Jansen, Christian; Bogs, Christopher; Verlinden, Wim; Thiele, Maja; Möller, Philipp; Görtzen, Jan; Lehmann, Jennifer; Vanwolleghem, Thomas; Vonghia, Luisa; Praktiknjo, Michael; Chang, Johannes; Krag, Aleksander; Strassburg, Christian P; Francque, Sven; Trebicka, Jonel
2017-03-01
Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis of CSPH. We recently showed the algorithm to rule-out CSPH using sequential liver- (L-SWE) and spleen-Shear-wave elastography (S-SWE). This study investigated the diagnostic value of S-SWE for diagnosis of CSPH. One hundred and fifty-eight cirrhotic patients with pressure gradient measurements were included into this prospective multicentre study. L-SWE was measured in 155 patients, S-SWE in 112 patients, and both in 109 patients. Liver-shear-wave elastography and S-SWE correlated with clinical events and decompensation. SWE of liver and spleen revealed strong correlations with the pressure gradient and to differentiate between patients with and without CSPH. The best cut-off values were 24.6 kPa:L-SWE and 26.3 kPa:S-SWE. L-SWE ≤16.0 kPa and S-SWE ≤21.7 kPa were able to rule-out CSPH. Cut-off values of L-SWE >29.5 kPa and S-SWE >35.6 kPa were able to rule-in CSPH (specificity >92%). Patients with a L-SWE >38.0 kPa had likely CSPH. In patients with L-SWE ≤38.0 kPa, a S-SWE >27.9 kPa ruled in CSPH. This algorithm has a sensitivity of 89.2% and a specificity of 91.4% to rule-in CSPH. Patients not fulfilling these criteria may undergo HVPG measurement. Liver and spleen SWE correlate with portal pressure and can both be used as a non-invasive method to investigate CSPH. Even though external validation is still missing, these algorithms to rule-out and rule-in CSPH using sequential SWE of liver and spleen might change the clinical practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reiter, Rolf; Wetzel, Martin; Hamesch, Karim; Strnad, Pavel; Asbach, Patrick; Haas, Matthias; Siegmund, Britta; Trautwein, Christian; Hamm, Bernd; Klatt, Dieter; Braun, Jürgen; Sack, Ingolf; Tzschätzsch, Heiko
2018-01-01
Although it has been known for decades that patients with alpha1-antitrypsin deficiency (AATD) have an increased risk of cirrhosis and hepatocellular carcinoma, limited data exist on non-invasive imaging-based methods for assessing liver fibrosis such as magnetic resonance elastography (MRE) and acoustic radiation force impulse (ARFI) quantification, and no data exist on 2D-shear wave elastography (2D-SWE). Therefore, the purpose of this study is to evaluate and compare the applicability of different elastography methods for the assessment of AATD-related liver fibrosis. Fifteen clinically asymptomatic AATD patients (11 homozygous PiZZ, 4 heterozygous PiMZ) and 16 matched healthy volunteers were examined using MRE and ARFI quantification. Additionally, patients were examined with 2D-SWE. A high correlation is evident for the shear wave speed (SWS) determined with different elastography methods in AATD patients: 2D-SWE/MRE, ARFI quantification/2D-SWE, and ARFI quantification/MRE (R = 0.8587, 0.7425, and 0.6914, respectively; P≤0.0089). Four AATD patients with pathologically increased SWS were consistently identified with all three methods-MRE, ARFI quantification, and 2D-SWE. The high correlation and consistent identification of patients with pathologically increased SWS using MRE, ARFI quantification, and 2D-SWE suggest that elastography has the potential to become a suitable imaging tool for the assessment of AATD-related liver fibrosis. These promising results provide motivation for further investigation of non-invasive assessment of AATD-related liver fibrosis using elastography.
Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju; Han, Kyung Hwa; Kim, Jeong-Ah
2013-10-01
To evaluate the diagnostic performance of shear-wave elastography (SWE) for breast cancer and to determine whether the integration of SWE into BI-RADS with subcategories of category 4 improves the diagnostic performance. A total of 389 breast masses (malignant 120, benign 269) in 324 women who underwent SWE before ultrasound-guided core biopsy or surgery were included. The qualitative SWE feature was assessed using a four-colour overlay pattern. Quantitative elasticity values including the lesion-to-fat elasticity ratio (Eratio) were measured. Diagnostic performance of B-mode ultrasound, SWE, or their combined studies was compared using the area under the ROC curve (AUC). AUC of Eratio (0.952) was the highest among elasticity values (mean, maximum, and minimum elasticity, 0.949, 0.939, and 0.928; P = 0.04) and AUC of colour pattern was 0.947. AUC of combined studies was significantly higher than for a single study (P < 0.0001). When adding SWE to category 4 lesions, lesions were dichotomised according to % of malignancy: 2.1 % vs. 43.2 % (category 4a) and 0 % vs. 100 % (category 4b) for Eratio and 2.4 % vs. 25.8 % (category 4a) for colour pattern (P < 0.05). Shear-wave elastography showed a good diagnostic performance. Adding SWE features to BI-RADS improved the diagnostic performance and may be helpful to stratify category 4 lesions. • Quantitative and qualitative shear-wave elastography provides further diagnostic information during breast ultrasound. • The elasticity ratio (E ratio ) showed the best diagnostic performance in SWE. • E ratio and four-colour overlay pattern significantly differed between benign and malignant lesions. • SWE features allowed further stratification of BI-RADS category 4 lesions.
Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study
Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki
2017-01-01
Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657
Shear-wave elastography in breast ultrasonography: the state of the art
2017-01-01
Shear-wave elastography (SWE) is a recently developed ultrasound technique that can visualize and measure tissue elasticity. In breast ultrasonography, SWE has been shown to be useful for differentiating benign breast lesions from malignant breast lesions, and it has been suggested that SWE enhances the diagnostic performance of ultrasonography, potentially improving the specificity of conventional ultrasonography using the Breast Imaging Reporting and Data System criteria. More recently, not only has SWE been proven useful for the diagnosis of breast cancer, but has also been shown to provide valuable information that can be used as a preoperative predictor of the prognosis or response to chemotherapy. PMID:28513127
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan
2016-12-01
Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.
Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan
2016-12-01
Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.
Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.
Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S
2017-01-01
In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. © RSNA, 2017.
Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications
Gimber, Lana H.; Becker, Giles W.; Latt, L. Daniel; Klauser, Andrea S.; Melville, David M.; Gao, Liang; Witte, Russell S.
2017-01-01
In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue’s elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017 PMID:28493799
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2015-01-01
Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew
2015-01-01
Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970
Mulazzani, L; Salvatore, V; Ravaioli, F; Allegretti, G; Matassoni, F; Granata, R; Ferrarini, A; Stefanescu, H; Piscaglia, Fabio
2017-09-01
Different shear wave elastography (SWE) machines able to quantify liver stiffness (LS) have been recently introduced by various companies. The aim of this study was to investigate the agreement between point SWE with Esaote MyLab Twice (pSWE.ESA) and 2D SWE with Aixplorer SuperSonic (2D SWE.SSI). Moreover, we assessed the correlation of these machines with Fibroscan in a subgroup of patients. A total of 81 liver disease patients and 27 subjects without liver disease accessing the ultrasound lab were considered. Exclusion criteria were liver nodules, BMI >35, and severe comorbidities. LS was sampled from the same intercostal space with both pSWE.ESA and 2D SWE.SSI and values were tested with Lin's analysis and Bland-Altman analysis (B&A). Agreement between each SWE machine and Fibroscan was assessed in 26 liver disease patients with Spearman correlation. Precision and accuracy between pSWE.ESA and 2D SWE.SSI were, respectively, 0.839 and 0.999. B&A showed a mean of only -0.2 kPa, with no systematic deviation between the techniques and limits of agreement at -11.6 and 11.3 kPa. Spearman's rho correlation versus Fibroscan was 0.849 for pSWE.ESA and 0.878 for 2D SWE.SSI. The relationship became less strict in the higher range of LS (≥15.2 kPa), corresponding to cirrhosis. The overall degree of concordance of pSWE.ESA and 2D SWE.SSI in measuring LS resulted remarkable, also when compared with Fibroscan. The less strict correlation for patients with LS in the higher range would not affect the staging of disease as such patients are anyhow classified as cirrhotic.
NASA Astrophysics Data System (ADS)
Shcherbakova, D. A.; Debusschere, N.; Caenen, A.; Iannaccone, F.; Pernot, M.; Swillens, A.; Segers, P.
2017-07-01
Shear wave elastography (SWE) is an ultrasound (US) diagnostic method for measuring the stiffness of soft tissues based on generated shear waves (SWs). SWE has been applied to bulk tissues, but in arteries it is still under investigation. Previously performed studies in arteries or arterial phantoms demonstrated the potential of SWE to measure arterial wall stiffness—a relevant marker in prediction of cardiovascular diseases. This study is focused on numerical modelling of SWs in ex vivo equine aortic tissue, yet based on experimental SWE measurements with the tissue dynamically loaded while rotating the US probe to investigate the sensitivity of SWE to the anisotropic structure. A good match with experimental shear wave group speed results was obtained. SWs were sensitive to the orthotropy and nonlinearity of the material. The model also allowed to study the nature of the SWs by performing 2D FFT-based and analytical phase analyses. A good match between numerical group velocities derived using the time-of-flight algorithm and derived from the dispersion curves was found in the cross-sectional and axial arterial views. The complexity of solving analytical equations for nonlinear orthotropic stressed plates was discussed.
Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan
2017-04-01
The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. SWE was performed in 60 healthy volunteers (age range 20-71, mean 47±12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers' ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. The shear wave elastography values of CC penis increased with increasing age (p<0,01). There was no significant difference between both sides of CC penis (p<0,05). We calculated no significant difference between T and L sections of all parts of penis (p<0,05). SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Yoon, Jung Hyun; Jung, Hae Kyoung; Lee, Jong Tae; Ko, Kyung Hee
2013-09-01
To investigate the factors that have an effect on false-positive or false-negative shear-wave elastography (SWE) results in solid breast masses. From June to December 2012, 222 breast lesions of 199 consecutive women (mean age: 45.3 ± 10.1 years; range, 21 to 88 years) who had been scheduled for biopsy or surgical excision were included. Greyscale ultrasound and SWE were performed in all women before biopsy. Final ultrasound assessments and SWE parameters (pattern classification and maximum elasticity) were recorded and compared with histopathology results. Patient and lesion factors in the 'true' and 'false' groups were compared. Of the 222 masses, 175 (78.8 %) were benign, and 47 (21.2 %) were malignant. False-positive rates of benign masses were significantly higher than false-negative rates of malignancy in SWE patterns, 36.6 % to 6.4 % (P < 0.001). Among both benign and malignant masses, factors showing significance among false SWE features were lesion size, breast thickness and lesion depth (all P < 0.05). All 47 malignant breast masses had SWE images of good quality. False SWE features were more significantly seen in benign masses. Lesion size, breast thickness and lesion depth have significance in producing false results, and this needs consideration in SWE image acquisition. • Shear-wave elastography (SWE) is widely used during breast imaging • At SWE, false-positive rates were significantly higher than false-negative rates • Larger size, breast thickness, depth and fair quality influences false-positive SWE features • Smaller size, larger breast thickness and depth influences false-negative SWE features.
The role of shear wave elastography in the assessment of placenta previa-accreta.
Alıcı Davutoglu, Ebru; Ariöz Habibi, Hatice; Ozel, Ayşegül; Yuksel, Mehmet Aytac; Adaletli, Ibrahim; Madazlı, Riza
2018-06-01
To evaluate the value of shear wave elastography (SWE) in the prediction of morbidly adherent placenta. Forty-three women with normal placental location and 26 women with anteriorly localized placenta previa were recruited for this case-control study. Placental elasticity values in both the groups were determined by SWE imaging. SWE values were higher in the placenta previa group in all regions than in normal localized placentas (p < .01). However, there was no statistically significant difference between SWE values of placenta previa with and without morbidly adherent placenta (p > .05). Placental stiffness is significantly higher in placenta previa than normal localized placentas. However, we could not demonstrate any statistically significant difference in the elasticity values between the placenta previa with and without accreta.
Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for the region in the central portion in the superior part of the coronal plane (p = 0.03). Testicular volume was significanty higher by a mean of 1.72 ml when measured with 3D SWE (p = 0.001). 3D SWE proved to be a feasible diagnostic tool in the assessment of testicular tissue, providing the examiner with a fully accessible three-dimensional map in a multiplanar or multislice view. With this technique a more precise testicular imaging - especially if combined with the display of tissue stiffness in SWE - is available and therefore could improve the diagnostic work-up of scrotal masses or the routine investigation of infertile men. Further studies for a better understanding in the context of various testicular pathologies will be required.
Hu, Xiangdong; Liu, Yujiang; Qian, Linxue
2017-10-01
Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules.
Hu, Xiangdong; Liu, Yujiang; Qian, Linxue
2017-01-01
Abstract Background: Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Methods: Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Results: Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). Conclusion: The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules. PMID:29068996
NASA Astrophysics Data System (ADS)
Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick
2018-04-01
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Validation of Shear Wave Elastography in Skeletal Muscle
Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan
2013-01-01
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670
Park, Hye Young; Han, Kyung Hwa; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Min Jung; Kim, Eun-Kyung
2014-06-01
Our aim was to evaluate intra-observer reproducibility of shear-wave elastography (SWE) in Asian women. Sixty-four breast masses (24 malignant, 40 benign) were examined with SWE in 53 consecutive Asian women (mean age, 44.9 y old). Two SWE images were obtained for each of the lesions. The intra-observer reproducibility was assessed by intra-class correlation coefficients (ICC). We also evaluated various clinicoradiologic factors that can influence reproducibility in SWE. The ICC of intra-observer reproducibility was 0.789. In clinicoradiologic factor evaluation, masses surrounded by mixed fatty and glandular tissue (ICC: 0.619) showed lower intra-observer reproducibility compared with lesions that were surrounded by glandular tissue alone (ICC: 0.937; p < 0.05). Overall, the intra-observer reproducibility of breast SWE was excellent in Asian women. However, it may decrease when breast tissue is in a heterogeneous background. Therefore, SWE should be performed carefully in these cases. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen
2015-09-01
Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
2018-01-01
This study aimed to assess and validate the repeatability and agreement of quantitative elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis phantoms with different known Young’s modulus. We used GE Logiq E9 2D-SWE, Philips iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Transient Elastography (TE). Two individual investigators performed all measurements non-continued and in parallel. The methods were evaluated for inter- and intraobserver variability by intraclass correlation, coefficient of variation and limits of agreement using the median elastography value. All systems used in this study provided high repeatability in quantitative measurements in a liver fibrosis phantom and excellent inter- and intraclass correlations. All four elastography platforms showed excellent intra-and interobserver agreement (interclass correlation 0.981–1.000 and intraclass correlation 0.987–1.000) and no significant difference in mean elasticity measurements for all systems, except for TE on phantom 4. All four liver fibrosis phantoms could be differentiated by quantitative elastography, by all platforms (p<0.001). In the Bland-Altman analysis the differences in measurements were larger for the phantoms with higher Young’s modulus. All platforms had a coefficient of variation in the range 0.00–0.21 for all four phantoms, equivalent to low variance and high repeatability. PMID:29293527
Shear wave elastography for breast masses is highly reproducible.
Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude
2012-05-01
To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.
Reproducibility of shear wave elastography (SWE) in patients with chronic liver disease
Salomone Megna, Angelo; Ragucci, Monica; De Luca, Massimo; Marino Marsilia, Giuseppina; Nardone, Gerardo; Coccoli, Pietro; Prinster, Anna; Mannelli, Lorenzo; Vergara, Emilia; Monti, Serena; Liuzzi, Raffaele; Incoronato, Mariarosaria
2017-01-01
The presence of significant fibrosis is an indicator for liver disease staging and prognosis. The aim of the study was to determine reproducibility of real-time shear wave elastography using a hepatic biopsy as the reference standard to identify patients with chronic liver disease. Forty patients with chronic liver disease and 12 normal subjects received shear wave elastography performed by skilled operators. Interoperator reproducibility was studied in 29 patients. Fibrosis was evaluated using the Metavir score. The median and range shear wave elastography values in chronic liver disease subjects were 6.15 kPa and 3.14–16.7 kPa and were 4.49 kPa and 2.92–7.32 kPa in normal subjects, respectively. With respect to fibrosis detected by liver biopsy, shear wave elastography did not change significantly between F0 and F1 (p = 0.334), F1 and F2 (p = 0.611), or F3 and F4 (0.327); a significant difference was observed between the F0-F2 and F3-F4 groups (p = 0.002). SWE also correlated with inflammatory activity (Rs = 0.443, p = 0.0023) and ALT levels (Rs = 0.287, p = 0.0804). Age, sex and body mass index did not affect shear wave elastography measurements. Using receiver operator characteristic curves, two threshold values for shear wave elastography were identified: 5.62 kPa for patients with fibrosis (≥F2; sensitivity 80%, specificity 69.4%, and accuracy 77%) and 7.04 kPa for patients with severe fibrosis (≥F3; sensitivity 88.9%, specificity 81%, and accuracy 89%). Overall interobserver agreement was excellent and was analysed using an interclass correlation coefficient (0.94; CI 0.87–0.97).This study shows that shear wave elastography executed by skilled operators can be performed on almost all chronic liver disease patients with high reproducibility. It is not influenced by age, sex or body mass index, identifies severely fibrotic patients and is also related to inflammatory activity. PMID:29023554
Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda; Hansen, Janne Fuglsang; Madsen, Bjørn Stæhr; Søholm, Jacob; Krag, Aleksander; Thiele, Maja
2016-11-01
Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness measurements in patients with an invalid TE examination. We reviewed 1975 patients with 5764 TE exams performed between 2007 and 2014, to identify failures and unreliable exams. Fifty-four patients with an invalid TE at their latest appointment entered a comparative feasibility study of TE vs. 2D-SWE. The initial TE exam was successful in 93% (1835/1975) of patients. Success rate increased from 89% to 96% when the XL probe became available (OR: 1.07, 95% CI 1.06-1.09). Likewise, re-examining those with a failed or unreliable TE led to a reliable TE in 96% of patients. Combining availability of the XL probe with TE re-examination resulted in a 99.5% success rate on a per-patient level. When comparing the feasibility of TE vs. 2D-SWE, 96% (52/54) of patients obtained a reliable TE, while 2D-SWE was reliable in 63% (34/54, p < 0.001). The odds of a successful 2D-SWE exam decreased with higher skin-capsule distance (OR = 0.77, 95% CI 0.67-0.98). Transient elastography can be accomplished in nearly all patients by use of the FibroScan XL probe and repeated examinations. In difficult-to-scan patients, the feasibility of TE is superior to 2D-SWE.
Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.
Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping
2016-01-01
Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.
Jales, Rodrigo Menezes; Dória, Maira Teixeira; Serra, Kátia Piton; Miranda, Mila Meneguelli; Menossi, Carlos Alberto; Schumacher, Klaus; Sarian, Luis Otávio
2018-06-01
To prospectively investigate the diagnostic accuracy and clinical consequences of power Doppler morphologic criteria and shear wave elastography (SWE) as complementary imaging methods for evaluation of suspected local breast cancer recurrence in the ipsilateral breast or chest wall. Thirty-two breast masses with a suspicion of local breast cancer recurrence on B-mode ultrasonography underwent complementary power Doppler and SWE evaluations. Power Doppler morphologic criteria were classified as avascular, hypovascular, or hypervascular. Shear wave elastography was classified according to a 5-point scale (SWE score) and SWE maximum elasticity. Diagnostic accuracy was assessed by the sensitivity, specificity, and area under the curve. A decision curve analysis assessed clinical consequences of each method. The reference standard for diagnosis was defined as core needle or excisional biopsy. Histopathologic examinations revealed 9 (28.2%) benign and 23 (71.8%) malignant cases. Power Doppler ultrasonography (US) had sensitivity of 34.8% (95% confidence interval [CI], 6.6%-62.9%) and specificity of 45.4% (95% CI, 19.3%-71.5%). The SWE score (≥3) had sensitivity of 87.0% (95% CI, 66.4%-97.2%) and specificity of 44.4% (95% CI, 13.7%-78.8%). The SWE maximum elasticity (velocity > 6.5cm/s) had sensitivity of 87% (95% CI, 66.4%-97.2%) and specificity of 77.8% (95% CI, 40.0% to 97.2%). The areas under the curves for the SWE score and SWE maximum elasticity were 0.71 (95% CI, 0.53-0.87) and 0.82 (95% CI, 0.64-0.93), respectively (P = .32). Power Doppler US is unsuitable for discrimination between local breast cancer recurrence and fibrosis. Although the SWE score and SWE maximum elasticity can make this discrimination, the use of these methods to determine biopsy may lead to poorer clinical outcomes than the current practice of performing biopsies of all suspicious masses. © 2017 by the American Institute of Ultrasound in Medicine.
Bota, Simona; Paternostro, Rafael; Etschmaier, Alexandra; Schwarzer, Remy; Salzl, Petra; Mandorfer, Mattias; Kienbacher, Christian; Ferlitsch, Monika; Reiberger, Thomas; Trauner, Michael; Peck-Radosavljevic, Markus; Ferlitsch, Arnulf
2015-09-01
Liver stiffness values assessed with 2-D shear wave elastography (SWE), transient elastography (TE) and simple serologic tests were compared with respect to non-invasive assessment in a cohort of 127 consecutive patients with chronic liver diseases. The rate of reliable liver stiffness measurements was significantly higher with 2-D SWE than with TE: 99.2% versus 74.8%, p < 0.0001 (different reliability criteria used, according to current recommendations). In univariate analysis, liver stiffness measured with 2-D SWE correlated best with fibrosis stage estimated with TE (r = 0.699, p < 0.0001), followed by Forns score (r = 0.534, p < 0.0001) and King's score (r = 0.512, p < 0.0001). However, in multivariate analysis, only 2-D SWE-measured values remained correlated with fibrosis stage (p < 0.0001). The optimal 2-D SWE cutoff values for predicting significant fibrosis were 8.03 kPa for fibrosis stage ≥2 (area under the receiver operating characteristic curve = 0.832) and 13.1 kPa for fibrosis stage 4 (area under the receiver operating characteristic curve = 0.915), respectively. In conclusion, 2-D SWE can be used to obtain reliable liver stiffness measurements in almost all patients and performs very well in predicting the presence of liver cirrhosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Shear-wave elastography of the testis in the healthy man - determination of standard values.
