of a supersaturated binary solution such as its density rho, shear viscosity eta, and solute mass diffusivity D are dependent on the solute concentration c: rho = rho(c), eta = eta(c), and D = D(c). The diffusion boundary layer equations related to crystal growth from solution are derived for the case of natural convection with a solution density, a shear viscosity, and a solute diffusivity that are all depen- dent on solute concentration. The solution of these equations has demonstrated the following. (1) At the vicinity of the saturation concentration c(sub s) the solution shear viscosity eta depends on rho as eta(sub s) = eta(rho(sub s))varies as square root of rho(c(sub s)). This theoretically derived result has been verified in experiments with several aqueous solutions of inorganic and organic salts. (2) The maximum solute mass transfer towards the growing crystal surface can be achieved for values of c where the ratio of d ln(D(c)/dc) to d ln(eta(c)/dc) is a maximum.

  3. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE PAGES

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma; ...

    2018-04-24

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  4. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  5. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    PubMed

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Rheological Properties of Aqueous Colloidal Silica Suspensions Related to Amendment Delivery for Subsurface Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuo; Zhong, Lirong; Li, Guanghe

    Colloidal silica (fumed silica) suspensions are being tested as carriers for remedial amendment delivery in subsurface remediation and as media for underground contamination containment. The knowledge of the rheological behavior of the silica suspensions is lack in the literature while it is essential for the preparation and field injection of the suspensions. This contribution is focused on the rheological characteristics of colloidal silica suspensions under various environmental conditions relevant to amendment delivery for subsurface remediation. We investigated the influence of silica particle concentration, water source, ionic strength, pH, aging, amendment type and concentration, and subsurface sediment on the rheological behaviormore » of the suspensions. All tested suspension formulations exhibited shear thinning before gelation. Higher silica particle concentration and salinity (Na+ and K+) increased suspensions’ viscosity and the degree of shear thinning. The viscosity of suspensions increased with aging. The suspensions at natural pH exhibited the highest viscosity compared to the acidic and alkaline suspensions with the same silica concentration. Addition of KMnO4 amendment to aqueous silica suspensions increased viscosity, while addition of alcohol amendment decreased suspensions’ viscosity. The presence of amendment did not reduce shear thinning. The gelation rate of silica suspensions was increased with silica concentration and with the addition of sediments. The rheological characteristics of shear thinning aqueous fumed silica suspensions were compared to that of shear thinning solutions formed with organic polymer xanthan gum, which was applied for amendment delivery in subsurface remediation.« less

  7. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    PubMed

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    NASA Astrophysics Data System (ADS)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  9. Lowered pH Alters Decay but Not Speed of Tectorial Membrane Waves

    NASA Astrophysics Data System (ADS)

    Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.

    2011-11-01

    Tectorial membrane (TM) traveling waves and mechanical shear impedances were measured in artificial endolymph baths at neutral and acidic pHs. Lowering pH from 7 to 4 significantly decreases the spatial extent of TM waves but has a relatively minor effect on wave speed. At pH 4, the imaginary component of TM shear impedance, which relates to the shear modulus, drops significantly; whereas, the real component, which relates to viscosity, is reduced less. These results suggest that shear modulus, and not viscosity, controls the extent of TM waves at lower pH.

  10. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  11. Sonic Estimation of Elasticity via Resonance: A New Method of Assessing Hemostasis

    PubMed Central

    Corey, F. Scott; Walker, William F.

    2015-01-01

    Uncontrolled bleeding threatens patients undergoing major surgery and in care for traumatic injury. This paper describes a novel method of diagnosing coagulation dysfunction by repeatedly measuring the shear modulus of a blood sample as it clots in vitro. Each measurement applies a high-energy ultrasound pulse to induce a shear wave within a rigid walled chamber, and then uses low energy ultrasound pulses to measure displacements associated with the resonance of that shear wave. Measured displacements are correlated with predictions from Finite Difference Time Domain (FDTD) models, with the best fit corresponding to the modulus estimate. In our current implementation each measurement requires 62.4 ms. Experimental data was analyzed using a fixed-viscosity algorithm and a free-viscosity algorithm. In experiments utilizing human blood induced to clot by exposure to kaolin, the free-viscosity algorithm quantified the shear modulus of formed clots with a worst-case precision of 2.5%. Precision was improved to 1.8% by utilizing the fixed-viscosity algorithm. Repeated measurements showed a smooth evolution from liquid blood to a firm clot with a shear modulus between 1.4 kPa and 3.3 kPa. These results show the promise of this technique for rapid, point of care assessment of coagulation. PMID:26399992

  12. Models of non-Newtonian Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondic, L.; Palffy-Muhoray, P.; Shelley, M.J.

    1996-11-01

    We study the Saffman-Taylor instability of a non-Newtonian fluid in a Hele-Shaw cell. Using a fluid model with shear-rate dependent viscosity, we derive a Darcy{close_quote}s law whose viscosity depends upon the squared pressure gradient. This yields a natural, nonlinear boundary value problem for the pressure. A model proposed recently by Bonn {ital et} {ital al}. [Phys. Rev. Lett. {bold 75}, 2132 (1995)] follows from this modified law. For a shear-thinning liquid, our derivation shows strong constraints upon the fluid viscosity{emdash} strong shear-thinning does not allow the construction of a unique Darcy{close_quote}s law, and is related to the appearance of slipmore » layers in the flow. For a weakly shear-thinning liquid, we calculate corrections to the Newtonian instability of an expanding bubble in a radial cell. {copyright} {ital 1996 The American Physical Society.}« less

  13. Angular Momentum Transport in Convectively Unstable Shear Flows

    NASA Astrophysics Data System (ADS)

    Käpylä, Petri J.; Brandenburg, Axel; Korpi, Maarit J.; Snellman, Jan E.; Narayan, Ramesh

    2010-08-01

    Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (Λ-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The Λ-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.

  14. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  15. The differences in analysing strategy of viscosity experiment between freshmen and laboratory assistant

    NASA Astrophysics Data System (ADS)

    Anggrayni, S.; Mubarok, H.; Putri, N. P.; Suprapto, N.; Kholiq, A.

    2018-03-01

    The viscosity is defined by dimension of a fluid that resists the force tending to motive the fluid to flow. The aim of viscosity experiment is to determine the fluid viscosity coefficient value. By using graphical analysis, the result of oil viscosity coefficient value which performed by laboratory assistant showed: (1) 0.20 Pa.s using solid ball with accuracy 99.64% and (2) 0.21 Pa.s using smaller solid ball with accuracy 99.17%. Meanwhile, the result of oil viscosity coefficient value which performed by freshmen showed: (1) 0.44 Pa.s using solid ball with accuracy 87.85% and (2) 0.32 Pa.s using smaller solid ball with accuracy 89.84%. The differences result of the freshmen and assistant laboratory viscosity experiment are caused by the freshmen calculated the coefficient viscosity value without velocity correction factor and they used small range fluid so the times are not identified well.

  16. Collision statistics, thermodynamics, and transport coefficients of hard hyperspheres in three, four, and five dimensions

    NASA Astrophysics Data System (ADS)

    Lue, L.

    2005-01-01

    The collision statistics of hard hyperspheres are investigated. An exact, analytical formula is developed for the distribution of speeds of a sphere on collision, which is shown to be related to the average time between collisions for a sphere with a particular velocity. In addition, the relationship between the collision rate and the compressibility factor is generalized to arbitrary dimensions. Molecular dynamics simulations are performed for d=3, 4, and 5 dimensional hard-hypersphere fluids. From these simulations, the equation of state of these systems, the self-diffusion coefficient, the shear viscosity, and the thermal conductivity are determined as a function of density. Various aspects of the collision statistics and their dependence on the density and dimensionality of the system are also studied.

  17. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  18. Influence of toroidal rotation on resistive tearing modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ma, Z. W.

    2015-12-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  19. Determination of rheological parameters of liquid crystals with zero anisotropy of diamagnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Korotey, E. V.; Sinyavskii, N. Ya.

    2007-07-01

    A new method for determination of rheological parameters of liquid crystals with zero anisotropy of diamagnetic susceptibility is proposed, which is based on the measurement of the quadrupole splitting line of the NMR 2H spectrum. The method provides higher information content of the experiments, with the shear flow discarded from consideration, compared to that obtained by the classical Leslie-Ericksen theory. A comparison with the experiment is performed, the coefficients of anisotropic viscosity of lecithin/D2O/cyclohexane are determined, and a conclusion is drawn as concerns the domain shapes.

  20. A new scaling for the rotational diffusion of molecular probes in polymer solutions.

    PubMed

    Qing, Jing; Chen, Anpu; Zhao, Nanrong

    2017-12-13

    In the present work, we propose a new scaling form for the rotational diffusion coefficient of molecular probes in semi-dilute polymer solutions, based on a theoretical study. The mean-field theory for depletion effect and semi-empirical scaling equation for the macroscopic viscosity of polymer solutions are properly incorporated to specify the space-dependent concentration and viscosity profiles in the vicinity of the probe surface. Following the scheme of classical fluid mechanics, we numerically evaluate the shear torque exerted on the probes, which then allows us to further calculate the rotational diffusion coefficient D r . Particular attention is given to the scaling behavior of the retardation factor R rot ≡ D/D r with D being the diffusion coefficient in pure solvent. We find that R rot has little relevance to the macroscopic viscosity of the polymer solution, while it can be well featured by the characteristic length scale r h /δ, i.e. the ratio between the hydrodynamic radius of the probe r h and the depletion thickness δ. Correspondingly, we obtain a novel scaling form for the rotational retardation factor, following R rot = exp[a(r h /δ) b ] with rather robust parameters of a ≃ 0.51 and b ≃ 0.56. We apply the theory to an extensive calculation for various probes in specific polymer solutions of poly(ethylene glycol) (PEG) and dextran. Our theoretical results show good agreements with the experimental data, and clearly demonstrate the validity of the new scaling form. In addition, the difference of the scaling behavior between translational and rotational diffusions is clarified, from which we conclude that the depletion effect plays a more significant role on the local rotational diffusion rather than the long-range translation diffusion.

  1. Efficient Multiscale Computation with Improved Momentum Flux Coupling via Operator-Splitting and Probabilistic Uncertainty Quantification

    DTIC Science & Technology

    2016-08-23

    Different percentages of clay (10 to 30%) and sand (35 to 55%) have been used to represent various flow concentrations (Table 1). Dynamic viscosity of the... viscosity , was adopted as the wall boundary treatment method. 2.2 Physical Domain The domain consists of a 7.0m long flume, which has an inclination of...the shear stress, μapp is the apparent viscosity , K is the flow consistency index, n is the flow behavior index, and γ is the shear rate, which is

  2. A Realizable Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1993-01-01

    The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.

  3. The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow

    NASA Astrophysics Data System (ADS)

    Sesay, Juldeh

    2005-11-01

    The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.

  4. Short Communication: Rheological properties of blood serum of rats after irradiation with different gamma radiation doses in vivo.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif Aa; Ms, Al-Ayed

    2016-01-01

    The blood serum rheological properties open the door to find suitable radio-protectors and convenient therapy for many cases of radiation exposure. The present study aimed to investigate the rheological properties of rat blood serum at wide range of shear rates after whole body irradiation with different gamma radiation doses in vivo. Healthy male rats were divided into five groups; one control group and 4 irradiated groups. The irradiation process was carried out using Co60 source with dose rate of 0.883cG/sec. Several rheological parameters were measured using Brookfield LVDV-III Programmable rheometer. A significant increase in viscosity and shear stress was observed with 25 and 50Gy corresponding to each shear rate compared with the control; while a significant decrease observed with 75 and 100Gy. The viscosity exhibited a Non-Newtonian behaviour with the shear rate while shear stress values were linearly related with shear rate. The decrease in blood viscosity might be attributed to changes in molecular weight, pH sensitivity and protein structure. The changes in rheological properties of irradiated rats' blood serum might be attributed to destruction changes in the haematological and dimensional properties of rats' blood products.

  5. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J.

    2008-08-01

    A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.

  6. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyrya, V.; Lipnikov, K.; Aranson, I.

    2011-05-01

    Recently, there has been a number of experimental studies convincingly demonstrating that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime (in the absence of rotational diffusion) the effectivemore » shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled microswimmers can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We also performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.« less

  7. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  8. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  9. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  10. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    PubMed

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Process viscometry in flows of non-Newtonian fluids using an anchor agitator

    NASA Astrophysics Data System (ADS)

    Jo, Hae Jin; Jang, Hye Kyeong; Kim, Young Ju; Hwang, Wook Ryol

    2017-11-01

    In this work, we present a viscosity measurement technique for inelastic non-Newtonian fluids directly in flows of anchor agitators that are commonly used in highly viscous fluid mixing particularly with yield stress. A two-blade anchor impeller is chosen as a model flow system and Carbopol 940 solutions and Xanthan gum solutions with various concentrations are investigated as test materials. Following the Metzner-Otto correlation, the effective shear rate constant and the energy dissipation rate constant have been estimated experimentally by establishing (i) the relationship between the power number and the Reynolds number using a reference Newtonian fluid and (ii) the proportionality between the effective shear rate and the impeller speed with a reference non-Newtonian fluid. The effective viscosity that reproduces the same amount of the energy dissipation rate, corresponding to that of Newtonian fluid, has been obtained by measuring torques for various impeller speeds and the accuracy in the viscosity prediction as a function of the shear rate has been compared with the rheological measurement. We report that the process viscometry with the anchor impeller yields viscosity estimation within the relative error of 20% with highly shear-thinning fluids.

  12. Boundary layers at the interface of two different shear flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Wang, C. Y.

    2018-05-01

    We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.

  13. Mode-coupling theoretical study on the roles of heterogeneous structure in rheology of ionic liquids.

    PubMed

    Yamaguchi, Tsuyoshi

    2016-03-28

    Theoretical calculations of the rheological properties of coarse-grained model ionic liquids were performed using mode-coupling theory. The nonpolar part of the cation was systematically increased in order to clarify the effects of the heterogeneous structure on shear viscosity. The shear viscosity showed a minimum as the function of the size of the nonpolar part, as had been reported in literatures. The minimum was ascribed to the interplay between the increase in the shear relaxation time and the decrease in the high-frequency shear modulus with increasing the size of the nonpolar part of the cation. The ionic liquids with symmetric charge distribution of cations were less viscous than those with asymmetric cations, which is also in harmony with experiments. The theoretical analysis demonstrated that there are two mechanisms for the higher viscosity of the asymmetric model. The first one is the direct coupling between the domain dynamics and the shear stress. The second one is that the microscopic dynamics within the polar domain is retarded due to the nonlinear coupling with the heterogeneous structure.

  14. Effect of extrusion rate on morphology of Kaolin/PolyEtherSulfone (PESf) membrane precursor

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Sarbatly, R.; Bono, A.; Rahman, M. M.

    2016-11-01

    This study aims to investigate the influence of apparent viscosity induced by spinneret geometry and extrusion rate on morphology of Kaolin/PESf hollow fiber membranes. Different extrusion rates at two different rheology properties were introduced on a straight and conical spinneret resulting in various shear rates. The hollow fiber membrane precursors were spun using the wet spinning method to decouple the effect of shear and elongation stress due to gravity stretched drawing. The morphology of the spun hollow fiber was observed under Scanning Electron Microscope (SEM) and the overall porosity were measured using mercury intrusion porosimeter. Shear rate and apparent viscosity at the tip of the spinneret annulus were simulated using a computational fluid dynamics package; solidworks floworks. Simulation data shows that extrusion rate increment increases the shear rate at the spinneret wall which in turn reduce the apparent viscosity; consistent with a non Newtonian shear thinning fluid behavior. Thus, the outer finger-like region grows as the shear rate increases. Also, overall porosity of hollow fiber membrane decreases with extrusion rate increment which is caused by better molecular orientation; resulting in denser hollow fiber membrane. Thin outer finger-like region is achieved at low shear experience of 109.55 s-1 via a straight spinneret. Increasing the extrusion rate; thus shear rate will cause outer finger-like region growth which is not desirable in a separation process.

  15. Role of shear stress in nitric oxide-dependent modulation of renal angiotensin II vasoconstriction.

    PubMed

    Endlich, K; Muller, C; Barthelmebs, M; Helwig, J J

    1999-08-01

    1. Renal vasoconstriction in response to angiotensin II (ANGII) is known to be modulated by nitric oxide (NO). Since shear stress stimulates the release of a variety of vasoactive compounds from endothelial cells, we studied the impact of shear stress on the haemodynamic effect of ANGII in isolated perfused kidneys of rats under control conditions and during NO synthase inhibition with L-NAME (100 microM). 2. Kidneys were perfused in the presence of cyclo-oxygenase inhibitor (10 microM indomethacin) with Tyrode's solution of relative viscosity zeta=1 (low viscosity perfusate, LVP) or, in order to augment shear stress, with Tyrode's solution containing 7% Ficoll 70 of relative viscosity zeta=2 (high viscosity perfusate, HVP). 3. Vascular conductance was 3.5+/-0.4 fold larger in HVP as compared with LVP kidneys, associated with an augmentation of overall wall shear stress by 37+/-5%. During NO inhibition, vascular conductance was only 2.5+/-0.2 fold elevated in HVP vs LVP kidneys, demonstrating shear stress-induced vasodilatation by NO and non-NO/non-prostanoid compound(s). 4. ANGII (10 - 100 pM) constricted the vasculature in LVP kidneys, but was without effect in HVP kidneys. During NO inhibition, in contrast, ANGII vasoconstriction was potentiated in HVP as compared with LVP kidneys. 5. The potentiation of ANGII vasoconstriction during NO inhibition has been shown to be mediated by endothelium-derived P450 metabolites and to be sensitive to AT2 receptor blockade in our earlier studies. Accordingly, in HVP kidneys, increasing concentrations of the AT2 receptor antagonist PD123319 (5 and 500 nM) gradually abolished the potentiation of ANGII vasoconstriction during NO inhibition, but did not affect vasoconstriction in response to ANGII in LVP kidneys. 6. Our results demonstrate, that augmentation of shear stress by increasing perfusate viscosity induces vasodilatation in the rat kidney, which is partially mediated by NO. Elevated levels of shear stress attenuate renal ANGII vasoconstriction through enhanced NO production and are required for AT2 sensitive potentiation during NO inhibition.

  16. Role of shear stress in nitric oxide-dependent modulation of renal angiotensin II vasoconstriction

    PubMed Central

    Endlich, Karlhans; Muller, Catherine; Barthelmebs, Mariette; Helwig, Jean-Jacques

    1999-01-01

    Renal vasoconstriction in response to angiotensin II (ANGII) is known to be modulated by nitric oxide (NO). Since shear stress stimulates the release of a variety of vasoactive compounds from endothelial cells, we studied the impact of shear stress on the haemodynamic effect of ANGII in isolated perfused kidneys of rats under control conditions and during NO synthase inhibition with L-NAME (100 μM).Kidneys were perfused in the presence of cyclo-oxygenase inhibitor (10 μM indomethacin) with Tyrode's solution of relative viscosity ζ=1 (low viscosity perfusate, LVP) or, in order to augment shear stress, with Tyrode's solution containing 7% Ficoll 70 of relative viscosity ζ=2 (high viscosity perfusate, HVP).Vascular conductance was 3.5±0.4 fold larger in HVP as compared with LVP kidneys, associated with an augmentation of overall wall shear stress by 37±5%. During NO inhibition, vascular conductance was only 2.5±0.2 fold elevated in HVP vs LVP kidneys, demonstrating shear stress-induced vasodilatation by NO and non-NO/non-prostanoid compound(s).ANGII (10–100 pM) constricted the vasculature in LVP kidneys, but was without effect in HVP kidneys. During NO inhibition, in contrast, ANGII vasoconstriction was potentiated in HVP as compared with LVP kidneys.The potentiation of ANGII vasoconstriction during NO inhibition has been shown to be mediated by endothelium-derived P450 metabolites and to be sensitive to AT2 receptor blockade in our earlier studies. Accordingly, in HVP kidneys, increasing concentrations of the AT2 receptor antagonist PD123319 (5 and 500 nM) gradually abolished the potentiation of ANGII vasoconstriction during NO inhibition, but did not affect vasoconstriction in response to ANGII in LVP kidneys.Our results demonstrate, that augmentation of shear stress by increasing perfusate viscosity induces vasodilatation in the rat kidney, which is partially mediated by NO. Elevated levels of shear stress attenuate renal ANGII vasoconstriction through enhanced NO production and are required for AT2 sensitive potentiation during NO inhibition. PMID:10482926

  17. Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.

    2017-05-01

    The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo collision, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.

  18. Shearwave Dispersion Ultrasonic Vibrometry (SDUV) for measuring prostate shear stiffness and viscosity – An in vitro pilot study

    PubMed Central

    Urban, M.W.; Fatemi, M.; Greenleaf, J.F.