Trottmann, M; Marcon, J; D'Anastasi, M; Bruce, M F; Stief, C G; Reiser, M F; Buchner, A; Clevert, D A
2016-01-01
Real-time shear-wave elastography (SWE) is a newly developed technique for the sonographic quantification of tissue elasticity, which already is used in the assessment of breast and thyroid lesions. Due to limited overlying tissue, the testes are ideally suited for assessment using shear wave elastography. To our knowledge, no published data exist on real-time SWE of the testes. Sixty six male volunteers (mean age 51.86±18.82, range 20-86) with no known testicular pathology underwent normal B-mode sonography and multi-frame shear-wave elastography of both testes using the Aixplorer ® ultrasound system (SuperSonic Imagine, Aix en Provence, France). Three measurements were performed for each testis; one in the upper pole, in the middle portion and in the lower pole respectively. The results were statistically evaluated using multivariate analysis. Mean shear-wave velocity values were similar in the inferior and superior part of the testicle (1.15 m/s) and were significantly lower in the centre (0.90 m/s). These values were age-independent. Testicular stiffness was significantly lower in the upper pole than in the rest of the testis with increasing volume (p = 0.007). Real-time shear-wave elastography proved to be feasible in the assessment of testicular stiffness. It is important to consider the measurement region as standard values differ between the centre and the testicular periphery. Further studies with more subjects may be required to define the normal range of values for each age group. Useful clinical applications could include the diagnostic work-up of patients with scrotal masses or male infertility.
Paul, Shashi B; Das, Prasenjit; Mahanta, Mousumi; Sreenivas, Vishnubhatla; Kedia, Saurabh; Kalra, Nancy; Kaur, Harpreet; Vijayvargiya, Maneesh; Ghosh, Shouriyo; Gamanagatti, Shivanand R; Shalimar; Gupta, Siddhartha Dutta; Acharya, Subrat K
2017-12-01
To evaluate the diagnostic accuracy of shear wave elastography (SWE) and transient elastography (TE) in the evaluation of liver fibrosis in chronic hepatitis B (CHB) and C (CHC) patients taking liver biopsy as gold standard. Ethics committee approved this prospective cross-sectional study. Between October 2012 and December 2014, consecutive CHB/CHC patients fulfilling the inclusion criteria were included-age more than 18 years, informed written consent, willing and suitable for liver biopsy. SWE, TE, and biopsy were performed the same day. Liver stiffness measurement (LSM) cut-offs for various stages of fibrosis were generated for SWE and TE. AUC, sensitivity, specificity, and positive/negative predictive values were estimated individually or in combination. CH patients (n = 240, CHB 172, CHC 68), 176 males, 64 females, mean age 32.6 ± 11.6 years were enrolled. Mean LSM of patients with no histological fibrosis (F0) was 5.0 ± 0.7 and 5.1+1.4 kPa on SWE and TE, respectively. For differentiating F2 and F3-4 fibrosis on SWE, at 7.0 kPa cut-off, the sensitivity was 81.3% and specificity 77.6%. For TE, at 8.3 kPa cut-off, sensitivity was 81.8% and specificity 83.1%. For F3 vs. F4, SWE sensitivity was 83.3% and specificity 90.7%. At 14.8 kPa cut-off, TE showed similar sensitivity (83.3%) but specificity increased to 96.5%. Significant correlation between SWE and TE was observed (r = 0.33, p < 0.001). On combining SWE and TE, a drop in sensitivity with increased specificity for all stages of liver fibrosis occured. SWE is an accurate technique for evaluating liver fibrosis. SWE compares favorably with TE especially for predicting advanced fibrosis/cirrhosis. Combining SWE and TE further improves specificity.
Shear-Wave Elastography for the Differential Diagnosis of Breast Papillary Lesions
Chung, Jin; Lee, Won Kyung; Cha, Eun-Suk; Lee, Jee Eun; Kim, Jeoung Hyun; Ryu, Young Hoon
2016-01-01
Objective To evaluate the diagnostic performance of shear-wave elastography (SWE) for the differential diagnosis of breast papillary lesions. Methods This study was an institutional review board-approved retrospective study, with a waiver of informed consent. A total of 79 breast papillary lesions in 71 consecutive women underwent ultrasound and SWE prior to biopsy. Ultrasound features and quantitative SWE parameters were recorded for each lesion. All lesions were surgically excised or excised using an ultrasound-guided vacuum-assisted method. The diagnostic performances of the quantitative SWE parameters were compared using the area under the receiver operating characteristic curve (AUC). Results Of the 79 lesions, six (7.6%) were malignant and 12 (15.2%) were atypical. Orientation, margin, and the final BI-RADS ultrasound assessments were significantly different for the papillary lesions (p < 0.05). All qualitative SWE parameters were significantly different (p < 0.05). The AUC values for SWE parameters of benign and atypical or malignant papillary lesions ranged from 0.707 to 0.757 (sensitivity, 44.4–94.4%; specificity, 42.6–88.5%). The maximum elasticity and the mean elasticity showed the highest AUC (0.757) to differentiate papillary lesions. Conclusion SWE provides additional information for the differential diagnosis of breast papillary lesions. Quantitative SWE features were helpful to differentiate breast papillary lesions. PMID:27893857
Pfahler, Matthias Hermann Christian; Kratzer, Wolfgang; Leichsenring, Michael; Graeter, Tilmann; Schmidt, Stefan Andreas; Wendlik, Inka; Lormes, Elisabeth; Schmidberger, Julian; Fabricius, Dorit
2018-02-19
Manifestations of cystic fibrosis in the pancreas are gaining in clinical importance as patients live longer. Conventional ultrasonography and point shear wave elastography (pSWE) imaging are non-invasive and readily available diagnostic methods that are easy to perform. The aim of this study was to perform conventional ultrasonography and obtain pSWE values in the pancreases of patients with cystic fibrosis and to compare the findings with those of healthy controls. 27 patients with cystic fibrosis (13 women/14 men; mean age 27.7 ± 13.7 years; range 9-58 years) and 60 healthy control subjects (30 women/30 men; mean age 30.3 ± 10.0 years; range 22-55 years) underwent examinations of the pancreas with conventional ultrasound and pSWE imaging. Patients with cystic fibrosis have an echogenic pancreatic parenchyma. We found cystic lesions of the pancreas in six patients. pSWE imaging of the pancreatic parenchyma gave significantly lower shear wave velocities in patients with cystic fibrosis than in the control group (1.01 m/s vs 1.30 m/s; p < 0.001). Using pSWE imaging in vivo, we have shown that the pancreas is considerably softer in patients with cystic fibrosis than in a healthy control population.
de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C.‐W.; Leung, Vivian Y.‐F.; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K.; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen‐Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich‐Rust, Mireen
2017-01-01
Two‐dimensional shear wave elastography (2D‐SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate‐sized clinical trials. We aimed at running a larger‐scale meta‐analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D‐SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D‐SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D‐SWE was 0.022‐0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003‐0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. Conclusion: 2D‐SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head‐to‐head comparison between 2D‐SWE and other imaging modalities to establish disease‐specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260‐272). PMID:28370257
Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae
2013-12-01
To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21-88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P<0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5-89.8% to 100.0%, while specificity was significantly improved: 62.5-81.7% to 13.9% (P<0.001). Area under the ROC curve (Az) did not show significant differences between grayscale US to US combined to SWE (P>0.05). Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
You, Jun; Chen, Juan; Xiang, Feixiang; Song, Yue; Khamis, Simai; Lu, Chengfa; Lv, Qing; Zhang, Yanrong; Xie, Mingxing
2018-04-01
This study aimed at evaluating the diagnostic performance of quantitative shear wave elastography (SWE) in differentiating metastatic cervical lymph nodes from benign nodes in patients with thyroid nodules. One hundred and forty-one cervical lymph nodes from 39 patients with thyroid nodules that were diagnosed as papillary thyroid cancer had been imaged with SWE. The shear elasticity modulus, which indicates the stiffness of the lymph nodes, was measured in terms of maximum shear elasticity modulus (maxSM), minimum shear elasticity modulus (minSM), mean shear elasticity modulus (meanSM), and standard deviation (SD) of the shear elasticity modulus. All the patients underwent thyroid surgery, 50 of the suspicious lymph nodes were resected, and 91 lymph nodes were followed up for 6 months. The maxSM value, minSM value, meanSM value, and SD value of the metastatic lymph nodes were significantly higher than those of the benign nodes. The area under the curve of the maxSM value, minSM value, meanSM value, and SD value were 0.918, 0.606, 0.865, and 0.915, respectively. SWE can differentiate metastasis from benign cervical lymph nodes in patients with thyroid nodules, and the maxSM, meanSM, and SD may be valuable quantitative indicators for characterizing cervical lymph nodes.
Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu
2015-05-01
The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.
Burak Özkan, M; Bilgici, M C; Eren, E; Caltepe, G
2018-03-01
The purpose of this study was to determine the usefulness of point shear wave elastography (p-SWE) of the liver and spleen for the detection of portal hypertension in pediatric patients. The study consisted of 38 healthy children and 56 pediatric patients with biopsy-proven liver disease who underwent splenic and liver p-SWE. The diagnostic performance of p-SWE in detecting clinically significant portal hypertension was assessed using receiver operating characteristic (ROC) curves. Reliable measurements of splenic and liver stiffness with p-SWE were obtained in 76/94 (81%) and 80/94 patients (85%), respectively. The splenic stiffness was highest in the portal hypertension group (P<0.01). At ROC curve analysis, the area under the curve in the detection of portal hypertension was lower for splenic p-SWE than for liver p-SWE (0.906 vs. 0.746; P=0.0239). The cut-off value of splenic p-SWE for portal hypertension was 3.14m/s, with a specificity of 98.59% and a sensitivity of 68.18%. The cut-off value of liver p-SWE for portal hypertension was 2.09m/s, with a specificity of 80.28% and a sensitivity of 77.27%. In pediatric patients, p-SWE is a reliable method for detecting portal hypertension. However, splenic p-SWE is less accurate than liver p-SWE for the diagnosis of portal hypertension. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.
Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang
2015-01-01
Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p < 0.001). The result of TS had been plotted against the AP measurements. The relation between the two results has been fitted with quadric curve; the goodness-of-fit index was 0.364 (p < 0.001). The level of SMCs in penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.
Mantsopoulos, Konstantinos; Klintworth, Nils; Iro, Heinrich; Bozzato, Alessandro
2015-09-01
Our aim in this study was to determine normal shear wave elastography (SWE) values for the parenchyma of the major salivary glands and to evaluate the influences of gender, smoking, side and type of gland and varying amounts of ultrasound probe pressure on SWE values. Twenty-five consecutive healthy patients were examined with ultrasound. SWE velocities were measured with acoustic radiation force imaging in the hilum and central region of both glands with "normal" and very low pressure. Mean SWE velocities were 1.854 m/s for the parotid gland and 1.932 m/s for the submandibular gland. No statistically significant differences were detected between males and females, smokers and non-smokers, parotid and submandibular gland and left and right sides. Greater pre-compression with the ultrasound probe resulted in a statistically significant increase in the SWE values of both salivary glands (p < 0.000). The degree of pre-compression by the ultrasound transducer should be standardized, so that the reliability and reproducibility of this innovative method can be improved. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Wang, Qiao
2018-05-25
To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.
Xie, Li-Ting; Yan, Chun-Hong; Zhao, Qi-Yu; He, Meng-Na; Jiang, Tian-An
2018-01-01
Two-dimensional shear wave elastography (2D-SWE) is a rapid, simple and novel noninvasive method that has been proposed for assessing hepatic fibrosis in patients with chronic liver diseases (CLDs) based on measurements of liver stiffness. 2D-SWE can be performed easily at the bedside or in an outpatient clinic and yields immediate results with good reproducibility. Furthermore, 2D-SWE was an efficient method for evaluating liver fibrosis in small to moderately sized clinical trials. However, the quality criteria for the staging of liver fibrosis are not yet well defined. Liver fibrosis is the main pathological basis of liver stiffness and a key step in the progression from CLD to cirrhosis; thus, the management of CLD largely depends on the extent and progression of liver fibrosis. 2D-SWE appears to be an excellent tool for the early detection of cirrhosis and may have prognostic value in this context. Because 2D-SWE has high patient acceptance, it could be useful for monitoring fibrosis progression and regression in individual cases. However, multicenter data are needed to support its use. This study reviews the current status and future perspectives of 2D-SWE for assessments of liver fibrosis and discusses the technical advantages and limitations that impact its effective and rational clinical use. PMID:29531460
Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung
2013-04-01
To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.
Tian, Jie; Liu, Qianqi; Wang, Xi; Xing, Ping; Yang, Zhuowen; Wu, Changjun
2017-01-20
As breast cancer tissues are stiffer than normal tissues, shear wave elastography (SWE) can locally quantify tissue stiffness and provide histological information. Moreover, tissue stiffness can be observed on three-dimensional (3D) colour-coded elasticity maps. Our objective was to evaluate the diagnostic performances of quantitative features in differentiating breast masses by two-dimensional (2D) and 3D SWE. Two hundred ten consecutive women with 210 breast masses were examined with B-mode ultrasound (US) and SWE. Quantitative features of 3D and 2D SWE were assessed, including elastic modulus standard deviation (E SD E ) measured on SWE mode images and E SD U measured on B-mode images, as well as maximum elasticity (E max ). Adding quantitative features to B-mode US improved the diagnostic performance (p < 0.05) and reduced false-positive biopsies (p < 0.0001). The area under the receiver operating characteristic curve (AUC) of 3D SWE was similar to that of 2D SWE for E SD E (p = 0.026) and E SD U (p = 0.159) but inferior to that of 2D SWE for E max (p = 0.002). Compared with E SD U , E SD E showed a higher AUC on 2D (p = 0.0038) and 3D SWE (p = 0.0057). Our study indicates that quantitative features of 3D and 2D SWE can significantly improve the diagnostic performance of B-mode US, especially 3D SWE E SD E , which shows considerable clinical value.
Hong, Sun; Woo, Ok Hee; Shin, Hye Seon; Hwang, Soon-Young; Cho, Kyu Ran; Seo, Bo Kyoung
Shear wave elastography (SWE) was performed independently by two radiologists in 264 solid breast masses. The images were reviewed for color overlay pattern (COP) classification by the two radiologists, double blinded to any information. The interobserver agreement of the COP was almost perfect (κ=0.908) and high in E max (ICC=0.89). The AUC value of the COP (0.954) was significantly higher than that of E max (0.915) (p=0.002) but not significantly different from that of E max combined with COP (0.957) (p=0.098). The SWE color overlay pattern and E max of breast masses were highly reproducible. The COP had better diagnostic ability than E max , suggesting that COP may be a more reliable parameter for solid breast mass evaluation. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Mi Young; Choi, Nami; Yang, Jung-Hyun; Yoo, Young Bum; Park, Kyoung Sik
2015-10-01
Shear-wave elastography (SWE) has the potential to improve diagnostic performance of conventional ultrasound (US) in differentiating benign from malignant breast masses. To investigate false positive or negative results of SWE in differentiating benign from malignant breast masses and to analyze clinical and imaging characteristics of the masses with false SWE findings. From May to October 2013, 166 breast lesions of 164 consecutive women (mean age, 45.3 ± 10.1 years) who had been scheduled for biopsy were included. Conventional US and SWE were performed in all women before biopsy. Clinical, ultrasonographic morphologic features and SWE parameters (pattern classification and standard deviation [SD]) were recorded and compared with the histopathology results. Patient and lesion factors in the "true" and "false" groups were compared. Of the 166 masses, 118 (71.1%) were benign and 48 (28.9%) were malignant. False SWE features were more frequently observed in benign masses. False positive rates of benign masses and false negative rates of malignancy were 53% and 8.2%, respectively, using SWE pattern analysis and were 22.4% and 10.3%, respectively, using SD values. A lesion boundary of the masses on US (P = 0.039) and younger patient age (P = 0.047) were significantly associated with false SWE findings. These clinical and ultrasonographic features need to be carefully evaluated in performance and interpretation of SWE examinations. © The Foundation Acta Radiologica 2014.
Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing
To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.
Poynard, Thierry; Pham, Tam; Perazzo, Hugo; Munteanu, Mona; Luckina, Elena; Elaribi, Djamel; Ngo, Yen; Bonyhay, Luminita; Seurat, Noemie; Legroux, Muriel; Ngo, An; Deckmyn, Olivier; Thabut, Dominique; Ratziu, Vlad; Lucidarme, Olivier
2016-01-01
Real-time shear wave elastography (2D-SWE) is a two-dimensional transient elastography and a competitor as a biomarker of liver fibrosis in comparison with the standard reference transient elastography by M probe (TE-M). The aims were to compare several criteria of applicability, and to assess inflammation and steatosis impact on elasticity values, two unmet needs. We took FibroTest as the fibrosis reference and ActiTest and SteatoTest as quantitative estimates of inflammation and steatosis. After standardization of estimates, analyses used curve fitting, quantitative Lin concordance coefficient [LCC], and multivariate logistic regression. A total of 2,251 consecutive patients were included. We validated the predetermined 0.2 kPa cut-off as a too low minimal elasticity value identifying not-reliable 2D-SWE results (LCC with FibroTest = 0.0281[-0.119;0.175]. Other criteria, elasticity CV, body mass index and depth of measures were not sufficiently discriminant. The applicability of 2D-SWE (95%CI) 89.6%(88.2-90.8), was significantly higher than that of TE, 85.6%(84.0-87.0; P<0.0001). In patients with non-advanced fibrosis (METAVIR F0F1F2), elasticity values estimated by 2D-SWE was less impacted by inflammation and steatosis than elasticity value estimated by TE-M: LCC (95%CI) 0.039 (0.021;0.058) vs 0.090 (0.068;0.112;P<0.01) and 0.105 (0.068;0.141) vs 0.192 (0.153;0.230; P<0.01) respectively. The three analyses methods gave similar results. Elasticity results including very low minimal signal in the region of interest should be considered not reliable. 2D-SWE had a higher applicability than TE, the reference elastography, with less impact of inflammation and steatosis especially in patients with non-advanced fibrosis, as presumed by blood tests. ClinicalTrials.gov NCT01927133.
Non-invasive evaluation of stable renal allograft function using point shear-wave elastography.
Kim, Bom Jun; Kim, Chan Kyo; Park, Jung Jae
2018-01-01
To investigate the feasibility of point shear-wave elastography (SWE) in evaluating patients with stable renal allograft function who underwent protocol biopsies. 95 patients with stable renal allograft function that underwent ultrasound-guided biopsies at predefined time points (10 days or 1 year after transplantation) were enrolled. Ultrasound and point SWE examinations were performed immediately before protocol biopsies. Patients were categorized into two groups: subclinical rejection (SCR) and non-SCR. Tissue elasticity (kPa) on SWE was measured in the cortex of all renal allografts. SCR was pathologically confirmed in 34 patients. Tissue elasticity of the SCR group (31.0 kPa) was significantly greater than that of the non-SCR group (24.5 kPa) (=0.016), while resistive index value did not show a significant difference between the two groups (p = 0.112). Tissue elasticity in renal allografts demonstrated significantly moderate negative correlation with estimated glomerular filtration rate (correlation coefficient = -0.604, p < 0.001). Tissue elasticity was not independent factor for SCR prediction on multivariate analysis. As a non-invasive tool, point SWE appears feasible in distinguishing between patients with SCR and without SCR in stable functioning renal allografts. Moreover, it may demonstrate the functional state of renal allografts. Advances in knowledge: On point SWE, SCR has greater tissue elasticity than non-SCR.
Dhyani, Manish; Grajo, Joseph R; Bhan, Atul K; Corey, Kathleen; Chung, Raymond; Samir, Anthony E
2017-06-01
The purpose of this study was to determine the validity of previously established ultrasound shear wave elastography (SWE) cut-off values (≥F2 fibrosis) on an independent cohort of patients with chronic liver disease. In this cross-sectional study, approved by the institutional review board and compliant with the Health Insurance Portability and Accountability Act, 338 patients undergoing liver biopsy underwent SWE using an Aixplorer ultrasound machine (SuperSonic Imagine, Aix-en-Provence, France). Median SWE values were calculated from sets of 10 elastograms. A single blinded pathologist evaluated METAVIR fibrosis staging as the gold standard. The study analyzed 277 patients with a mean age of 48 y. On pathologic examination, 212 patients (76.5%) had F0-F1 fibrosis, whereas 65 (23.5%) had ≥F2 fibrosis. Spearman's correlation of fibrosis with SWE was 0.456 (p < 0.001). A cut-off value of 7.29 kPa yielded sensitivity of 95.4% and specificity of 50.5% for the diagnosis of METAVIR stage ≥F2 liver fibrosis in patients with liver disease using the SuperSonic Imagine Aixplorer SWE system. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Deep learning based classification of breast tumors with shear-wave elastography.
Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong
2016-12-01
This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Cong, Rui; Li, Jing; Wang, Xuejiao
2017-10-01
We determined the diagnostic performance of combinations of shear wave elastography (SWE) and B-mode ultrasound (US) in differentiating malignant from benign breast masses, and we investigated whether performance is affected by mass size. In this prospective study of 315 consecutive patients with 326 breast masses, US and SWE were performed before biopsy. Masses were categorized into two subgroups on the basis of mass size (≤15 mm and >15 mm), and the optimal thresholds for the SWE parameters were determined for each subgroup using receiver operating characteristic curves. The combination proposed here achieved an area under the receiver operating characteristic curve of 0.943, 95.00% sensitivity and 81.18% specificity, which approximated the diagnostic performance of US alone. The performance of the combinations using the subgroups' thresholds did not differ significantly from those based on the entire study group's thresholds, but the optimal thresholds were higher in the subgroup of larger masses. Further research is needed to determine whether mass size affects the performance of combinations of SWE and US. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C-W; Leung, Vivian Y-F; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen-Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich-Rust, Mireen
2018-01-01
Two-dimensional shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate-sized clinical trials. We aimed at running a larger-scale meta-analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D-SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D-SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D-SWE was 0.022-0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003-0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. 2D-SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head-to-head comparison between 2D-SWE and other imaging modalities to establish disease-specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260-272). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.
Giannotti, Elisabetta; Vinnicombe, Sarah; Thomson, Kim; McLean, Dennis; Purdie, Colin; Jordan, Lee; Evans, Andy
2016-06-01
To establish if palpable breast masses with benign greyscale ultrasound features that are soft on shear-wave elastography (SWE) (mean stiffness <50 kPa) have a low enough likelihood of malignancy to negate the need for biopsy or follow-up. The study group comprised 694 lesions in 682 females (age range 17-95 years, mean age 56 years) presenting consecutively to our institution with palpable lesions corresponding to discrete masses at ultrasound. All underwent ultrasound, SWE and needle core biopsy. Static greyscale images were retrospectively assigned Breast Imaging Reporting and Data System (BI-RADS) scores by two readers blinded to the SWE and pathology findings, but aware of the patient's age. A mean stiffness of 50 kPa was used as the SWE cut-off for calling a lesion soft or stiff. Histological findings were used to establish ground truth. No cancer had benign characteristics on both modalities. 466 (99.8%) of the 467 cancers were classified BI-RADS 4a or above. The one malignant lesion classified as BI-RADS 3 was stiff on SWE. 446 (96%) of the 467 malignancies were stiff on SWE. No cancer in females under 40 years had benign SWE features. 74 (32.6%) of the 227 benign lesions were BI-RADS 3 and soft on SWE; so, biopsy could potentially have been avoided in this group. Lesions which appear benign on greyscale ultrasound and SWE do not require percutaneous biopsy or short-term follow-up, particularly in females under 40 years. None of the cancers had benign characteristics on both greyscale ultrasound and SWE, and 32% of benign lesions were BI-RADS 3 and soft on SWE; lesions that are benign on both ultrasound and SWE may not require percutaneous biopsy or short-term follow-up.
Kim, Hana; Youk, Ji Hyun; Gweon, Hye Mi; Kim, Jeong-Ah; Son, Eun Ju
2013-08-01
To compare the diagnostic performance of qualitative shear-wave elastography (SWE) according to three different color map opacities for breast masses 101 patients aged 21-77 years with 113 breast masses underwent B-mode US and SWE under three different color map opacities (50%, 19% and 100%) before biopsy or surgery. Following SWE features were reviewed: visual pattern classification (pattern 1-4), color homogeneity (Ehomo) and six-point color score of maximum elasticity (Ecol). Combined with B-mode US and SWE, the likelihood of malignancy (LOM) was also scored. The area under the curve (AUC) was obtained by ROC curve analysis to assess the diagnostic performance under each color opacity. A visual color pattern, Ehomo, Ecol and LOM scoring were significantly different between benign and malignant lesions under all color opacities (P<0.001). For 50% opacity, AUCs of visual color pattern, Ecol, Ehomo and LOM scoring were 0.902, 0.951, 0.835 and 0.975. But, for each SWE feature, there was no significant difference in the AUC among three different color opacities. For all color opacities, visual color pattern and Ecol showed significantly higher AUC than Ehomo. In addition, a combined set of B-mode US and SWE showed significantly higher AUC than SWE alone for color patterns, Ehomo, but no significant difference was found in Ecol. Qualitative SWE was useful to differentiate benign from malignant breast lesion under all color opacities. The difference in color map opacity did not significantly influence diagnostic performance of SWE. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Li, Guiling; Li, De-Wei; Fang, Yu-Xiao; Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu
2013-01-01
To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88-0.94) and 0.82 (95% CI, 0.75-0.87) by SSI and 0.89 (95% CI, 0.81-0.94) and 0.91 (95% CI, 0.84-0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90-0.94) and 0.96 (95% CI, 0.93-0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a "positive" measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a "negative" measurement (below the threshold value) when the pre-test probability was 50%. SWE could be used as a good identification tool for the classification of breast masses.
Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730
Lee, Sang Min; Kang, Hyo-Jin; Yang, Hyung Kung; Yoon, Jeong Hee; Chang, Won; An, Su Joa; Lee, Kyoung Bun; Baek, Seung Yon
2017-01-01
Objective To evaluate the applicability, reproducibility, and diagnostic performance of a new 2D-shear wave elastography (SWE) using the comb-push technique (2D CP-SWE) for detection of hepatic fibrosis, using histopathology as the reference standard. Materials and methods This prospective study was approved by the institutional review board, and informed consent was obtained from all patients. The liver stiffness (LS) measurements were obtained from 140 patients, using the new 2D-SWE, which uses comb-push excitation to produce shear waves and a time-aligned sequential tracking method to detect shear wave signals. The applicability rate of 2D CP-SWE was estimated, and factors associated with its applicability were identified. Intraobserver reproducibility was evaluated in the 105 patients with histopathologic diagnosis, and interobserver reproducibility was assessed in 20 patients. Diagnostic performance of the 2D CP-SWE for hepatic fibrosis was evaluated by receiver operating characteristic (ROC) curve analysis. Results The applicability rate of 2D CP-SWE was 90.8% (109 of 120). There was a significant difference in age, presence or absence of ascites, and the distance from the transducer to the Glisson capsule between the patients with applicable LS measurements and patients with unreliable measurement or technical failure. The intraclass correlation of interobserver agreement was 0.87, and the value for the intraobserver agreement was 0.95. The area under the ROC curve of LS values for stage F2 fibrosis or greater, stage F3 or greater, and stage F4 fibrosis was 0.874 (95% confidence interval [CI]: 0.794–0.930), 0.905 (95% CI: 0.832–0.954), and 0.894 (95% CI: 0.819–0.946), respectively. Conclusion 2D CP-SWE can be employed as a reliable method for assessing hepatic fibrosis with a reasonably good diagnostic performance, and its applicability might be influenced by age, ascites, and the distance between the transducer and Glisson capsule. PMID:28510583
Extensor indicis proprius tendon transfer using shear wave elastography.
Lamouille, J; Müller, C; Aubry, S; Bensamoun, S; Raffoul, W; Durand, S
2017-06-01
The means for judging optimal tension during tendon transfers are approximate and not very quantifiable. The purpose of this study was to demonstrate the feasibility of quantitatively assessing muscular mechanical properties intraoperatively using ultrasound elastography (shear wave elastography [SWE]) during extensor indicis proprius (EIP) transfer. We report two cases of EIP transfer for post-traumatic rupture of the extensor pollicis longus muscle. Ultrasound acquisitions measured the elasticity modulus of the EIP muscle at different stages: rest, active extension, active extension against resistance, EIP section, distal passive traction of the tendon, after tendon transfer at rest and then during active extension. A preliminary analysis was conducted of the distribution of values for this modulus at the various transfer steps. Different shear wave velocity and elasticity modulus values were observed at the various transfer steps. The tension applied during the transfer seemed close to the resting tension if a traditional protocol were followed. The elasticity modulus varied by a factor of 37 between the active extension against resistance step (565.1 kPa) and after the tendon section (15.3 kPa). The elasticity modulus values were distributed in the same way for each patient. The therapeutic benefit of SWE elastography was studied for the first time in tendon transfers. Quantitative data on the elasticity modulus during this test may make it an effective means of improving intraoperative adjustments. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Lee, Eun Jung; Jung, Hae Kyoung; Ko, Kyung Hee; Lee, Jong Tae; Yoon, Jung Hyun
2013-07-01
To evaluate which shear wave elastography (SWE) parameter proves most accurate in the differential diagnosis of solid breast masses. One hundred and fifty-six breast lesions in 139 consecutive women (mean age: 43.54 ± 9.94 years, range 21-88 years), who had been scheduled for ultrasound-guided breast biopsy, were included. Conventional ultrasound and SWE were performed in all women before biopsy procedures. Ultrasound BI-RADS final assessment and SWE parameters were recorded. Diagnostic performance of each SWE parameter was calculated and compared with those obtained when applying cut-off values of previously published data. Performance of conventional ultrasound and ultrasound combined with each parameter was also compared. Of the 156 breast masses, 120 (76.9 %) were benign and 36 (23.1 %) malignant. Maximum stiffness (Emax) with a cut-off of 82.3 kPa had the highest area under the receiver operating characteristics curve (Az) value compared with other SWE parameters, 0.860 (sensitivity 88.9 %, specificity 77.5 %, accuracy 80.1 %). Az values of conventional ultrasound combined with each SWE parameter showed lower (but not significantly) values than with conventional ultrasound alone. Maximum stiffness (82.3 kPa) provided the best diagnostic performance. However the overall diagnostic performance of ultrasound plus SWE was not significantly better than that of conventional ultrasound alone. • SWE offers new information over and above conventional breast ultrasound • Various SWE parameters were explored regarding distinction between benign and malignant lesions • An elasticity of 82.3 kPa appears optimal in differentiating solid breast masses • However, ultrasound plus SWE was not significantly better than conventional ultrasound alone.
Simon, Emmanuel G; Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre
2018-01-01
Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young's modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50-0.82), and the interobserver ICC for SWS 0.65 (0.37-0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures.
Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre
2018-01-01
Background Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. Objective To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young’s modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Materials and methods Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). Main results The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50–0.82), and the interobserver ICC for SWS 0.65 (0.37–0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. Conclusions TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures. PMID:29621270
Seliger, Gregor; Chaoui, Katharina; Lautenschläger, Christine; Jenderka, Klaus-Vitold; Kunze, Christian; Hiller, Grit Gesine Ruth; Tchirikov, Michael
2018-06-01
The purpose of this study was to assess, if the biomechanical properties of the lower uterine segment (LUS) in women with a previous cesarean section (CS) can be determined by ultrasound (US) elastography. The first aim was to establish an ex-vivo LUS tensile-stress-strain-rupture(break point) analysis with the possibility of simultaneously using US elastography. The second aim was to investigate the relationship between measurement results of LUS stiffness using US elastography in-/ex-vivo with results of tensile-stress-strain-rupture analysis, and to compare different US elastography LUS-stiffness-measurement methods ex-vivo. An explorative experimental, in-/ex-vivo US study of women with previous CS was conducted. LUS elasticity was measured by point Shear Wave Elastography (pSWE) and bidimensional Shear-Wave-Elastography (2D-SWE) first in-vivo during preoperative examination within 24 h before repeat CS (including resection of the thinnest part of the LUS = uterine scar area during CS), second within 1 h after operation during the ex-vivo experiment, followed by tensile-stress-strain-rupture analysis. Pearson's correlation coefficient and scatter plots, Bland-Altman plots and paired T-tests, were used. Thirty three women were included in the study; elastography measurements n = 1412. The feasibility of ex-vivo assessment of LUS by quantitative US elastography using pSWE and 2D-SWE to detect stiffness of LUS was demonstrated. The strongest correlation with tensile-stress-strain analysis was found in the US elastography examination carried out with 2D-SWE (0.78, p < 0.001, 95%CI [0.48, 0.92]). The laboratory experiment illustrated that, the break point - as a surrogate marker for the risk of rupture of the LUS after CS - is linearly dependent on the thickness of the LUS in the scar area (Coefficient of correlation: 0.79, p < 0.001, 95%CI [0.55, 0.91]). Two extremely stiff LUS-specimens (outlier or extreme values) rupture even at less stroke/strain than would be expected by their thickness. This study confirms that US elastography can help in determining viscoelastic properties of the LUS in women with a previous CS. The data from our small series are promising. However whether individual extreme values of high stiffness and consecutive restricted biomechanical resilience can explain the phenomenon of rupture during TOLAC in cases of LUS with adequate thickness remains a question which prospective trials have to analyze before US elastography can be introduced into clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.
Golu, Ioana; Sporea, Ioan; Moleriu, Lavinia; Tudor, Anca; Cornianu, Marioara; Balas, Melania; Amzar, Daniela
2017-01-01
Background and Aims 2D-shear wave elastography (2D-SWE) is a relatively new elastographic technique. The aim of the present study is to determine the values of the elasticity indexes (EI) measured by 2D-SWE in parathyroid benign lesions (adenomas or hyperplasia) and to establish if this investigation is helpful for the preoperative identification of the parathyroid adenoma. Material and Methods The study groups were represented by 22 patients with primary or tertiary hyperparathyroidism, diagnosed by specific tests, and 43 healthy controls, in whom the thyroid parenchyma was evaluated, in order to compare the EI of the thyroid tissue with those of the parathyroid lesions. Results The mean EI measured by 2D-SWE in the parathyroid lesions was 10.2 ± 4.9 kPa, significantly lower than that of the normal thyroid parenchyma (19.5 ± 7.6 kPa; p = 0.007), indicating soft tissue. For a cutoff value of 12.5 kPa, the EI assessed by 2D-SWE had a sensitivity of 93% and a specificity of 86% (AUC = 0.949; p < 0.001) for predicting parathyroid lesions. Conclusion A value lower than 12.5 kPa for the mean EI measured by 2D-SWE can be used to confirm that the lesion/nodule is a parathyroid adenoma. PMID:28845158
Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang
2015-01-01
Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.
Zeng, Jie; Huang, Ze-Ping; Zheng, Jian; Wu, Tao; Zheng, Rong-Qin
2017-01-01
AIM To determine the diagnostic accuracy of two-dimensional shear wave elastography (2D-SWE) for the non-invasive assessment of liver fibrosis in patients with autoimmune liver diseases (AILD) using liver biopsy as the reference standard. METHODS Patients with AILD who underwent liver biopsy and 2D-SWE were consecutively enrolled. Receiver operating characteristic (ROC) curves were constructed to assess the overall accuracy and to identify optimal cut-off values. RESULTS The characteristics of the diagnostic performance were determined for 114 patients with AILD. The areas under the ROC curves for significant fibrosis, severe fibrosis, and cirrhosis were 0.85, 0.85, and 0.86, respectively, and the optimal cut-off values associated with significant fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4) were 9.7 kPa, 13.2 kPa and 16.3 kPa, respectively. 2D-SWE showed sensitivity values of 81.7% for significant fibrosis, 83.0% for severe fibrosis, and 87.0% for cirrhosis, and the respective specificity values were 81.3%, 74.6%, and 80.2%. The overall concordance rate of the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages was 53.5%. CONCLUSION 2D-SWE showed promising diagnostic performance for assessing liver fibrosis stages and exhibited high cut-off values in patients with AILD. Low overall concordance rate was observed in the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages. PMID:28765706
Shear wave elastography of placenta: in vivo quantitation of placental elasticity in preeclampsia
Kılıç, Fahrettin; Kayadibi, Yasemin; Yüksel, Mehmet Aytaç; Adaletli, İbrahim; Ustabaşıoğlu, Fethi Emre; Öncül, Mahmut; Madazlı, Rıza; Yılmaz, Mehmet Halit; Mihmanlı, İsmail; Kantarcı, Fatih
2015-01-01
PURPOSE We aimed to evaluate the utility of shear wave elastography (SWE) for assessing the placenta in preeclampsia disease. METHODS A total of 50 pregnant women in the second or third trimester (23 preeclampsia patients and 27 healthy control subjects) were enrolled in the study. Obstetrical grayscale and Doppler ultrasonography, SWE findings of placenta, and prenatal/postnatal clinical data were analyzed and the best SWE cutoff value which represents the diagnosis of preeclampsia was determined. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of preeclampsia were calculated based on SWE measurements. RESULTS Mean stiffness values were much higher in preeclamptic placentas in all regions and layers than in normal controls. The most significant difference was observed in the central placental area facing the fetus where the umbilical cord inserts, with a median of 21 kPa (range, 3–71 kPa) for preeclampsia and 4 kPa (range, 1.5–14 kPa) for the control group (P < 0.01). The SWE data showed a moderate correlation with the uterine artery resistivity and pulsatility indices. The cutoff value maximizing the accuracy of diagnosis was 7.35 kPa (area under curve, 0.895; 95% confidence interval, 0.791–0.998); sensitivity, specificity, PPV, NPV, and accuracy were 90%, 86%, 82%, 92%, and 88%, respectively. CONCLUSION Stiffness of the placenta is significantly higher in patients with preeclampsia. SWE appears to be an assistive diagnostic technique for placenta evaluation in preeclampsia. PMID:25858523
Zeng, Jie; Huang, Ze-Ping; Zheng, Jian; Wu, Tao; Zheng, Rong-Qin
2017-07-14
To determine the diagnostic accuracy of two-dimensional shear wave elastography (2D-SWE) for the non-invasive assessment of liver fibrosis in patients with autoimmune liver diseases (AILD) using liver biopsy as the reference standard. Patients with AILD who underwent liver biopsy and 2D-SWE were consecutively enrolled. Receiver operating characteristic (ROC) curves were constructed to assess the overall accuracy and to identify optimal cut-off values. The characteristics of the diagnostic performance were determined for 114 patients with AILD. The areas under the ROC curves for significant fibrosis, severe fibrosis, and cirrhosis were 0.85, 0.85, and 0.86, respectively, and the optimal cut-off values associated with significant fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4) were 9.7 kPa, 13.2 kPa and 16.3 kPa, respectively. 2D-SWE showed sensitivity values of 81.7% for significant fibrosis, 83.0% for severe fibrosis, and 87.0% for cirrhosis, and the respective specificity values were 81.3%, 74.6%, and 80.2%. The overall concordance rate of the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages was 53.5%. 2D-SWE showed promising diagnostic performance for assessing liver fibrosis stages and exhibited high cut-off values in patients with AILD. Low overall concordance rate was observed in the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages.
3-Dimensional shear wave elastography of breast lesions
Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning
2016-01-01
Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820
IN VIVO MEASURES OF SHEAR WAVE SPEED AS A PREDICTOR OF TENDON ELASTICITY AND STRENGTH
Martin, Jack A.; Biedrzycki, Adam H.; Lee, Kenneth S.; DeWall, Ryan J.; Brounts, Sabrina H.; Murphy, William L.; Markel, Mark D.; Thelen, Darryl G.
2015-01-01
The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to assess tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 weeks post-surgery. Rabbits were euthanized at 4 weeks, and both medial and lateral tendons underwent mechanical testing to failure. SWS significantly (p<0.001) decreased an average of 17% between the intact and post-surgical state across all tendons. SWS was significantly (p<0.001) correlated with both the tendon elastic modulus (r = 0.52) and ultimate stress (r = 0.58). Thus, ultrasound SWE is a potentially promising noninvasive technology for quantitatively assessing the mechanical integrity of pre-operative and post-operative tendons. PMID:26215492
Shear Wave Elastography--A New Quantitative Assessment of Post-Irradiation Neck Fibrosis.
Liu, K H; Bhatia, K; Chu, W; He, L T; Leung, S F; Ahuja, A T
2015-08-01
Shear wave elastography (SWE) is a new technique which provides quantitative assessment of soft tissue stiffness. The aim of this study was to assess the reliability of SWE stiffness measurements and its usefulness in evaluating post-irradiation neck fibrosis. 50 subjects (25 patients with previous radiotherapy to the neck and 25 sex and age-matched controls) were recruited for comparison of SWE stiffness measurements (Aixplorer, Supersonic Imagine). 30 subjects (16 healthy individuals and 14 post-irradiated patients) were recruited for a reliability study of SWE stiffness measurements. SWE stiffness measurements of the sternocleidomastoid muscle and the overlying subcutaneous tissues of the neck were made. The cross-sectional area and thickness of the sternocleidomastoid muscle and the overlying subcutaneous tissue thickness of the neck were also measured. The post-irradiation duration of the patients was recorded. The intraclass correlation coefficients for the intraoperator and interoperator reliability of deep and subcutaneous tissue SWE stiffness ranged from 0.90-0.99 and 0.77-0.94, respectively. The SWE stiffness measurements (mean +/- SD) of deep and subcutaneous tissues were significantly higher in the post-irradiated patients (64.6 ± 46.8 kPa and 63.9 ± 53.1 kPa, respectively) than the sex and age-matched controls (19.9 ± 7.8 kPa and 15.3 ± 8.37 respectively) (p < 0.001). The SWE stiffness increased with increasing post-irradiation therapy duration in the Kruskal Wallis test (p < 0.001) and correlated with muscle atrophy and subcutaneous tissue thinning (p < 0.01). SWE is a reliable technique and may potentially be an objective and specific tool in quantifying deep and subcutaneous tissue stiffness, which in turn reflects the severity of neck fibrosis. © Georg Thieme Verlag KG Stuttgart · New York.
Vinnicombe, S J; Whelehan, P; Thomson, K; McLean, D; Purdie, C A; Jordan, L B; Hubbard, S; Evans, A J
2014-04-01
Shear wave elastography (SWE) is a promising adjunct to greyscale ultrasound in differentiating benign from malignant breast masses. The purpose of this study was to characterise breast cancers which are not stiff on quantitative SWE, to elucidate potential sources of error in clinical application of SWE to evaluation of breast masses. Three hundred and two consecutive patients examined by SWE who underwent immediate surgery for breast cancer were included. Characteristics of 280 lesions with suspicious SWE values (mean stiffness >50 kPa) were compared with 22 lesions with benign SWE values (<50 kPa). Statistical significance of the differences was assessed using non-parametric goodness-of-fit tests. Pure ductal carcinoma in situ (DCIS) masses were more often soft on SWE than masses representing invasive breast cancer. Invasive cancers that were soft were more frequently: histological grade 1, tubular subtype, ≤10 mm invasive size and detected at screening mammography. No significant differences were found with respect to the presence of invasive lobular cancer, vascular invasion, hormone and HER-2 receptor status. Lymph node positivity was less common in soft cancers. Malignant breast masses classified as benign by quantitative SWE tend to have better prognostic features than those correctly classified as malignant. • Over 90 % of cancers assessable with ultrasound have a mean stiffness >50 kPa. • 'Soft' invasive cancers are frequently small (≤10 mm), low grade and screen-detected. • Pure DCIS masses are more often soft than invasive cancers (>40 %). • Large symptomatic masses are better evaluated with SWE than small clinically occult lesions. • When assessing small lesions, 'softness' should not raise the threshold for biopsy.
Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu
2013-01-01
Objectives To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. Methods PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. Results A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88–0.94) and 0.82 (95% CI, 0.75–0.87) by SSI and 0.89 (95% CI, 0.81–0.94) and 0.91 (95% CI, 0.84–0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90–0.94) and 0.96 (95% CI, 0.93–0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a “positive” measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a “negative” measurement (below the threshold value) when the pre-test probability was 50%. Conclusions SWE could be used as a good identification tool for the classification of breast masses. PMID:24204613
Poynard, Thierry; Pham, Tam; Perazzo, Hugo; Munteanu, Mona; Luckina, Elena; Elaribi, Djamel; Ngo, Yen; Bonyhay, Luminita; Seurat, Noemie; Legroux, Muriel; Ngo, An; Deckmyn, Olivier; Thabut, Dominique; Ratziu, Vlad; Lucidarme, Olivier
2016-01-01
Background and Aims Real-time shear wave elastography (2D-SWE) is a two-dimensional transient elastography and a competitor as a biomarker of liver fibrosis in comparison with the standard reference transient elastography by M probe (TE-M). The aims were to compare several criteria of applicability, and to assess inflammation and steatosis impact on elasticity values, two unmet needs. Methods We took FibroTest as the fibrosis reference and ActiTest and SteatoTest as quantitative estimates of inflammation and steatosis. After standardization of estimates, analyses used curve fitting, quantitative Lin concordance coefficient [LCC], and multivariate logistic regression. Results A total of 2,251 consecutive patients were included. We validated the predetermined 0.2 kPa cut-off as a too low minimal elasticity value identifying not-reliable 2D-SWE results (LCC with FibroTest = 0.0281[-0.119;0.175]. Other criteria, elasticity CV, body mass index and depth of measures were not sufficiently discriminant. The applicability of 2D-SWE (95%CI) 89.6%(88.2–90.8), was significantly higher than that of TE, 85.6%(84.0–87.0; P<0.0001). In patients with non-advanced fibrosis (METAVIR F0F1F2), elasticity values estimated by 2D-SWE was less impacted by inflammation and steatosis than elasticity value estimated by TE-M: LCC (95%CI) 0.039 (0.021;0.058) vs 0.090 (0.068;0.112;P<0.01) and 0.105 (0.068;0.141) vs 0.192 (0.153;0.230; P<0.01) respectively. The three analyses methods gave similar results. Conclusions Elasticity results including very low minimal signal in the region of interest should be considered not reliable. 2D-SWE had a higher applicability than TE, the reference elastography, with less impact of inflammation and steatosis especially in patients with non-advanced fibrosis, as presumed by blood tests. Trial Registration ClinicalTrials.gov NCT01927133 PMID:27706177
[Assessment of plantar fasciitis using shear wave elastography].
Zhang, Lining; Wan, Wenbo; Zhang, Lihai; Xiao, Hongyu; Luo, Yukun; Fei, Xiang; Zheng, Zhixin; Tang, Peifu
2014-02-01
To assess the stiffness and thickness of the plantar fascia using shear wave elastography (SWE) in healthy volunteers of different ages and in patients with plantar fasciitis. The bilateral feet of 30 healthy volunteers and 23 patients with plantar fasciitis were examined with SWE. The plantar fascia thickness and elasticity modulus value were measured at the insertion of the calcaneus and at 1 cm from the insertion. The elderly volunteers had a significantly greater plantar fascia thickness measured using conventional ultrasound (P=0.005) and a significantly lower elasticity modulus value than the young volunteers (P=0.000). The patients with fasciitis had a significantly greater plantar fascia thickness (P=0.001) and a lower elasticity modulus value than the elderly volunteers (P=0.000). The elasticity modulus value was significantly lower at the calcaneus insertion than at 1 cm from the insertion in patients with fasciitis (P=0.000) but showed no significantly difference between the two points in the elderly or young volunteers (P=0.172, P=0.126). SWE allows quantitative assessment of the stiffness of the plantar fascia, which decreases with aging and in patients with plantar fasciitis.
Evaluation of fatty liver fibrosis in rabbits using real-time shear wave elastography
LU, YONGPING; WEI, JIA; TANG, YUEYUE; YUAN, YUAN; HUANG, YANLING; ZHANG, YONG; LI, YUNYAN
2014-01-01
The aim of the present study was to detect the elastic modulus (stiffness) of the livers of rabbits with non-alcoholic and alcoholic fatty liver disease using real-time shear wave elastography (SWE), and to investigate the fibrosis development process in the formation of fatty liver. The stiffness of the fatty livers in rabbit models prepared via feeding with alcohol or a high-fat diet were measured using a real-time SWE ultrasound system and a 4–15-MHz linear array probe, and the liver stiffness was compared with the pathological staging of the disease. The stiffness of the liver was positively correlated with the degree of pathological change in fatty liver disease (P<0.01). The stiffness of the liver in the alcoholic fatty liver group was higher compared with that in the non-alcoholic fatty liver and control groups, and the stiffness in the non-alcoholic fatty liver group was higher than that in the control group (P<0.01). Real-time SWE objectively identified the trend in the changing stiffness of the liver and noninvasively detected the development of fibrosis in the progression of non-alcoholic and alcoholic fatty liver disease. PMID:25009583
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and background.
Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao
2017-01-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and background. PMID:27076352
Wang, Yu; Jiang, Jingfeng
2018-01-01
Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.
Wang, Xiaoman; Qian, Linxue; Jia, Liqun; Bellah, Richard; Wang, Ning; Xin, Yue; Liu, Qinglin
2016-07-01
The purpose of this study was to investigate the potential utility of shear wave elastography (SWE) for diagnosis of biliary atresia and for differentiating biliary atresia from infantile hepatitis syndrome by measuring liver stiffness. Thirty-eight patients with biliary atresia and 17 patients with infantile hepatitis syndrome were included, along with 31 healthy control infants. The 3 groups underwent SWE. The hepatic tissue of each patient with biliary atresia had been surgically biopsied. Statistical analyses for mean values of the 3 groups were performed. Optimum cutoff values using SWE for differentiation between the biliary atresia and control groups were calculated by a receiver operating characteristic (ROC) analysis. The mean SWE values ± SD for the 3 groups were as follows: biliary atresia group, 20.46 ± 10.19 kPa; infantile hepatitis syndrome group, 6.29 ± 0.99 kPa; and control group, 6.41 ± 1.08 kPa. The mean SWE value for the biliary atresia group was higher than the values for the control and infantile hepatitis syndrome groups (P < .01). The mean SWE values between the control and infantile hepatitis syndrome groups were not statistically different. The ROC analysis showed a cutoff value of 8.68 kPa for differentiation between the biliary atresia and control groups. The area under the ROC curve was 0.997, with sensitivity of 97.4%, specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 96.9%. Correlation analysis suggested a positive correlation between SWE values and age for patients with biliary atresia, with a Pearson correlation coefficient of 0.463 (P < .05). The significant increase in liver SWE values in neonates and infants with biliary atresia supports their application for differentiating biliary atresia from infantile hepatitis syndrome.
Hocquelet, A; Frulio, N; Gallo, G; Laurent, C; Papadopoulos, P; Salut, C; Denys, A; Trillaud, H
2018-06-01
To correlate point-shear wave elastography (SWE) with liver hypertrophy after right portal vein embolization (RPVE) and to determine its usefulness in predicting postoperative liver failure in patients undergoing partial liver resection. Point-SWE was performed the day before RPVE in 56 patients (41 men) with a median age of 66 years. The percentage (%) of future remnant liver (FRL) volume increase was defined as: %FRL post -%FRL pre %FRL pre ×100 and assessed on computed tomography performed 4 weeks after RPVE. Median (range) %FRL pre and %FRL post was respectively, 31.5% (12-48%) and 41% (23-61%) (P<0.001), with a median %FRL volume increase of 25.6% (-8; 123%). SWE correlated with %FRL volume increase (P=-0.510; P<0.001). SWV (P=0.003) and %FRL pre (P<0.001) were associated with %FRL volume increase at multivariate regression analysis. Forty-three patients (77%) were operated. Postoperative liver failure occurred in 14 patients (32.5%). Median SWE was different between the group with (1.68m/s) and without liver failure (1.07m/s) (P=0.018). The AUROC of SWE predicting liver failure was 0.724 with a best cut-off of 1.31m/s, corresponding to a sensitivity of 21%, specificity of 96%, positive predictive value 75% and negative predictive value of 72%. SWE was the single independent preoperative variable associated with liver failure. SWE assessed by point-SWE is a simple and useful tool to predict the FRL volume increase and postoperative liver failure in a population of patients with liver tumor. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Park, So Yoon; Choi, Ji Soo; Han, Boo-Kyung; Ko, Eun Young; Ko, Eun Sook
2017-09-01
To investigate factors related to false shear wave elastography (SWE) results for breast non-mass lesions (NMLs) detected by B-mode US. This retrospective study enrolled 152 NMLs detected by B-mode US and later pathologically confirmed (79 malignant, 73 benign). All lesions underwent B-mode US and SWE. Quantitative (mean elasticity [E mean ]) and qualitative (maximum stiffness colour) SWE parameters were assessed, and 'E mean > 85.1 kPa' or 'stiff colour (green to red)' determined malignancy. Final SWE results were matched to pathology results. Multivariate logistic regression analysis identified factors associated with false SWE results for diagnosis of breast NMLs. Associated calcifications (E mean : odds ratio [OR] = 7.60, P < 0.01; maximum stiffness colour: OR = 6.30, P = 0.02), in situ cancer compared to invasive cancer (maximum stiffness colour: OR = 5.29, P = 0.02), and lesion size (E mean : OR = 0.90, P < 0.01; maximum stiffness colour: OR = 0.91, P = 0.01) were significantly associated with false negative SWE results for malignant NMLs. Distance from the nipple (E mean : OR = 0.84, P = 0.03; maximum stiffness colour: OR = 0.93, P = 0.04) was significantly associated with false positive SWE results for benign NMLs. Presence of associated calcifications, absence of the invasive component, and smaller lesion size for malignant NMLs and shorter distance from the nipple for benign NMLs are factors significantly associated with false SWE results. • Calcification and size are associated with false negative SWE in malignant NMLs. • In situ cancer is associated with false negative SWE in malignant NMLs. • Distance from the nipple is associated with false positive SWE in benign NMLs. • These factors need consideration when performing SWE on breast NMLs.
Lee, Su Hyun; Cho, Nariya; Chang, Jung Min; Koo, Hye Ryoung; Kim, Jin You; Kim, Won Hwa; Bae, Min Sun; Yi, Ann; Moon, Woo Kyung
2013-10-28
Purpose To determine whether two-view shear-wave elastography (SWE) improves the performance of radiologists in differentiating benign from malignant breast masses compared with single-view SWE. Materials and Methods This prospective study was conducted with institutional review board approval, and written informed consent was obtained. B-mode ultrasonographic (US) and orthogonal SWE images were obtained for 219 breast masses (136 benign and 83 malignant; mean size, 14.8 mm) in 219 consecutive women (mean age, 47.9 years; range, 20-78 years). Five blinded radiologists independently assessed the likelihood of malignancy for three data sets: B-mode US alone, B-mode US and single-view SWE, and B-mode US and two-view SWE. Interobserver agreement regarding Breast Imaging Reporting and Data System (BI-RADS) category and the area under the receiver operating characteristic curve (AUC) of each data set were compared. Results Interobserver agreement was moderate (κ = 0.560 ± 0.015 [standard error of the mean]) for BI-RADS category assessment with B-mode US alone. When SWE was added to B-mode US, five readers showed substantial interobserver agreement (κ = 0.629 ± 0.017 for single-view SWE; κ = 0.651 ± 0.014 for two-view SWE). The mean AUC of B-mode US was 0.870 (range, 0.855-0.884). The AUC of B-mode US and two-view SWE (average, 0.928; range, 0.904-0.941) was higher than that of B-mode US and single-view SWE (average, 0.900; range, 0.890-0.920), with statistically significant differences for three readers (P ≤ .003). Conclusion The performance of radiologists in differentiating benign from malignant breast masses was improved when B-mode US was combined with two-view SWE compared with that when B-mode US was combined with single-view SWE. © RSNA, 2013 Supplemental material: S1.
Lee, Su Hyun; Cho, Nariya; Chang, Jung Min; Koo, Hye Ryoung; Kim, Jin You; Kim, Won Hwa; Bae, Min Sun; Yi, Ann; Moon, Woo Kyung
2014-02-01
To determine whether two-view shear-wave elastography (SWE) improves the performance of radiologists in differentiating benign from malignant breast masses compared with single-view SWE. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. B-mode ultrasonographic (US) and orthogonal SWE images were obtained for 219 breast masses (136 benign and 83 malignant; mean size, 14.8 mm) in 219 consecutive women (mean age, 47.9 years; range, 20-78 years). Five blinded radiologists independently assessed the likelihood of malignancy for three data sets: B-mode US alone, B-mode US and single-view SWE, and B-mode US and two-view SWE. Interobserver agreement regarding Breast Imaging Reporting and Data System (BI-RADS) category and the area under the receiver operating characteristic curve (AUC) of each data set were compared. Interobserver agreement was moderate (κ = 0.560 ± 0.015 [standard error of the mean]) for BI-RADS category assessment with B-mode US alone. When SWE was added to B-mode US, five readers showed substantial interobserver agreement (κ = 0.629 ± 0.017 for single-view SWE; κ = 0.651 ± 0.014 for two-view SWE). The mean AUC of B-mode US was 0.870 (range, 0.855-0.884). The AUC of B-mode US and two-view SWE (average, 0.928; range, 0.904-0.941) was higher than that of B-mode US and single-view SWE (average, 0.900; range, 0.890-0.920), with statistically significant differences for three readers (P ≤ .003). The performance of radiologists in differentiating benign from malignant breast masses was improved when B-mode US was combined with two-view SWE compared with that when B-mode US was combined with single-view SWE. © RSNA, 2013
Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah
2014-01-01
To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.
Bhatia, K; Tong, C S L; Cho, C C M; Yuen, E H Y; Lee, J; Ahuja, A T
2012-10-01
To evaluate the reliability of shear wave ultrasound elastography (SWE) in the neck. 176 neck lesions (40 thyroid, 56 lymph nodes, 46 salivary, 34 miscellaneous) identified in a routine US clinic underwent SWE by one or two blinded radiologists. For this study, SWE required the operator to acquire three 10 second dynamic colour-coded SWE cineloops per lesion, select one static image per cineloop, and place circular regions-of-interest within the entire lesion and stiffest part to generate 3 SWE measurements per static image. For logistical reasons, one radiologist evaluated all 176 lesions and the other evaluated 58 lesions. Both radiologists also reviewed 27 archived cineloops independently to assess SWE excluding practical technique. Reliability was assessed using intraclass correlation coefficients (ICCs) concordance correlation coefficients (CCCs) and coefficients of repeatability (CORs). Test-retest ICCs for the radiologist evaluating 176 lesions were 0.78 - 0.85 (fair-excellent agreement), CCCs were 0.85 - 0.88 (substantial agreement), and CORs were 14.9 - 36.1 kPa. For both radiologists evaluating 58 lesions, intra-rater and inter-rater ICCs were 0.65 - 0.78 and 0.72 - 0.77 respectively. For SWE excluding practical technique, inter-rater ICCs were 0.97 - 0.98 (excellent agreement). ICCs differed according to tissue, being higher in thyroid lesions than lymph nodes (p < 0.001), and higher in benign than malignant lesions (p values < 0.001). Intra- and inter-rater reliability of SWE is fair to excellent according to ICCs. SWE reliability is influenced appreciably by acquisition technique. Nevertheless, CORs for SWE are not negligible. To determine whether these results are acceptable clinically, further research is required to establish SWE stiffness values of normal and pathological tissues in the neck. © Georg Thieme Verlag KG Stuttgart · New York.
Xue, Nianyu; Xu, Youfeng; Huang, Pintong; Zhang, Shengmin; Wang, Hongwei; Yu, Fei
2016-08-01
The present study aimed to report the shear wave elastography (SWE) findings in a patient with the diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC). Since patients with DSVPTC may present with typical clinicopathological features and initially appear to have Hashimoto's thyroiditis, a thorough clinical evaluation and an early diagnosis are important. A 20-year-old female patient presented with a 1-month history of a neck mass and sore throat. Conventional ultrasound and SWE were performed using an AIXPLORER system with 14-5 MHz linear transducer. The patient had undergone total thyroidectomy and bilateral neck lymph node dissection, and an intraoperative pathology consultation to confirm the malignancy of lymph node metastasis. Pathological diagnosis was DSVPTC in both lobes, with lymph node metastases in the bilateral neck. The clinical presentation and serological findings were all indicative of Hashimoto's thyroiditis. Thyroid ultrasonography revealed diffuse enlargement of the both lobes, heterogenous echogenicity without mass formation, diffuse scattered microcalcifications and poor vascularization. SWE revealed stiff values of the thyroid: The mean stiffness was 99.7 kpa, the minimum stiffness was 59.1 kpa and the maximum stiffness was 180.1 kpa. The maximum stiffness of the DSVPTC (180.1 kpa) was higher compared with the diagnostic criteria of malignant thyroid nodules (65 kPa). SWE may be considered as a novel and valuable method to diagnose DSVPC.
Xue, Nianyu; Xu, Youfeng; Huang, Pintong; Zhang, Shengmin; Wang, Hongwei; Yu, Fei
2016-01-01
The present study aimed to report the shear wave elastography (SWE) findings in a patient with the diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC). Since patients with DSVPTC may present with typical clinicopathological features and initially appear to have Hashimoto's thyroiditis, a thorough clinical evaluation and an early diagnosis are important. A 20-year-old female patient presented with a 1-month history of a neck mass and sore throat. Conventional ultrasound and SWE were performed using an AIXPLORER system with 14-5 MHz linear transducer. The patient had undergone total thyroidectomy and bilateral neck lymph node dissection, and an intraoperative pathology consultation to confirm the malignancy of lymph node metastasis. Pathological diagnosis was DSVPTC in both lobes, with lymph node metastases in the bilateral neck. The clinical presentation and serological findings were all indicative of Hashimoto's thyroiditis. Thyroid ultrasonography revealed diffuse enlargement of the both lobes, heterogenous echogenicity without mass formation, diffuse scattered microcalcifications and poor vascularization. SWE revealed stiff values of the thyroid: The mean stiffness was 99.7 kpa, the minimum stiffness was 59.1 kpa and the maximum stiffness was 180.1 kpa. The maximum stiffness of the DSVPTC (180.1 kpa) was higher compared with the diagnostic criteria of malignant thyroid nodules (65 kPa). SWE may be considered as a novel and valuable method to diagnose DSVPC. PMID:27446574
Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah
2013-03-01
To determine whether colour overlay features can be quantified by the standard deviation (SD) of the elasticity measured in shear-wave elastography (SWE) and to evaluate the diagnostic performance for breast masses. One hundred thirty-three breast lesions in 119 consecutive women who underwent SWE before US-guided core needle biopsy or surgical excision were analysed. SWE colour overlay features were assessed using two different colour overlay pattern classifications. Quantitative SD of the elasticity value was measured with the region of interest including the whole breast lesion. For the four-colour overlay pattern, the area under the ROC curve (Az) was 0.947; with a cutoff point between pattern 2 and 3, sensitivity and specificity were 94.4 % and 81.4 %. According to the homogeneity of the elasticity, the Az was 0.887; with a cutoff point between reasonably homogeneous and heterogeneous, sensitivity and specificity were 86.1 % and 82.5 %. For the SD of the elasticity, the Az was 0.944; with a cutoff point of 12.1, sensitivity and specificity were 88.9 % and 89.7 %. The colour overlay features showed significant correlations with the quantitative SD of the elasticity (P < 0.001). The colour overlay features and the SD of the elasticity in SWE showed excellent diagnostic performance and showed good correlations between them.
Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography.
Long, Zaiyang; Tradup, Donald J; Song, Pengfei; Stekel, Scott F; Chen, Shigao; Glazebrook, Katrina N; Hangiandreou, Nicholas J
2018-03-15
Because of the rapidly growing use of ultrasound shear wave elastography (SWE) in clinical practices, there is a significant need for development of clinical physics performance assessment methods for this technology. This study aims to report two clinical medical physicists' tasks: (a) acceptance testing (AT) of SWE function on ten commercial ultrasound systems for clinical liver application and (b) comparison of SWE measurements of targets across vendors for clinical musculoskeletal application. For AT, ten GE LOGIQ E9 XDclear 2.0 scanners with ten C1-6-D and ten 9L-D transducers were studied using two commercial homogenous phantoms. Five measurements were acquired at two depths for each scanner/transducer pair by two operators. Additional tests were performed to access effects of different coupling media, phantom locations and operators. System deviations were less than 5% of group mean or three times standard deviation; therefore, all systems passed AT. A test protocol was provided based on results that no statistically significant difference was observed between using ultrasound gel and salt water for coupling, among different phantom locations, and that interoperator and intraoperator coefficient of variation was less than 3%. For SWE target measurements, two systems were compared - a Supersonic Aixplorer scanner with a SL10-2 and a SL15-4 transducer, and an abovementioned GE scanner with 9L-D transducer. Two stepped cylinders with diameters of 4.05-10.40 mm were measured both longitudinally and transaxially. Target shear wave speed quantification was performed using an in-house MATLAB program. Using the target shear wave speed deduced from phantom specs as a reference, SL15-4 performed the best at the measured depth. However, it was challenging to reliably measure a 4.05 mm target for either system. The reported test methods and results could provide important information when dealing with SWE-related tasks in the clinical environment. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study.
Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L; Fatemi, Mostafa; Alizad, Azra
2015-01-01
To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis.
Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Bai, M; Du, L-F; Xing, J-F
2017-06-01
The purpose of this study was to explore the value of two-dimensional ShearWave ™ Elastography (2D-SWE) on quantitatively evaluating the change of the content of collagen fibres in penis. Twenty male Sprague Dawley rats were divided into the pre-sexual maturity group (Group 1) and the sexual decline group (Group 2) according to age. The ultrafast ultrasound device Aixplorer ® (SuperSonic Imagine, Aix-en-Provence, France) was used for 2D-SWE imaging of penis, and the measurement index was shear wave stiffness (SWS). The immunohistochemistry was used to analyse the content of collagen fibres in penis, and the measurement index was positive area percentage (PAP). The differences of SWS between the two groups and PAP between the two groups were analysed. SWS of Group 1 and Group 2 was 10.18 ± 1.09 and 8.02 ± 1.34 kPa, and SWS of Group 2 was significantly lower than Group 1 (p < .01). PAP of Group 1 and Group 2 was 4.83 ± 3.61% and 16.41 ± 10.02%, and PAP of Group 2 was significantly higher than Group 1 (p < .01). Our results indicate that when the content of collagen fibres changes, SWS of penis measured with 2D-SWE would change significantly as well. Two-dimensional SWE can be used to quantitatively evaluate the change of the content of collagen fibres in penis. © 2016 Blackwell Verlag GmbH.
Ferraioli, Giovanna; Tinelli, Carmine; Dal Bello, Barbara; Zicchetti, Mabel; Filice, Gaetano; Filice, Carlo
2012-12-01
Real-time shear wave elastography (SWE) is a novel, noninvasive method to assess liver fibrosis by measuring liver stiffness. This single-center study was conducted to assess the accuracy of SWE in patients with chronic hepatitis C (CHC), in comparison with transient elastography (TE), by using liver biopsy (LB) as the reference standard. Consecutive patients with CHC scheduled for LB by referring physicians were studied. One hundred and twenty-one patients met inclusion criteria. On the same day, real-time SWE using the ultrasound (US) system, Aixplorer (SuperSonic Imagine S.A., Aix-en-Provence, France), TE using FibroScan (Echosens, Paris, France), and US-assisted LB were consecutively performed. Fibrosis was staged according to the METAVIR scoring system. Analyses of receiver operating characteristic (ROC) curve were performed to calculate optimal area under the ROC curve (AUROC) for F0-F1 versus F2-F4, F0- F2 versus F3-F4, and F0-F3 versus F4 for both real-time SWE and TE. Liver stiffness values increased in parallel with degree of liver fibrosis, both with SWE and TE. AUROCs were 0.92 (95% confidence interval [CI]: 0.85-0.96) for SWE and 0.84 (95% CI: 0.76-0.90) for TE (P = 0.002), 0.98 (95% CI: 0.94-1.00) for SWE and 0.96 (95% CI: 0.90-0.99) for TE (P = 0.14), and 0.98 (95% CI: 0.93-1.00) for SWE and 0.96 (95% CI: 0.91-0.99) for TE (P = 0.48), when comparing F0-F1 versus F2- F4, F0- F2 versus F3-F4, and F0 -F3 versus F4, respectively. The results of this study show that real-time SWE is more accurate than TE in assessing significant fibrosis (≥ F2). With respect to TE, SWE has the advantage of imaging liver stiffness in real time while guided by a B-mode image. Thus, the region of measurement can be guided with both anatomical and tissue stiffness information. Copyright © 2012 American Association for the Study of Liver Diseases.
Kılıç, Fahrettin; Kayadibi, Yasemin; Kocael, Pinar; Velidedeoglu, Mehmet; Bas, Ahmet; Bakan, Selim; Aydogan, Fatih; Karatas, Adem; Yılmaz, Mehmet Halit
2015-06-01
Shear-wave elastography (SWE) presents quantitative data that thought to represent intrinsic features of the target tissue. Factors affecting the metabolism of the breast parenchyma as well as age, menstrual cycle, hormone levels, pregnancy and lactation, pre-compression artifact during the examination could affect these elastic intrinsic features. Aim of our study is to determine variation of fibroadenoma elasticity during the menstrual cycle (MC) by means of real-time shear-wave elastography (SWE) and identify the optimal time for SWE evaluation. Thirty volunteers (aged 20-40 years) who had biopsy-proven fibroadenoma greater than 1cm in diameter, with regular menstrual cycle and without contraceptive medication underwent SWE (ShearWave on Aixplorer, France) once weekly during MC. Statistical data were processed by using the software Statistical Package for the Social Sciences (SPSS) 19.0. A repeated measures analysis of variance was used for each lesion where the repeated factor was the elastographic measurements (premenstrual, menstrual and postmenstrual). Pillai's trace test was used. Pairwise correlation was calculated using Bonferroni correction. Values of p<0.05 were considered statistically significant. The mean elasticity value of fibroadenomas in mid-cycle was 28.49 ± 12.92 kPa, with the highest value obtained in the third week corresponding to the premenstrual stage (32.98 ± 13.35 kPa) and the lowest value obtained in the first week corresponding to the postmenstrual stage (25.39 ± 10.21 kPa). Differences between the elasticity values of fibroadenomas in premenstrual and postmenstrual periods were statistically significant (p<0.001). There were no significant differences in lesion size between the different phases of the menstrual cycle (p>0.05). In this study, we found that there is significant difference between the elasticity values of fibroadenomas on premenstrual and postmenstrual period. We propose that one week after menstruation would be appropriate time to perform breast SWE. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Use of shear wave elastography to differentiate benign and malignant breast lesions.
Çebi Olgun, Deniz; Korkmazer, Bora; Kılıç, Fahrettin; Dikici, Atilla Süleyman; Velidedeoğlu, Mehmet; Aydoğan, Fatih; Kantarcı, Fatih; Yılmaz, Mehmet Halit
2014-01-01
We aimed to determine the correlations between the elasticity values of solid breast masses and histopathological findings to define cutoff elasticity values differentiating malignant from benign lesions. A total of 115 solid breast lesions of 109 consecutive patients were evaluated prospectively using shear wave elastography (SWE). Two orthogonal elastographic images of each lesion were obtained. Minimum, mean, and maximum elasticity values were calculated in regions of interest placed over the stiffest areas on the two images; we also calculated mass/fat elasticity ratios. Correlation of elastographic measurements with histopathological results were studied. Eighty-three benign and thirty-two malignant lesions were histopathologically diagnosed. The minimum, mean, and maximum elasticity values, and the mass/fat elasticity ratios of malignant lesions, were significantly higher than those of benign lesions. The cutoff value was 45.7 kPa for mean elasticity (sensitivity, 96%; specificity, 95%), 54.3 kPa for maximum elasticity (sensitivity, 95%; specificity, 94%), 37.1 kPa for minimum elasticity (sensitivity, 96%; specificity, 95%), and 4.6 for the mass/fat elasticity ratio (sensitivity, 97%; specificity, 95%). SWE yields additional valuable quantitative data to ultrasonographic examination on solid breast lesions. SWE may serve as a complementary tool for diagnosis of breast lesions. Long-term clinical studies are required to accurately select lesions requiring biopsy.
Skerl, K; Vinnicombe, S; Giannotti, E; Thomson, K; Evans, A
2015-12-01
To evaluate the influence of the region of interest (ROI) size and lesion diameter on the diagnostic performance of 2D shear wave elastography (SWE) of solid breast lesions. A study group of 206 consecutive patients (age range 21-92 years) with 210 solid breast lesions (70 benign, 140 malignant) who underwent core biopsy or surgical excision was evaluated. Lesions were divided into small (diameter <15 mm, n=112) and large lesions (diameter ≥15 mm, n=98). An ROI with a diameter of 1, 2, and 3 mm was positioned over the stiffest part of the lesion. The maximum elasticity (Emax), mean elasticity (Emean) and standard deviation (SD) for each ROI size were compared to the pathological outcome. Statistical analysis was undertaken using the chi-square test and receiver operating characteristic (ROC) analysis. The ROI size used has a significant impact on the performance of Emean and SD but not on Emax. Youden's indices show a correlation with the ROI size and lesion size: generally, the benign/malignant threshold is lower with increasing ROI size but higher with increasing lesion size. No single SWE parameter has superior performance. Lesion size and ROI size influence diagnostic performance. Copyright © 2015. Published by Elsevier Ltd.
Evans, Andrew; Sim, Yee Ting; Thomson, Kim; Jordan, Lee; Purdie, Colin; Vinnicombe, Sarah J
2016-04-01
To define the shear wave elastography (SWE) characteristics of breast cancer histological types by size in a large cohort. Consecutive patients with US visible masses underwent SWE. All those with confirmed invasive breast cancer were included in the study. Histologic type was ascertained from core biopsy and surgical resection specimens. For each type, mean and median values for Emean and Emax were ascertained. Commoner tumour types were further analysed by invasive size. The significance of differences was established using the Chi-square test. 1137 tumours constituted the study group. The proportion of tumours with Emean below 50 kPa was higher in tubular cancers (23%) compared to ductal carcinomas of no specific type (DNST) (6%) (p < 0.001). Emax below 80 kPa was seen in 34% of tubular cancers compared to 16% of DNST (p < 0.002). Emean and Emax for lobular, mucinous, papillary and metaplastic cancers were not different from those of DNST. There were no significant differences in Emean or Emax between tumour types once broken down according to invasive size. Most breast cancer histological types have similar SWE characteristics. The exception is tubular cancer which has significantly lower stiffness than other histologic types, accounted for largely by their small size. Copyright © 2016 Elsevier Ltd. All rights reserved.
4-D ultrafast shear-wave imaging.
Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael
2015-06-01
Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE.
Feasibility Assessment of Shear Wave Elastography to Rotator Cuff Muscle
Itoigawa, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Chen, Qingshan; Song, Pengfei; Chen, Shigao; Itoi, Eiji; Hatta, Taku; An, Kai-Nan
2017-01-01
Introduction Pre -surgical measurement of supraspinatus muscle extensibility would be important for rotator cuff repair. The purpose of the present study was to explore the potential feasibility of a shear wave ultrasound electrograph (SWE) based method, combined with B-mode ultrasound, to non-invasively measure in vivo stiffness of supraspinatus muscle, and thus obtaining the key information on supraspinatus muscle extensibility. Materials and Methods Our investigation consisted of 2 steps. First, we evaluated orientation of the supraspinatus muscle fiber on cadaveric shoulders without rotator cuff tear in order to optimize the ultrasound probe positions for SWE imaging. Second, we investigated the feasibility of quantifying the normal supraspinatus muscle stiffness by SWE in vivo. Results The supraspinatus muscle was divided into four anatomical regions, namely anterior superficial (AS), posterior superficial (PS), anterior deep (AD) and posterior deep (PD) regions. SWE was evaluated at each of these regions. SWE stiffness on AD, AS, PD, and PS were measured as 40.0±12.4, 34.0±9.9, 32.7±12.7, 39.1±15.7 kPa, respectively. Conclusions SWE combined with B-Mode ultrasound image may be a feasible method to quantify local tissue stiffness of the rotator cuff muscles. PMID:25557287
Liu, Jing-Hua; Zou, Yu; Chang, Wei; Wu, Jun; Zou, Yu; Xie, Yu-Chen; Lu, Yong-Ping; Wei, Jia
2017-01-01
We assessed liver fibrosis using real-time shear-wave elastography (SWE) combined with liver biopsy (LB) for patients with hepatitis B e antigen (HBeAg)-negative chronic hepatitis B (CHB) and alanine transaminase < 2 times the upper limit of normal and hepatitis B virus DNA < 2000 IU/ml. A total of 107 patients met the inclusion criteria. Real- ime SWE and ultrasoundassisted liver biopsies were consecutively performed. Fibrosis was staged according to the METAVIR scoring system. Analyses of receiver operating characteristic curve were performed to calculate the optimal area under the receiver operating characteristic curve for F0-F1 versus F2-F4, F0-F2 versus F3-F4, and F0-F3 versus F4 for real-time SWE. The most concurrent liver fibrosis degrees were between F1 and F2 for these HBeAg-negative CHB patients. Liver stiffness increased in parallel with the degree of liver fibrosis using SWE measurements. The area under the receiver operating characteristic curves was 0.881 (95% confidence interval [CI]: 0.704-1.000) for SWE (p = 0.004); 0.912 (95% CI: 0.836-0.987) for SWE (p = 0.000); 0.981 (95% CI: 0.956-1.000) for SWE (p = 0.000); 0.974 (95% CI: 0.936-1.000) for SWE (p = 0.000) when comparing F0 versus F1-F4, F0-F1 versus F2-F4, F0-F2 versus F3-F4, and F0-F3 versus F4, respectively. SWE has the advantage of providing an image of liver stiffness in real-time. As an alternative to LB, the development of all these noninvasive methods for dynamic evaluation of liver fibrosis will decrease the need for LB, making clinical care safer and more convenient for patients with liver diseases.
Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao
2013-01-01
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638
Crombé, Amandine; Hurtevent-Labrot, Gabrielle; Asad-Syed, Maryam; Palussière, Jean; MacGrogan, Gaetan; Kind, Michèle; Ferron, Stéphane
2018-02-01
To evaluate the ability of shear-wave elastography (SWE) to distinguish between benign and malignant palpable masses of the adult male breast. Clinical examination, mammography, B-mode and Doppler ultrasound findings and SWE quantitative parameters were compared in 50 benign lesions (including 40 gynaecomastias) and 15 malignant lesions (invasive ductal carcinomas) from 65 patients who were consecutively addressed for specialized advice at our comprehensive cancer centre. Mean elasticity (El mean), maximum elasticity (El max), El mean of the surrounding fatty tissue and lesion to fat ratio (El ratio) were reported for each patient. Malignant masses displayed significantly higher El mean (p < 0.0001), El max (p < 0.0001) and El ratio (p < 0.0001) compared to benign masses without overlap of values between the two groups. By adding SWE to clinical examination, mammography and ultrasound, all the lesions would have been retrospectively correctly diagnosed as benign or malignant. One false positive could have been downstaged, 14/65 undetermined masses could have been correctly reclassified as 4 malignant and 10 benign lesions, for which biopsies could have consequently been avoided. Evaluation of male breast palpable masses by SWE demonstrates that malignant masses are significantly stiffer lesions and may improve diagnostic management when clinical examination, mammography and conventional ultrasound are doubtful. Advances in knowledge: Quantitative SWE is feasible in male breast and could be of great interest to help classify doubtful lesions after classical clinical and radiological evaluations, probably because of different anatomy and different tumours epidemiology compared with female breast.
Clinical application of qualitative assessment for breast masses in shear-wave elastography.
Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah
2013-11-01
To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Interobserver agreement was substantial for Ecol (κ=0.79), Ehomo (κ=0.77) and four-color pattern (κ=0.64), and moderate for Esha (κ=0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P<0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P<0.001) without improvement in sensitivity. The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
An experimental study: evaluating the tissue structure of penis with 2D-ShearWave™ Elastography.
Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Liu, Y; Xing, L-X; Du, L-F; Xing, J-F
2017-01-01
The aim of this study was to investigate the feasibility of two-dimensional-ShearWave™ Elastography (2D-SWE) on evaluating the change of tissue structure of penis. Twenty healthy male Sprague Dawley rats were divided into penis-developed group (PDG, 52 weeks) and penis-underdeveloped group (PUDG, 5 weeks). The ultrafast ultrasound device-Aixplorer® (SuperSonic Imagine) was used for 2D-SWE imaging of the penis, the measurement index was shear wave stiffness (SWS, kPa). All rat penises were cut off immediately after ultrasonic examination. After paraffin embedding, slicing and hematoxylin-eosin staining, the tissue structure of the penis was observed under light microscope. SWS of all rat penises were measured successfully. The results showed that SWS of PDG was significantly lower than PUDG (P=0.008). At the same time, the pathological results found that there were significant differences in the tissue structures (sinusoids, smooth muscle cells and fibrocytes) of the penises between the two groups. These results suggest that there are significant differences in SWS between different tissue structures of penis. 2D-SWE is expected to be used on the etiological diagnosis of erectile dysfunction by serving as a new noninvasive method of evaluating the change of tissue structure of penis.
Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study
Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L.; Fatemi, Mostafa; Alizad, Azra
2015-01-01
Purpose To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). Methods SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Results Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Conclusions Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis. PMID:26368939
Shear Wave Elastographic Alterations in the Kidney After Extracorporeal Shock Wave Lithotripsy.
Turkay, Rustu; Inci, Ercan; Bas, Derya; Atar, Arda
2018-03-01
Extracorporeal shock wave lithotripsy (ESWL) is a method used frequently for the treatment of renal stone disease. Although its safety is proven, there are still concerns about its unwanted effects on kidneys. In this prospective study, we aimed to evaluate renal tissue alterations with shear wave elastography (SWE) after ESWL. We also studied the correlation between SWE and resistive index (RI) changes. The study included 59 patients who underwent ESWL treatment for renal stone disease. We performed SWE and color Doppler ultrasonography to calculate SWE and RI values before, 1 hour after, and 1 week after lithotripsy treatment. A binary comparison was performed by the Bonferroni test. The correlation between SWE and RI values was evaluated by a Pearson correlation analysis. The patients included 26 women (44.1%) and 33 men (55.9%). Their ages ranged from 20 to 65 years (mean ± SD, 45.0 ± 1.1 years). Stone diameters ranged from 7 to 19 mm (mean, 13.0 ± 0.5 mm). There was a significant difference in SWE values before and 1 hour after lithotripsy treatment (P = .001; P < .01). In the follow-up measurement 1 week after treatment, this difference disappeared (P > .99; P > .05). Resistive index values increased significantly 1 hour after lithotripsy treatment and returned to prelithotripsy values 1 week after treatment. In the correlation analysis, SWE and RI values were not correlated. Measurements of alterations in SWE values after ESWL can provide useful information about renal tissue injury. © 2017 by the American Institute of Ultrasound in Medicine.
Pawluś, Aleksander; Inglot, Marcin; Szymańska, Kinga; Inglot, Małgorzata; Patyk, Mateusz; Słonina, Joanna; Caseiro-Alves, Filipe; Janczak, Dariusz; Zaleska-Dorobisz, Urszula
2016-01-01
Objective: The aim of the study was to compare the elasticity of the spleen in patients with hepatitis B and C but without liver fibrosis with that of healthy subjects using a shear wave elastography (SWE) examination. Methods: Between December 2014 and December 2015, 35 patients with hepatitis B virus (HBV) infections and 45 patients with (hepatitis C virus) HCV infections and liver stiffness below 7.1 kPa were included in the study. The control group was composed of 53 healthy volunteers without any chronic liver disease, with no abnormal findings in their ultrasound examinations and with an SWE of the liver below 6.5 kPa. The SWE measurements were a part of routine ultrasound abdominal examinations. The examinations were performed using an Aixplorer device by two radiologists with at least 6 years' experience. To compare spleen stiffness between the groups, the Mann–Whitney U-test was applied. To analyze the dependency between liver and spleen elasticity, Spearman's rank correlation coefficient was calculated. Results: A total of 133 SWE findings were analyzed. Stiffness of the spleen was significantly higher in patients with HBV and HCV but without significant liver fibrosis than it was in the healthy controls (p = 0.0018 and 0.0000, respectively). This correlation was also present in patients with liver stiffness below 6.5 kPa (p = 0.0041 and 0.0000, respectively). Analysis revealed no significant correlation between liver and spleen stiffness in patients with hepatitis B and C and without significant fibrosis (p = 0.3216 and 0.0626, respectively). Conclusion: Patients with hepatitis B and C but without significant liver fibrosis have stiffer spleens than healthy controls. There is no dependency between liver and spleen elasticity in patients without significant fibrosis. Advances in knowledge: The SWE examination might be an important tool and could be used in addition to conventional imaging. Our study may become a starting point in further investigations into the role of the spleen in HCV and HBV infections and perhaps into introducing spleen elastography into diagnostic and follow-up procedures. PMID:27529729
Pawluś, Aleksander; Inglot, Marcin; Chabowski, Mariusz; Szymańska, Kinga; Inglot, Małgorzata; Patyk, Mateusz; Słonina, Joanna; Caseiro-Alves, Filipe; Janczak, Dariusz; Zaleska-Dorobisz, Urszula
2016-10-01
The aim of the study was to compare the elasticity of the spleen in patients with hepatitis B and C but without liver fibrosis with that of healthy subjects using a shear wave elastography (SWE) examination. Between December 2014 and December 2015, 35 patients with hepatitis B virus (HBV) infections and 45 patients with (hepatitis C virus) HCV infections and liver stiffness below 7.1 kPa were included in the study. The control group was composed of 53 healthy volunteers without any chronic liver disease, with no abnormal findings in their ultrasound examinations and with an SWE of the liver below 6.5 kPa. The SWE measurements were a part of routine ultrasound abdominal examinations. The examinations were performed using an Aixplorer device by two radiologists with at least 6 years' experience. To compare spleen stiffness between the groups, the Mann-Whitney U-test was applied. To analyze the dependency between liver and spleen elasticity, Spearman's rank correlation coefficient was calculated. A total of 133 SWE findings were analyzed. Stiffness of the spleen was significantly higher in patients with HBV and HCV but without significant liver fibrosis than it was in the healthy controls (p = 0.0018 and 0.0000, respectively). This correlation was also present in patients with liver stiffness below 6.5 kPa (p = 0.0041 and 0.0000, respectively). Analysis revealed no significant correlation between liver and spleen stiffness in patients with hepatitis B and C and without significant fibrosis (p = 0.3216 and 0.0626, respectively). Patients with hepatitis B and C but without significant liver fibrosis have stiffer spleens than healthy controls. There is no dependency between liver and spleen elasticity in patients without significant fibrosis. The SWE examination might be an important tool and could be used in addition to conventional imaging. Our study may become a starting point in further investigations into the role of the spleen in HCV and HBV infections and perhaps into introducing spleen elastography into diagnostic and follow-up procedures.
Measurements of renal shear wave velocities in chronic kidney disease patients.