    2011-01-01

    This paper reports shear stiffness and viscosity “virtual biopsy” measurements of three excised non-cancerous human prostates using shearwave dispersion ultrasound vibrometry (SDUV) in vitro. Improved methods for prostate guided-biopsy are required to effectively guide needle biopsy to the suspected site. In addition, tissue stiffness measurement helps identifying a suspected site to perform biopsy because stiffness has been shown to correlate with pathology. More importantly, early detection of prostate cancer may guide minimally-invasive therapy and eliminate insidious procedures. In this work, “virtual” biopsies were taken in multiple locations in three excised prostates. Then, SDUV shear elasticity and viscosity measurements have been performed at the selected “suspicious” locations within the prostates. SDUV measurements of prostate elasticity and viscosity are generally in agreement with preliminary values reported previously in the literature. It is however important to emphasize that the obtained viscoelastic parameters values are local, and not a mean value for the whole prostate. PMID:20595086

  19. Miscible displacement of a non-Newtonian fluid in a capillary tube

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter < 1 mm) using a Newtonian fluid. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and Péclet (Pé) numbers. Aqueous polymers were prepared by mixing ϕ = 0.01-0.1% (wt/wt) Carboxymethyl Cellulose (CMC) in water. We measure the shear viscosity of the aqueous polymer over a broad range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  20. Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtori, Norikazu, E-mail: ohtori@chem.sc.niigata-u.ac.jp; Ishii, Yoshiki

    Explicit expressions of the self-diffusion coefficient, D{sub i}, and shear viscosity, η{sub sv}, are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m{sup −3}. The scalingmore » equations obtained by multiplying all the single-variable dependences can well express D{sub i} and η{sub sv} evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for D{sub i} can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the “isotope effect” on D{sub i}. The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions.« less

  1. Simulation of shear thickening in attractive colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.

    2017-01-01

    The influence of attractive forces between particles under conditions of large particle volume fraction is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris & M. M. Denn, PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one amore » contact frictional interaction and the second a repulsive force common in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress and a characteristic stress based on the combination of interparticle force with kT the thermal energy. At sufficiently large volume fraction, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan & C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.« less

  2. On the measurement of the relative viscosity of suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acrivos, A.; Fan, X.; Mauri, R.

    The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement withmore » those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. [bold 41], 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number [ital A], and should attain its correct value for a well-mixed suspension only as [ital A][r arrow][infinity]. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate.« less

  3. Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Dini, D.; Smith, E. R.

    2018-05-01

    The viscoelastic behavior of sheared fluids is calculated by Non-Equilibrium Molecular Dynamics (NEMD) simulation, and complementary analytic solutions of a time-dependent extension of Eyring's model (EM) for shear thinning are derived. It is argued that an "incremental viscosity," ηi, or IV which is the derivative of the steady state stress with respect to the shear rate is a better measure of the physical state of the system than the conventional definition of the shear rate dependent viscosity (i.e., the shear stress divided by the strain rate). The stress relaxation function, Ci(t), associated with ηi is consistent with Boltzmann's superposition principle and is computed by NEMD and the EM. The IV of the Eyring model is shown to be a special case of the Carreau formula for shear thinning. An analytic solution for the transient time correlation function for the EM is derived. An extension of the EM to allow for significant local shear stress fluctuations on a molecular level, represented by a gaussian distribution, is shown to have the same analytic form as the original EM but with the EM stress replaced by its time and spatial average. Even at high shear rates and on small scales, the probability distribution function is almost gaussian (apart from in the wings) with the peak shifted by the shear. The Eyring formula approximately satisfies the Fluctuation Theorem, which may in part explain its success in representing the shear thinning curves of a wide range of different types of chemical systems.

  4. Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures

    DTIC Science & Technology

    1980-07-01

    HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD

  5. Out-of-Bounds Hydrodynamics in Anisotropic Dirac Fluids

    NASA Astrophysics Data System (ADS)

    Link, Julia M.; Narozhny, Boris N.; Kiselev, Egor I.; Schmalian, Jörg

    2018-05-01

    We study hydrodynamic transport in two-dimensional, interacting electronic systems with merging Dirac points at charge neutrality. The dispersion along one crystallographic direction is Dirac-like, while it is Newtonian-like in the orthogonal direction. As a result, the electrical conductivity is metallic in one and insulating in the other direction. The shear viscosity tensor contains six independent components, which can be probed by measuring an anisotropic thermal flow. One of the viscosity components vanishes at zero temperature leading to a generalization of the previously conjectured lower bound for the shear viscosity to entropy density ratio.

  6. The effect of pulsed IR-light on the rheological parameters of blood in vitro.

    PubMed

    Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna

    2014-01-01

    In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.

  7. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Mäntysaari, Heikki; Schenke, Björn; Shen, Chun; Tribedy, Prithwish

    2017-09-01

    Results for particle production in √{ s} = 5.02TeV p + Pb collisions at the Large Hadron Collider within a combined classical Yang-Mills and relativistic viscous hydrodynamic calculation are presented. We emphasize the importance of sub-nucleon scale fluctuations in the proton projectile to describe the experimentally observed azimuthal harmonic coefficients vn, demonstrating their sensitivity to the proton shape. We stress that the proton shape and its fluctuations are not free parameters in our calculations. Instead, they have been constrained using experimental data from HERA on exclusive vector meson production. Including temperature dependent shear and bulk viscosities, as well as UrQMD for the low temperature regime, we present results for mean transverse momenta, harmonic flow coefficients for charged hadrons and identified particles, as well as Hanbury-Brown-Twiss radii.

  8. Viscous Moment, Mechanism of Slow Slip, and Subduction Megathrust Viscosity

    NASA Astrophysics Data System (ADS)

    Fagereng, A.

    2015-12-01

    Slow slip events (SSEs) represent transient slip velocities slower than earthquakes but faster than steady, average plate motion. SSEs repeating at the same location have characteristic slip magnitude and duration. Contrary to earthquakes, however, average slip relates to neither duration nor area. Variations in duration, slip, and slip rate can instead be tied to variations in effective viscosity, calculated from a viscous definition of moment. In this paradigm, the observation that deep slow slip events are slower and longer, implies a higher effective viscosity than in shallower, colder SSEs. Observed variations in effective viscosity and slip rate can be interpreted in terms of differences in driving stress and shear zone width, and likely arise in anastomosing shear zones containing a heterogeneous mixture of materials.

  9. Geometry-dependent viscosity reduction in sheared active fluids

    NASA Astrophysics Data System (ADS)

    Słomka, Jonasz; Dunkel, Jörn

    2017-04-01

    We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.

  10. Conditions of viscosity measurement for detecting irradiated peppers

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-04-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as a type of viscometer, shear rate and temperature.

  11. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.

    PubMed

    Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak

    2018-05-01

    Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Jeans instability in a universe with dissipation

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Richarte, Martín G.; Teston, Felipe

    2018-01-01

    The problem of Jeans gravitational instability is investigated for static and expanding universes within the context of the five and thirteen field theories which account for viscous and thermal effects. For the five-field theory a general dispersion relation has been derived with the help of relevant linearized perturbation equations, showing that the shear viscosity parameter alters the propagating modes for large and small wavelengths. The behavior of density and temperature contrasts are analyzed for the hard-sphere model in detail. In the small wavelengths regime, increasing the amount of shear viscosity into the system forces the harmonic perturbations to damp faster, however, in the opposite limit larger values of shear viscosity lead to smaller values of density and temperature contrasts. We also consider the hyperbolic case associated with the thirteen-field theory which involves two related parameters, namely the shear viscosity and the collision frequency, the last one is due to the production terms which appear in the Grad method. The dispersion relation becomes a polynomial in the frequency with two orders higher in relation to the five-field theory, indicating that the effects associated with the shear viscosity and heat flux are nontrivial. The profile of Jeans mass in terms of the temperature and number density is explored by contrasting with several data of molecular clouds. Regarding the dynamical evolution of the density, temperature, stress and heat flux contrasts for a universe dominated by pressureless matter, we obtain also damped harmonic waves for small wavelengths. In the case of large wavelengths, the density and temperature contrasts grow with time (due to the Jeans mechanism) while the stress and heat flux contrasts heavily decay with time. For an expanding universe, the Jeans mass and Jeans length are obtained and their physical consequences are explored.

  13. Rheological study of synovial fluid obtained from dogs: healthy, pathological, and post-surgery, after spontaneous rupture of cranial cruciate ligament.

    PubMed

    Goudoulas, Thomas B; Kastrinakis, Eleftherios G; Nychas, Stavros G; Papazoglou, Lysimachos G; Kazakos, George M; Kosmas, Panagiotis V

    2010-01-01

    In the present study synovial fluid (SF) obtained from the stifle joint of healthy adult dogs and of dogs after cranial cruciate ligament rupture was analyzed regarding its rheological characteristics according to the condition of the joint. The viscoelastic and shear flow properties were measured at 25 and 38 degrees C. The results showed that the healthy SF exhibits practically temperature independent viscosity curve and satisfactory viscoelastic characteristics, i.e. G' > G'', over frequencies of 0.05-5 Hz, and characteristic relaxation time lambda of the order of magnitude of 100 s. Creep measurements demonstrate that the zero shear viscosity was in the range of 10-100 Pa s. In shear flow viscosity measurements, by increasing gamma from 10(-4) s(-1) up to 10(3) s(-1), non-Newtonian shear thinning behavior was observed and the viscosity values were decreased from 10(3) to 0.1 Pa s. On the contrary, in pathological conditions of cranial cruciate ligament rupture (CCLR), the measured viscosity was found drastically reduced, i.e. between 100 and 10 mPa s. The CCLR synovial fluid, similar to healthy SF, exhibits insignificant temperature dependence. The present study showed also that about one week after a surgery for CCLR repair the SF exhibits non-Newtonian behavior of dilute polymers. After two weeks from the operation, however, the rheological behavior converges to the one of healthy SF.

  14. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    DOE PAGES

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; ...

    2015-11-24

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100–500 eV and a number density of 10 25 ions/cc. The motion of 30 000–120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function,more » a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high- Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. Here, we develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. Finally, this hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.« less

  15. Variation of the apparent viscosity of thickened drinks.

    PubMed

    O'Leary, Mark; Hanson, Ben; Smith, Christina H

    2011-01-01

    In dysphagia care, thickening powders are widely added to drinks to slow their flow speed by increasing their viscosity. Current practice relies on subjective evaluation of viscosity using verbal descriptors. Several brands of thickener are available, with differences in constituent ingredients and instructions for use. Some thickened fluids have previously been shown to exhibit time-varying non-Newtonian flow behaviour, which may complicate attempts at subjective viscosity judgement. The aims were to quantify the apparent viscosity over time produced by thickeners having a range of constituent ingredients, and to relate the results to clinical practice. A comparative evaluation of currently available thickener products, including two which have recently been reformulated, was performed. Their subjective compliance to the National Descriptors standards was assessed, and their apparent viscosity was measured using a rheometer at shear rates representative of situations from slow tipping in a beaker (0.1 s⁻¹) to a fast swallow (100 s⁻¹). Testing was performed repeatedly up to 3 h from mixing. When mixed with water, it was found that most products compared well with subjective National Descriptors at three thickness levels. The fluids were all highly non-Newtonian; their apparent viscosity was strongly dependent on the rate of testing, typically decreasing by a factor of almost 100 as shear rate increased. All fluids showed some change in viscosity with time from mixing; this varied between products from -34% to 37% in the tests. This magnitude was less than the difference between thickness levels specified by the National Descriptors. The apparent viscosity of thickened fluids depends strongly on the shear rate at which it is examined. This inherent behaviour is likely to hinder subjective evaluation of viscosity. If quantitative measures of viscosity are required (for example, for standardization purposes), they must therefore be qualified with information of the test conditions. © 2010 Royal College of Speech & Language Therapists.

  16. Effect of various superplasticizers on rheological properties of cement paste and mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, I.; Agarwal, S.K.

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cementmore » paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.« less

  17. Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian

    2017-11-01

    We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.

  18. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides.

    PubMed

    Dhital, Sushil; Dolan, Grace; Stokes, Jason R; Gidley, Michael J

    2014-03-01

    The in vitro amylolysis of both granular and cooked maize starch and the diffusion of glucose in the presence of 1% and 2% cereal soluble fibre polysaccharides (arabinoxylan and mixed linkage beta-glucan) were studied at various levels of shear mixing in order to identify potential molecular mechanisms underlying observed glycemia-reducing effects of soluble fibres in vivo. The presence of soluble fibres increased viscosity by ca. 10× and 100× for 1% and 2% concentrations respectively. Despite this large difference in viscosity, measured digestion and mass transfer coefficients were only reduced by a factor of 1.5 to 2.5 at the same mixing speed. In contrast, introduction of mixing in the digesting and diffusing medium significantly increased the rate of amylolytic starch digestion and mass transfer of glucose. This effect is such that mixing at high speeds negates the hindering effect of the 100× increased viscosity imparted by the presence of 2% soluble fibre; this is essentially captured by the Reynolds number (the ratio of inertial and viscous forces) that defines the flow kinematics. The modest reduction of in vitro starch hydrolysis and glucose diffusion at increased viscosity suggests that the established benefits of soluble fibres on post-prandial glycaemia, in terms of attenuation of the overall rate and extent of dietary starch conversion to blood glucose, are not primarily due to a direct effect of viscosity. Alternative hypotheses are proposed based on gastric emptying, restriction of turbulent flow, and/or stimulation of mucus turnover.

  19. Production and evaluation of measuring equipment for share viscosity of polymer melts included nanofiller with injection molding machine

    NASA Astrophysics Data System (ADS)

    Kameda, Takao; Sugino, Naoto; Takei, Satoshi

    2016-10-01

    Shear viscosity measurement device was produced to evaluate the injection molding workability for high-performance resins. Observation was possible in shear rate from 10 to 10000 [1/sec] that were higher than rotary rheometer by measuring with a plasticization cylinder of the injection molding machine. The result of measurements extrapolated result of a measurement of the rotary rheometer.

  20. Mixed higher-order flow harmonics and nonlinear response coefficients in PbPb collisions at 2.76 and 5.02 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Tuo, Shengquan; CMS Collaboration

    2017-11-01

    The mixed higher-order flow harmonics and nonlinear response coefficients of charged particles are presented as a function of pT and centrality in PbPb collisions at √{sNN} = 2.76 TeV and 5.02 TeV with the CMS detector. The results are obtained using the scalar product method, and cover a pT range from 0.3 GeV/c to 8.0 GeV/c, pseudorapidity | η | < 2.4, and a centrality range of 0-60%. The mixed harmonic results at 5.02 TeV are compared to the matching higher-order flow harmonics from two-particle correlations, which measure vn values with respect to the n-th order event plane. It is observed that the nonlinear response coefficients of the odd harmonics are larger than the even harmonics ones. The results are compared with hydrodynamic predictions using different shear viscosity to entropy density ratios and different initial conditions.

  1. The rheological properties of modified microcrystalline cellulose containing high levels of model drugs.

    PubMed

    Knight, Paul E; Podczeck, Fridrun; Newton, J Michael

    2009-06-01

    The rheological properties of different types of microcrystalline cellulose (MCC) mixed with model drugs and water have been evaluated to identify the influence of sodium carboxymethylcellulose (SCMC) added to the cellulose during preparation. A ram extruder was used as a capillary rheometer. The mixtures consisted of 20% spheronizing agent (standard grade MCC or modified types with 6% or 8% of low viscosity grade SCMC) and 80% of ascorbic acid, ibuprofen or lactose monohydrate. The introduction of SCMC changed all rheological parameters assessed. It produced more rigid systems, requiring more stress to induce and maintain flow. Degree of non-Newtonian flow, angle of convergence, extensional viscosity, yield and die land shear stress at zero velocity, and static wall friction were increased, but recoverable shear and compliance were decreased. The presence of SCMC did not remove the influence of the type of drug. The mixture of ibuprofen and standard MCC had the lowest values for shear stress as a function of the rate of shear, extensional viscosity, and angle of convergence, but the highest values for recoverable shear and compliance. The findings indicate that the system has insufficient rigidity to form pellets. (c) 2008 Wiley-Liss, Inc.

  2. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.

  3. Negative viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field

    DOE PAGES

    Li, J. C.; Diamond, P. H.

    2017-03-23

    Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\

  4. Shear viscosity to entropy density ratios and implications for (im)perfect fluidity in Fermionic and Bosonic superfluids

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2015-03-01

    Recent experiments on both unitary Fermi gases and high temperature superconductors (arxiv:1410.4835 [cond-mat.quant-gas], arxiv:1409.5820 [cond-mat.str-el].) have led to renewed interest in near perfect fluidity in condensed matter systems. This is quantified by studying the ratio of shear viscosity to entropy density. In this talk we present calculations of this ratio in homogeneous bosonic and fermionic superfluids, with the latter ranging from BCS to BEC. While the shear viscosity exhibits a power law (for bosons) or exponential suppression (for fermions), a similar dependence is found for the respective entropy densities. As a result, strict BCS and (true) bosonic superfluids have an analogous viscosity to entropy density ratio, behaving linearly with temperature times the (T-dependent) dissipation rate; this is characteristic of imperfect fluidity in weakly coupled fluids. This is contrasted with the behavior of fermions at unitarity which we argue is a consequence of additional terms in the entropy density thereby leading to more perfect fluidity. (arXiv:1407.7572v1 [cond-mat.quant-gas])

  5. Improving the accuracy of central difference schemes

    NASA Technical Reports Server (NTRS)

    Turkel, Eli

    1988-01-01

    General difference approximations to the fluid dynamic equations require an artificial viscosity in order to converge to a steady state. This artificial viscosity serves two purposes. One is to suppress high frequency noise which is not damped by the central differences. The second purpose is to introduce an entropy-like condition so that shocks can be captured. These viscosities need a coefficient to measure the amount of viscosity to be added. In the standard scheme, a scalar coefficient is used based on the spectral radius of the Jacobian of the convective flux. However, this can add too much viscosity to the slower waves. Hence, it is suggested that a matrix viscosity be used. This gives an appropriate viscosity for each wave component. With this matrix valued coefficient, the central difference scheme becomes closer to upwind biased methods.

  6. Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Kagamihara, D.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the shear viscosity η , as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein condensation (BEC) crossover region. We also evaluate η / s, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η is remarkably suppressed near the superfluid phase transition temperature Tc, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η . We also show that η / s decreases with increasing the interaction strength, to become very close to the KSS bound, \\hbar /4π kB, on the BEC side.

  7. Rheological behaviour of a suspension of microswimmers varying in motor characteristics

    NASA Astrophysics Data System (ADS)

    Tirumkudulu, Mahesh; Karmakar, Richa; Gulvady, Ranjit; Venkatesh, K. V.

    2013-11-01

    A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of suspensions of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibiting a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles. The authors acknowldege financial support from Department of Science and Technology, India.

  8. Motor characteristics determine the rheological behavior of a suspension of microswimmers

    NASA Astrophysics Data System (ADS)

    Karmakar, Richa; Gulvady, Ranjit; Tirumkudulu, Mahesh S.; Venkatesh, K. V.

    2014-07-01

    A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of a suspension of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibit a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of passive rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles.

  9. Probing the shear viscosity of an active nematic film

    NASA Astrophysics Data System (ADS)

    Guillamat, Pau; Ignés-Mullol, Jordi; Shankar, Suraj; Marchetti, M. Cristina; Sagués, Francesc

    2016-12-01

    In vitro reconstituted active systems, such as the adenosine triphosphate (ATP)-driven microtubule bundle suspension developed by the Dogic group [T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Nature (London) 491, 431 (2012), 10.1038/nature11591], provide a fertile testing ground for elucidating the phenomenology of active liquid crystalline states. Controlling such novel phases of matter crucially depends on our knowledge of their material and physical properties. In this Rapid Communication, we show that the shear viscosity of an active nematic film can be probed by varying its hydrodynamic coupling to a bounding oil layer. Using the motion of disclinations as intrinsic tracers of the flow field and a hydrodynamic model, we obtain an estimate for the shear viscosity of the nematic film. Knowing this now provides us with an additional handle for robust and precision tunable control of the emergent dynamics of active fluids.

  10. Rayleigh-Brillouin scattering studies of the rotation-translation coupling and bulk viscosity relaxation of liquids composed of anisotropic molecules: p-Anisaldehyde and aniline

    NASA Astrophysics Data System (ADS)

    O'Steen, B. L.; Wang, C. H.; Fytas, G.

    1984-04-01

    The coupling of reorientational motion to longitudinal acoustic modes was investigated by studying the Rayleigh-Brillouin spectra of aniline and p-anisaldehyde over a wide range of scattering angles. Aniline and p-anisaldehyde were chosen for investigation since their depolarized spectra at the temperature of interest show a pronounced coupling between orientation and shear modes. The experimental results for attenuation and velocity of the longitudinal waves show that there is indeed relaxation in the shear viscosity. However, shear relaxation due to the coupling of the longitudinal acoustic mode to reorientation plays only a minor role in causing the dispersion of the hypersonic longitudinal waves. To account for the large dispersion, it is essential to consider the mechanism associated with the relaxation of the bulk viscosity through the T-V energy transfer.

  11. Connecting thermodynamic and dynamical anomalies of water-like liquid-liquid phase transition in the Fermi-Jagla model

    NASA Astrophysics Data System (ADS)

    Higuchi, Saki; Kato, Daiki; Awaji, Daisuke; Kim, Kang

    2018-03-01

    We present a study using molecular dynamics simulations based on the Fermi-Jagla potential model, which is the continuous version of the mono-atomic core-softened Jagla model [J. Y. Abraham, S. V. Buldyrev, and N. Giovambattista, J. Phys. Chem. B 115, 14229 (2011)]. This model shows the water-like liquid-liquid phase transition between high-density and low-density liquids at the liquid-liquid critical point. In particular, the slope of the coexistence line becomes weakly negative, which is expected to represent one of the anomalies of liquid polyamorphism. In this study, we examined the density, dynamic, and thermodynamic anomalies in the vicinity of the liquid-liquid critical point. The boundaries of density, self-diffusion, shear viscosity, and excess entropy anomalies were characterized. Furthermore, these anomalies are connected according to Rosenfeld's scaling relationship between the excess entropy and the transport coefficients such as diffusion and viscosity. The results demonstrate the hierarchical and nested structures regarding the thermodynamic and dynamic anomalies of the Fermi-Jagla model.