Sasaki, Yutaka; Hirooka, Yoshiki; Kawashima, Hiroki; Ishikawa, Takuya; Takeshita, Kyosuke; Goto, Hidemi
2018-07-01
Background Chronic kidney disease (CKD) patients have advanced glomerulosclerosis and renal interstitial fibrosis. Shear wave elastography (SWE) is useful to diagnose liver fibrosis. However, there are few data available regarding evaluation of kidney function on the use of SWE. Purpose To assess the utility of SWE by evaluating the correlation between renal function and renal elasticity using SWE. Material and Methods A total of 187 participants who had available serum creatinine levels and also underwent SWE of the kidney using a transabdominal ultrasonography were recruited at Nagoya University Hospital. We measured the depth of the shear wave (SW) in the right and left kidneys and calculated the measurement success rates. The glomerular filtration rate (GFR) classification and shear wave value (SWV) were compared. Results The success rates of the right and left kidneys were 93.6% and 71.6%, respectively. Based on these results, the correlation between GFR classification and SWV were analyzed in only the right kidneys because the success rates and the number of enrolled patients were low for the left kidney. There were significant differences found between G1 and G3a, G2 and G3a, G3a and G3b, G3a and G4, and G3a and G5. SWV significantly negatively and positively correlated with the G2-G3a and G3a-G3b classifications. Conclusion There is no correlation between renal function and SW. However, we can diagnose the progression to the CKD stages G3a and G3b by observing the changes over time using the SWV.
Anisotropy of Solid Breast Lesions in 2D Shear Wave Elastography is an Indicator of Malignancy.
Skerl, Katrin; Vinnicombe, Sarah; Thomson, Kim; McLean, Denis; Giannotti, Elisabetta; Evans, Andrew
2016-01-01
To investigate if anisotropy at two-dimensional shear wave elastography (SWE) suggests malignancy and whether it correlates with prognostic and predictive factors in breast cancer. Study group A of 244 solid breast lesions was imaged with SWE between April 2013 and May 2014. Each lesion was imaged in radial and in antiradial planes, and the maximum elasticity, mean elasticity, and standard deviation were recorded and correlated with benign/malignant status, and if malignant, correlated with conventional predictive and prognostic factors. The results were compared to a study group B of 968 solid breast lesions, which were imaged in sagittal and in axial planes between 2010 and 2013. Neither benign nor malignant lesion anisotropy is plane dependent. However, malignant lesions are more anisotropic than benign lesions (P ≤ 0.001). Anisotropy correlates with increasing elasticity parameters, breast imaging-reporting and data system categories, core biopsy result, and tumor grade. Large cancers are significantly more anisotropic than small cancers (P ≤ 0.001). The optimal anisotropy cutoff threshold for benign/malignant differentiation of 150 kPa(2) achieves the best sensitivity (74%) with a reasonable specificity (63%). Anisotropy may be useful during benign/malignant differentiation of solid breast masses using SWE. Anisotropy also correlates with some prognostic factors in breast cancer. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Use of shear wave elastography to differentiate benign and malignant breast lesions
Olgun, Deniz Çebi; Korkmazer, Bora; Kılıç, Fahrettin; Dikici, Atilla Süleyman; Velidedeoğlu, Mehmet; Aydoğan, Fatih; Kantarcı, Fatih; Yılmaz, Mehmet Halit
2014-01-01
PURPOSE We aimed to determine the correlations between the elasticity values of solid breast masses and histopathological findings to define cutoff elasticity values differentiating malignant from benign lesions. MATERIALS and METHODS A total of 115 solid breast lesions of 109 consecutive patients were evaluated prospectively using shear wave elastography (SWE). Two orthogonal elastographic images of each lesion were obtained. Minimum, mean, and maximum elasticity values were calculated in regions of interest placed over the stiffest areas on the two images; we also calculated mass/fat elasticity ratios. Correlation of elastographic measurements with histopathological results were studied. RESULTS Eighty-three benign and thirty-two malignant lesions were histopathologically diagnosed. The minimum, mean, and maximum elasticity values, and the mass/fat elasticity ratios of malignant lesions, were significantly higher than those of benign lesions. The cutoff value was 45.7 kPa for mean elasticity (sensitivity, 96%; specificity, 95%), 54.3 kPa for maximum elasticity (sensitivity, 95%; specificity, 94%), 37.1 kPa for minimum elasticity (sensitivity, 96%; specificity, 95%), and 4.6 for the mass/fat elasticity ratio (sensitivity, 97%; specificity, 95%). CONCLUSION SWE yields additional valuable quantitative data to ultrasonographic examination on solid breast lesions. SWE may serve as a complementary tool for diagnosis of breast lesions. Long-term clinical studies are required to accurately select lesions requiring biopsy. PMID:24509183
Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae
2014-03-01
The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P < 0.001), which have low amounts of fibrosis, high tumor cellularity, and intratumoral necrosis. In addition, color heterogeneity was correlated with intratumoral heterogeneity of mechanical elasticity (r = 0.469, P = 0.009). Signal void areas in the masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.
Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C
2017-09-01
The purpose of the present study was to employ a computer-aided diagnosis system that classifies chronic liver disease (CLD) using ultrasound shear wave elastography (SWE) imaging, with a stiffness value-clustering and machine-learning algorithm. A clinical data set of 126 patients (56 healthy controls, 70 with CLD) was analyzed. First, an RGB-to-stiffness inverse mapping technique was employed. A five-cluster segmentation was then performed associating corresponding different-color regions with certain stiffness value ranges acquired from the SWE manufacturer-provided color bar. Subsequently, 35 features (7 for each cluster), indicative of physical characteristics existing within the SWE image, were extracted. A stepwise regression analysis toward feature reduction was used to derive a reduced feature subset that was fed into the support vector machine classification algorithm to classify CLD from healthy cases. The highest accuracy in classification of healthy to CLD subject discrimination from the support vector machine model was 87.3% with sensitivity and specificity values of 93.5% and 81.2%, respectively. Receiver operating characteristic curve analysis gave an area under the curve value of 0.87 (confidence interval: 0.77-0.92). A machine-learning algorithm that quantifies color information in terms of stiffness values from SWE images and discriminates CLD from healthy cases is introduced. New objective parameters and criteria for CLD diagnosis employing SWE images provided by the present study can be considered an important step toward color-based interpretation, and could assist radiologists' diagnostic performance on a daily basis after being installed in a PC and employed retrospectively, immediately after the examination. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Wang, Fen; Chang, Cai; Chen, Min; Gao, Yi; Chen, Ya-Ling; Zhou, Shi-Chong; Li, Jia-Wei; Zhi, Wen-Xiang
2018-03-01
We aimed to investigate the diagnostic performance of shear wave elastography (SWE) combined with conventional ultrasonography (US) for differentiating between benign and malignant thyroid nodules of different sizes. A total of 445 thyroid nodules from 445 patients were divided into 3 groups based on diameter (group 1, ≤ 10 mm; group 2, 10-20 mm; and group 3, > 20 mm). The mean elasticity index of the whole lesion was automatically calculated, and the threshold for differentiation between benign and malignant nodules was constructed by a receiver operating characteristic curve analysis. Diagnostic performances of conventional US and SWE were compared by using pathologic results as reference standards. The mean elasticity was significantly higher in malignant versus benign nodules for all size groups. The differences in mean elasticity in the size groups were not statistically significant for malignant or benign nodules. The specificity of US combined with SWE for group 1 was significantly higher than that for groups 2 and 3 (77.8% versus 62.9% and 53.3%; P < .05), and compared with group 1, the sensitivity was significantly higher for groups 2 and 3 (92.4% and 94.3% versus 80.7%; P < .05). When SWE was added, the specificity increased and the sensitivity and diagnostic accuracy decreased for group 1, and the sensitivity increased and the specificity decreased for groups 2 and 3; however, the differences were not significant. Combined with SWE, US yielded higher specificity for nodules of 10 mm and smaller and higher sensitivity for nodules larger than 10 mm. © 2017 by the American Institute of Ultrasound in Medicine.
Lee, Dong Ho; Lee, Jeong Min; Yoon, Jung-Hwan; Kim, Yoon Jun; Lee, Jeong-Hoon; Yu, Su Jong; Han, Joon Koo
2018-03-01
To evaluate the prognostic value of liver stiffness (LS) measured using two-dimensional (2D) shear-wave elastography (SWE) in patients with hepatocellular carcinoma (HCC) treated by radiofrequency ablation (RFA). The Institutional Review Board approved this retrospective study and informed consent was obtained from all patients. A total of 134 patients with up to 3 HCCs ≤5 cm who had undergone pre-procedural 2D-SWE prior to RFA treatment between January 2012 and December 2013 were enrolled. LS values were measured using real-time 2D-SWE before RFA on the procedural day. After a mean follow-up of 33.8 ± 9.9 months, we analyzed the overall survival after RFA using the Kaplan-Meier method and Cox proportional hazard regression model. The optimal cutoff LS value to predict overall survival was determined using the minimal p value approach. During the follow-up period, 22 patients died, and the estimated 1- and 3-year overall survival rates were 96.4 and 85.8%, respectively. LS measured by 2D-SWE was found to be a significant predictive factor for overall survival after RFA of HCCs, as was the presence of extrahepatic metastases. As for the optimal cutoff LS value for the prediction of overall survival, it was determined to be 13.3 kPa. In our study, 71 patients had LS values ≥13.3 kPa, and the estimated 3-year overall survival was 76.8% compared to 96.3% in 63 patients with LS values <13.3 kPa. This difference was statistically significant (hazard ratio = 4.30 [1.26-14.7]; p = 0.020). LS values measured by 2D-SWE was a significant predictive factor for overall survival after RFA for HCC.
Shear-wave elastography: a new potential method to diagnose ulnar neuropathy at the elbow.
Paluch, Łukasz; Noszczyk, Bartłomiej; Nitek, Żaneta; Walecki, Jerzy; Osiak, Katarzyna; Pietruski, Piotr
2018-06-01
The primary aim of this study was to verify if shear-wave elastography (SWE) can be used to diagnose ulnar neuropathy at the elbow (UNE). The secondary objective was to compare the cross-sectional areas (CSA) of the ulnar nerve in the cubital tunnel and to determine a cut-off value for this parameter accurately identifying persons with UNE. The study included 34 patients with UNE (mean age, 59.35 years) and 38 healthy controls (mean age, 57.42 years). Each participant was subjected to SWE of the ulnar nerve at three levels: in the cubital tunnel (CT) and at the distal arm (DA) and mid-arm (MA). The CSA of the ulnar nerve in the cubital tunnel was estimated by means of ultrasonographic imaging. Patients with UNE presented with significantly greater ulnar nerve stiffness in the cubital tunnel than the controls (mean, 96.38 kPa vs. 33.08 kPa, p < 0.001). Ulnar nerve stiffness of 61 kPa, CT to DA stiffness ratio equal 1.68, and CT to MA stiffness ratio of 1.75 provided 100% specificity, sensitivity, positive and negative predictive value in the detection of UNE. Mean CSA of the ulnar nerve in the cubital tunnel turned out to be significantly larger in patients with UNE than in healthy controls (p < 0.001). A weak positive correlation was found in the UNE group between the ulnar nerve CSA and stiffness (R = 0.31, p = 0.008). SWE seems to be a promising, reliable and simple quantitative adjunct test to support the diagnosis of UNE. • SWE enables reliable detection of cubital tunnel syndrome • Significant increase of entrapped ulnar nerve stiffness is observed in UNE • SWE is a perspective screening tool for early detection of compressive neuropathies.
Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Seo, Mirinae; Koo, Hye Ryoung; Chu, A Jung; Gweon, Hye Mi; Cho, Nariya; Moon, Woo Kyung
2014-10-01
To evaluate the additional value of shear-wave elastography (SWE) to B-mode ultrasonography (US) and to determine an appropriate guideline for the combined assessment of screening US-detected breast masses. This study was conducted with institutional review board approval, and written informed consent was obtained. From March 2010 to February 2012, B-mode US and SWE were performed in 159 US-detected breast masses before biopsy. For each lesion, Breast Imaging Reporting and Data System (BI-RADS) category on B-mode US images and the maximum stiffness color and elasticity values on SWE images were assessed. A guideline for adding SWE data to B-mode US was developed with the retrospective cohort to improve diagnostic performance in sensitivity and specificity and was validated in a distinct prospective cohort of 207 women prior to biopsy. Twenty-one of 159 masses in the development cohort and 12 of 207 breast masses in the validation cohort were malignant. In the development cohort, when BI-RADS category 4a masses showing a dark blue color or a maximum elasticity value of 30 kPa or less on SWE images were downgraded to category 3, specificity increased from 9.4% (13 of 138) to 59.4% (82 of 138) and 57.2% (79 of 138) (P < .001), respectively, without loss in sensitivity (100% [21 of 21]). In the validation cohort, specificity increased from 17.4% (34 of 195) to 62.1% (121 of 195) and 53.3% (104 of 195) (P < .001) respectively, without loss in sensitivity (91.7% [11 of 12]). The addition of SWE to B-mode US improved diagnostic performance with increased specificity for screening US-detected breast masses. BI-RADS category 4a masses detected at US screening that showed a dark blue color or a maximum elasticity value of 30 kPa or less on SWE images can be safely followed up instead of performing biopsy. © RSNA, 2014.
Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C
2016-02-01
In the last 12 - 18 months nearly all ultrasound manufacturers have arrived to implement ultrasound shear wave elastography modality in their equipment for the assessment of chronic liver disease; the few remaining players are expected to follow in 2016.When all manufacturers rush to a new technology at the same time, it is evident that the clinical demand for this information is of utmost value. Around 1990, there was similar demand for color Doppler ultrasound; high demand for contrast-enhanced ultrasonography was evident at the beginning of this century, and around 2010 demand increased for strain elastography. However, some issues regarding the new shear wave ultrasound technologies must be noted to avoid misuse of the resulting information for clinical decisions. As new articles are expected to appear in 2016 reporting the findings of the new technologies from various companies, we felt that the beginning of this year was the right time to present an appraisal of these issues. We likewise expect that in the meantime EFSUMB will release a new update of the existing guidelines 1 2.The first ultrasound elastography method became available 13 years ago in the form of transient elastography with Fibroscan(®) 3. It was the first technique providing non-invasive quantitive information about the stiffness of the liver and hence regarding the amount of fibrosis in chronic liver disease 3. The innovation was enormous, since a non-invasive modality was finally available to provide findings otherwise achievable only by liver biopsy. In fact, prior to ultrasound elastography, a combination of conventional and Doppler ultrasound parameters were utilized to inform the physician about the presence of cirrhosis and portal hypertension 4. However, skilled operators were required, reproducibility and diagnostic accuracy were suboptimal, and it was not possible to differentiate the pre-cirrhotic stages of fibrosis. All these limitations were substantially improved by transient elastography, performed with Fibroscan(®), a technology dedicated exclusively to liver elastography. Since then, more than 1300 articles dealing with transient elastography have been listed in PubMed, some describing results with more than 10,000 patients 5. The technique has been tested in nearly all liver disease etiologies, with histology as the reference standard. Meta-analysis of data, available in many etiologies 6, showed good performance and reproducibility as well as some situations limiting reliability 5. Thresholds for the different fibrosis stages (F0 to F4) have been provided by many large-scale studies utilizing histology as the reference standard 7. Transient elastography tracks the velocity of shear waves generated by the gentle hit of a piston on the skin, with the resulting compression wave traveling in the liver along its longitudinal axis. The measurement is made in a 4 cm long section of the liver, thus able to average slightly inhomogeneous fibrotic deposition.In 2008 a new modality became available, Acoustic Radiation Force Impulse (ARFI) quantification, and classified by EFSUMB 1 as point shear wave elastography (pSWE), since the speed of the shear wave (perpendicular to the longitudinal axis) is measured in a small region (a "point", few millimeters) at a freely-choosen depth within 8 cm from the skin. This technology was the first to be implemented in a conventional ultrasound scanner by Siemens(®) 8. Several articles have been published regarding this technology, most with the best reference standards 9, some including findings on more than 1000 hepatitis C patients 10 or reporting meta-analysis of data 11. Although the correlation between Siemens pSWE and transient elastography appeared high 12 13, the calculated thresholds for the different fibrosis stages and the stiffness ranges between the two techniques are not superimposable.Interestingly, pSWE appears to provide greater applicability than transient elastography for measuring both liver 13 and spleen stiffness, which is a new application of elastography 14, of interest for the prediction of the degree of portal hypertension 15 16.Nowadays other companies have started producing equipment with pSWE technology, but only very few articles have been published so far, for instance describing the use of Philips(®) equipment, which was the second to provide pSWE. These articles show preliminary good results also in comparison with TE 17 18. Not enough evidence is currently available in the literature about the elastographic performance of the products most recently introduced to the market. Furthermore, with some products the shear wave velocities generated by a single ultrasound acoustic push pulse can be measured in a bidimensional area (a box in the range of 2 - 3 cm per side) rather than in a single small point, producing a so-called bidimensional 2D-SWE 1. The stiffness is depicted in color within the area and refreshing of the measurement occurs every 1 - 2 seconds. Once the best image is acquired, the operator chooses a Region Of Interest (ROI) within the color box, where the mean stiffness is then calculated. 2D-SWE can be performed as a "one shot" technique or as a semi-"real-time" technique for a few seconds (at about 1 frame per second) in order to obtain a stable elastogram. With either technique, there should be no motion/breathing during image acquisition. A bidimensional averaged area should overcome the limitation of pSWE to inadvertently investigate small regions of greater or lesser stiffness than average. A shear wave quality indicator could be useful to provide real-time feedback and optimize placement of the sampling ROIs, a technology recently presented by Toshiba(®), but which is still awaiting validation in the literature.Supersonic Imagine by Aixplorer(®) which works with a different modality of insonation and video analysis compared to the the previously-mentioned three techniques (i. e., transient elastography, pSWE and 2D-SWE), leading to a bidimensional assessment of liver stiffness in real time up to 5 Hz and in larger regions; thus this technique is also termed real-time 2 D SWE. It has been available on the market for a few years 19 20, and many articles have been published showing stiffness values quite similar to those of Fibroscan(®) 21; likewise, defined thresholds based on histological findings have appeared in several articles 19 20 21.After this brief summary of the technological state of the art we would like to mention the following critical issues that we believe every user should note prior to providing liver stiffness reports. · The thresholds obtained from the "oldest" techniques for the various fibrosis stages based on hundreds of patients with histology as reference standard cannot be straightforwardly applied to the new ultrasound elastography techniques, even if based on the same principle (e. g. pSWE). In fact, the different manufacturers apply proprietary patented calculation modes, which might result in slightly to moderately different values. It should be kept in mind that the range for intermediate fibrosis stages (F1 to F3) is quite narrow, in the order of 2 - 3 kilopascal (over a total range spanning 2 to 75 kPa with Fibroscan), so that slightly different differences in outputs could shift the assessment of patients from one stage to another. Comparative studies using phantoms and healthy volunteers, as well as patients, are eagerly awaited. In fact, the equipment might not produce linear correlations of measurements at different degrees of severity of fibrosis. As a theoretical example, some equipment might well correlate in their values with an older technique, such as transient elastography, at low levels of liver fibrosis, but not as well in cases of more advanced fibrosis or vice versa. Consequentely, when elastography data are included in a report, the equipment utilized for the measurement should be clearly specified, and conclusions about the fibrosis stage should be withheld if an insufficient number of comparative studies with solid reference standards are available for that specific equipment.. · Future studies using histology as a reference might be biased in comparison to previous studies, since nowadays fewer patients with chronic hepatitis C or hepatitis B undergo biopsy. In fact, due to wide availability of effective drugs as well as the use of established elastography methods for patients with viral hepatitis, most cases submitted to biopsy today have uncertain etiology or inconsistent and inconclusive clinical data. Therefore, extrapolated thresholds from such inhomogeneous populations applied to more ordinary patients with viral hepatitis might become problematic in the future, although no better solution is currently anticipated. This situation might lead to the adoption of a standard validated elastographic method as reference, but this has to be agreed-upon at an international level.. · Ultrasound elastography embedded in conventional scanners usually allows the choice of where to place the ROI within the color stiffness box and whether to confirm or exclude each single measurement when determining the final value. Thus, the operator has a greater potential to influence the final findings than with Fibroscan®, where these choices are not available. This has to be kept in mind to avoid the possibility that an operator could, even inadvertently, tend to confirm an assumption about that specific patient or to confirm the patient's expectations.. · Quality criteria for the new technologies following transient elastography are absent (depending on the manufacturer) or have not been satisfactorily defined, so that the information potentially inserted in a report cannot currently be judged for its reliability by the clinician.. (ABSTRACT TRUNCATED) © Georg Thieme Verlag KG Stuttgart · New York.
[IMPORTANCE OF SHEAR WAVE ELASTOGRAPHY OF LIVERS IN PRACTICALLY HEALTHY PREGNANT WOMEN].
Sariyeva, E; Salahova, S; Bayramov, N
2017-01-01
Pulse-wave elastography (SWE) that is one of the mostly used methods in the recent years holds important place in assessment of liver fibrosis. However there is no exact information on the results of liver elastography in healthy pregnant women in the world literature. The aim of the study was to investigate theSWE parameters of liver elastography in practically healthy pregnant women. The subject of the research was 50 practically healthy pregnant women within 18-45 years old (mean age 27.7±0.7). The pregnant women with genital and extragenital diseases were not included to the research. The research work was executed in the II Department of Obstetrics and Gynecology of Azerbaijan Medical University. SWE of liver in pregnant women was conducted in the I Department of Surgical Diseases of Azerbaijan Medical University through Supersonic Aixplorer Multi Wave device presented by the Scientific Development Foundation under the President of the Azerbaijan Republic. The obtained tissue hardness indicators are assessed under METAVIR scale. The results of the research showed that the measures of liver in practically healthy pregnant women are normal, edges flat, its echogenicity mainly normal, echostructure of its parenchyma homogenous, hardness was F0-F1 (normal) under METAVIR scale, fibrosis not observed. The obtained results were processed by variational (power average, percentile distribution) and correlation (ρ-Spearman) analyzes using the statistical package SPSS-20. A statistical study of the distribution of liver density in healthy women showed that the average density was 4,43±0,01 with 95% confidence interval (4,23 - 4,63). The histogram of distribution of liver density in practically healthy women belongs to the family of normal distributions with coefficients of variation coefficient (16.3%), asymmetry (-0.861±0.337) and excess (-0.068±0.662). Correlation analysis in healthy women did not reveal a reliable relationship between age and liver density (ρ=0.082, p=0.571), but a significant inverse correlation was found between the body mass index (BMI) and liver density (ρ=-0.317; p=0.025). Easy application, non-invasiveness, maximum exactness within the real time, repeatedly application of procedure and no risk to fetus by Shear Wave elastography of liver allow applying this method in pregnant women. Study of liver elasticity in pregnant women allows assessing the grades of hepatic fibrosis and differentiating liver disease.
Chang, Jung Min; Moon, Woo Kyung; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Han, Wonsik; Noh, Dong-Young; Moon, Hyeong-Gon; Kim, Seung Ja
2011-08-01
Shear wave elastography (SWE) is an emerging technique which can obtain quantitative elasticity values in breast disease. We therefore evaluated the diagnostic performance of SWE for the differentiation of breast masses compared with conventional ultrasound (US). Conventional US and SWE were performed by three experienced radiologists for 158 consecutive women who had been scheduled for US-guided core biopsy or surgical excision in 182 breast masses (89 malignancies and 93 benign; mean size, 1.76 cm). For each lesion, quantitative elasticity was measured in terms of the Young's modulus (in kilopascals, kPa) with SWE, and BI-RADS final categories were assessed with conventional US. The mean elasticity values were significantly higher in malignant masses (153.3 kPa ± 58.1) than in benign masses (46.1 kPa ± 42.9), (P < 0.0001). The average mean elasticity values of invasive ductal (157.5 ± 57.07) or invasive lobular (169.5 ± 61.06) carcinomas were higher than those of ductal carcinoma in situ (117.8 kPa ± 54.72). The average mean value was 49.58 ± 43.51 for fibroadenoma, 35.3 ± 31.2 for fibrocystic changes, 69.5 ± 63.2 for intraductal papilloma, and 149.5 ± 132.4 for adenosis or stromal fibrosis. The optimal cut-off value, yielding the maximal sum of sensitivity and specificity, was 80.17 kPa, and the sensitivity and specificity of SWE were 88.8% (79 of 89) and 84.9% (79 of 93). The area under the ROC curve (Az value) was 0.898 for conventional US, 0.932 for SWE, and 0.982 for combined data. In conclusion, there were significant differences in the elasticity values of benign and malignant masses as well as invasive and intraductal cancers with SWE. Our results suggest that SWE has the potential to aid in the differentiation of benign and malignant breast lesions.
A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography
Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F
2015-01-01
Objective: To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). Methods: 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer® (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. Results: There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. Conclusion: SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. Advances in knowledge: It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels. PMID:25694260
A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography.
Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F; Xing, J-F
2015-04-01
To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer(®) (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneja, P; Harris, E; Bamber, J
2014-06-01
Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE inmore » breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.« less
Guo, Xiaobo; Liu, Ying; Li, Wanhu
2016-01-01
Objectives Pathological nipple discharge (PND) may indicate malignant breast lesions. As the role of shear wave elastography (SWE) in predicting these malignant lesions has not yet been evaluated, we aim to evaluate the diagnostic value of SWE for this condition. Design Prospective diagnostic accuracy study comparing a combination of qualitative and quantitative measurements of SWE (index test) to a ductoscopy and microdochectomy for histological diagnosis (reference test). Setting Fuzhou General Hospital of Nanjing military command. Participants A total of 379 patients with PND were finally included from January, 2011 to March 2014, after we screened 1084 possible candidates. All participants were evaluated through SWE, with qualitative parameters generated by Virtual Touch tissue imaging (VTI) and quantitative parameters generated by Virtual Touch tissue quantification (VTQ). All the patients were consented to receive a ductoscopy and microdochectomy for histological diagnosis, and the results were set as a reference test. Outcome measures Sensitivity and specificity of the combined VTI and VTQ of the SWE for detection of malignancy in patients with PND. Results The 379 participants presented with 404 lesions. The results of pathological examination showed that 326 (80.7%) of the 404 lesions were benign and the other 78 (19.3%) were malignant. An area under the curve of elasticity score, VTQm and VTQc, were 0.872, 0.825 and 0.857, respectively, with the corresponding cut-off point as 2.50, 2.860 m/s and 3.015 m/s, respectively. After a combination of these measurements, the sensitivity, specificity, and positive and negative predictive value (PPV and NPV), were 89.7%, 72.1%, 43.5% and 96.7%, respectively. The sensitivity analysis showed 82% of the sensitivity and 96.8% of the specificity, in which patients with no pathological findings in ductoscopy were excluded. Conclusions Ultrasonographic elastography is sensitive for patients with PND and could be used as a triage test before ductoscopy examination. Studies for further improvement of diagnostic sensitivity are warranted. PMID:26801462
NASA Astrophysics Data System (ADS)
Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi
2016-07-01
Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).
Nattabi, Haliimah A; Sharif, Norhafidzah M; Yahya, Noorazrul; Ahmad, Rozilawati; Mohamad, Mazlyfarina; Zaki, Faizah M; Yusoff, Ahmad N
2017-10-17
This study is a dedicated 2D-shear wave elastography (2D-SWE) review aimed at systematically eliciting up-to-date evidence of its clinical value in differential diagnosis of benign and malignant thyroid nodules. PubMed, Web of Science, and Scopus databases were searched for studies assessing the diagnostic value of 2D-SWE for thyroid malignancy risk stratification published until December 2016. The retrieved titles and abstracts were screened and evaluated according to the predefined inclusion and exclusion criteria. Methodological quality of the studies was assessed using the Quality Assessment of Studies of Diagnostic Accuracy included in Systematic Review 2 (QUADAS-2) tool. Extracted 2D-SWE diagnostic performance data were meta-analyzed to assess the summary sensitivity, specificity, and area under the receiver operating characteristic curve. After stepwise review, 14 studies in which 2D-SWE was used to evaluate 2851 thyroid nodules (1092 malignant, 1759 benign) from 2139 patients were selected for the current study. Study quality on QUADAS-2 assessment was moderate to high. The summary sensitivity, specificity and area under the receiver operating characteristic curve of 2D-SWE for differential diagnosis of benign and malignant thyroid nodules were 0.66 (95% confidence interval [CI]: 0.64-0.69), 0.78 (CI: 0.76-0.80), and 0.851 (Q* = 0.85), respectively. The pooled diagnostic odds ratio, negative likelihood ratio, and positive likelihood ratio were 12.73 (CI: 8.80-18.43), 0.31 (CI: 0.22-0.44), and 3.87 (CI: 2.83-5.29), respectively. Diagnostic performance of quantitative 2D-SWE for malignancy risk stratification of thyroid nodules is suboptimal with mediocre sensitivity and specificity, contrary to earlier reports of excellence. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Andonian, Pierre; Viallon, Magalie; Le Goff, Caroline; de Bourguignon, Charles; Tourel, Charline; Morel, Jérome; Giardini, Guido; Gergelé, Laurent; Millet, Grégoire P; Croisille, Pierre
2016-01-01
In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes.
Andonian, Pierre; Viallon, Magalie; Le Goff, Caroline; de Bourguignon, Charles; Tourel, Charline; Morel, Jérome; Giardini, Guido; Gergelé, Laurent; Millet, Grégoire P.; Croisille, Pierre
2016-01-01
In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes. PMID:27579699
Li, Xiang; Wang, Jian-Nan; Fan, Zhi-Ying; Kang, Shu; Liu, Yan-Jun; Zhang, Yi-Xia; Wang, Xue-Mei
2015-12-01
We examined breast tissue elasticity during the menstrual cycle using real-time shear wave elastography (RT-SWE), a recent technique developed for soft tissue imaging. Written informed consent for RT-SWE was obtained from all eligible patients, who were healthy women aged between 19 and 52 y. Young's moduli of the breast tissue in the early follicular, late phase and luteal phase were compared. There were no significant differences in the mean, maximum and minimum elasticity values (Emean, Emax and Emin) and standard deviation (ESD). RT-SWE of glandular tissue revealed that ESD was increased in the early follicular phase compared with the luteal phase. Means ± SD of Emin, Emax and Emean in glandular tissue were 5.174 ± 2.138, 8.308 ± 3.166 and 6.593 ± 2.510, respectively, and in adipose tissue, 3.589 ± 2.083, 6.733 ± 3.522 and 4.857 ± 2.564, respectively. There were no significant differences in stiffness between glandular and adipose tissues throughout the menstrual cycle, but glandular tissue stiffness was lower in the luteal phase than in the early follicular phase. On the basis of these observations in normal healthy women, we believe we have obtained sufficient information to establish the baseline changes in human breast elasticity during the menstrual cycle. In the future, we intend to compare the elasticity values of healthy breast tissue with those of breast tissue affected by various pathologies. Our results reveal the significant potential of RT-SWE in the rapid and non-invasive clinical diagnosis of breast diseases, such as breast cancers. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Kim, Hye Jeong; Kwak, Mi Kyung; Choi, In Ho; Jin, So-Young; Park, Hyeong Kyu; Byun, Dong Won; Suh, Kyoil; Yoo, Myung Hi
2018-02-23
The aim of this study was to address the role of the elasticity index as a possible predictive marker for detecting papillary thyroid carcinoma (PTC) and quantitatively assess shear wave elastography (SWE) as a tool for differentiating PTC from benign thyroid nodules. One hundred and nineteen patients with thyroid nodules undergoing SWE before ultrasound-guided fine needle aspiration and core needle biopsy were analyzed. The mean (EMean), minimum (EMin), maximum (EMax), and standard deviation (ESD) of SWE elasticity indices were measured. Among 105 nodules, 14 were PTC and 91 were benign. The EMean, EMin, and EMax values were significantly higher in PTCs than benign nodules (EMean 37.4 in PTC vs. 23.7 in benign nodules, p = 0.005; EMin 27.9 vs. 17.8, p = 0.034; EMax 46.7 vs. 31.5, p < 0.001). The EMean, EMin, and EMax were significantly associated with PTC with diagnostic odds ratios varying from 6.74 to 9.91, high specificities (86.4%, 86.4%, and 88.1%, respectively), and positive likelihood ratios (4.21, 3.69, and 4.82, respectively). The ESD values were significantly higher in PTC than in benign nodules (6.3 vs. 2.6, p < 0.001). ESD had the highest specificity (96.6%) when applied with a cut-off value of 6.5 kPa. It had a positive likelihood ratio of 14.75 and a diagnostic odds ratio of 28.50. The shear elasticity index of ESD, with higher likelihood ratios for PTC, will probably identify nodules that have a high potential for malignancy. It may help to identify and select malignant nodules, while reducing unnecessary fine needle aspiration and core needle biopsies of benign nodules.
Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H
2016-01-01
Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p < 0.001, and 0.856, p = 0.002, respectively) with those by gross pathological specimen, whereas both conventional ultrasound and SE underestimated the volume of the whole ablation zone. The SWV values of the central necrotic zone, lateral necrotic zone, transitional zone and unablated liver parenchyma were 7.54–8.03 m s−1, 5.13–5.28 m s−1, 3.31–3.53 m s−1 and 2.11–2.21 m s−1, respectively (p < 0.001 for all the comparisons). The SWV value for each ablation zone did not change significantly at different observation times within an hour after RFA (all p > 0.05). Conclusion: The quantitative 2D-SWE of VTIQ is useful for the depiction of the ablation zone after RFA and it facilitates discrimination of different areas in the ablation zone qualitatively and quantitatively. This elastography technique might be useful for the therapeutic response evaluation instantly after RFA. Advances in knowledge: A new quantitative 2D-SWE (i.e. VTIQ) for evaluation treatment response after RFA is demonstrated. It facilitates discrimination of the different areas in the ablation zone qualitatively and quantitatively and may be useful for the therapeutic response evaluation instantly after RFA in the future. PMID:26933911
NASA Astrophysics Data System (ADS)
Pereira, Carina; Dighe, Manjiri; Alessio, Adam M.
2018-02-01
Various Computer Aided Diagnosis (CAD) systems have been developed that characterize thyroid nodules using the features extracted from the B-mode ultrasound images and Shear Wave Elastography images (SWE). These features, however, are not perfect predictors of malignancy. In other domains, deep learning techniques such as Convolutional Neural Networks (CNNs) have outperformed conventional feature extraction based machine learning approaches. In general, fully trained CNNs require substantial volumes of data, motivating several efforts to use transfer learning with pre-trained CNNs. In this context, we sought to compare the performance of conventional feature extraction, fully trained CNNs, and transfer learning based, pre-trained CNNs for the detection of thyroid malignancy from ultrasound images. We compared these approaches applied to a data set of 964 B-mode and SWE images from 165 patients. The data were divided into 80% training/validation and 20% testing data. The highest accuracies achieved on the testing data for the conventional feature extraction, fully trained CNN, and pre-trained CNN were 0.80, 0.75, and 0.83 respectively. In this application, classification using a pre-trained network yielded the best performance, potentially due to the relatively limited sample size and sub-optimal architecture for the fully trained CNN.
Automatic estimation of elasticity parameters in breast tissue
NASA Astrophysics Data System (ADS)
Skerl, Katrin; Cochran, Sandy; Evans, Andrew
2014-03-01
Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.
Li, Ruo-Kun; Ren, Xin-Pin; Yan, Fu-Hua; Qiang, Jin-Wei; Lin, Hui-Min; Tao Wang; Zhao, Hong-Fei; Chen, Wei-Bo
2017-12-02
To compare the results of T1ρ MR imaging and 2D real-time shear-wave elastography (SWE) for liver fibrosis detection and staging. Twenty-nine rabbit models of CCl 4 -induced liver fibrosis were established and six untreated rabbits served as controls. T1ρ MR imaging and 2D real-time SWE examination were performed at 2, 4, 6, 8, 10, and 12 weeks. T1ρ values and liver stiffness (LS) values were measured. Fibrosis was staged according to the METAVIR scoring system. Correlation test was performed among T1ρ values, LS values, and fibrosis stage. Receiver operating characteristic (ROC) analysis was performed for assessing diagnostic performance of T1ρ and SWE in detection of no fibrosis (F0), substantial fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4). There was moderate positive correlation between fibrosis stage and T1ρ values (r = 0.566; 95% CI 0.291-0.754; P < 0.0001), and LS value (r = 0.726; 95% CI 0.521-0.851; P = 0.003). T1ρ values showed moderate positive correlations with LS values [r = 0.693; 95% confidence interval (CI) 0.472-0.832; P < 0.0001]. Areas Under ROC (AUROCs) were 0.861 (95% CI 0.705-0.953) for SWE and 0.856 (95% CI 0.698-0.950) for T1ρ (P = 0.940), 0.906 (95% CI 0.762-0.978) for SWE and 0.849 (95% CI 0.691-0.946) for T1ρ (P = 0.414), 0.870 (95% CI 0.716-0.958) for SWE and 0.799 (95% CI 0.632-0.913) for T1ρ (P = 0.422), and 0.846 (95% CI 0.687-0.944) for SWE and 0.692 (95% CI 0.517-0.835) for T1ρ (P = 0.137), when diagnosing liver fibrosis with ≥ F1, ≥ F2, ≥ F3, and F4, respectively. There was moderate positive correlation between inflammatory activity and T1ρ values (r = 0.520; 95% CI 0.158-0.807; P = 0.013). T1ρ imaging has potential for liver fibrosis detection and staging with good diagnostic capability similar to that of ultrasonography elastography.
Evaluation of 2D- Shear Wave Elastography for Characterisation of Focal Liver Lesions.
Gerber, Ludmila; Fitting, Daniel; Srikantharajah, Kajana; Weiler, Nina; Kyriakidou, Georgia; Bojunga, Joerg; Schulze, Falko; Bon, Dimitra; Zeuzem, Stefan; Friedrich-Rust, Mireen
2017-09-01
This is a prospective study for evaluation of 2D-shear wave elastography (2D-SWE) for characterisation and differentiation of benign und malignant focal liver lesions (FLLs). The patients referred to our ultrasound unit were prospectively included. B-mode ultrasound and 2D-SWE (Aixplorer® France) were performed for one FLL in each patient. Liver histology and/or contrast-enhanced imaging were used as a reference method. 140 patients with FLL were included. SWE acquisitions failed in 24% of them. Therefore, 106 patients with FLL could be analysed, 42/106 with benign and 64/106 with malignant FLLs. The median stiffness for benign FLLs was 16.4 (2.1-71.9) kPa: 16.55 kPa for 18 focal nodular hyperplasia (FNH), 16.35 kPa for 18 hemangioma, 9.8 kPa for 3 focal fatty sparings (FFS), 8.9 kPa for 1 adenoma, 20 kPa for one regenerative node and 29 kPa for one cholangiofibroma, and for the malignant FLLs 36 (4.1-142.9) kPa: 44.8 kPa for 16 hepatocellular carcinoma (HCC), 70.7 kPa for 7 cholangiocarcinoma (CCC) and 29.5 kPa for the 41 metastasis (p<0.001). Malignant FLLs were significantly stiffer than benign FLLs (p<0.0001). Cholangiocarcinomas were the stiffest malignant FFLs with significantly higher values as compared to HCCs and metastases (p=0.033 and p=0.0079, respectively). No significant difference in stiffness could be observed between the different benign FLL entities. No significant difference was observed whether 2D-SWE included the whole FLL, the periphery or only the hardest area of the FLL. 2D-SWE provides further characterising information for interpretation of FLLs and may be useful at least in differentiation of CCCs and HCCs.
Grgurevic, Ivica; Puljiz, Zeljko; Brnic, Darko; Bokun, Tomislav; Heinzl, Renata; Lukic, Anita; Luksic, Boris; Kujundzic, Milan; Brkljacic, Boris
2015-11-01
To investigate the performance of real-time 2D shear wave elastography (RT 2D-SWE) for non-invasive staging of liver disease in patients with chronic viral hepatitis (CVH). Naive CVH patients underwent liver (LS) and spleen stiffness (SS) measurements by an intercostal approach. Patients with ALT >3× upper limit of normal, cholestasis as revealed by dilated intrahepatic biliary tree, and liver congestion were excluded. Results were expressed in kPa and compared to histological stage (Ishak) of liver fibrosis (LF). Patients with decompensated liver cirrhosis (LC) were diagnosed using standard clinical, ultrasound, and endoscopic criteria. Of 123 patients, LS was successfully measured in 79.7% and SS in 53.7%. LS accurately differentiated between liver disease stages, with cut-off values of 8.1 (AUC 0.991) for F ≥ 3, 10.8 kPa (AUC 0.954) for F ≥ 5, and 27 kPa (AUC 0.961) for decompensated LC. SS was significantly different between non-cirrhotic stages (F0-4) and LC (cut-off 24 kPa; AUC 0.821). While both LS and SS increased with liver disease progression, the difference between them decreased, as reflected by the stiffness ratio index. RT 2D-SWE can accurately differentiate between the stages of LF, and can distinguish LF from LC and compensated from decompensated LC. • RT 2D-SWE is an accurate method for assessment of liver fibrosis. • RT 2D-SWE is applicable in 80% of patients with chronic viral hepatitis. • RT 2D-SWE accurately differentiates compensated from decompensated liver cirrhosis. • Both liver and spleen stiffness increase with progression of liver fibrosis. • In cirrhosis, the difference between liver and spleen stiffness decreases.