  12. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mouas, Mohamed; Gasser, Jean-Georges; Hellal, Slimane; Grosdidier, Benoît; Makradi, Ahmed; Belouettar, Salim

    2012-03-01

    Molecular dynamics (MD) simulations of liquid tin between its melting point and 1600 °C have been performed in order to interpret and discuss the ionic structure. The interactions between ions are described by a new accurate pair potential built within the pseudopotential formalism and the linear response theory. The calculated structure factor that reflects the main information on the local atomic order in liquids is compared to diffraction measurements. Having some confidence in the ability of this pair potential to give a good representation of the atomic structure, we then focused our attention on the investigation of the atomic transport properties through the MD computations of the velocity autocorrelation function and stress autocorrelation function. Using the Green-Kubo formula (for the first time to our knowledge for liquid tin) we determine the macroscopic transport properties from the corresponding microscopic time autocorrelation functions. The selfdiffusion coefficient and the shear viscosity as functions of temperature are found to be in good agreement with the experimental data.

  13. Two-phase model for prediction of cell-free layer width in blood flow

    PubMed Central

    Namgung, Bumseok; Ju, Meongkeun; Cabrales, Pedro; Kim, Sangho

    2014-01-01

    This study aimed to develop a numerical model capable of predicting changes in the cell-free layer (CFL) width in narrow tubes with consideration of red blood cell aggregation effects. The model development integrates to empirical relations for relative viscosity (ratio of apparent viscosity to medium viscosity) and core viscosity measured on independent blood samples to create a continuum model that includes these two regions. The constitutive relations were derived from in vitro experiments performed with three different glass-capillary tubes (inner diameter = 30, 50 and 100 μm) over a wide range of pseudoshear rates (5-300 s−1). The aggregation tendency of the blood samples was also varied by adding Dextran 500 kDa. Our model predicted that the CFL width was strongly modulated by the relative viscosity function. Aggregation increased the width of CFL, and this effect became more pronounced at low shear rates. The CFL widths predicted in the present study at high shear conditions were in agreement with those reported in previous studies. However, unlike previous multi-particle models, our model did not require a high computing cost, and it was capable of reproducing results for a thicker CFL width at low shear conditions, depending on aggregating tendency of the blood. PMID:23116701

  14. Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature: A two-fluid hydrodynamic description

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zou, Peng; Liu, Xia-Ji

    2018-02-01

    We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.

  15. Assessment of structural heterogeneity and viscosity in the cervix using shear wave elasticity imaging: initial results from a Rhesus macaque model

    PubMed Central

    Rosado-Mendez, Ivan M.; Palmeri, Mark L.; Drehfal, Lindsey C.; Guerrero, Quinton W.; Simmons, Heather; Feltovich, Helen; Hall, Timothy J.

    2016-01-01

    Shear Wave Elasticity Imaging (SWEI) shows promise for evaluating the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior. However, the cervix is structurally/microstructurally heterogeneous and viscoelastic. We therefore developed strategies to investigate these complex tissue properties. SWEI was performed ex vivo on 14 unripened and 13 misoprostol-ripened cervix specimens from Rhesus macaques. After application of tests of significant and uniform shear wave displacement, as well as reliability of estimates, group velocity decreased significantly from the distal (vaginal) to proximal (uterine) end of unripened, but not ripened, specimens. Viscosity was quantified by the slope of the phase velocity vs. frequency. Dispersion was observed in both groups (median 5.5 m/s/kHz, interquartile range: 1.5–12.0 m/s/kHz), also decreasing towards the proximal cervix. This work suggests that comprehensive assessment of complex tissues such as cervix requires consideration of structural heterogeneity and viscosity. PMID:28189282

  16. Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure.

    PubMed

    Viseras, C; Meeten, G H; Lopez-Galindo, A

    1999-05-10

    The effect of mixing conditions on the flow curves of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm Copyright, UK) were selected as model clays. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Rheological measurements were taken and the corresponding flow curves obtained immediately after interposition and then after a period of 24 h under low shear caused by a roller apparatus. Aqueous sepiolite dispersions showed the highest viscosity and were easily interposed, whereas palygorskite dispersions were more difficult to obtain, resulting in low to medium viscosity gels. Bentonite dispersions provided medium viscosity systems, which greatly increased their viscosity after the low shear treatment (as a result of swelling), whereas the viscosity of the fibrous clays stayed at approximately the same values or even decreased. A linear relation was found between mixing energy and apparent viscosity in the bentonite systems, while apparent viscosity in the sepiolite samples was related to mixing power, with minor influence of mixing times. All the systems studied had thixotropic behaviour, changing from clearly positive to even negative thixotropy in some palygorskite systems. Finally, we studied the effect of drastic pH changes on the system structure. Results showed that rheological properties were highly sensitive to pH in the fibrous dispersions, but less sensitive behaviour was found in the laminar clay systems. Copyright.

  17. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantysaari, Heikki; Schenke, Bjorn; Shen, Chun

    Results for particle production inmore » $$\\sqrt{s}$$ = 5.02 TeV p+Pb collisions at the Large Hadron Collider within a combined classical Yang-Mills and relativistic viscous hydrodynamic calculation are presented. We emphasize the importance of sub-nucleon scale fluctuations in the proton projectile to describe the experimentally observed azimuthal harmonic coefficients v n, demonstrating their sensitivity to the proton shape. We stress that the proton shape and its fluctuations are not free parameters in our calculations. Instead, they have been constrained using experimental data from HERA on exclusive vector meson production. Including temperature dependent shear and bulk viscosities, as well as UrQMD for the low temperature regime, we present results for mean trans-verse momenta, harmonic flow coefficients for charged hadrons and identified particles, as well as Hanbury-Brown-Twiss radii.« less

  18. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC

    DOE PAGES

    Mantysaari, Heikki; Schenke, Bjorn; Shen, Chun; ...

    2017-07-21

    Results for particle production inmore » $$\\sqrt{s}$$ = 5.02 TeV p+Pb collisions at the Large Hadron Collider within a combined classical Yang-Mills and relativistic viscous hydrodynamic calculation are presented. We emphasize the importance of sub-nucleon scale fluctuations in the proton projectile to describe the experimentally observed azimuthal harmonic coefficients v n, demonstrating their sensitivity to the proton shape. We stress that the proton shape and its fluctuations are not free parameters in our calculations. Instead, they have been constrained using experimental data from HERA on exclusive vector meson production. Including temperature dependent shear and bulk viscosities, as well as UrQMD for the low temperature regime, we present results for mean trans-verse momenta, harmonic flow coefficients for charged hadrons and identified particles, as well as Hanbury-Brown-Twiss radii.« less

  19. 46 CFR 164.120-5 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...), Standard Test Method for Apparent Viscosity of Plastisols and Organosols at Low Shear Rates, (approved...—Determination of apparent viscosity by the Brookfield test method, Second Edition (February 1, 1989, Corrected...

  20. 46 CFR 164.120-5 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...), Standard Test Method for Apparent Viscosity of Plastisols and Organosols at Low Shear Rates, (approved...—Determination of apparent viscosity by the Brookfield test method, Second Edition (February 1, 1989, Corrected...

  1. Confirmation of a change in the global shear velocity pattern at around 1000 km depth

    NASA Astrophysics Data System (ADS)

    Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S.

    2017-12-01

    In this study, we confirm the existence of a change in the shear velocity spectrum around 1000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross-coupling structure coefficients of spheroidal normal modes and body wave traveltimes which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e. richest in 'short' wavelengths corresponding to spherical harmonic degrees greater than 10) around 1000 km depth and this flattening occurs between 670 and 1500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1000 km depth where we also observed the upper boundary of Large Low Shear Velocity Provinces. The existence of a flatter spectrum, richer in short-wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.

  2. Tribological and Rheological Properties of a Synovial Fluid Model

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca; Liang, Jing; Krause, Wendy

    2010-03-01

    Hyaluronic acid (HA) and the plasma proteins, albumin and globulins, are the most abundant macromolecules in synovial fluid, the fluid that lubricates freely moving joints. In previous studies, bovine synovial fluid, a synovial fluid model (SFM) and albumin in phosphate buffered saline (PBS) were observed to be rheopectic---viscosity increases over time under constant shear. Additionally, steady shear experiments have a strong shear history dependence in protein-containing solutions, whereas samples of HA in PBS behaved as a ``typical'' polyelectrolyte. The observed rheopexy and shear history dependence are indicative of structure building in solution, which is most likely caused by protein aggregation. The tribology of the SFM was also investigated using nanoindenter-based scratch tests. The coefficient of frictions (μ) between the diamond nanoindenter tip and a polyethylene surface was measured in the presence of the SFM and solutions with varied protein and HA concentrations. The lowest μ is observed in the SFM, which most closely mimics a healthy joint. Finally, an anti-inflammatory drug, hydroxychloroquine, was shown to inhibit protein interactions in the SFM in rheological studies, and thus the tribological response was examined. We hypothesize that the rheopectic behavior is important in lubrication regimes and therefore, the rheological and tribological properties of these solutions will be correlated.

  3. General relativistic viscous hydrodynamics of differentially rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta; Sekiguchi, Yu-ichiro

    2017-04-01

    Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous angular momentum transport works but also an outflow could be driven from a hot envelope around the neutron star for a time scale ≳100 ms with the ejecta mass ≳10-2 M⊙ , which is comparable to the typical mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars, could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently high, i.e., if the viscous α parameter is ≳10-2. The present numerical result indicates the importance of a future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous effect in the merger remnants of binary neutron stars by the first-principle manner.

  4. Simulation of shear thickening in attractive colloidal suspensions.

    PubMed

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F

    2017-03-01

    The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.

  5. Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow

    NASA Astrophysics Data System (ADS)

    Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony

    2018-04-01

    Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt increase at Rep = 20.

  6. Computer Modeling of Thermal Convection in Melts to Explain Glass Formation in Low Gravity and on Earth

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Ramachandran, Narayanan

    2006-01-01

    Experiments conducted up to this time on glass forming melts in the low gravity environment of space show that glasses prepared in low-g are more chemically homogeneous and more resistant to crystallization than the comparable glasses prepared at 1-g on Earth. This result is somewhat surprising and opposite to the accepted concept on glass formation for a melt. A hypothesis based on "shear thinning" of a melt, a decrease in viscosity with increasing shear stress, is proposed as an explanation for the observed low-gravity results. This paper describes detailed simulation procedures to test the role of thermal convection in introducing shear stress in glass forming melts, using a lithium disilcate melt as a model. The simulation system in its idealized version consists of a cylinder that is heated at one end and cooled at the other with gravity acting in a transverse direction to the thermal gradient. The side wall of the cylinder is assumed to be insulating. The governing equations of motion and energy are solved using variable properties for viscosity (Arrehenius and non-Arrehenius behaviors) and density (constant and temperature dependent). Other parametric variables in the calculations include gravity level and gravity vector orientation. The shear stress in the system are then computed as a function of gravity from the calculated values of maximum melt velocity, and its effect on melt viscosity (shear thinning) is predicted. Also included and discussed are the modeling efforts related to other potential convective processes in glass forming melts and their possible effects on melt viscosity.

  7. Rheological behavior on treated Malaysian crude oil

    NASA Astrophysics Data System (ADS)

    Chandran, Krittika; Sinnathambi, Chandra Mohan

    2016-11-01

    Crude oil is always produced with water. This association causes many problems during oil production, arising from the formation of emulsion. Emulsion is an undesirable substance that increases operational and capital cost in the pipeline and processing equipment. To overcome this issue, demulsifiers are formulated to break the emulsion, where they are able to separate the water-oil emulsions to their respective phases. The emulsifier's main function is to reduce the interfacial tension properties of the emulsion. For this research, both the EOR and natural water-in-oil emulsions were treated with low a concentration demulsifier. The main objective of this paper is to determine the dynamic viscosity and rheological properties of the treated EOR and natural emulsion. The dynamic viscosity was obtained using the Brook-field Digital Viscometer. The components that influence the emulsion's rheological properties are the temperature, shear rate and shear stress. The results obtained demonstrate that the viscosity of the treated crude decreases and portrays the Non-Newtonian shear thinning "pseudo-plastic" behavior. Besides that, to determine the interfacial film of the treated crude, the spinning drop tensiometer was used. With the addition of demulsifier, the thinning rate of the oil film accelerates whereby there is a linear decrease in the interfacial tension with an increase in time. Therefore, from the results, it can be observed that the rheology study plays a significant role in the demulsification test. Furthermore, both the rheology approaches showed that time, temperature, shear rate and shear stress have a great impact on the viscosity behavior as well as the IFT.

  8. Transport coefficients in high-temperature ionized air flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  9. Shear thinning behaviors in magmas

    NASA Astrophysics Data System (ADS)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour of the partly crystallized melt. This new dataset can be used to model the behaviour of lavas during magma rise in conduits and lava flow on Earth surface and other planetary bodies. F. Vetere et al., (2017) Experimental constraints on the rheology, eruption and emplacement dynamics of lavas from Mercury Northern Volcanic Plains". JGR-Planets DOI: 10.1002/2016JE005181

  10. Highly viscous antibody solutions are a consequence of network formation caused by domain-domain electrostatic complementarities: insights from coarse-grained simulations.

    PubMed

    Buck, Patrick M; Chaudhri, Anuj; Kumar, Sandeep; Singh, Satish K

    2015-01-05

    Therapeutic monoclonal antibody (mAb) candidates that form highly viscous solutions at concentrations above 100 mg/mL can lead to challenges in bioprocessing, formulation development, and subcutaneous drug delivery. Earlier studies of mAbs with concentration-dependent high viscosity have indicated that mAbs with negatively charged Fv regions have a dipole-like quality that increases the likelihood of reversible self-association. This suggests that weak electrostatic intermolecular interactions can form transient antibody networks that participate in resistance to solution deformation under shear stress. Here this hypothesis is explored by parametrizing a coarse-grained (CG) model of an antibody using the domain charges from four different mAbs that have had their concentration-dependent viscosity behaviors previously determined. Multicopy molecular dynamics simulations were performed for these four CG mAbs at several concentrations to understand the effect of surface charge on mass diffusivity, pairwise interactions, and electrostatic network formation. Diffusion coefficients computed from simulations were in qualitative agreement with experimentally determined viscosities for all four mAbs. Contact analysis revealed an overall greater number of pairwise interactions for the two mAbs in this study with high concentration viscosity issues. Further, using equilibrated solution trajectories, the two mAbs with high concentration viscosity issues quantitatively formed more features of an electrostatic network than the other mAbs. The change in the number of these network features as a function of concentration is related to the number of pairwise interactions formed by electrostatic complementarities between antibody domains. Thus, transient antibody network formation caused by domain-domain electrostatic complementarities is the most probable origin of high concentration viscosity for mAbs in this study.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvorostukhin, A. S.; Joint Institute for Nuclear Research, 141980 Dubna; Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu

    Shear {eta} and bulk {zeta} viscosities are calculated in a quasiparticle model within a relaxation-time approximation for pure gluon matter. Below T{sub c}, the confined sector is described within a quasiparticle glueball model. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state, it is possible to describe the temperature dependence of the shear viscosity to entropy ratio {eta}/s and the bulk viscosity to entropy ratio {zeta}/s in reasonable agreement with available lattice data, but absolute values of the {zeta}/s ratio underestimate the upper limits of thismore » ratio in the lattice measurements typically by an order of magnitude.« less

  12. Checking the statistical theory of liquids by ultraacoustic measurements

    NASA Technical Reports Server (NTRS)

    Dima, V. N.

    1974-01-01

    The manner of theoretically obtaining radial distribution functions 9(r) for n-hexane as a function of temperature is described. With the aid of function g(r) the coefficient of dynamic viscosity and the coefficient of volumetric viscosity for temperatures ranging from 213 K to 273 K were calculated. With the aid of the two coefficients of viscosity the coefficient of absorption of ultrasounds in n-hexane referred to the square of the frequency was determined. The same values were measured experimentally. Comparison of theory with experiments resulted in satisfactory agreement.

  13. Particle size effects on viscosity of silver pastes: A manufacturer's view

    NASA Technical Reports Server (NTRS)

    Provance, J.; Allison, K.

    1983-01-01

    Particles from a variety of silver powders were investigated by scanning electron microscopy and particle size analyses. Particle size distribution curves and volume population graphs were prepared for these silver powders and for glass powders with optimum, extra fine and coarse particle sizes. The viscosity at a given shear rate and slope of viscosity over a range of shear rates were determined for thick film pastes made with these powders. Because of particle anomalies and variations, the need for flexibility to achieve the best printing qualities for silver pastes was evident. It was established that print quality, dried and fired film density and optimum contact of silver particles with silicon, important for cell electrical output, could be achieved by adjusting the slope of viscosity that fell outside of the range, -0.550 to -0.650. This was accomplished through organic vehicle technology that permitted a change in the slope of viscosity, up or down, while maintaining a constant silver and total solids content.

  14. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    PubMed

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  15. A master dynamic flow diagram for the shear thickening transition in micellar solutions.

    PubMed

    Bautista, F; Tepale, N; Fernández, V V A; Landázuri, G; Hernández, E; Macías, E R; Soltero, J F A; Escalante, J I; Manero, O; Puig, J E

    2016-01-07

    The shear thickening behavior of dilute micellar solutions of hexadecyltrimethylammonium-type surfactants with different counterions (tosylate, 3- and 4-fluorobenzoate, vinylbenzoate and salicylate) and of n-alkyltetradecylammonium bromide (CnTAB), with n = 14, 16 and 18, is examined here. These solutions undergo a shear thickening transition due to the formation of shear-induced structures (SISs) in the shear range studied. Here we report a relationship between the shear thickening intensity and the differences in the hydrophobicity of counterions according to the Hofmeister-like anion series, which leads to a master flow diagram. This master flow diagram is produced by plotting a normalized shear thickening intensity (Iη - 1)/(Imax - 1) versus CD/CD,max, where Iη is the shear-thickening intensity, defined as the largest viscosity obtained in the shear-thickening transition (STT) at a given surfactant concentration CD divided by the Newtonian viscosity η0, and Imax is the largest intensity value obtained in the STT at a surfactant concentration CD,max. The master flow diagram is built using several cetyltrimethylammonium-type surfactants with different counterions, according to a Hofmeister-like series, and by n-alkyltetradecylammonium bromide surfactants with different alkyl chain lengths.

  16. The shear and bulk relaxation times from the general correlation functions

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  17. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    2002-12-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  18. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  19. Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?

    NASA Astrophysics Data System (ADS)

    Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.

    2017-12-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average grain size. Finally, we compare the numerical results with seismological observations by computing 1D seismic velocity profiles (p-wave, shear-wave and bulk velocities) inside and outside our detected piles using thermodynamic data calculated from Perple_X .

  20. Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars

    NASA Astrophysics Data System (ADS)

    Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai

    2018-05-01

    Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.

  1. Spontaneous Blinking from a Tribological Viewpoint.

    PubMed

    Pult, Heiko; Tosatti, Samuele G P; Spencer, Nicholas D; Asfour, Jean-Michel; Ebenhoch, Michael; Murphy, Paul J

    2015-07-01

    The mechanical forces between the lid wiper and the ocular surface, and between a contact lens and the lid wiper, are reported to be related to dry eye symptoms. Furthermore, the mechanical forces between these sliding partners are assumed to be related to the ocular signs of lid-wiper epitheliopathy (LWE) and lid-parallel conjunctival folds (LIPCOF). Recent literature provides some evidence that a contact lens with a low coefficient of friction (CoF) improves wearing comfort by reducing the mechanical forces between the contact lens surface and the lid wiper. This review discusses the mechanical forces during spontaneous blinks from a tribological perspective, at both low and high sliding velocities, in a healthy subject. It concludes that the coefficient of friction of the ocular surfaces appears to be strongly comparable to that of hydrophilic polymer brushes at low sliding velocity, and that, with increased sliding velocity, there is no wear at the sliding partners' surfaces thanks to the presence of a fluid film between the two sliding partners. In contrast, in the case of dry eye, the failure to maintain a full fluid film lubrication regime at high blinking speeds may lead to increased shear rates, resulting in deformation and wear of the sliding pairs. These shear rates are most likely related to tear film viscosity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Histologic and rheologic characterization of vocal fold scarring.

    PubMed

    Thibeault, Susan L; Gray, Steven D; Bless, Diane M; Chan, Roger W; Ford, Charles N

    2002-03-01

    Scarring of the vocal fold causes considerable dysphonia and presents significant treatment challenges. A rabbit model was developed to investigate the histologic ultrastructure and rheologic properties of the scarred vocal fold lamina propria. Eleven rabbit larynges were scarred by means of forcep biopsy. Sixty days postoperatively, the rabbits were sacrificed and their vocal folds were harvested. Histological analysis of the scarred and normal lamina propria was completed for collagen, procollagen, elastin, and hyaluronic acid. Linear viscoelastic shear properties of the tissues were also measured, including elastic shear modulus and dynamic viscosity. Compared to normal vocal fold lamina propria, scarred tissues demonstrated significantly less collagen, an increase in procollagen, and a decrease in elastin. Rheologically, both elastic shear modulus and dynamic viscosity were significantly higher for the scarred tissues. Increased stiffness and viscosity do not appear to result from an increase in collagen, but rather appear to be related to the presence of new, disorganized collagen scaffolding. Results are interpreted in terms of the possible role of interstitial proteins in the etiology of increased stiffness and viscosity, which requires further investigation. This animal model should allow for systematic future investigations of vocal fold scarring and its treatment.

  3. Modeling the evolution of the lower crust with laboratory derived rheological laws under an intraplate strike slip fault

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sagiya, T.

    2015-12-01

    The earth's crust can be divided into the brittle upper crust and the ductile lower crust based on the deformation mechanism. Observations shows heterogeneities in the lower crust are associated with fault zones. One of the candidate mechanisms of strain concentration is shear heating in the lower crust, which is considered by theoretical studies for interplate faults [e.g. Thatcher & England 1998, Takeuchi & Fialko 2012]. On the other hand, almost no studies has been done for intraplate faults, which are generally much immature than interplate faults and characterized by their finite lengths and slow displacement rates. To understand the structural characteristics in the lower crust and its temporal evolution in a geological time scale, we conduct a 2-D numerical experiment on the intraplate strike slip fault. The lower crust is modeled as a 20km thick viscous layer overlain by rigid upper crust that has a steady relative motion across a vertical strike slip fault. Strain rate in the lower crust is assumed to be a sum of dislocation creep and diffusion creep components, each of which flows the experimental flow laws. The geothermal gradient is assumed to be 25K/km. We have tested different total velocity on the model. For intraplate fault, the total velocity is less than 1mm/yr, and for comparison, we use 30mm/yr for interplate faults. Results show that at a low slip rate condition, dislocation creep dominates in the shear zone near the intraplate fault's deeper extension while diffusion creep dominates outside the shear zone. This result is different from the case of interplate faults, where dislocation creep dominates the whole region. Because of the power law effect of dislocation creep, the effective viscosity in the shear zone under intraplate faults is much higher than that under the interplate fault, therefore, shear zone under intraplate faults will have a much higher viscosity and lower shear stress than the intraplate fault. Viscosity contract between inside and outside of the shear zone is smaller under an intraplate situation than in the interplate one, and smaller viscosity difference will result in a wider shear zone.

  4. Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows

    NASA Astrophysics Data System (ADS)

    Kumaran, V.

    A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

  5. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  6. Determining transport coefficients for a microscopic simulation of a hadron gas

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Baez, Alexander; Kim, Jane

    2017-02-01

    Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.

  7. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function.

    PubMed

    Levashov, V A

    2017-11-14

    We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.

  8. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2017-11-01

    We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.

  9. Shear dilatancy and acoustic emission in dry and saturated granular materials

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via hydrodynamic lubrication which increases the fluid pressure and therefore increases the dilation compared to dry material. The effect is particularly strong for high viscosity fluids, as observed in the silicon oil experiment. Therefore, fluid viscosity can play a crucial role in determining the physics that controls the rheology of the sheared material.

  10. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    NASA Astrophysics Data System (ADS)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  11. [Roles of additives and surface control in slurry atomization]. Quarterly report, March 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-08-01

    Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particlemore » Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.« less

  12. (Roles of additives and surface control in slurry atomization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particlemore » Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.« less

  13. Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    NASA Technical Reports Server (NTRS)

    Froidevaux, C.; Schubert, G.; Yuen, D. A.

    1976-01-01

    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.

  14. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics.

    PubMed

    Danel, J-F; Kazandjian, L; Zérah, G

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  15. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.; Zérah, G.

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  16. Simulations of sheared dense noncolloidal suspensions: Evaluation of the role of long-range hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gallier, Stany; Peters, François; Lobry, Laurent

    2018-04-01

    This work intends to evaluate the role of many-body long-range hydrodynamics by simulations of sheared neutrally buoyant non-Brownian, noncolloidal suspensions. Three-dimensional simulations of sheared suspensions are conducted with and without long-range hydrodynamics, for a volume fraction range between 0.1-0.62 (frictionless) and 0.1-0.56 (frictional). Discarding long-range hydrodynamics has only a moderate effect on viscosity for the range of volume fractions investigated and viscosities diverge with similar scaling laws; the critical fraction is found to be approximately 0.64 (frictionless) and 0.58 (frictional). Conversely, many-body hydrodynamics are found to affect diffusion and particle velocities, which are correlated on a longer range when long-range interactions are included, even in dense suspensions. This means that long-range hydrodynamics may not be significantly screened by crowding. Assuming only short-range lubrication interactions is therefore suitable for predicting viscosity in noncolloidal suspensions but becomes questionable when flow details (e.g., diffusion or velocity correlations) are needed.

  17. Effects of electromagnetic radiation on the hemorheology of rats

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen

    2017-01-01

    The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.

  18. Effects of molecular size and structure on self-diffusion coefficient and viscosity for saturated hydrocarbons having six carbon atoms.

    PubMed

    Iwahashi, Makio; Kasahara, Yasutoshi

    2007-01-01

    Self-diffusion coefficients and viscosities for the saturated hydrocarbons having six carbon atoms such as hexane, 2-methylpentane (2MP), 3-methylpentane (3MP), 2,2-dimethylbutane (22DMB), 2,3-dimethylbutane (23DMB), methylcyclopentane (McP) and cyclohexane (cH) were measured at various constant temperatures; obtained results were discussed in connection with their molar volumes, molecular structures and thermodynamic properties. The values of self-diffusion coefficients as the microscopic property were inversely proportional to those of viscosities as the macroscopic property. The order of their viscosities was almost same to those of their melting temperatures and enthalpies of fusion, which reflect the attractive interactions among their molecules. On the other hand, the order of the self-diffusion coefficients inversely related to the order of the melting temperatures and the enthalpies of the fusion. Namely, the compound having the larger attractive interaction mostly shows the less mobility in its liquid state, e.g., cyclohexane (cH), having the largest attractive interaction and the smallest molar volume exhibits an extremely large viscosity and small self-diffusion coefficient comparing with other hydrocarbons. However, a significant exception was 22DMB, being most close to a sphere: In spite of the smallest attractive interaction and the largest molar volume of 22DMB in the all samples, it has the thirdly larger viscosity and the thirdly smaller self-diffusion coefficient. Consequently, the dynamical properties such as self-diffusion and viscosity for the saturated hydrocarbons are determined not only by their attractive interactions but also by their molecular structures.

  19. Linear and non-linear flow mode in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2017-10-01

    The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range | η | < 0.8 and the transverse momentum range 0.2

  20. Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; Gallis, M. A.

    2009-11-01

    The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S.; Adamová, D.; Adolfsson, J.

    The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less

  2. Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76  TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Adolfsson, J.; ...

    2017-08-04

    The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less

  3. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.

    PubMed

    Yazdani, Alireza Z K; Bagchi, Prosenjit

    2011-08-01

    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as "breathing" dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  4. Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok

    2006-01-01

    One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time, and viscosity were evaluated using formulae for non-Newtonian, power law fluids. The maximum shear rates (corrected for entrance effects) obtained in the rheometer with the current setup were in the 150,000 to 170,000sec- range. GFSSP simulations were performed with a flow circuit simulating the capillary rheometer and using Power Law gel viscosity coefficients from the experimental data. The agreement between the experimental data and the simulated flow curves was within +/-4% given quality entrance effect data.

  5. A molecular dynamics simulation study of chloroform

    NASA Astrophysics Data System (ADS)

    Tironi, Ilario G.; van Gunsteren, Wilfred F.

    Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.

  6. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  7. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  8. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Jibuti, Levan; Zimmermann, Walter; Rafaï, Salima; Peyla, Philippe

    2017-11-01

    Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010), 10.1103/PhysRevLett.104.098102].

  9. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    NASA Astrophysics Data System (ADS)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  10. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev

    2018-05-01

    The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.

  11. Numerical study of two-dimensional wet foam over a range of shear rates

    NASA Astrophysics Data System (ADS)

    Kähärä, T.

    2017-09-01

    The shear rheology of two-dimensional foam is investigated over a range of shear rates with the numerical DySMaL model, which features dynamically deformable bubbles. It is found that at low shear rates, the rheological behavior of the system can be characterized by a yield stress power-law constitutive equation that is consistent with experimental findings and can be understood in terms of soft glassy rheology models. At low shear rates, the system rheology is also found to be subject to a scaling law involving the bubble size, the surface tension, and the viscosity of the carrier fluid. At high shear rates, the model produces a dynamic phase transition with a sudden change in the flow pattern, which is accompanied by a drop in the effective viscosity. This phase transition can be linked to rapid changes in the average bubble deformation and nematic order of the system. It is very likely that this phase transition is a result of the model dynamics and does not happen in actual foams.

  12. The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer

    NASA Astrophysics Data System (ADS)

    Griffiths, P. T.; Gallagher, M. T.; Stephen, S. O.

    2016-07-01

    We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.

  13. Evaluation of Lama glama semen viscosity with a cone-plate rotational viscometer.

    PubMed

    Casaretto, C; Martínez Sarrasague, M; Giuliano, S; Rubin de Celis, E; Gambarotta, M; Carretero, I; Miragaya, M

    2012-05-01

    Llama semen is highly viscous. This characteristic is usually evaluated subjectively by measuring the thread formed when carefully pippeting a sample of semen. The aims of this study were (i) to objectively determine and analyse llama semen viscosity, (ii) to compare semen viscosity between ejaculates of the same male as well as between different males, (iii) to study the correlation between viscosity and other semen characteristics and (iv) to evaluate the effect of collagenase on semen viscosity. Semen viscosity was evaluated using a cone-plate Brookfield rotational viscometer. A non Newtonian, pseudoplastic behaviour was observed in the 45 semen samples evaluated. Rheological parameters were determined obtaining the following results (mean ± SD): apparent viscosity at 11.5 s(-1): 46.71 ± 26.8 cpoise and at 115 s(-1): 12.61 ± 4.1 cpoise; structural viscosity (K) (dyne s cm(-2)): 2.18 ± 1.4 and coefficient of consistency (n): 0.45 ± 0.1. Statistical differences were found between different ejaculates of the same male for structural viscosity and apparent viscosity at 11.5 s(-1) (P < 0.01). Correlation was found only between coefficient of consistency (n) and sperm concentration (P < 0.01). Significant differences for coefficient of consistency (n) and viscosity at 115 s(-1) were found between samples incubated with and without collagenase (P < 0.05). © 2011 Blackwell Verlag GmbH.

  14. Shear and extensional properties of kefiran.

    PubMed

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-05

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microbubble Sizing and Shell Characterization Using Flow Cytometry

    PubMed Central

    Tu, Juan; Swalwell, Jarred E.; Giraud, David; Cui, Weicheng; Chen, Weizhong; Matula, Thomas J.

    2015-01-01

    Experiments were performed to size, count, and obtain shell parameters for individual ultrasound contrast microbubbles using a modified flow cytometer. Light scattering was modeled using Mie theory, and applied to calibration beads to calibrate the system. The size distribution and population were measured directly from the flow cytometer. The shell parameters (shear modulus and shear viscosity) were quantified at different acoustic pressures (from 95 to 333 kPa) by fitting microbubble response data to a bubble dynamics model. The size distribution of the contrast agent microbubbles is consistent with manufacturer specifications. The shell shear viscosity increases with increasing equilibrium microbubble size, and decreases with increasing shear rate. The observed trends are independent of driving pressure amplitude. The shell elasticity does not vary with microbubble size. The results suggest that a modified flow cytometer can be an effective tool to characterize the physical properties of microbubbles, including size distribution, population, and shell parameters. PMID:21622051

  16. Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Giacomin, A. Jeffrey; Saengow, Chaimongkol

    2018-05-01

    In this paper, we connect a molecular description of the rheology of a polymeric liquid to a continuum description, and then test this connection for large-amplitude oscillatory shear (LAOS) flow. Specifically, for the continuum description, we use the 6-constant Oldroyd framework, and for the molecular, we use the simplest relevant molecular model, the suspension of rigid dumbbells. By relevant, we mean predicting at least higher harmonics in the shear stress response in LAOS. We call this connection a molecular continuum, and we examine two ways of arriving at this connection. The first goes through the retarded motion expansion, and the second expands each of a set of specific material functions (complex, steady shear, and steady uniaxial extensional viscosities). Both ways involve in comparing the coefficients of expansions and then solve for the six constants of the continuum framework in terms of the two constants of the rigid dumbbell suspension. The purpose of a molecular continuum is that many well-known results for rigid dumbbell suspensions in other flow fields can also be easily obtained, without having to firstly find the orientation distribution function. In this paper, we focus on the recent result for the rigid dumbbell suspension in LAOS. We compare the accuracies of the retarded motion molecular continuum (RMMC) with the material function molecular continuum (MFMC). We find the RMMC to be the most accurate for LAOS.

  17. Geometric flow control of shear bands by suppression of viscous sliding

    PubMed Central

    Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-01-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method—passive geometric flow control—that effects complete band suppression in systems which otherwise fail via shear banding. PMID:27616920

  18. Direct Numerical Simulation of Surfactant-Stabilized Emulsions Morphology and Shear Viscosity in Starting Shear Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roar Skartlien; Espen Sollum; Andreas Akselsen

    2012-07-01

    A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it atmore » later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.« less

  19. Geometric flow control of shear bands by suppression of viscous sliding

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar; Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-08-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method-passive geometric flow control-that effects complete band suppression in systems which otherwise fail via shear banding.

  20. Lower crustal flow and the role of shear in basin subsidence: An example from the Dead Sea basin

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2002-01-01

    We interpret large-scale subsidence (5–6 km depth) with little attendant brittle deformation in the southern Dead Sea basin, a large pull-apart basin along the Dead Sea transform plate boundary, to indicate lower crustal thinning due to lower crustal flow. Along-axis flow within the lower crust could be induced by the reduction of overburden pressure in the central Dead Sea basin, where brittle extensional deformation is observed. Using a channel flow approximation, we estimate that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is ≤7×1019–1×1021 Pa s, a value compatible with the normal heat flow in the region. Lower crustal viscosity due to the strain rate associated with basin extension is estimated to be similar to or smaller than the viscosity required for a channel flow. However, the viscosity under the basin may be reduced to 5×1017–5×1019 Pa s by the enhanced strain rate due to lateral shear along the transform plate boundary. Thus, lower crustal flow facilitated by shear may be a viable mechanism to enlarge basins and modify other topographic features even in the absence of underlying thermal anomalies.

  1. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  2. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions

    DOE PAGES

    Ryu, S.; Paquet, J. -F.; Shen, C.; ...

    2015-09-22

    In this study, we investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. Lastly, this paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  3. Shear viscosity of a two-dimensional emulsion of drops using a multiple-relaxation-time-step lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Halliday, I.; Xu, X.; Burgin, K.

    2017-02-01

    An extended Benzi-Dellar lattice Boltzmann equation scheme [R. Benzi, S. Succi, and M. Vergassola, Europhys. Lett. 13, 727 (1990), 10.1209/0295-5075/13/8/010; R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992), 10.1016/0370-1573(92)90090-M; P. J. Dellar, Phys. Rev. E 65, 036309 (2002), 10.1103/PhysRevE.65.036309] is developed and applied to the problem of confirming, at low Re and drop fluid concentration, c , the variation of effective shear viscosity, ηeff=η1[1 +f (η1,η2) c ] , with respect to c for a sheared, two-dimensional, initially crystalline emulsion [here η1 (η2) is the fluid (drop fluid) shear viscosity]. Data obtained with our enhanced multicomponent lattice Boltzmann method, using average shear stress and hydrodynamic dissipation, agree well once appropriate corrections to Landau's volume average shear stress [L. Landau and E. M. Lifshitz, Fluid Mechanics, 6th ed. (Pergamon, London, 1966)] are applied. Simulation results also confirm the expected form for f (ηi,η2) , and they provide a reasonable estimate of its parameters. Most significantly, perhaps, the generality of our data supports the validity of Taylor's disputed simplification [G. I. Taylor, Proc. R. Soc. London, Ser. A 138, 133 (1932), 10.1098/rspa.1932.0175] to reduce the effect of one hydrodynamic boundary condition (on the continuity of the normal contraction of stress) to an assumption that interfacial tension is sufficiently strong to maintain a spherical drop shape.

  4. Dilatant effect enhancers for silica dispersions in poly(propylene glycols).

    PubMed

    Orawiec, Marcin; Kaczorowski, Marcin; Rokicki, Gabriel

    2018-05-29

    Shear thickening fluids have found many applications in energy damping materials such as sports guards and liquid body armors. Therefore, an additive which could tailor the dilatant properties of such fluids without significantly affecting other properties, especially zero shear viscosity, could significantly increase the versatility of protective materials based on shear thickening fluids. In this paper, poly(propylene glycols) (PPGs) diacetates are investigated as dilatant effect enhancers for nano-silica dispersions in poly(propylene glycols). The influence of the modifiers on rheological properties of the dispersion is studied and discussed. Additionally, FTIR and rheological properties measurements are conducted in order to determine relative interactions strength between hydroxyl groups of PPGs and silica and carbonyl groups of PPG diacetates. Our findings suggest that the relative attractive interaction strength in studied systems can be arranged in the following order: COCO < COOH < OHOH. Therefore, the addition of PPG diacetate hinders the attractive interactions between liquid and solid. We report that the addition of diacetates can lead both to enhancement and deterioration of dilatant effect depending on the concentration of the modifier and its chain length. Based on conducted measurements and literature data, mechanism explaining that phenomenon is suggested. As a result, we propose an easy to make and cheap dilatant effect enhancer for widely used shear thickening fluids which, when used in small amounts (1-2.5%), raises the viscosity jump drastically. Additionally, the presence of the modifier does not significantly affect the zero shear viscosity of the shear thickening fluid. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Contribution of a kaon component in the viscosity and conductivity of a hadronic medium

    NASA Astrophysics Data System (ADS)

    Rahaman, Mahfuzur; Ghosh, Snigdha; Ghosh, Sabyasachi; Sarkar, Sourav; Alam, Jan-e.

    2018-03-01

    With the help of effective Lagrangian densities of strange hadrons, we calculated the kaon relaxation time from several loop and scattering diagrams at tree level, which basically represent contributions from 1 ↔2 and 2 ↔2 types of collisions. Using the total relaxation time of a kaon, the shear viscosity and electrical conductivity of this kaon component have been estimated. The high temperature, close to transition temperature, where the kaon relaxation time is lower than the lifetime of Relativistic Heavy Ion Collider or Large Hadron Collider matter may be the only relevant domain for this component to contribute in hadronic dissipation. Our results suggest that the kaon can play an important role in the enhancement of shear viscosity and electrical conductivity of hadronic matter near the transition temperature.

  6. Viscosities of implantable biomaterials in vocal fold augmentation surgery.

    PubMed

    Chan, R W; Titze, I R

    1998-05-01

    Vocal fold vibration depends critically on the viscoelasticity of vocal fold tissues. For instance, phonation threshold pressure, a measure of the "ease" of phonation, has been shown to be directly related to the viscosity of the vibrating mucosa. Various implantable biomaterials have been used in vocal fold augmentation surgery, with implantation sites sometimes close to or inside the mucosa. Yet their viscosities or other mechanical properties are seldom known. This study attempts to provide data on viscosities of commonly used phonosurgical biomaterials. Using a parallel-plate rotational rheometer, oscillatory shear experiments were performed on implantable polytetrafluoroethylene (Teflon or Polytef; Mentor Inc., Hingham, MA), collagen (Zyderm; Collagen Corp., Palo Alto, CA), glutaraldehyde crosslinked (GAX) collagen (Phonagel or Zyplast; Collagen Corp.), absorbable gelatin (Gelfoam; Upjohn Co., Kalamazoo, MI), and human abdominal subcutaneous fat. Samples of human vocal fold mucosal tissues were also tested. Under sinusoidal oscillatory shear at 10 Hz and at 37 degrees C, the dynamic viscosity was 116 Pascal-seconds (Pa-s) for polytetrafluoroethylene, 21 Pa-s for gelatin, 8-13 Pa-s for the two types of collagen, 3 Pa-s for fat, and 1 to 3 Pa-s for vocal fold mucosa. Results extrapolated to 100 Hz also show similar differences among the biomaterials, but all values are an order of magnitude lower because of the typical inverse frequency relation (shear thinning effect) for polymeric and biologic materials. The data suggest that the use of fat for vocal fold augmentation may be more conducive to the "ease" of phonation because of its relatively low viscosity, which is closest to physiologic levels. This implication is probably the most relevant in predicting initial outcome of the postoperative voice before there is any significant assimilation (e.g., resorption and fibrosis) of the implanted biomaterial.

  7. Physical Properties of Blood Are Altered in Young and Lean Women with Polycystic Ovary Syndrome.

    PubMed

    Simmonds, Michael J; Milne, Nikki; Ong, Kee; Brotherton, Emily; McNamee, Antony P; Horobin, Jarod; Sabapathy, Surendran

    2016-01-01

    Classic features of polycystic ovary syndrome (PCOS) include derangement of metabolic and cardiovascular health, and vascular dysfunction is commonly reported. These comorbidities indicate impaired blood flow; however, other than limited reports of increased plasma viscosity, surprisingly little is known regarding the physical properties of blood in PCOS. We aimed to investigate whether haemorheology was impaired in women with PCOS. We thus measured a comprehensive haemorheological profile, in a case-control design, of lean women with PCOS and age-matched healthy controls. A clinical examination determined similar cardiovascular risk for the two groups. Whole blood and plasma viscosity was measured using a cone-plate viscometer. The magnitude and rate of red blood cell (RBC) aggregation was determined using a light-transmission aggregometer, and the degree of RBC deformability was measured via laser-diffraction ektacytometry. Plasma viscosity was significantly increased in women with PCOS. Blood viscosity was also increased for PCOS at lower-to-moderate shear rates in both native and standardised haematocrit samples. The magnitude of RBC aggregation-a primary determinant of low-shear blood viscosity-was significantly increased in PCOS at native and 0.4 L·L-1 haematocrit. No difference was detected between PCOS and CON groups for RBC deformability measurements. A novel measure indicating the effectiveness of oxygen transport by RBC (i.e., the haematocrit-to-viscosity ratio; HVR) was decreased at all shear rates in women with PCOS. In a group of young and lean women with PCOS with an unremarkable cardiovascular risk profile based on clinical data, significant haemorheological impairment was observed. The degree of haemorheological derangement observed in the present study reflects that of overt chronic disease, and provides an avenue for future therapeutic intervention in PCOS.

  8. Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains

    NASA Astrophysics Data System (ADS)

    Mandare, Prashant N.

    2007-12-01

    Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.

  9. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  10. Higher-harmonic collective modes in a trapped gas from second-order hydrodynamics

    DOE PAGES

    Lewis, William E.; Romatschke, P.

    2017-02-21

    Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and damping rates of collective oscillations as well as spatial structure of these modes up to the decapole oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-order modes, the formalism also gives rise to purely damped "non-hydrodynamic" modes. We calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches, finding excellent agreement with an exact quantum mechanical calculation. Furthermore, we find that higher-order hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interestmore » for the precision extraction of transport coefficients in Fermi gas systems.« less

  11. Higher-harmonic collective modes in a trapped gas from second-order hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, William E.; Romatschke, P.

    Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and damping rates of collective oscillations as well as spatial structure of these modes up to the decapole oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-order modes, the formalism also gives rise to purely damped "non-hydrodynamic" modes. We calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches, finding excellent agreement with an exact quantum mechanical calculation. Furthermore, we find that higher-order hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interestmore » for the precision extraction of transport coefficients in Fermi gas systems.« less

  12. Analysis of free turbulent shear flows by numerical methods

    NASA Technical Reports Server (NTRS)

    Korst, H. H.; Chow, W. L.; Hurt, R. F.; White, R. A.; Addy, A. L.

    1973-01-01

    Studies are described in which the effort was essentially directed to classes of problems where the phenomenologically interpreted effective transport coefficients could be absorbed by, and subsequently extracted from (by comparison with experimental data), appropriate coordinate transformations. The transformed system of differential equations could then be solved without further specifications or assumptions by numerical integration procedures. An attempt was made to delineate different regimes for which specific eddy viscosity models could be formulated. In particular, this would account for the carryover of turbulence from attached boundary layers, the transitory adjustment, and the asymptotic behavior of initially disturbed mixing regions. Such models were subsequently used in seeking solutions for the prescribed two-dimensional test cases, yielding a better insight into overall aspects of the exchange mechanisms.

  13. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    NASA Astrophysics Data System (ADS)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  14. Analysis of batch-related influences on injection molding processes viewed in the context of electro plating quality demands

    NASA Astrophysics Data System (ADS)

    Siepmann, Jens P.; Wortberg, Johannes; Heinzler, Felix A.

    2016-03-01

    The injection molding process is mandatorily influenced by the viscosity of the material. By varying the material batch the viscosity of the polymer changes. For the process and part quality the initial conditions of the material in addition to the processing parameters define the process and product quality. A high percentage of technical polymers processed in injection molding is refined in a follow-up production step, for example electro plating. Processing optimized for electro plating often requires avoiding high shear stresses by using low injection speed and pressure conditions. Therefore differences in the material charges' viscosity occur especially in the quality related low shear rate area. These differences and quality related influences can be investigated by high detail rheological analysis and process simulation based on adapted material describing models. Differences in viscosity between batches can be detected by measurements with high-pressure-capillary-rheometers or oscillatory rheometers for low shear rates. A combination of both measurement techniques is possible by the Cox-Merz-Relation. The detected differences in the rheological behavior of both charges are summarized in two material behavior describing model approaches and added to the simulation. In this paper the results of processing-simulations with standard filling parameters are presented with two ABS charges. Part quality defining quantities such as temperature, pressure and shear stress are investigated and the influence of charge variations is pointed out with respect to electro plating quality demands. Furthermore, the results of simulations with a new quality related process control are presented and compared to the standard processing.

  15. Rheology behaviour of modified silicone-dammar as a natural resin coating

    NASA Astrophysics Data System (ADS)

    Zakaria, Rosnah; Ahmad, Azizah Hanom

    2015-08-01

    Modified silicone-dammar (SD) was prepared by various weight percent from 5 - 45 wt% of dammar added. The n-value (viscosity index) of silicone with 5 and 10 % were turn to be 1.6 and 1.3 of viscosity index. While 15, 20, 25 and 30 wt% of dammar added gave 0.7, 0.3, 0.2 and 0.1 of viscosity index. On the other hand, 35, 40 and 45 wt% of dammar gave a fixed value of viscosity index of 0.03. This n-value shows the dispersion quality of paint mixture indicates that the modified silicone-dammar was followed the Bingham's Model. The rheology measurement of SD mixture was analysed by plotting ln shear stress vs shear rate value. Analysis of the graph showed a Bingham plastic model with regression R2 equivalent to 0.99. The linear viscoelastic behaviour of SD samples increased in parallel with increasing dammar content indicate that the suspension of dammar in silicone resin could flow steadily with time giving a pseudoplastic behaviour.

  16. Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon

    NASA Astrophysics Data System (ADS)

    Rodionov, Alexander V.

    2017-09-01

    This work presents a new approach for curing the carbuncle instability. The idea underlying the approach is to introduce some dissipation in the form of right-hand sides of the Navier-Stokes equations into the basic method of solving Euler equations; in so doing, we replace the molecular viscosity coefficient by the artificial viscosity coefficient and calculate heat conductivity assuming that the Prandtl number is constant. For the artificial viscosity coefficient we have chosen a formula that is consistent with the von Neumann and Richtmyer artificial viscosity, but has its specific features (extension to multidimensional simulations, introduction of a threshold compression intensity that restricts additional dissipation to the shock layer only). The coefficients and the expression for the characteristic mesh size in this formula are chosen from a large number of Quirk-type problem computations. The new cure for the carbuncle flaw has been tested on first-order schemes (Godunov, Roe, HLLC and AUSM+ schemes) as applied to one- and two-dimensional simulations on smooth structured grids. Its efficiency has been demonstrated on several well-known test problems.

  17. Velocity and attenuation of shear waves in the phantom of a muscle-soft tissue matrix with embedded stretched fibers

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.

    2016-09-01

    We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.

  18. Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Nandi, Rana; Schramm, Stefan

    2018-01-01

    We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.

  19. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  20. Contrasting the Influence of Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody.

    PubMed

    Dear, Barton J; Hung, Jessica J; Truskett, Thomas M; Johnston, Keith P

    2017-01-01

    To explain the effects of cationic amino acids and other co-solutes on the viscosity, stability and protein-protein interactions (PPI) of highly concentrated (≥200 mg/ml) monoclonal antibody (mAb) solutions to advance subcutaneous injection. The viscosities of ≥200 mg/ml mAb1 solutions with various co-solutes and pH were measured by capillary rheometry in some cases up to 70,000 s -1 . The viscosities are analyzed in terms of dilute PPI characterized by diffusion interaction parameters (k D ) from dynamic light scattering (DLS). MAb stability was measured by turbidity and size exclusion chromatography (SEC) after 4 weeks of 40°C storage. Viscosity reductions were achieved by reducing the pH, or adding histidine, arginine, imidazole or camphorsulfonic acid, each of which contains a hydrophobic moiety. The addition of inorganic electrolytes or neutral osmolytes only weakly affected viscosity. Systems with reduced viscosities also tended to be Newtonian, while more viscous systems were shear thinning. Viscosity reduction down to 20 cP at 220 mg/ml mAb1 was achieved with co-solutes that are both charged and contain a hydrophobic interaction domain for sufficient binding to the protein surface. These reductions are related to the DLS diffusion interaction parameter, k D , only after normalization to remove the effect of charge screening. Shear rate profiles demonstrate that select co-solutes reduce protein network formation.

  1. Transient Cooperative Processes in Dewetting Polymer Melts.

    PubMed

    Chandran, Sivasurender; Reiter, Günter

    2016-02-26

    We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10  kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.

  2. Activation energy and entropy for viscosity of wormlike micelle solutions.

    PubMed

    Chandler, H D

    2013-11-01

    The viscosities of two surfactant solutions which form wormlike micelles (WLMs) were studied over a range of temperatures and strain rates. WLM solutions appear to differ from many other shear thinning systems in that, as the shear rate increases, stress-shear rate curves tend to converge with temperature rather than diverge and this can sometimes lead to higher temperature curves crossing those at lower. Behaviour was analysed in terms of activation kinetics. It is suggested that two mechanisms are involved: Newtonian flow, following an Arrhenius law superimposed on a non-Newtonian flow described by a stress assisted kinetic law, this being a more general form of the Arrhenius law. Anomalous flow is introduced into the kinetic equation via a stress dependent activation entropy term. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Temperature Effect on Rheological Behavior of Silicone Oils. A Model for the Viscous Heating.

    PubMed

    Romano, Mario R; Cuomo, Francesca; Massarotti, Nicola; Mauro, Alessandro; Salahudeen, Mohamed; Costagliola, Ciro; Ambrosone, Luigi

    2017-07-27

    The rheological behavior of silicone oils, (CH 3 ) 3 SiO-[Si(CH 3 ) 2 O] n -Si(CH 3 ) 3 , and their mixtures is studied. Shear-stress measurements, in the temperature range of 293-313 K, reveal that this polymer family is a group of shear-thinning liquids with a yield stress below which no flow occurs. Experimental diagrams, i.e., shear stress versus shear rate, are satisfactorily described by the Casson fluid model over a wide range of shear rates. In order to monitor the effect of temperature on fluid properties, Casson's rheological model is reformulated using the fictitious shear rate, γ̇ f , and the infinite-shear viscosity, η ∞ , as constitutive parameters. Due to low intermolecular forces and high chain flexibility, γ̇ f varies very little when the temperature increases. For this reason, the apparent material viscosity depends on temperature only through η ∞ , which exponentially decreases until high shear rates are reached, and there is more alignment possible. Interestingly, the temperature sensitivity of this pseudoplastic behavior is the same for all of the silicone oils investigated; therefore, they can be classified according to their tendency to emulsify. Experimental results are then used to model the flow of silicone oils in a cylindrical pipe and estimate the temperature increase due to viscous heating. Numerical results show that the normalized temperature, i.e., ratio of fluid temperature to wall temperature, increases approximately 23%, and the apparent viscosity decreases drastically, going toward the center of the tube. The non-Newtonian nature of fluid is reflected in the presence of a critical region. In this region, the velocity and temperature gradients vanish. Since silicon oil is a surgical tool, we hope that the acquired physicochemical information can provide help to facilitate the removal of this material during surgical procedures.

  4. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in concentrated suspensions.

  5. Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations

    NASA Astrophysics Data System (ADS)

    Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.

    2018-03-01

    Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.

  6. Active Interfacial Shear Microrheology of Aging Protein Films

    PubMed Central

    Dhar, Prajnaparamita; Cao, Yanyan; Fischer, Thomas M.; Zasadzinski, J. A.

    2012-01-01

    The magnetically driven rotation of 300 nm diameter rods shows the surface viscosity of albumin at an air-water interface increases from 10−9 to 10−5 Ns/m over two hours while the surface pressure saturates in minutes. The increase in surface viscosity is not accompanied by a corresponding increase in elasticity, suggesting that the protein film anneals with time, resulting in a more densely packed film leading to increased resistance to shear. The nanometer dimensions of the rods provide the same sensitivity as passive microrheology with an improved ability to measure more viscous films. PMID:20366371

  7. Pressure-viscosity coefficient of biobased lubricants

    USDA-ARS?s Scientific Manuscript database

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  8. Colloidal Aggregate Structure under Shear by USANS

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  9. Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities.

    PubMed

    Lopez; Hirsa

    2000-09-15

    A canonical flow geometry was utilized for a fundamental study of the coupling between bulk flow and a Newtonian gas-liquid interface in the presence of an insoluble surfactant. We develop a Navier-Stokes numerical model of the flow in the deep-channel surface viscometer geometry, which consists of stationary inner and outer cylinders, a floor rotating at a constant angular velocity, and an interface covered initially by a uniformly distributed surfactant. Here, the floor of the annular channel is rotated fast enough so the flow is nonlinear and drives the film toward the inner cylinder. The boundary conditions at the interface are functions of the surface tension, surface shear viscosity, and surface dilatational viscosity, as described by the Boussinesq-Scriven surface model. A physical surfactant system, namely hemicyanine, an insoluble monolayer on an air-water interface, with measured values of surface tension and surface shear viscosity versus concentration, was used in this study. We find that a surfactant front can form, depending on the Reynolds number and the initial surfactant concentration. The stress balance in the radial direction was found to be dominated by the Marangoni stress, but the azimuthal stress was only due to the surface shear viscosity. Numerical studies are presented comparing results of surfactant-influenced interface cases implementing the derived viscoelastic interfacial stress balance with those using a number of idealized stress balances, as well as a rigid no-slip surface, providing added insight into the altered dynamics that result from the presence of a surfactant monolayer. Copyright 2000 Academic Press.

  10. Influence of toroidal rotation on resistive tearing modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shearmore » shows a destabilizing effect when the rotation is large.« less

  11. Seasonal Surface Loading Helps Constrain Short-Term Viscosity of the Asthenosphere

    NASA Astrophysics Data System (ADS)

    Clarke, Peter J.

    2018-03-01

    Earth materials may display a range of rheological behaviors at different depths and over different timescales. The situation is particularly complex for postseismic relaxation in the uppermost mantle and lower crust, where it can be difficult to distinguish widespread viscous behavior from earthquake afterslip or localized deformation in shear zones over timescales of weeks to decades. By analyzing geodetic observations of seasonal surface mass loads and Earth's surface deformation in response, Chanard et al. (2018, https://doi.org/10.1002/2017GL076451) have established a globally averaged lower bound of 5 × 1017 Pa s for the transient viscosity of a Burgers-rheology asthenosphere. This implies that lower viscosities inferred by some studies of postseismic relaxation must result from local departures from this global value, or be an artifact of additional afterslip or shear zone deformation.

  12. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    NASA Astrophysics Data System (ADS)

    Li, Qian; Matula, Thomas J.; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  13. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    PubMed

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  14. Damping of drop oscillations by surfactants and surface viscosity

    NASA Technical Reports Server (NTRS)

    Rush, Brian M.; Nadim, Ali

    1999-01-01

    An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.

  15. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Klager, K.; Rogers, C. J.; Smith, P. L.

    1978-01-01

    Results of casting studies are reviewed so as to define the viscosity criteria insuring the fabrication of defect-free grains. The rheology of uncured propellants is analyzed showing that a realistic assessment of a propellant's flow properties must include measurement of viscosity as a function of shear stress and time after curing agent. Methods for measuring propellant viscosity are discussed, with particular attention given to the Haake-Rotovisko rotational viscometer. The effects of propellant compositional and processing variables on apparent viscosity are examined, as are results relating rheological behavior to grain defect formation during casting.

  16. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.

    PubMed

    Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J

    2013-04-30

    In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).

  17. Comparative study of viscoelastic properties using virgin yogurt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimonte, G.; Nelson, D.; Weaver, S.

    We describe six different tests used to obtain a consistent set of viscoelastic properties for yogurt. Prior to yield, the shear modulus {mu} and viscosity {eta} are measured nondestructively using the speed and damping of elastic waves. Although new to foodstuffs, this technique has been applied to diverse materials from metals to the earth{close_quote}s crust. The resultant shear modulus agrees with {mu}{approximately}E/3 for incompressible materials, where the Young{close_quote}s modulus E is obtained from a stress{endash}strain curve in compression. The tensile yield stress {tau}{sub o} is measured in compression and tension, with good agreement. The conventional vane and cone/plate rheometers measuredmore » a shear stress yield {tau}{sub os}{approximately}{tau}{sub o}/{radical} (3) , as expected theoretically, but the inferred {open_quotes}apparent{close_quotes} viscosity from the cone/plate rheometer is much larger than the wave measurement due to the finite yield ({tau}{sub os}{ne}0). Finally, we inverted an open container of yogurt for 10{sup 6} s{gt}{eta}/{mu} and observed no motion. This demonstrates unequivocally that yogurt possesses a finite yield stress rather than a large viscosity. We present a constitutive model with a pre-yield viscosity to describe the damping of the elastic waves and use a simulation code to describe yielding in complex geometry. {copyright} {ital 1998 Society of Rheology.}« less

  18. The fluid-dynamics of bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    colucci, simone; papale, paolo; montagna, chiara

    2014-05-01

    The rheological properties of a fluid establish how the shear stress, τ, is related to the shear strain-rate, γ . The simplest constitutive equation is represented by the linear relationship τ = μγ, where the viscosity parameter, μ, is independent of strain-rate and the velocity profile is parabolic. Fluids with such a flow curve are called Newtonian. Many fluids, though, exhibit non-Newtonian rheology, typically arising in magmas from the presence of a dispersed phase of either crystals or bubbles. In this case it is not possible to define a strain-rate-independent viscosity and the velocity profile is complex. In this work we extend the 1D, steady, isothermal, multiphase non-homogeneous magma ascent model of Papale (2001) to 1.5D including the Non-Newtonian rheology of the bubble-bearing magma. We describe such rheology in terms of an apparent viscosity, η, which is the ratio of stress to strain-rate (η = τ/γ) and varies with strain-rate across the conduit radius. In this way we calculate a depth-dependent Non-newtonian velocity profile across the radius along with shear strain-rate and viscosity distributions. The evolution of the velocity profile can now be studied in order to investigate processes which occur close to the conduit wall, such as fragmentation. Moreover, the model can quantify the effects of the Non-Newtonian rheology on conduit flow dynamics, in terms of flow variables (e.g. velocity, pressure).

  19. Exact-solution for cone-plate viscometry

    NASA Astrophysics Data System (ADS)

    Giacomin, A. J.; Gilbert, P. H.

    2017-11-01

    The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.

  20. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.

    PubMed

    Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L

    2015-09-01

    The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.

  1. Effects of low temperature on shear-induced platelet aggregation and activation.

    PubMed

    Zhang, Jian-ning; Wood, Jennifer; Bergeron, Angela L; McBride, Latresha; Ball, Chalmette; Yu, Qinghua; Pusiteri, Anthony E; Holcomb, John B; Dong, Jing-fei

    2004-08-01

    Hemorrhage is a major complication of trauma and often becomes more severe in hypothermic patients. Although it has been known that platelets are activated in the cold, studies have been focused on platelet behavior at 4 degrees C, which is far below temperatures encountered in hypothermic trauma patients. In contrast, how platelets function at temperatures that are commonly found in hypothermic trauma patients (32-37 degrees C) remains largely unknown, especially when they are exposed to significant changes in fluid shear stress that could occur in trauma patients due to hemorrhage, vascular dilation/constriction, and fluid resuscitation. Using a cone-plate viscometer, we have examined platelet activation and aggregation in response to a wide range of fluid shear stresses at 24, 32, 35, and 37 degrees C. We found that shear-induced platelet aggregation was significantly increased at 24, 32, and 35 degrees C as compared with 37 degrees C and the enhancement was observed in whole blood and platelet-rich plasma. In contrast to observation made at 4 degrees C, the increased shear-induced platelet aggregation at these temperatures was associated with minimal platelet activation as determined by the P-selectin expression on platelet surface. Blood viscosity was also increased at low temperature and the changes in viscosity correlated with levels of plasma total protein and fibrinogen. We found that platelets are hyper-reactive to fluid shear stress at temperatures of 24, 32, and 35 degrees C as compared with at 37 degrees C. The hyperreactivity results in heightened aggregation through a platelet-activation independent mechanism. The enhanced platelet aggregation parallels with increased whole blood viscosity at these temperatures, suggesting that enhanced mechanical cross-linking may be responsible for the enhanced platelet aggregation.

  2. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, K. L.; Takahara, A.; Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreementmore » was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.« less

  3. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  4. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  5. Simulation of the injection of colloidal suspensions for the remediation of contaminated aquifer systems

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea

    2014-05-01

    Concentrated suspensions of microscale and nanoscale zerovalent iron particles (MZVI and NZVI) have been studied in recent years for the remediation of contaminated aquifers. The suspensions are injected into the subsurface to generate a reactive zone, and consequently the prediction of the particles distribution during the injection is a key aspect in the design of a field-scale injection. Colloidal dispersions of MZVI and NZVI are not stable in pure water, and shear thinning, environmentally friendly fluids (guar gum and xanthan gum solutions) were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1 - 3). Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. In this work, co-funded by European Union project AQUAREHAB (FP7 - Grant Agreement Nr. 226565), laboratory and pilot field tests for MZVI injection in saturated porous media are reported. MZVI was dispersed in guar gum solutions, and the transport behaviour under several polymer concentrations and injection rates was assessed in column tests (4). Based on the experimental results, a modelling approach is proposed to simulate the transport in porous media of nanoscale iron slurries, implemented in E-MNM1D (www.polito.it/groundwater/software). Colloid transport mechanisms are controlled by particle-collector and particle-particle interactions, usually modelled by a non equilibrium kinetic model accounting for deposition and release processes. The key aspects included in the E-MNM1D are clogging phenomena (i.e. reduction of porosity and permeability due to particles deposition), and the rheological properties of the carrier fluid (in this project, guar gum solution). The influence of colloid transport on porosity, permeability, and fluid viscosity is explicitly lumped into the model and the shear-thinning nature of the iron slurries is described by a modified Darcy law generalized for non Newtonian fluids. Since during the injection in wells the velocity field is not constant over the distance, E-MNM1D was modified in order to account for variable colloidal transport coefficients on flow rate thus allowing the estimation of the radius of influence during a full scale intervention. The flow and transport of MZVI slurries is solved in a radial domain for the simulation of field-scale injection, incorporating the abovementioned relevant mechanisms. The governing equations and model implementation are presented and discussed, along with examples of injection simulations. References 1. Tiraferri, A.; Sethi, R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 2009, 11(3), 635-645. 2. Tiraferri, A.; Chen, K.L.; Sethi, R.; Elimelech, M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science 2008, 324(1-2), 71-79. 3. Dalla Vecchia, E.; Luna, M.; Sethi, R. Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum. Environmental Science & Technology 2009, 43(23), 8942-8947. 4. Tosco, T.; Gastone, F.; Sethi, R. Guar gum solutions for improved delivery of iron particles in porous media (Part 2): iron transport tests and modelling in radial geometry. Journal of Contaminant Hydrology (submitted).

  6. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease.

    PubMed

    Tripette, Julien; Alexy, Tamas; Hardy-Dessources, Marie-Dominique; Mougenel, Daniele; Beltan, Eric; Chalabi, Tawfik; Chout, Roger; Etienne-Julan, Maryse; Hue, Olivier; Meiselman, Herbert J; Connes, Philippe

    2009-08-01

    Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.

  7. Rheological characterization of modified foodstuffs with food grade thickening agents

    NASA Astrophysics Data System (ADS)

    Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS

    2017-01-01

    This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.

  8. Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.

    2017-04-01

    Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .

  9. Modeling Earth's surface topography: decomposition of the static and dynamic components

    NASA Astrophysics Data System (ADS)

    Guerri, M.; Cammarano, F.; Tackley, P. J.

    2017-12-01

    Isolating the portion of topography supported by mantle convection, the so-called dynamic topography, would give us precious information on vigor and style of the convection itself. Contrasting results on the estimate of dynamic topography motivate us to analyse the sources of uncertainties affecting its modeling. We obtain models of mantle and crust density, leveraging on seismic and mineral physics constraints. We use the models to compute isostatic topography and residual topography maps. Estimates of dynamic topography and associated synthetic geoid are obtained by instantaneous mantle flow modeling. We test various viscosity profiles and 3D viscosity distributions accounting for inferred lateral variations in temperature. We find that the patterns of residual and dynamic topography are robust, with an average correlation coefficient of 0.74 and 0.71, respectively. The amplitudes are however poorly constrained. For the static component, the considered lithospheric mantle density models result in topographies that differ, on average, 720 m, with peaks reaching 1.7 km. The crustal density models produce variations in isostatic topography averaging 350 m, with peaks of 1 km. For the dynamic component, we obtain peak-to-peak topography amplitude exceeding 3 km for all the tested mantle density and viscosity models. Such values of dynamic topography produce geoid undulations that are not in agreement with observations. Assuming chemical heterogeneities in the lower mantle, in correspondence with the LLSVPs (Large Low Shear wave Velocity Provinces), helps to decrease the amplitudes of dynamic topography and geoid, but reduces the correlation between synthetic and observed geoid. The correlation coefficients between the residual and dynamic topography maps is always less than 0.55. In general, our results indicate that, i) current knowledge of crust density, mantle density and mantle viscosity is still limited, ii) it is important to account for all the various sources of uncertainties when computing static and dynamic topography. In conclusion, a multidisciplinary approach, which involves multiple geophysics observations and constraints from mineral physics, is necessary for obtaining robust density models and, consequently, for properly estimating the dynamic topography.

  10. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)

  11. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations.

    PubMed

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles

    2016-12-01

    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Tuning the shear viscosity of a dilute suspension using particle shapes that inhibit rotation

    NASA Astrophysics Data System (ADS)

    Sinai Borker, Neeraj; Stroock, Abraham; Koch, Donald

    2017-11-01

    We show that a suspension of slender, rigid-particles that attain an equilibrium orientation in a simple shear flow have a much smaller intrinsic viscosity relative to a suspension of tumbling particles with the same aspect ratio. An axisymmetric particle, such as a ring or a fiber, with certain cross-sections can attain an equilibrium orientation in a low Reynolds number simple shear flow without application of external forces (Singh et al., J. Fluid Mech., 2013; Bretherton, J. Fluid Mech., 1962 a). These particles align such that the slender dimension(s) of the particle is/are almost perpendicular to the velocity gradient direction of the simple shear flow and thus they have much smaller stresslets compared to the time averaged stresslet of a rotating slender particle. While slender fibers, also remain aligned in a similar state for a long time, the major contribution to the average stresslet occurs when the fiber is flipping. Using slender body theory and boundary element method calculations we demonstrate that particle alignment could significantly reduce the intrinsic viscosity of the suspension relative to a suspension of rotating particles. By choosing particle shapes that can be fabricated using manufacturing techniques such as photolithography or 3-D printing, our results open new pathways to control the rheological properties of a particle suspension by altering the shape of the particle. This research was funded by NSF Grant CBET-1435013.

  13. Natural vibration frequencies of horizontal tubes partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto

    2017-11-01

    This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.

  14. Hydraulic parameters in eroding rills and their influence on detachment processes

    NASA Astrophysics Data System (ADS)

    Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wengel, René; Ries, Johannes B.

    2010-05-01

    In many experiments as well in laboratory as in field experiments the correlations between the detachment rate and different hydraulic parameters are calculated. The used parameters are water depth, runoff, shear stress, unit length shear force, stream power, Reynolds- and Froude number. The investigations show even contradictory results. In most soil erosion models like the WEPP model, the shear stress is used to predict soil detachment rates. But in none of the WEPP datasets, the shear stress showed the best correlation to the detachment rate. In this poster we present the results of several rill experiments in Andalusia from 2008 and 2009. With the used method, it is possible to measure the needed factors to calculate the mentioned parameters. Water depth is measured by an ultrasonic sensor, the runoff values are calculated by combining flow velocity and flow diameter. The parameters wetted perimeter, flow diameter and hydraulic radius can be calculated from the measured rill cross sections and the measured water levels. In the sample density values, needed for calculation of shear stress, unit length shear force and stream power, the sediment concentration and the grain density are are considered. The viscosity of the samples was measured with a rheometer. The result of this measurements shows, that there is a very high linear correlation (R² = 0.92) between sediment concentration and the dynamic viscosity. The viscosity seems to be an important factor but it is only used in the Reynolds-number-equation, in other equations it is neglected. But the viscosity value increases with increasing sediment concentration and hence the influence also increases and the in multiclications negiligible viscosity value of 1 only counts for clear water. The correlations between shear stress, unit length shear force and stream power at the x-axis and the detachment rate at the ordinate show, that there is not one fixed parameter that always displays the best correlation to the detachment rate. The best hit does not change from one experiment to another, it changes from one measuring point to another. Different processes in rill erosion are responsible for the changing correlations. In some cases no one of the parameters shows an acceptable correlation to the soil detachment, because these factors describe fluvial processes. Our experiments show, that not the fluvial processes cause the main sediment procduction in the rills, but bank failure or knickpoint and headcut retreat and these processes are more gravitative than fluvial. Another sediment producing process is the abrupt spill over of plunge pools, a process not realy fluvial and not realy gravitativ. In some experiments, the highest sediment concentrations were measured at the slowly flowing waterfront that only transports the loose material. But all these processes are not considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They cover the fluvial incising in the rill's bottom, but the main sediment sources are not considered satisying in its equations.

  15. What can asymmetry tell us? Investigation of asymmetric versus symmetric pinch and swell structures in nature and simulation

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan

    2015-04-01

    Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing pinch and swell structures.

  16. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Shear viscosity of binary mixtures: The Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  18. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  19. Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids

    DOE PAGES

    Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...

    2016-04-21

    In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less

  20. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  1. Can weak crust explain the correlation of geoid and topography on Venus?

    NASA Technical Reports Server (NTRS)

    Buck, W. Roger

    1993-01-01

    The effect on geoid and topography of low viscosity crust overlying a steady-state convecting mantle is estimated under the assumption that the shear between crust and mantle does not alter the mantle flow. The weak crustal layer can change the sign of the geoid to topography ratio (admittance). The positive long wavelength admittance for Venus is consistent with a weak crust overlying a mantle with a viscosity that increases strongly with depth. The accepted interpretation of the strong positive correlation of geoid and topography on Venus, is that the convecting mantle of Venus has a constant viscosity with depth. Topography results from vertical normal stresses caused by mantle convection and highlands occur where mantle upwells. For topography to be supported by normal stress, the time scale for crustal flow must be long compared to the time scale for changes in the pattern of mantle flow. Because the high surface temperature of Venus may cause the crust to have a low viscosity, this assumption may be false. Topography should then be dominated by shear coupling between the crust and mantle. In the absence of a crustal layer, convection in a constant viscosity layer gives rise to a geoid anomaly that correlates positively with surface topography. When the viscosity in the layer increases with depth by several orders of magnitude, the surface topography and geoid anomaly become anti-correlated.

  2. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  3. Surface temperatures and glassy state investigations in tribology, part 2

    NASA Technical Reports Server (NTRS)

    Bair, S. S.; Winer, W. O.

    1979-01-01

    Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.

  4. Rheology of Coating Materials and Their Coating Characteristics

    NASA Astrophysics Data System (ADS)

    Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.

    2008-07-01

    Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.

  5. Rheological properties of molten Kilauea Iki basalt containing suspended crystals. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weed, H.C.; Ryerson, F.J.; Piwinskii, A.J.

    1984-01-01

    In order to model the flow behavior of molten silicate suspensions, such as magmas and slags, the rheological behavior must be known as a function of the concentration of suspended crystals, melt composition, and external conditions. We have determined the viscosity and crystallization sequence for a Kilauea Iki basalt between 1250/sup 0/C and 1149/sup 0/C at 100 kPa total pressure and fO/sub 2/ corresponding to the quartz-fayalite-magnetite buffer in an iron-saturated Pt30Rh rotating cup viscometer of the Couette type. The apparent viscosity varies from 9 to 879 Pa.s. The concentration of suspended cyrstals varies from 18 volume percent at 1250/supmore » 0/C to 59 volume percent at 1149/sup 0/C. The molten silicate suspension shows power-law behavior: log tau yx = A/sub 0/ + A/sub 1/ log du/dx, where tau/sub yx/ is the shear stress and (du/dx) the shear rate. Since A/sub 1/ less than or equal to 1, the apparent viscosity decreases with increasing shear rate and the system is pseudoplastic. 15 refs., 4 figs., 5 tabs.« less

  6. Predicting human blood viscosity in silico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedosov, Dmitry A.; Pan, Wenxiao; Caswell, Bruce

    2011-07-05

    Cellular suspensions such as blood are a part of living organisms and their rheological and flow characteristics determine and affect majority of vital functions. The rheological and flow properties of cell suspensions are determined by collective dynamics of cells, their structure or arrangement, cell properties and interactions. We study these relations for blood in silico using a mesoscopic particle-based method and two different models (multi-scale/low-dimensional) of red blood cells. The models yield accurate quantitative predictions of the dependence of blood viscosity on shear rate and hematocrit. We explicitly model cell aggregation interactions and demonstrate the formation of reversible rouleaux structuresmore » resulting in a tremendous increase of blood viscosity at low shear rates and yield stress, in agreement with experiments. The non-Newtonian behavior of such cell suspensions (e.g., shear thinning, yield stress) is analyzed and related to the suspension’s microstructure, deformation and dynamics of single cells. We provide the flrst quantitative estimates of normal stress differences and magnitude of aggregation forces in blood. Finally, the flexibility of the cell models allows them to be employed for quantitative analysis of a much wider class of complex fluids including cell, capsule, and vesicle suspensions.« less

  7. Influence of Anti-inflammatory Drugs on the Rheological Properties of Synovial Fluid and Its Components

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Liang, Jing; Colby, Ralph H.

    2006-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid, the synovial fluid model, and plasma protein solutions indicate that the fluids are rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine (HCQ) affect the rheology of the synovial fluid model and its components. While HCQ has no effect on the viscosity of NaHA solutions, it inhibits/suppresses the observed rheopexy of the synovial fluid model and plasma protein solutions. In contrast, D-penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions,---reducing the zero shear rate viscosity of a 3 mg/mL NaHA (in phosphate buffered saline) by ca. 40% after 44 days. The potential implications of these results will be discussed.

  8. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.

    PubMed

    Doinikov, Alexander A; Haac, Jillian F; Dayton, Paul A

    2009-02-01

    A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the "compression-only" behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2-2.5 microm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20 cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30 x 10(-8) kg/s to 2.63 x 10(-8) kg/s for the range of bubble radii, indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the "compression-only" behavior. As an example, the results of the simulation for a 2.03 microm radius bubble insonified with a 6 cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the "compression-only" behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653-656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius.

  9. Influence of a thin compressible insoluble liquid film on the eddy currents generated by interacting surface waves

    NASA Astrophysics Data System (ADS)

    Parfenyev, Vladimir M.; Vergeles, Sergey S.

    2018-06-01

    Recently the generation of eddy currents by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established eddy currents produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The currents become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of eddy currents is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.

  10. Red blood cell deformability and aggregation behaviour in different animal species.

    PubMed

    Plasenzotti, R; Stoiber, B; Posch, M; Windberger, U

    2004-01-01

    Comparative animal studies showed the wide variation of whole blood and plasma viscosity, and erythrocyte aggregation among mammalian species. Whole blood viscosity and red blood cell aggregation is influenced by red cell fluidity. To evaluate differences in erythrocyte deformability in mammals, three species were investigated, whose erythrocytes have a different aggregation property: horse, as a species with high, dog with medium, and sheep with almost unmeasurable aggregation tendency. Erythrocyte deformability was tested ektacytometrically (Elongation Index [EI], LORCA, Mechatronics, Hoorn, Netherlands) at shear stresses from 0.30 to 53.06 Pa. Equine erythrocytes showed EI-values from 0.047 at low shear stress to 0.541 at high shear stress. The EI from dog's erythrocytes ranged from 0.035 to 0.595. Sheep's erythrocytes had an EI of 0.005 at low and 0.400 at high shear stress. Although it might be presumed from the aggregation property that horse had the highest EI among the three species, the EI of canine erythrocytes exceeded the value in horses by 10% at high shear stress. Further, equine erythrocytes started to deform at higher shear stresses (1.69 Pa) than did canine and ovine cells, whose EI increased continuously with increasing shear stress. At moderate shear stress (1-5 Pa) deformability was even higher in the sheep than in the horse. However, at shear stresses higher than 5.34 Pa, equine red cell elongation clearly exceeded the values of sheep. We conclude that erythrocyte elongation is different between the animal species, not clearly linked with the aggregation property, and that the degree of deformability at various shear stresses is species-specific.

  11. Density and viscosity of lipids under pressure

    USDA-ARS?s Scientific Manuscript database

    There is a lack of data for the viscosity of lipids under pressure. The current report is a part of the effort to fill this gap. The viscosity, density, and elastohydrodynamic film thicknesses of vegetable oil (HOSuO) were investigated. Pressure–viscosity coefficients (PVC) of HOSuO at different tem...

  12. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar

    2009-09-01

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.

  13. North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels

    DTIC Science & Technology

    2015-08-01

    published in the NGA’s DNCs, with distinct values assigned to areas of sand, gravel, clay , etc. ERDC/CHL TR-15-14 94 6.5.2 Lateral eddy viscosity As with...6.5.1 Manning’s n bottom friction coefficient ................................................................... 93 6.5.2 Lateral eddy viscosity ...this study include (1) Manning’s n bottom friction coefficient, (2) lateral eddy viscosity , (3) land cover effects on winds (also referred to as

  14. Mantle Flow in the Western United States Constrained by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Niday, W.; Humphreys, E.

    2017-12-01

    Shear wave splitting, caused by the lattice preferred orientation (LPO) of olivine crystals under shear deformation, provide a useful constraint on numerical models of mantle flow. Although it is sometimes assumed that shear wave splitting fast directions correspond with mantle flow directions, this is only true in simple shear flows that do not vary strongly with space or time. Observed shear wave splitting in the western United States is complex and inconsistent with simple shear driven by North American and Pacific plate motion, suggesting that the effects of time-dependent subduction history and spatial heterogeneity are important. Liu and Stegman (2011) reproduce the pattern of fast seismic anomalies below the western US from Farallon subduction history, and Chaparro and Stegman (2017) reproduce the circular anisotropy field below the Great Basin. We extend this to consider anisotropic structure outside the Great Basin and evaluate the density and viscosity of seismic anomalies such as slabs and Yellowstone. We use the mantle convection code ASPECT to simulate 3D buoyancy-driven flow in the mantle below the western US, and predict LPO using the modeled flow fields. We present results from a suite of models varying the sub-lithospheric structures of the western US and constraints on density and viscosity variations in the upper mantle.

  15. Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG

    NASA Astrophysics Data System (ADS)

    Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar

    2018-03-01

    The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.

  16. Quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  17. Textured-surface quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-08-25

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  18. Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk.

    PubMed

    Li, Y; Joyner, H S; Carter, B G; Drake, M A

    2018-04-01

    Fluid milk may be pasteurized by high-temperature short-time pasteurization (HTST) or ultrapasteurization (UP). Literature suggests that UP increases milk astringency, but definitive studies have not demonstrated this effect. Thus, the objective of this study was to determine the effects of pasteurization method, fat content, homogenization pressure, and storage time on milk sensory and mechanical behaviors. Raw skim (<0.2% fat), 2%, and 5% fat milk was pasteurized in duplicate by indirect UP (140°C, 2.3 s) or by HTST pasteurization (78°C, 15 s), homogenized at 20.7 MPa, and stored at 4°C for 8 wk. Additionally, 2% fat milk was processed by indirect UP and homogenized at 13.8, 20.7, and 27.6 MPa and stored at 4°C for 8 wk. Sensory profiling, instrumental viscosity, and friction profiles of all milk were evaluated at 25°C after storage times of 1, 4, and 8 wk. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy were used to determine protein structural changes in milk at these time points. Fresh HTST milk was processed at wk 7 for wk 8 evaluations. Ultrapasteurization increased milk sensory and instrumental viscosity compared with HTST pasteurization. Increased fat content increased sensory and instrumental viscosity, and decreased astringency and friction profiles. Astringency, mixed regimen friction profiles, and sensory viscosity also increased for UP versus HTST. Increased storage time showed no effect on sensory viscosity or mechanical viscosity. However, increased storage time generally resulted in increased friction profiles and astringency. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy showed increased denatured whey protein in UP milk compared with HTST milk. The aggregates or network formed by these proteins and casein micelles likely caused the increase in viscosity and friction profiles during storage. Homogenization pressure did not significantly affect friction behaviors, mechanical viscosity, or astringency; however, samples homogenized at 13.8 MPa versus 20.7 and 27.6 MPa showed higher sensory viscosity. Astringency was positively correlated with the friction coefficient at 100 m/s sliding speed (R 2 = 0.71 for HTST milk and R 2 = 0.74 for UP milk), and sensory viscosity was positively correlated with the mechanical viscosity at a shear rate of 50 s -1 (R 2 = 0.90). Thus, instrumental testing can be used to indicate certain sensory behaviors of milk. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions.

    PubMed

    Philippe, A M; Baravian, C; Imperor-Clerc, M; De Silva, J; Paineau, E; Bihannic, I; Davidson, P; Meneau, F; Levitz, P; Michot, L J

    2011-05-18

    Aqueous suspensions of swelling clay minerals exhibit a rich and complex rheological behaviour. In particular, these repulsive systems display strong shear-thinning at very low volume fractions in both the isotropic and gel states. In this paper, we investigate the evolution with shear of the orientational distribution of aqueous clay suspensions by synchrotron-based rheo-SAXS experiments using a Couette device. Measurements in radial and tangential configurations were carried out for two swelling clay minerals of similar morphology and size, Wyoming montmorillonite and Idaho beidellite. The shear evolution of the small angle x-ray scattering (SAXS) patterns displays significantly different features for these two minerals. The detailed analysis of the angular dependence of the SAXS patterns in both directions provides the average Euler angles of the statistical effective particle in the shear plane. We show that for both samples, the average orientation is fully controlled by the local shear stress around the particle. We then apply an effective approach to take into account multiple hydrodynamic interactions in the system. Using such an approach, it is possible to calculate the evolution of viscosity as a function of shear rate from the knowledge of the average orientation of the particles. The viscosity thus recalculated almost perfectly matches the measured values as long as collective effects are not too important in the system.

  20. From intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutions

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Kröger, Martin

    2018-05-01

    The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases—whereas for concentrated polymer solutions it increases—with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.

  1. Asymmetric bubble collapse and jetting in generalized Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Shukla, Ratnesh K.; Freund, Jonathan B.

    2017-11-01

    The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.

  2. Influence of viscosity modifying admixtures on the rheological behavior of cement and mortar pastes

    NASA Astrophysics Data System (ADS)

    Bouras, R.; Kaci, A.; Chaouche, M.

    2012-03-01

    The influence of Viscosity-modifying admixtures (VMA) dosage rate on the steady state rheological properties, including the yield stress, fluid consistency index and flow behaviour index, of cementitious materials is considered experimentally. The investigation is undertaken both at cement paste and mortar scales. It is found that the rheological behaviour of the material is in general dependent upon shear-rate interval considered. At sufficiently low shear-rates the materials exhibit shear-thinning. This behaviour is attributed to flow-induced defloculation of the solid particles and VMA polymer disentanglement and alignment. At relatively high shear-rates the pastes becomes shear-thickening, due to repulsive interactions among the solid particles. There is a qualitative difference between the influence of VMA dosage at cement and mortar scales: at cement scale we obtain a monotonic increase of the yield stress, while at mortar scale there exists an optimum VMA dosage for which the yield stress is a minimum. The flow behaviour index exhibit a maximum in the case of cement pastes and monotonically decreases in the case of mortars. On the other hand, the fluid consistency index presents a minimum for both cement pastes and mortars.

  3. Influence of complex interfacial rheology on the thermocapillary migration of a surfactant-laden droplet in Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Chakraborty, Suman

    2018-02-01

    The effect of surface viscosity on the motion of a surfactant-laden droplet in the presence of a non-isothermal Poiseuille flow is studied, both analytically and numerically. The presence of bulk-insoluble surfactants along the droplet surface results in interfacial shear and dilatational viscosities. This, in turn, is responsible for the generation of surface-excess viscous stresses that obey the Boussinesq-Scriven constitutive law for constant values of surface shear and dilatational viscosities. The present study is primarily focused on finding out how this confluence can be used to modulate droplet dynamics in the presence of Marangoni stress induced by nonuniform distribution of surfactants and temperature along the droplet surface, by exploiting an intricate interplay of the respective forcing parameters influencing the interfacial stresses. Under the assumption of negligible fluid inertia and thermal convection, the steady-state migration velocity of a non-deformable spherical droplet, placed at the centerline of an imposed unbounded Poiseuille flow, is obtained for the limiting case when the surfactant transport along the interface is dominated by surface diffusion. Our analysis proves that the droplet migration velocity is unaffected by the shear viscosity whereas the dilatational viscosity has a significant effect on the same. The surface viscous effects always retard the migration of a surfactant-laden droplet when the temperature in the far-field increases in the direction of the imposed flow although the droplet always migrates towards the hotter region. On the contrary, if a large temperature gradient is applied in a direction opposite to that of the imposed flow, the direction of droplet migration gets reversed. However, for a sufficiently high value of dilatational surface viscosity, the direction of droplet migration reverses. For the limiting case in which the surfactant transport along the droplet surface is dominated by surface convection, on the other hand, surface viscosities do not have any effect on the motion of the droplet. These results are likely to have far-reaching consequences in designing an optimal migration path in droplet-based microfluidic technology.

  4. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  5. Hyperfibrinogenaemia and hyperviscosity in sickle-cell crisis.

    PubMed Central

    Richardson, S G; Breeze, G R; Stuart, J

    1976-01-01

    Plasma fibrinogen concentration and whole-blood viscosity, the latter measured at two shear rates (23 and 230 sec-1), were estimated during eight episodes of sickle-cell crisis and compared with values in 26 sickle-cell anaemia patients who were not in crisis. Painful crisis was associated with a significant increase in both plasma fibrinogen and whole-blood viscosity. Increased fibrinogen-erythrocyte interaction in vivo may be a significant contributory factor to raising blood viscosity and precipitating vaso-occlusive crisis in sickle-cell disease. PMID:977763

  6. Nonlinear Viscoelastic Breakup in a High-Velocity Airstream.

    DTIC Science & Technology

    1981-03-01

    viscoelasticity PMMA /Poly (ethyl/butylacrylate) Jet analysis Extensional viscosity 106 SdhACV a. -- N .MM~OMW I~*it l -,’ bi. ab Weiss and Worshern’s...Zero shear viscosity (viscosity-avg.) %/ poise Polymethyl- 6 x 106 2.1 100. methacrylate ( PMMA ) 1.5 16. 1.0 2.0 0.5 0.3 Copolymer 80% PMMA 20% Polyethyl...Measured 2.1% Poly(methylmethacrylate) /diethylmalonate ( PMMA /DEM) 210 1980 + 250 (400) 1.5% PMMA /DEM 110 1780 + 200 (250) 1.0% PMMA /DEM 60 1480 + 150

  7. The Einstein viscosity with fluid elasticity

    NASA Astrophysics Data System (ADS)

    Einarsson, Jonas; Yang, Mengfei; Shaqfeh, Eric S. G.

    2017-11-01

    We give the first correction to the suspension viscosity due to fluid elasticity for a dilute suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O (Wi2) in the Weissenberg number Wi = γ . λ , where γ is the typical magnitude of the suspension velocity gradient, and λ is the relaxation time of the viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic stretching in strain `hot spots' near the particle, despite the fact that the stress inside the particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly model the extensional rheology of the suspending medium to predict the shear rheology of the suspension. For uniaxial extensional flow we correct existing results at O (Wi) , and find dramatic strain-rate thickening at O (Wi2) . We validate our theory with fully resolved numerical simulations.

  8. Einstein viscosity with fluid elasticity

    NASA Astrophysics Data System (ADS)

    Einarsson, Jonas; Yang, Mengfei; Shaqfeh, Eric S. G.

    2018-01-01

    We give the first correction to the suspension viscosity due to fluid elasticity for a dilute suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O (ϕ Wi2) in the particle volume fraction ϕ and the Weissenberg number Wi =γ ˙λ , where γ ˙ is the typical magnitude of the suspension velocity gradient, and λ is the relaxation time of the viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic stretching in strain "hot spots" near the particle, despite the fact that the stress inside the particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly model the extensional rheology of the suspending medium to predict the shear rheology of the suspension. For uniaxial extensional flow we correct existing results at O (ϕ Wi ) , and find dramatic strain-rate thickening at O (ϕ Wi2) . We validate our theory with fully resolved numerical simulations.

  9. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1988-01-01

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  10. Method of making a piezoelectric shear wave resonator

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1987-02-03

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  11. A rheological model for elastohydrodynamic contacts based on primary laboratory data

    NASA Technical Reports Server (NTRS)

    Bair, S.; Winer, W. O.

    1979-01-01

    A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is a Maxwell model modified with a limiting shear stress. Three material properties are required: Low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure. In applying the model to EHD contacts the predicted response possesses the characteristics expected from several experiments reported in the literature and, in one specific case where direct comparison could be made, good numerical agreement is shown.

  12. Communication: Non-Newtonian rheology of inorganic glass-forming liquids: Universal patterns and outstanding questions

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Aitken, B. G.; Sen, S.

    2017-02-01

    All families of inorganic glass-forming liquids display non-Newtonian rheological behavior in the form of shear thinning at high shear rates. Experimental evidence is presented to demonstrate the existence of remarkable universality in this behavior, irrespective of chemical composition, structure, topology, and viscosity. However, contrary to intuition, in all cases the characteristic shear rates that mark the onset of shear thinning in these liquids are orders of magnitude slower than the global shear relaxation rates. Attempt is made to reconcile such differences within the framework of the cooperative structural relaxation model of glass-forming liquids.

  13. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  14. Capillary waves with surface viscosity

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  15. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior.

    PubMed

    Rumpagaporn, Pinthip; Kaur, Amandeep; Campanella, Osvaldo H; Patterson, John A; Hamaker, Bruce R

    2012-01-01

    In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry. © 2011 Institute of Food Technologists®

  16. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties

    PubMed Central

    Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji

    2017-01-01

    Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4–0.7 mg KOH/g, or a viscosity of 140–540 mm2/s, can meet all of the performance requirements for asphalt rejuvenation used in this research. PMID:28772862

  17. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties.

    PubMed

    Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji

    2017-05-06

    Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4-0.7 mg KOH/g, or a viscosity of 140-540 mm²/s, can meet all of the performance requirements for asphalt rejuvenation used in this research.

  18. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  19. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.

  20. Characterization of stratification for an opaque highly stable magnetorheological fluid using vertical axis inductance monitoring system

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Choi, Young-Tai; Liao, Chang-Rong; Wereley, Norman M.

    2015-05-01

    A key requirement for the commercialization of various magnetorheological fluid (MRF)-based applications is sedimentation stability. In this study, a high viscosity linear polysiloxane (HVLP), which has been used for shock absorbers in heavy equipment, is proposed as a new carrier fluid in highly stable MRFs. The HVLP is known to be a thixotropic (i.e., shear thinning) fluid that shows very high viscosity at very low shear rate and low viscosity at higher shear rate. In this study, using the shear rheometer, the significant thixotropic behavior of the HVLP was experimentally confirmed. In addition, a HVLP carrier fluid-based MRF (HVLP MRF) with 26 vol. % was synthesized and its sedimentation characteristics were experimentally investigated. But, because of the opacity of the HVLP MRF, no mudline can be visually observed. Hence, a vertical axis inductance monitoring system (VAIMS) applied to a circular column of fluid was used to evaluate sedimentation behavior by correlating measured inductance with the volume fraction of dispersed particles (i.e., Fe). Using the VAIMS, Fe concentration (i.e., volume fraction) was monitored for 28 days with a measurement taken every four days, as well as one measurement after 96 days to characterize long-term sedimentation stability. Finally, the concentration of the HVLP MRF as a function of the depth in the column and time, as well as the concentration change versus the depth in the column, are presented and compared with those of a commercially available MRF (i.e., Lord MRF-126CD).

  1. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  2. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  3. Comparison of erythrocyte dynamics in shear flow under different stress-free configurations

    NASA Astrophysics Data System (ADS)

    Cordasco, Daniel; Yazdani, Alireza; Bagchi, Prosenjit

    2014-04-01

    An open question that has persisted for decades is whether the cytoskeleton of a red blood cell is stress-free or under a stress. This question is important in the context of theoretical modeling of cellular motion under a flowing condition where it is necessary to make an assumption about the stress-free state. Here, we present a 3D numerical study to compare the cell dynamics in a simple shear flow under two different stress-free states, a biconcave discocyte representing the resting shape of the cell, and a nearly spherical oblate shape. We find that whether the stress-free states make a significant difference or not depends on the viscosity of the suspending medium. If the viscosity is close to that of blood plasma, the two stress-free states do not show any significant difference in cell dynamics. However, when the suspending medium viscosity is well above that of the physiological range, as in many in vitro studies, the shear rate separating the tank-treading and tumbling dynamics is observed to be higher for the biconcave stress-free state than the spheroidal state. The former shows a strong shape oscillation with repeated departures from the biconcave shape, while the latter shows a nearly stable biconcave shape. It is found that the cell membrane in the biconcave stress-free state is under a compressive stress and a weaker bending force density, leading to a periodic compression of the cell. The shape oscillation then leads to a higher energy barrier against membrane tank-tread leading to an early transition to tumbling. However, if the cells are released with a large off-shear plane angle, the oscillations can be suppressed due to an azimuthal motion of the membrane along the vorticity direction leading to a redistribution of the membrane points and lowering of the energy barrier, which again results in a nearly similar behavior of the cells under the two different stress-free states. A variety of off-shear plane dynamics is observed, namely, rolling, kayaking, precession, and a new dynamics termed "hovering." For the physiological viscosity range, the shear-plane tumbling appears to be relatively less common, while the rolling is observed to be more stable.

  4. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers

    NASA Astrophysics Data System (ADS)

    Shanmugharaj, A. M.; Bhowmick, Anil K.

    2004-01-01

    The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.

  5. Effect of Rheological Properties on Liquid Curtain Coating

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Griffith, William; Pujari, Saswati; Carvalho, Marcio; Francis, Lorraine; Dow Chemical Company Collaboration; PUC-Rio Collaboration

    2017-11-01

    Curtain coating is one of the preferred methods for high-speed precision application of single-layer and multi-layer coatings in technology. However, uniform coatings are only obtained in a certain range of operating parameters, called coating window. The two main physical mechanisms that limit successful curtain coating are liquid curtain breakup and air entrainment. The rheological properties of the liquid play an important role on these mechanisms, but the fundamental understanding of these relations is still not complete. The effect of rate-dependent shear and extensional viscosities on the stability of viscoelastic and shear thinning liquid curtains were explored by high-speed visualization. Aqueous solutions of polyethylene oxide (PEO) and polyethylene glycol (PEG) were used as viscoelastic liquids. Xanthan Gum in water and glycerol solutions with a range of compositions were used as shear thinning liquids. The critical condition was determined by examining flow rate below which curtain broke. In this work, we also analyze relative importance of rate-dependent shear and extensional viscosity on both curtain breakup and air entrainment. We would like to acknowledge the financial support from the Dow Chemical Company.

  6. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    PubMed Central

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  7. Confirmation of a change in the global shear velocity pattern at around 1,000 km depth

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Durand, S.; Ricard, Y. R.; Zaroli, C.; Lambotte, S.

    2017-12-01

    In this study, we confirm the existence of a change in the shear velocity spectrum around 1,000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross- coupling structure coefficients of spheroidal normal modes and body wave travel times which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e., richest in "short" wavelengths corresponding to spherical harmonic degrees greater than 10) around 1,000 km depth and this flattening occurs between 670 and 1,500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1,000 km depth where we also observed the upper boundary of LLSVPs. The existence of a flatter spectrum, richer in short wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.

  8. Ratio of shear viscosity to entropy density in multifragmentation of Au + Au

    NASA Astrophysics Data System (ADS)

    Zhou, C. L.; Ma, Y. G.; Fang, D. Q.; Li, S. X.; Zhang, G. Q.

    2012-06-01

    The ratio of the shear viscosity (η) to entropy density (s) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of η/s as a function of the incident energy for the head-on Au + Au collisions displays that a minimum region of η/s has been approached at higher incident energies, where the minimum η/s value is about 7 times Kovtun-Son-Starinets (KSS) bound (1/4π). We argue that the onset of minimum η/s region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.

  9. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum

    NASA Astrophysics Data System (ADS)

    Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.

    2017-09-01

    An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.

  10. Chapman-Enskog expansion for the Vicsek model of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas

    2016-08-01

    Using the standard Vicsek model, I show how the macroscopic transport equations can be systematically derived from microscopic collision rules. The approach starts with the exact evolution equation for the N-particle probability distribution and, after making the mean-field assumption of molecular chaos, leads to a multi-particle Enskog-type equation. This equation is treated by a non-standard Chapman-Enskog expansion to extract the macroscopic behavior. The expansion includes terms up to third order in a formal expansion parameter ɛ, and involves a fast time scale. A self-consistent closure of the moment equations is presented that leads to a continuity equation for the particle density and a Navier-Stokes-like equation for the momentum density. Expressions for all transport coefficients in these macroscopic equations are given explicitly in terms of microscopic parameters of the model. The transport coefficients depend on specific angular integrals which are evaluated asymptotically in the limit of infinitely many collision partners, using an analogy to a random walk. The consistency of the Chapman-Enskog approach is checked by an independent calculation of the shear viscosity using a Green-Kubo relation.

  11. Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties

    NASA Astrophysics Data System (ADS)

    Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa

    2018-06-01

    A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.

  12. Diffusion coefficient of the protein in various crystallization solutions: The key to growing high-quality crystals in space

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroaki; Takahashi, Sachiko; Yamanaka, Mari; Yoshizaki, Izumi; Sato, Masaru; Sano, Satoshi; Motohara, Moritoshi; Kobayashi, Tomoyuki; Yoshitomi, Susumu; Tanaka, Tetsuo; Fukuyama, Seijiro

    2006-09-01

    The diffusion coefficients of lysozyme and alpha-amylase were measured in the various polyethylene glycol (PEG) solutions. Obtained diffusion coefficients were studied with the viscosity coefficient of the solution. It was found that the diffusion process of the protein was suppressed with a factor of vγ, where ν is a relative viscosity coefficient of the PEG solution. The value of γ is -0.64 at PEG1500 for both proteins. The value increased to -0.48 at PEG8000 for lysozyme, while decreased to -0.72 for alpha-amylase. The equation of an approximate diffusion coefficient at certain PEG molecular weight and concentration was roughly obtained.

  13. Increases in core temperature counterbalance effects of haemoconcentration on blood viscosity during prolonged exercise in the heat.

    PubMed

    Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W; Williams, Alexander T; Cabrales, Pedro

    2016-02-01

    What is the central question of this study? The purpose of the present study was to determine the effects of exercise-induced haemoconcentration and hyperthermia on blood viscosity. What is the main finding and its importance? Exercise-induced haemoconcentration, increased plasma viscosity and increased blood aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell (RBC) deformability (e.g. RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and postexercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced haemoconcentration and hyperthermia and to determine their combined effects on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% relative humidity), which resulted in significant increases from pre-exercise values for rectal temperature (from 37.11 ± 0.35 to 38.76 ± 0.13 °C), haemoconcentration (haematocrit increased from 43.6 ± 3.6 to 45.6 ± 3.5%) and dehydration (change in body weight = -3.6 ± 0.7%). Exercise-induced haemoconcentration significantly (P < 0.05) increased blood viscosity by 9% (from 3.97 to 4.33 cP at 300 s(-1)), whereas exercise-induced hyperthermia significantly decreased blood viscosity by 7% (from 3.97 to 3.69 cP at 300 s(-1)). When both factors were considered together, there was no overall change in blood viscosity (from 3.97 to 4.03 cP at 300 s(-1)). The effects of exercise-induced haemoconcentration, increased plasma viscosity and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell deformability (e.g. red blood cell membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  14. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1985-05-20

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  15. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1983-10-25

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  16. Surface functionalisation with viscosity-sensitive BODIPY molecular rotor

    NASA Astrophysics Data System (ADS)

    Vyšniauskas, Aurimas; Lopez-Duarte, Ismael; Thompson, Alex J.; Bull, James A.; Kuimova, Marina K.

    2018-07-01

    Surface functionalisation with viscosity sensitive dyes termed ‘molecular rotors’ can potentially open up new opportunities in sensing, for example for non-invasive biological viscosity imaging, in studying the effect of shear stress on lipid membranes and in cells, and in imaging contacts between surfaces upon applied pressure. We have functionalised microscope slides with BODIPY-based molecular rotor capable of viscosity sensing via its fluorescence lifetime. We have optimised functionalisation conditions and prepared the slides with the BODIPY rotor attached directly to the surface of glass slides and through polymer linkers of 5 kDa and 40 kDa in mass. The slides were characterised for their sensitivity to viscosity, and used to measure viscosity of supported lipid bilayers during photooxidation, and of giant unilamellar vesicles lying on the surface of the slide. We conclude that our functionalised slides show promise for a variety of viscosity sensing applications.

  17. Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids.

    PubMed

    Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu

    2015-07-15

    The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.

  18. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landmann, S.; Kählert, H.; Thomsen, H.

    2015-09-15

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility ofmore » the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas.« less

  19. Rheological flow laws for multiphase magmas: An empirical approach

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca

    2016-07-01

    The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and ;apparent shear-thinning; for the behaviours observed at low and high crystallinity, respectively. At low crystallinity, increasing deformation rate favours the transfer of gas bubbles in regions of high strain localisation, which, in turn, leads to outgassing and the observed increase of viscosity with increasing strain-rate. At high crystallinity gas bubbles remain trapped within crystals and no outgassing occurs, leading to strain localisation in melt-rich shear bands and to a decrease of viscosity with increasing strain-rate, behaviour observed also in crystal-bearing suspensions. Increasing the volume fraction of weak phases induces limited variation of the stress exponent and pre-exponential factor in both apparent shear-thickening and apparent shear-thinning regimes; conversely, the activation energy is strongly dependent on gas bubble and melt volume fractions. A transient rheology from apparent shear-thickening to apparent shear-thinning behaviour is observed for a crystallinity of 44 vol.%. The proposed equations can be implemented in numerical models dealing with the flow of crystal- and bubble-bearing magmas. We present results of analytical simulations showing the effect of the rheology of three-phase magmas on conduit flow dynamics, and show that limited bubble volumes (< 10 vol.%) lead to strain localisation at the conduit margins during the ascent of crystal-rich lava domes and crystal-poor obsidian flows.

  20. Diffusion of neutral and ionic species in charged membranes: boric acid, arsenite, and water.

    PubMed

    Goli, Esmaiel; Hiemstra, Tjisse; Van Riemsdijk, Willem H; Rahnemaie, Rasoul; Malakouti, Mohammad Jafar

    2010-10-15

    Dynamic ion speciation using DMT (Donnan membrane technique) requires insight into the physicochemical characteristics of diffusion in charged membranes (tortuosity, local diffusion coefficients) as well as ion accumulation. The latter can be precluded by studying the diffusion of neutral species, such as boric acid, B(OH)₃⁰(aq), arsenite, As(OH)₃⁰(aq), or water. In this study, the diffusion rate of B(OH)₃⁰ has been evaluated as a function of the concentration, pH, and ionic strength. The rate is linearly dependent on the concentration of solely the neutral species, without a significant contribution of negatively charged species such as B(OH)₄⁻, present at high pH. A striking finding is the very strong effect (factor of ~10) of the type of cation (K(+), Na(+), Ca(2+), Mg(2+), Al(3+), and H(+)) on the diffusion coefficient of B(OH)₃⁰ and also As(OH)₃⁰. The decrease of the diffusion coefficient can be rationalized as an enhancement of the mean viscosity of the confined solution in the membrane. The diffusion coefficients can be described by a semiempirical relationship, linking the mean viscosity of the confined solute of the membrane to the viscosity of the free solution. In proton-saturated membranes, as used in fuel cells, viscosity is relatively more enhanced; i.e., a stronger water network is formed. Extraordinarily, our B(OH)₃-calibrated model (in HNO₃) correctly predicts the reported diffusion coefficient of water (D(H₂O)), measured with ¹H NMR and quasi-elastic neutron scattering in H(+)-Nafion membranes. Upon drying these membranes, the local hydronium, H(H₂O)(n)(+), concentration and corresponding viscosity increase, resulting in a severe reduction of the diffusion coefficient (D(H₂O) ≈ 5-50 times), in agreement with the model. The present study has a second goal, i.e., development of the methodology for measuring the free concentration of neutral species in solution. Our data suggest that the free concentration can be measured with DMT in natural systems if one accounts for the variation in the cation composition of the membrane and corresponding viscosity/diffusion coefficient.

  1. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  2. Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooled Al80Ni20

    NASA Astrophysics Data System (ADS)

    Das, Subir K.; Horbach, Jürgen; Voigtmann, Thomas

    2008-08-01

    Molecular dynamics computer simulations are performed to study structure and structural relaxation in the glassforming metallic alloy Al80Ni20 . The interactions between the particles are modeled by an effective potential of the embedded atom type. Our model of Al80Ni20 exhibits chemical short-range order (CSRO) that is reflected in a broad prepeak around a wave number of 1.8Å-1 in the partial static structure factor for the Ni-Ni correlations. The CSRO is due to the preference of Ni atoms to have Al rather than Ni atoms as nearest neighbors. By analyzing incoherent and coherent intermediate scattering functions as well as self-diffusion constants and shear viscosity, we discuss how the chemical ordering is reflected in the dynamics of the deeply undercooled melt. The q dependence of the α relaxation time as well as the Debye-Waller factor for the Al-Al correlations show oscillations at the location of the prepeak in the partial static structure factor for the Ni-Ni correlations. The latter feature of the Debye-Waller factor is well reproduced by a calculation in the framework of the mode coupling theory (MCT) of the glass transition, using the partial static structure factors from the simulation as input. We also check the validity of the Stokes-Einstein-Sutherland formula that relates the self-diffusion coefficients with the shear viscosity. We show that it breaks down already far above the mode coupling critical temperature Tc . The failure of the Stokes-Einstein-Sutherland relation is not related to the specific chemical ordering in Al80Ni20 .

  3. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less

  4. Stress and strain evolution of folding rocks

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka

    2015-04-01

    One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress difference between pure and simple shear is less pronounced in power-law materials. It also depends on the original orientation of the layer relative to the shear plane, being the shortening rate initially relatively low when the layer makes a low angle with the shear plane. The mechanical behaviour is similar in pure and simple shear when the layer is oriented at a relative high angle (45°). M-G Llorens, PD Bons, A Griera and E Gomez-Rivas (2013a) When do folds unfold during progressive shear?. Geology, 41, 563-566. M-G Llorens, PD Bons, A Griera, E Gomez-Rivas and LA Evans (2013b) Single layer folding in simple shear. Journal of Structural Geology, 50, 209-220.

  5. The rheology of water-methanol slurries: Implications for cryovolcanism on Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Zhong, F.; Hays, C. C.; Choukroun, M.; Barmatz, M. B.; Kargel, J. S.

    2008-12-01

    Cassini SAR imagery has revealed the presence of landforms on the surface of Titan that may be cryovolcanic flows and domes [1,2]. In order to relate the observed surface features to the geological processes and chemistries that produced them, it is necessary to construct rheological flow models at cryogenic temperatures. We report preliminary cryogenic rheological measurements on a binary 40 wt% methanol-water composition, used as a path finding analog for characterizing the rheological properties of candidate cryo-magmas and eruptant materials [3]. Work by Kargel et al. [4] used a cryogenic rotational viscometer and a viscous drop experiment to determine the viscosity of ammonia-water slurries, a likely composition of Titan cryomagma. This work revealed that the materials in question have viscosities that were controlled by the pure liquid viscosity and the solid fraction, the latter also resulting in shear-rate dependence. Our cryogenic rheological measurements were conducted between 90-300 K using a home- built LN2 cooled cryogenic rotational viscometer system, with data acquisition and control achieved using the National Instruments LabView program. We report the results of a series of measurements performed as a function of temperature and rotational strain rate. The methanol-water mixture exhibited a variety of rheological response behaviors under these experimental conditions; i.e., development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, which to our knowledge have not been previously observed or reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by the solid volume fraction. At fixed temperature, depending on shearing history, a Cross model describes our data well over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global, but at low shear stresses the approximation becomes inaccurate because the Bingham yield stress is only an approximation to what is actually a high viscosity creep behavior. This yield-stress-like creep behavior implies that initialization of levees in cryolava flows is more likely than would be inferred from previous cryo-rheological studies and may provide a partial explanation for features observed by the Cassini spacecraft on Titan, which are interpreted as steep-sided volcanic constructs [2]. This analysis will be critical in the development of future experiments designed to measure all the parameters controlling cryomagma rheologies for input into flow models. [1] Elachi et al. (2005) Science 308, 970-974. [2] Lopes et al. (2007) Icarus 186, 395-412. [3] Zhong et al. (in review) Icarus. [4] Kargel et al. (1991) Icarus 89, 93-11.

  6. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  7. Extensional Rheology Experiment Developed to Investigate the Rheology of Dilute Polymer Solutions in Microgravity

    NASA Technical Reports Server (NTRS)

    Logsdon, Kirk A.

    2001-01-01

    A fundamental characteristic of fluid is viscosity; that is, the fluid resists forces that cause it to flow. This characteristic, or parameter, is used by manufacturers and end-users to describe the physical properties of a specific material so that they know what to expect when a material, such as a polymer, is processed through an extruder, a film blower, or a fiber-spinning apparatus. Normally, researchers will report a shear viscosity that depends on the rate of an imposed shearing flow. Although this type of characterization is sufficient for some processes, simple shearing experiments do not provide a complete picture of what a processor may expect for all materials. Extensional stretching flows are common in many polymer-processing operations such as extrusion, blow molding, and fiber spinning. Therefore, knowledge of the complete rheological (ability to flow and be deformed) properties of the polymeric fluid being processed is required to accurately predict and account for the flow behavior. In addition, if numerical simulations are ever able to serve as a priori design tools for optimizing polymer processing operations such as those described above, an accurate knowledge of the extensional viscosity of a polymer system and its variation with temperature, concentration, molecular weight, and strain rate is critical.

  8. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  9. Substitute fluid examinations for liquid manure

    NASA Astrophysics Data System (ADS)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  10. Melt rheological properties of natural fiber-reinforced polypropylene

    Treesearch

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  11. Therapeutic effects of calcium dobesilate on diabetic nephropathy mediated through reduction of expression of PAI-1

    PubMed Central

    ZHANG, XIAOQIAN

    2013-01-01

    The aim of this study was to investigate whether calcium dobesilate (calcium dihydroxy-2,5-benzenesulfonate) may be used to treat diabetic nephropathy. A total of 121 patients with type 2 diabetic nephropathy received calcium dobesilate (500 mg, 3 times a day) for 3 months. The levels of glycated hemoglobin, fasting serum C peptide, triglyceride, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase, γ-glutamyl transferase, urea nitrogen, creatinine, hematocrit, plasma viscosity, whole blood reduced viscosity, high, medium and low shear rate whole blood viscosity, fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and endothelin were determined. The urinary albumin excretion rate (UAER) was also determined once a month during the study. The UAER and medium and low shear rate whole blood viscosity were significantly lower in the treated patients. The rate of microalbuminuria normalization was 90%. During the treatment, the UAERs decreased. The results revealed that calcium dobesilate has therapeutic effects on type 2 diabetes patients with microalbuminuria. In addition, the benefit was positively correlated with the calcium dobesilate treatment time. The therapeutic effect may be due to decreases in the levels of PAI-1. PMID:23251286

  12. Effect of thermal modification on rheological properties of polyethylene blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki, E-mail: m-yama@jaist.ac.jp

    2014-03-15

    We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constantmore » draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.« less

  13. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature.

    PubMed

    Shamim, Nabila; McKenna, Gregory B

    2010-12-09

    The present paper reports the results of a systematic rheological study of the dynamic moduli of 1-butyl 3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl 3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-ethyl 3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) in the vicinity of their respective glass transition temperatures. The results show an anomalous aging in that the dynamic and the low shear rate viscosities decrease with time at temperatures near to, but above, the glass transition temperature, and this is described. The samples that are aged into equilibrium obey the time-temperature superposition principle, and the shift factors and the viscosities follow classic super-Arrhenius behaviors with intermediate fragility values as the glass transition is approached. Similar experiments using a high-purity [Bmim][BF(4)] show that using a higher purity of the ionic liquid, while changing absolute values of the properties, does not eliminate the anomalous aging response. The data are also analyzed in a fashion similar to that used for polymer melts, and we find that these ionic liquids do not follow, for example, the Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity.

  14. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  15. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin

    2017-03-01

    The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.

  16. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  17. Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.

    PubMed

    Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L

    2009-04-30

    This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m

  18. Microfluidic viscometers for shear rheology of complex fluids and biofluids

    PubMed Central

    Wang, William S.; Vanapalli, Siva A.

    2016-01-01

    The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids. PMID:27478521

  19. Characterization of Carbopol® hydrogel rheology for experimental tectonics and geodynamics

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, E.; Corbi, F.; Funiciello, F.; Massmeyer, A.; Santimano, T. N.; Rosenau, M.; Davaille, A.

    2015-02-01

    One of the long-standing challenges of modern tectonics and geodynamics is to fully understand the strong strain localization and its effects observed in the lithosphere, which presents viscous, as well as elastic and brittle properties. Recently yield stress-shear thinning hydrogels, such as Carbopol®, have been employed in analog modeling because of its great potential for mimicking the non-Newtonian behavior of rocks. Conversely its use has been limited by the difficulties in assessing its rheology and in preparing uniform samples. Ergo, it is essential to ensure a standard recipe, yielding to a reproducible behavior, no matter which rheometer model is used. We carried out, at four institutions (FAST, GFZ, IPGP and LET), a benchmark for developing a standard preparation and for testing the comparability of results. Then, we conducted a systematical rheological characterization of a wide range of Carbopol® formulas as a function of concentration, composition, pH, temperature and aging. Results show that neutral pH favors higher viscosity. The shear modulus, yield stress, viscosity, and shear thinning behavior increase with concentration. The linear viscoelastic range increases with concentration contrarily to what is observed in gelatins or colloidal suspensions. A weak inverse relationship between temperature and viscosity is found. Similarly, aging reduces both the viscosity and loss modulus, with reduction more evident for low concentration samples. Scaling analysis revealed that low concentration samples, i.e. < 0.1 wt.%, exhibiting shear thinning behavior and low yield stress, are appropriate to model the rising of thermal instabilities. Those at 0.5-1.0 wt.%, showing yield stress in the order of hundreds of Pa and n ranging between 1.6 and 3.4 are good candidates to mimic the non-linear ductile behavior of crustal rocks. We conclude that tuning the visco-elasto-plastic rheology of Carbopol® would make this material a good candidate for modeling of also other geological processes.

  20. Viscous pressure correction in the irrotational flow outside Prandtl's boundary layer

    NASA Astrophysics Data System (ADS)

    Joseph, Daniel; Wang, Jing

    2004-11-01

    We argue that boundary layers on solid with irrotational motion outside are like a gas bubble because the shear stress vanishes at the edge of the boundary layer but the irrotational shear stress does not. This discrepancy induces a pressure correction and an additional drag which can be advertised as due to the viscous dissipation of the irrotational flow. Typically, this extra correction to the drag would be relatively small. A much more interesting implication of the extra pressure theory arises from the consideration of the effects of viscosity on the normal stress on a solid boundary which are entirely neglected in Prandtl's theory. It is very well known and easily demonstrated that as a consequence of the continuity equation the viscous normal stress must vanish on a rigid solid. It follows that all the greatly important effects of viscosity on the normal stress are buried in the pressure and the leading order effects of viscosity on the normal stress can be obtained from the viscous correction of viscous potential flow.

  1. Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan T.; Diamond, Patrick

    1992-01-01

    We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.

  2. Ultrasound shear wave simulation based on nonlinear wave propagation and Wigner-Ville Distribution analysis

    NASA Astrophysics Data System (ADS)

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2017-03-01

    This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.

  3. Influence of vibration on structure rheological properties of a highly concentrated suspension

    NASA Astrophysics Data System (ADS)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  4. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  5. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. A coaxial viscosimeter which permits the simultaneous determination of relative and anomalous viscosity and of flow-birefringence is described. Flow-anomaly and flow-birefringence are regarded as characteristic of elongated micelles and molecules. 2. Such methods have been applied to dilute solutions of proteins. The conditions under which the coaxial (Couette) viscosimeter measures the viscosity of the bulk phase and the surface film phase respectively have been investigated and are described. 3. The general behaviour of protein solutions subjected to shear is summarised. PMID:19873384

  6. The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.

    NASA Astrophysics Data System (ADS)

    Gilmartin, Barbara Jean

    The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most predictive factors in terms of the variation in viscosity of the emulsion with coal type. The viscosity of the oil used is linearly related to the viscosity of the COW. The relative viscosity - concentration relationship for the emulsions was evaluated by an equation developed by Quemada for use in blood rheology: (eta)(,r) = (1 - (phi)/(phi)(,max))('-2). The best fit of the data to the equation was found when the coal plus water concentration was used for (phi). The maximum packing fraction increased with increasing shear rate, reflecting a breaking up of the agglomerates in the system. By using the relative packing fraction of the coal plus oil concentration, the relative viscosity of the emulsions tested at the three shear rates evaluted can be fit to the Quemada relative viscosity equation. In the pipe flow tests, the emulsions showed little time-dependent behavior, however they did exhibit a well effect. A fair correlation was obtained between pipe flow behavior and the results obtained in the viscometer. Coal/water/#4 oil emulsions behave as coal and water in oil systems and can be successfully modeled using theories from suspension rheology.

  7. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  8. Shear and bulk viscosity of high-temperature gluon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  9. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?

    PubMed

    Zhao, Mingwei; Zhang, Yue; Zou, Chenwei; Dai, Caili; Gao, Mingwei; Li, Yuyang; Lv, Wenjiao; Jiang, Jianfeng; Wu, Yining

    2017-09-18

    There have been many reports about the thickening ability of nanoparticles on the wormlike micelles in the recent years. Through the addition of nanoparticles, the viscosity of wormlike micelles can be increased. There still exists a doubt: can viscosity be increased further by adding more nanoparticles? To answer this issue, in this work, the effects of silica nanoparticles and temperature on the nanoparticles-enhanced wormlike micellar system (NEWMS) were studied. The typical wormlike micelles (wormlike micelles) are prepared by 50 mM cetyltrimethyl ammonium bromide (CTAB) and 60 mM sodium salicylate (NaSal). The rheological results show the increase of viscoelasticity in NEWMS by adding nanoparticles, with the increase of zero-shear viscosity and relaxation time. However, with the further increase of nanoparticles, an interesting phenomenon appears. The zero-shear viscosity and relaxation time reach the maximum and begin to decrease. The results show a slight increasing trend for the contour length of wormlike micelles by adding nanoparticles, while no obvious effect on the entanglement and mesh size. In addition, with the increase of temperature, remarkable reduction of contour length and relaxation time can be observed from the calculation. NEWMS constantly retain better viscoelasticity compared with conventional wormlike micelles without silica nanoparticles. According to the Arrhenius equation, the activation energy E a shows the same increase trend of NEWMS. Finally, a mechanism is proposed to explain this interesting phenomenon.

  10. Measurement of rheologic property of blood by a falling-ball blood viscometer.

    PubMed

    Eguchi, Yoko; Karino, Takeshi

    2008-04-01

    The viscosity of blood obtained by using a rotational viscometer decreases with the time elapsed from the beginning of measurement until it reaches a constant value determined by the magnitude of shear rate. It is not possible to obtain an initial value of viscosity at time t = 0 that is considered to exhibit an intrinsic property of the fluid by this method. Therefore, we devised a new method by which one can obtain the viscosity of various fluids that are not affected by both the time elapsed from the beginning of measurement and the magnitude of shear rate by considering the balance of the forces acting on a solid spherical particle freely falling in a quiescent viscous fluid. By using the new method, we studied the rheologic behavior of corn syrups, carboxy-methyl cellulose, and human blood; and compared the results with those obtained with a cone-and-plate viscometer. It was found that in the case of corn syrups and washed red cell suspensions in which no red cell aggregate (rouleau) was formed, the viscosity obtained with the two different methods were almost the same. In contrast to this, in the case of the whole blood in which massive aggregates were formed, the viscosity obtained with a falling-ball viscometer was much larger than that obtained with a cone-plate viscometer.

  11. Self-similarity criteria in anisotropic flows with viscosity stratification

    NASA Astrophysics Data System (ADS)

    Danaila, L.; Voivenel, L.; Varea, E.

    2017-02-01

    Variable-viscosity flows exhibit a faster trend towards a fully developed turbulent state since fluctuations are produced at a larger amount. A legitimate expectation is that self-similarity to be tenable earlier than in classical, single-viscosity flows. The question which begs to be answered is: which are the self-similarity criteria for variable-viscosity, density-matched, flows? The similarity assumption, i.e., all scales evolve in a similar fashion in space/time, is applied to the transport equation for one- and two-point statistics of anisotropic, variable-viscosity flows. It is shown that the similarity assumption is valid for regions of the flow where viscosity (mean values and the fluctuations root-mean-square) is uniform. In regions where viscosity gradients are important, such as the sheared region and jet boundaries, similarity is not tenable. Our claims are applicable to any decaying flow, isotropic or anisotropic. Support is provided by experimental data obtained in the near field region of a jet issuing into a more viscous environment. The viscosity ratio is 3.5.

  12. Viscosity and Solvation

    ERIC Educational Resources Information Center

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  13. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure ofmore » compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.« less

  14. Effect of zirconia nanoparticles on the rheological properties of silica-based shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Sun, Li; Zhu, Jie; Wei, Minghai; Zhang, Chunwei; Song, Yansheng; Qi, Peipei

    2018-05-01

    In this study, the rheological characteristic of shear thickening fluid (STF) with various mass ratios of zirconium dioxide (ZrO2) to silicon dioxide (SiO2) was investigated. The influence of the ZrO2 mass ratio on the sensitivity of nano-ZrO2/SiO2-STF to temperature was further discussed. Nano-ZrO2/SiO2-STF of different concentrations (9.0–20.0 wt%) were prepared via an ultrasonication and mechanical stirring technique. The presence of ZrO2 and their interaction with the SiO2 nanoparticles in the STF were analyzed using scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and x-ray diffractometer (XRD). The rheological testing results showed that the ZrO2/SiO2-STF system produced a considerable shear thickening effect; when the nano-ZrO2 mass ratio was 12%, the critical shear rate of the system was relatively small and the peak value of apparent viscosity was relatively large. More importantly, as the nano-ZrO2 mass ratio increased, temperature exerted less influence on the viscosity of the ZrO2/SiO2-STF system diminished, but still had a significant influence on the shear thickening effect.

  15. Reynolds Stress Distributions and the Measurement and Calculation of Eddy Viscosity in Gravity Currents

    NASA Astrophysics Data System (ADS)

    Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.

    2016-12-01

    In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.

  16. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.

  17. Realization of face-shear piezoelectric coefficient d36 in PZT ceramics via ferroelastic domain engineering

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Li, Faxin

    2015-09-01

    The piezoelectric face-shear ( d36 ) mode may be the most useful shear mode in piezoelectrics, while currently this mode can only exist in single crystals of specific point groups and cut directions. Theoretically, the d36 coefficient vanishes in piezoelectric ceramics because of its transversally isotropic symmetry. In this work, we modified the symmetry of poled PZT ceramics from transversally isotropic to orthogonal through ferroelastic domain switching by applying a high lateral stress along the "2" direction and holding the stress for several hours. After removing the compression, the piezoelectric coefficient d31 is found much larger than d32 . Then, by cutting the compressed sample along the Z x t ±45 ° direction, we realized d36 coefficients up to 206 pC/N , which is measured by using a modified d33 meter. The obtained large d36 coefficients in PZT ceramics could be very promising for face-shear mode resonators and shear horizontal wave generation in nondestructive testing.

  18. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  19. The Tribological Properties of Several Silahydrocarbons for Use in Space Mechanisms

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Jansen, M. J.; Gschwender, L. J.; Snyder, C. E., Jr.; Sharma, S. K.; Predmore, R. E.; Dube, M. J.

    2001-01-01

    Silahydrocarbons are members of a relatively new class of liquid lubricants with great potential for use in space mechanisms. They are unimolecular species consisting of silicon, carbon, and hydrogen. They possess unique wear, viscosity, and volatility properties while retaining the ability to solubilize conventional additives. The tribological properties of several members of this class, including tri, tetra- and penta-compounds, are presented. These properties include: viscosity-temperature (ASTM D446), viscosity-pressure coefficient, vapor pressure, volatility, lubricant lifetimes, traction, reciprocating and four ball wear rates and bearing performance. Lubricant lifetimes were determined using a vacuum ball bearing simulator, the spiral orbit tribometer (SOT). Wear was measured using a Cameron Plint reciprocating tribometer and wear rates with a vacuum four ball tribometer. Conventional viscometry was used for viscosity-temperature measurements and a Knudsen cell for vapor pressure. Vacuum Thermogravimetric Analysis (TGA) was also used for volatility measurements. Pressure viscosity coefficients (a values) were estimated from EHL (elastohydrodynamic lubrication) film thickness measurements. Traction coefficients were measured with a twin disk traction rig. Bearing tests were performed in a vacuum bearing test facility. These properties are compared to existing state-of-the-art space lubricants.

  20. Unexpected Rheological Behavior of Hydrophobic Associative Shellac-based Oligomeric Food Thickener.

    PubMed

    Gao, Jianan; Li, Kun; Xu, Juan; Zhang, Wen-Wen; Ma, Jinju; Liu, Lanxiang; Sun, Yanlin; Zhang, Hong; Li, Kai

    2018-06-07

    The sodium shellac constituting of "surfactant" monomer, which is sensitive to shear stress, exhibits shear-thickening behavior at low concentration (5 wt%), and reacts with H+ to retain the transient high viscosity under shear, is introduced in this study. The appearance of the sodium shellac with different concentrations in aqueous mode also could be described. The steady-shear flow test proved that under high shear rate, sodium shellac suspension could change from Newtonian fluid to continuous shear thickening of non-Newtonian fluid. Dynamic oscillation test suggested that the sodium shellac solution at low concentration (0.1 and 1 wt%) under low shear rate represented classic viscous fluid behavior (G´´G´), and the solution at high concentration (5, 10 and 15 wt%) represented the classic the elastic gel behavior (G´´G´). Moreover, high shear rate caused a cross-linking point between G´´and G´ curve; at the low concentration, this could be the gel point and at high concentration, it could be attributed to the broken of gel. All of these transforming points were relating to the interaction between the sodium clusters. This interaction should be the hydrophobic association between the particles. In order to prove phenomenon, classic hydrophilic polymer PEO was employed as the disrupting factor to the hydrophobic association. As expected, the shear-thickening behavior vanished after mixing with PEO, which verified our assumption. On the other hand, the high viscosity of the suspension under shear could be retained by reaction with H+ to solidify the transient hydroclusters under shear, meanwhile, sodium shellac had great potential as the functional shear-thickener which could modify the rheological property of the polymer with carboxyl groups, e.g. pectin, alginate or polyacrylic acid. Thus, this natural and green thicker has great potential in food, medical gel, green adhesive, or cosmetic products.

Top