Wang, Liyun; Yan, Feng; Yang, Yujia; Xiang, Xi; Qiu, Li
2017-07-01
The purpose of this study was to evaluate the usefulness of ultrasound shear-wave elastography (US-SWE) in characterization of localized scleroderma (LS), as well as in the disease staging. A total of 21 patients with 37 LS lesions were enrolled in this study. The pathologic stage (edema, sclerosis or atrophy) of the lesions was characterized by pathologic examination. The skin elastic modulus (E-values including E mean , E min , E max and E sd ) and thickness (h) was evaluated both in LS lesions and site-matched unaffected skin (normal controls) using US-SWE. The relative difference of E-values (E RD ) was calculated between each pair of lesions and its normal control for comparison among different pathologic stages. Of the 37 LS lesions, 2 were in edema, 22 were in sclerosis and 13 were in atrophy. US-SWE results showed a significant increase of skin elastic modulus and thickness in all lesions (p < 0.001 in sclerosis and p < 0.05 in atrophy) compared with the normal controls. The measured skin elastic modulus and thickness were greater in sclerosis than in atrophy. However, once normalized by skin thickness, the atrophic lesions, which were on average thinner, appeared significantly stiffer than those of the sclerosis (normalized E RD : an increase of 316.3% in atrophy vs. 50.6% in sclerosis compared with the controls, p = 0.007). These findings suggest that US-SWE allows for quantitative evaluation of the skin stiffness of LS lesions in different stages; however, the E-values directly provided by the US-SWE system alone do not distinguish between the stages, and the normalization by skin thickness is necessary. This non-invasive, real-time imaging technique is an ideal tool for assessing and monitoring LS disease severity and progression. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Samir, Anthony E; Dhyani, Manish; Anvari, Arash; Prescott, Jason; Halpern, Elkan F; Faquin, William C; Stephen, Antonia
2015-11-01
To evaluate the diagnostic accuracy of shear-wave elastography (SWE) for the diagnosis of malignancy in follicular lesions and to identify the optimal SWE measurement plane. The institutional review board approved this HIPAA-compliant, single-institution, prospective pilot study. Subjects scheduled for surgery after a previous fine-needle aspiration report of "atypia of undetermined significance" or "follicular lesion of undetermined significance," "suspicion for follicular neoplasm," or "suspicion for Hurthle cell neoplasm," were enrolled after obtaining informed consent. Subjects underwent conventional ultrasonography (US), Doppler evaluation, and SWE preoperatively, and their predictive value for thyroid malignancy was evaluated relative to the reference standard of surgical pathologic findings. Thirty-five patients (12 men, 23 women) with a mean age of 55 years (range, 23-85 years) and a fine-needle aspiration diagnosis of atypia of undetermined significance or follicular lesion of undetermined significance (n = 16), suspicion for follicular neoplasm (n = 14), and suspicion for Hurthle cell neoplasm (n = 5) were enrolled in the study. Male sex was a statistically significant (P = .02) predictor of malignancy, but age was not. No sonographic morphologic parameter, including nodule size, microcalcification, macrocalcification, halo sign, taller than wide dimension, or hypoechogenicity, was associated with malignancy. Similarly, no Doppler feature, including intranodular vascularity, pulsatility index, resistive index, or peak-systolic velocity, was associated with malignancy. Higher median SWE tissue Young modulus estimates from the transverse insonation plane were associated with malignancy, yielding an area under the receiver operating characteristic curve of 0.81 (95% confidence interval: 0.62, 1.00) for differentiation of malignant from benign nodules. At a cutoff value of 22.3 kPa, sensitivity, specificity, positive predictive value, and negative predictive value of 82%, 88%, 75%, and 91%, respectively, were observed. This prospective pilot study indicates that SWE may be a valuable tool in preoperative malignancy risk assessment of follicular-patterned thyroid nodules. © RSNA, 2015
Choi, H Y; Sohn, Y-M; Seo, M
2017-10-01
To evaluate the diagnostic performance of three-dimensional (3D) image shear-wave elastography (SWE) for differentiating benign from malignant breast masses compared to two-dimensional (2D) SWE and B-mode ultrasound (US). This study consisted of 205 breast lesions from 199 patients who underwent B-mode US and SWE before biopsy from January 2014 to March 2016. Quantitative elasticity values (maximum and mean elasticity, Emax and Emean) obtained from 2D and 3D SWE (axial, sagittal, and coronal images) were reviewed retrospectively, in addition to the histopathological findings including immunohistochemistry profiles (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2)-enriched, and triple-negative breast cancer) in cases of malignancy. Histopathological findings were regarded as the reference standard. The diagnostic performance of each data set was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) analysis to compare sensitivity and specificity. Among 205 lesions, 105 (51.22%) were malignant and 100 (48.78%) were benign. Compared to benign masses, malignant masses had higher values of Emax and Emean on both 2D and 3D SWE, the differences of which were statistically significant (p<0.001). The AUCs of 2D, 3D axial, and sagittal SWE were significantly higher than that of 3D coronal SWE (p<0.05). In addition, the sensitivities of axial, sagittal, and coronal 3D SWE were all higher than that of 2D SWE for Emean (81.9%, 87.6%, and 89.5% versus 70.5%, respectively, p<0.05). Conversely, the specificity of 2D and 3D axial SWE was higher than that of 3D sagittal and coronal SWE (Emax, 84%, 83% versus 76%, 73%; Emean, 85%, 81% versus 68%, 50%, respectively, p<0.05). We also assessed changes in Breast Imaging-Reporting and Data System (BI-RADS) category 3 and category 4a lesions by adding each of the parameters for 2D and 3D SWE in B-mode US. The specificity, PPV, and accuracy of combined 2D or combined 3D SWE with B-mode US was statistically higher than that of B-mode US alone for differentiating benign and malignant lesions (p<0.05). Among SWE images, 2D SWE, and 3D SWE axial and sagittal images exhibited superior diagnostic performance compared to 3D coronal images. Addition of 3D SWE images to B-mode US improved the diagnostic performance for distinguishing benign from malignant masses. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Jeong, Jae Yoon; Sohn, Joo Hyun; Sohn, Won; Park, Chan Hyuk; Kim, Tae Yeob; Jun, Dae Won; Kim, Yongsoo; Jeong, Woo Kyoung
2017-01-01
Background/Aims To investigate the use of measurements of liver stiffness (LS) by two-dimensional real-time shear wave elastography (SWE) for predicting the development of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). Methods We retrospectively collected data on 291 enrolled patients with CHB whose LS had been measured using SWE. Results The mean age of the patients was 46.8 years; males predominated (67%), and 40 of the patients (14%) had clinical cirrhosis. Among the patients, 165 (56.7%) received antiviral treatment. The median LS value was 7.4 kPa, and the median follow-up period was 35.8 months (range, 3.0 to 52.8 months). During follow-up, HCC developed in 13 patients (4.5%), and the cumulative incidence rates of HCC at 1, 2, and 4 years were 1.1%, 3.6%, and 8.4%, respectively. Based on a multivariate analysis, older age (≥50 years) and higher LS value (≥10 kPa) were independently associated with the risk of developing HCC (hazard ratio [HR], 4.53, p=0.023; and HR, 4.08, p=0.022). The cumulative incidence rate of HCC was significantly higher in patients with higher LS values (≥10 kPa) than in those with lower LS values (<10 kPa) (p=0.001). Conclusions Increased LS measured by SWE at any time point regardless of antiviral treatment is associated with an increased risk of HCC in patients with CHB. PMID:28651307
Park, Hye Sun; Shin, Hee Jung; Shin, Ki Chang; Cha, Joo Hee; Chae, Eun Young; Choi, Woo Jung; Kim, Hak Hee
2018-01-01
Background Aggressive breast cancers produce abnormal peritumoral stiff areas, which can differ between benign and malignant lesions and between different subtypes of breast cancer. Purpose To compare the tissue stiffness of the inner tumor, tumor border, and peritumoral stroma (PS) between benign and malignant breast masses by shear wave elastography (SWE). Material and Methods We enrolled 133 consecutive patients who underwent preoperative SWE. Using OsiriX commercial software, we generated multiple 2-mm regions of interest (ROIs) in a linear arrangement on the inner tumor, tumor border, and PS. We obtained the mean elasticity value (E mean ) of each ROI, and compared the E mean between benign and malignant tumors. Odds ratios (ORs) for prediction of malignancy were calculated. Subgroup analyses were performed among tumor subtypes. Results There were 85 malignant and 48 benign masses. The E mean of the tumor border and PS were significantly different between benign and malignant masses ( P < 0.05 for all). ORs for malignancy were 1.06, 1.08, 1.05, and 1.04 for stiffness of the tumor border, proximal PS, middle PS, and distal PS, respectively ( P < 0.05 for all). Malignant masses with a stiff rim were significantly larger than malignant masses without a stiff rim, and were more commonly associated with the luminal B and triple negative subtypes. Conclusion Stiffness of the tumor border and PS obtained by SWE were significantly different between benign and malignant masses. Malignant masses with a stiff rim were larger in size and associated with more aggressive pathologic subtypes.
Shear wave elastography using Wigner-Ville distribution: a simulated multilayer media study.
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2016-08-01
Shear Wave Elastography (SWE) is a quantitative ultrasound-based imaging modality for distinguishing normal and abnormal tissue types by estimating the local viscoelastic properties of the tissue. These properties have been estimated in many studies by propagating ultrasound shear wave within the tissue and estimating parameters such as speed of wave. Vast majority of the proposed techniques are based on the cross-correlation of consecutive ultrasound images. In this study, we propose a new method of wave detection based on time-frequency (TF) analysis of the ultrasound signal. The proposed method is a modified version of the Wigner-Ville Distribution (WVD) technique. The TF components of the wave are detected in a propagating ultrasound wave within a simulated multilayer tissue and the local properties are estimated based on the detected waves. Image processing techniques such as Alternative Sequential Filters (ASF) and Circular Hough Transform (CHT) have been utilized to improve the estimation of TF components. This method has been applied to a simulated data from Wave3000™ software (CyberLogic Inc., New York, NY). This data simulates the propagation of an acoustic radiation force impulse within a two-layer tissue with slightly different viscoelastic properties between the layers. By analyzing the local TF components of the wave, we estimate the longitudinal and shear elasticities and viscosities of the media. This work shows that our proposed method is capable of distinguishing between different layers of a tissue.
Dhyani, Manish; Vij, Abhinav; Bhan, Atul K.; Halpern, Elkan F.; Méndez-Navarro, Jorge; Corey, Kathleen E.; Chung, Raymond T.
2015-01-01
Purpose To evaluate the accuracy of shear-wave elastography (SWE) for staging liver fibrosis in patients with diffuse liver disease (including patients with hepatitis C virus [HCV]) and to determine the relative accuracy of SWE measurements obtained from different hepatic acquisition sites for staging liver fibrosis. Materials and Methods The institutional review board approved this single-institution prospective study, which was performed between January 2010 and March 2013 in 136 consecutive patients who underwent SWE before their scheduled liver biopsy (age range, 18–76 years; mean age, 49 years; 70 men, 66 women). Informed consent was obtained from all patients. SWE measurements were obtained at four sites in the liver. Biopsy specimens were reviewed in a blinded manner by a pathologist using METAVIR criteria. SWE measurements and biopsy results were compared by using the Spearman correlation and receiver operating characteristic (ROC) curve analysis. Results SWE values obtained at the upper right lobe showed the highest correlation with estimation of fibrosis (r = 0.41, P < .001). Inflammation and steatosis did not show any correlation with SWE values except for values from the left lobe, which showed correlation with steatosis (r = 0.24, P = .004). The area under the ROC curve (AUC) in the differentiation of stage F2 fibrosis or greater, stage F3 fibrosis or greater, and stage F4 fibrosis was 0.77 (95% confidence interval [CI]: 0.68, 0.86), 0.82 (95% CI: 0.75, 0.91), and 0.82 (95% CI: 0.70, 0.95), respectively, for all subjects who underwent liver biopsy. The corresponding AUCs for the subset of patients with HCV were 0.80 (95% CI: 0.67, 0.92), 0.82 (95% CI: 0.70, 0.95), and 0.89 (95% CI: 0.73, 1.00). The adjusted AUCs for differentiating stage F2 or greater fibrosis in patients with chronic liver disease and those with HCV were 0.84 and 0.87, respectively. Conclusion SWE estimates of liver stiffness obtained from the right upper lobe showed the best correlation with liver fibrosis severity and can potentially be used as a noninvasive test to differentiate intermediate degrees of liver fibrosis in patients with liver disease. © RSNA, 2014 Online supplemental material is available for this article. PMID:25393946
Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-01-01
Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330
Dirrichs, Timm; Quack, Valentin; Gatz, Matthias; Tingart, Markus; Rath, Björn; Betsch, Marcel; Kuhl, Christiane K; Schrading, Simone
2018-03-01
We aimed to investigate the diagnostic accuracy with which shear wave elastography (SWE) can be used to monitor response to treatment of tendinopathies, and to compare it to conventional ultrasound (US)-imaging methods (B-mode US (B-US) and power Doppler US (PD-US)). A prospective Institutional Review Board-approved longitudinal study on 35 patients with 47 symptomatic tendons (17 Achilles-, 15 patellar-, and 15 humeral-epicondylar) who underwent standardized multimodal US and standardized clinical assessment before and after 6 months of treatment (tailored stretching exercise, sport break, and local Polidocanol) was carried out. All US studies were performed by radiologists blinded to the clinical symptoms on both tendon sides to avoid biased interpretations, by B-US, PD-US, and SWE, conducted in the same order, using a high-resolution linear 15 MHz probe (Aixplorer). Orthopedic surgeons who were in turn blinded to US imaging results used established orthopedic scores (Victorian Institute of Sports Assessment questionnaire for Achilles, Victorian Institute of Sports Assessment questionnaire for patellar tendons, and Disability Arm Shoulder Hand scoring system) to rate presence, degree, and possible resolution of symptoms. We analyzed the diagnostic accuracy with which the different US imaging methods were able to detect symptomatic tendons at baseline as well as treatment effects, with orthopedic scores serving as reference standard. B-US, PD-US, and SWE detected symptomatic tendons with a sensitivity of 66% (31 of 47), 72% (34 of 47), and 87.5% (41 of 47), respectively. Positive predictive value was 0.67 for B-US, 0.87 for PD-US, and 1 for SWE. After treatment, clinical scores improved in 68% (32 of 47) of tendons. Treatment effects were observable by B-US, PD-US, and SWE with a sensitivity of 3.1% (1 of 32), 28.1% (9 of 32), and 81.3% (26 of 32), respectively. B-US was false-positive in 68.8% (20 of 32), PD-US in 46.9% (15 of 32), and SWE in 12.5% (4 of 32) (SWE). Clinical scores and B-US, PD-US, and SWE findings correlated poorly (r = 0.24), moderately (r = 0.59), and strongly (r = 0.80). Unlike B-US or PD-US, SWE is able to depict processes associated with tendon healing and may be a useful tool to monitor treatment effects. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.
Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping
2017-10-30
Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.
Akkoc, Orkun; Caliskan, Emine; Bayramoglu, Zuhal
2018-05-02
Athletic performance in basketball comprises the contributions of anaerobic and aerobic performance. The aim was to investigate the effects of passive muscle stiffness, using shear wave elastography (SWE), as well as muscle thickness, and body mass index (BMI), on both aerobic and anaerobic performances in adolescent female basketball players.Material and methods: Anaerobic and aerobic (VO2max) performance was assessed using the vertical jump and shuttle run tests, respectively, in 24 volunteer adolescent female basketball players. Passive muscle stiffness of the rectus femoris (RF), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus muscles were measured by SWE, and the thickness of each muscle was assessed by gray scale ultrasound. The BMI of each participant was also calculated. The relationship between vertical jump and VO2max values, and those of muscle stiffness, thickness, and BMI were investigated via Pearson's correlation and multivariate linear regression analysis. No significant correlation was observed between muscle stiffness and VO2max or vertical jump (p>0.05). There was significant negative correlation between GL thickness and VO2max (p=0.026), and soleus thickness and VO2max (p=0.046). There was also a significant negative correlation between BMI and VO2max (p=0.001). Conclusions: This preliminary work can be a reference for future research. Although our article indicates that passive muscle stiffness measured by SWE is not directly related to athletic performance, future comprehensive studies should be performed in order to illuminate the complex nature of muscles. The maintenance of lower muscle thickness and optimal BMI may be associated with better aerobic performance.
Lim, Sanghyeok; Kim, Seung Hyun; Kim, Yongsoo; Cho, Young Seo; Kim, Tae Yeob; Jeong, Woo Kyoung; Sohn, Joo Hyun
2018-02-01
To compare the diagnostic performance for advanced hepatic fibrosis measured by 2D shear-wave elastography (SWE), using either the coefficient of variance (CV) or the interquartile range divided by the median value (IQR/M) as quality criteria. In this retrospective study, from January 2011 to December 2013, 96 patients, who underwent both liver stiffness measurement by 2D SWE and liver biopsy for hepatic fibrosis grading, were enrolled. The diagnostic performances of the CV and the IQR/M were analyzed using receiver operating characteristic curves with areas under the curves (AUCs) and were compared by Fisher's Z test, based on matching the cutoff points in an interactive dot diagram. All P values less than 0.05 were considered significant. When using the cutoff value IQR/M of 0.21, the matched cutoff point of CV was 20%. When a cutoff value of CV of 20% was used, the diagnostic performance for advanced hepatic fibrosis ( ≥ F3 grade) with CV of less than 20% was better than that in the group with CV greater than or equal to 20% (AUC 0.967 versus 0.786, z statistic = 2.23, P = .025), whereas when the matched cutoff value IQR/M of 0.21 showed no difference (AUC 0.918 versus 0.927, z statistic = -0.178, P = .859). The validity of liver stiffness measurements made by 2D SWE for assessing advanced hepatic fibrosis may be judged using CVs, and when the CV is less than 20% it can be considered "more reliable" than using IQR/M of less than 0.21. © 2017 by the American Institute of Ultrasound in Medicine.
Park, Ah Young; Son, Eun Ju; Kim, Jeong-Ah; Han, Kyunghwa; Youk, Ji Hyun
2015-12-01
To determine whether lesion stiffness measured by shear-wave elastography (SWE) can be used to predict the histologic underestimation of ultrasound (US)-guided 14-gauge core needle biopsy (CNB) for breast masses. This retrospective study enrolled 99 breast masses from 93 patients, including 40 high-risk lesions and 59 ductal carcinoma in situ (DCIS), which were diagnosed by US-guided 14-gauge CNB. SWE was performed for all breast masses to measure quantitative elasticity values before US-guided CNB. To identify the preoperative factors associated with histologic underestimation, patients' age, symptoms, lesion size, B-mode US findings, and quantitative SWE parameters were compared according to the histologic upgrade after surgery using the chi-square test, Fisher's exact test, or independent t-test. The independent factors for predicting histologic upgrade were evaluated using multivariate logistic regression analysis. The underestimation rate was 28.3% (28/99) in total, 25.0% (10/40) in high-risk lesions, and 30.5% (18/59) in DCIS. All elasticity values of the upgrade group were significantly higher than those of the non-upgrade group (P<0.001). On multivariate analysis, the mean (Odds ratio [OR]=1.021, P=0.001), maximum (OR=1.015, P=0.008), and minimum (OR=1.028, P=0.001) elasticity values were independently associated with histologic underestimation. The patients' age, lesion size, and final assessment category on US of the upgrade group were higher than those of the non-upgrade group (P=0.046 for age; P=0.021 for lesion size; P=0.030 for US category), but these were not independent predictors of histologic underestimation on multivariate analysis. Breast lesion stiffness quantitatively measured by SWE could be helpful to predict the underestimation of malignancy in US-guided 14-gauge CNB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cong, Rui; Li, Jing; Guo, Song
2017-02-01
To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color pattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in breast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.
Shear wave elastography in medullary thyroid carcinoma diagnostics.
Dobruch-Sobczak, Katarzyna; Gumińska, Anna; Bakuła-Zalewska, Elwira; Mlosek, Krzysztof; Słapa, Rafał Z; Wareluk, Paweł; Krauze, Agnieszka; Ziemiecka, Agnieszka; Migda, Bartosz; Jakubowski, Wiesław; Dedecjus, Marek
2015-12-01
Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4-15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young's (E) modulus values for MTC (EmaxLR, EmeanLR) and the surrounding thyroid tissues (EmaxSR, EmeanSR), as well as mean E-values (EmeanLRz) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was) 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the measurement of serum calcitonin levels, B-mode ultrasound and FNAB.
Two-dimensional shear wave elastography of breast lesions: Comparison of two different systems.
Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Li, Dan-Dan; Wang, Dan; Zhao, Chong-Ke; Bo, Xiao-Wan; Liu, Bo-Ji; Yue, Wen-Wen; Xu, Hui-Xiong
2017-01-01
To evaluate the diagnostic performance of two different shear wave elastography (SWE) techniques in distinguishing malignant breast lesions from benign ones. From March 2016 to May 2016, a total of 153 breast lesions (mean diameter, 16.8 mm±10.5; range 4.1-90.0 mm) in 153 patients (mean age, 46.4 years±15.1; age range 20-86 years) were separately performed by two different SWE techniques (i.e. T-SWE, Aplio500, Toshiba Medical System, Tochigi, Japan; and S-SWE, the Aixplorer US system, SuperSonic Imagine, Provence, France). The maximum (Emax), mean (Emean) and standard deviation (ESD) of elasticity modulus values in T-SWE and S-SWE were analyzed. All the lesions were confirmed by ultrasound (US)-guided core needle biopsy (n = 26), surgery (n = 122), or both (n = 5), with pathological results as the gold standard. The areas under the receiver operating characteristic curves (AUROCs) were calculated. Sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) were calculated to assess the diagnostic performance between T-SWE and S-SWE. Operator consistency was also evaluated. Among the 153 lesions, 41 (26.8%) were malignant and 112 (73.2%) were benign. Emax (T-SWE: 40.10±37.14 kPa vs. 118.78±34.41 kPa; S-SWE: 41.22±22.54 kPa vs. 134.77±60.51 kPa), Emean (T-SWE: 19.75±16.31 kPa vs. 52.93±25.75 kPa; S-SWE: 20.95±10.98 kPa vs. 55.95±22.42 kPa) and ESD (T-SWE: 9.00±8.55 kPa vs. 38.44±12.30 kPa; S-SWE: 8.17±6.14 kPa vs. 29.34±13.88 kPa) showed statistical differences in distinguishing malignant lesions from benign ones both in T-SWE and S-SWE (all p < 0.05). In T-SWE, the diagnostic performance of ESD was the highest (AUROC = 0.958), followed by Emax (AUROC = 0.909; p = 0.001 in comparison with ESD) and Emean (AUROC = 0.892; p < 0.001 in comparison with ESD), while in S-SWE, the diagnostic performance of Emax was the highest (AUROC = 0.967), followed by ESD (AUROC = 0.962, p > 0.05 in comparison with Emax) and Emean (AUROC = 0.930, p = 0.034 in comparison with Emax). AUROC-max (T-SWE: 0.909 vs. 0.967), AUROC-mean (T-SWE: 0.892 vs. 0.930) and AUROC-SD (T-SWE: 0.958 vs. 0.962) showed no significant difference between T-SWE and S-SWE (all p > 0.05). The intra-class correlation coefficients (ICC) of the intra-operator consistency and inter-operator consistency respectively were 0.961 and 0.898 in T-SWE, while 0.954 and 0.897 in S-SWE. T-SWE and S-SWE are equivalent for distinguishing the breast lesions. In T-SWE, ESD had the best diagnostic performance, while in S-SWE, Emax had the best diagnostic performance.
Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young
2018-03-01
To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.
Hudson, John M; Milot, Laurent; Parry, Craig; Williams, Ross; Burns, Peter N
2013-06-01
This study assessed the reproducibility of shear wave elastography (SWE) in the liver of healthy volunteers. Intra- and inter-operator reliability and repeatability were quantified in three different liver segments in a sample of 15 subjects, scanned during four independent sessions (two scans on day 1, two scans 1 wk later) by two operators. A total of 1440 measurements were made. Reproducibility was assessed using the intra-class correlation coefficient (ICC) and a repeated measures analysis of variance. The shear wave speed was measured and used to estimate Young's modulus using the Supersonics Imagine Aixplorer. The median Young's modulus measured through the inter-costal space was 5.55 ± 0.74 kPa. The intra-operator reliability was better for same-day evaluations (ICC = 0.91) than the inter-operator reliability (ICC = 0.78). Intra-observer agreement decreased when scans were repeated on a different day. Inter-session repeatability was between 3.3% and 9.9% for intra-day repeated scans, compared with to 6.5%-12% for inter-day repeated scans. No significant difference was observed in subjects with a body mass index greater or less than 25 kg/m(2). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn
2018-01-01
To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P < .001). Combined strain and shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.
Shear wave elastography with a new reliability indicator.
Dietrich, Christoph F; Dong, Yi
2016-09-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Shear wave elastography with a new reliability indicator
Dong, Yi
2016-01-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731
Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A; Jordan, Lee B; Michie, Caroline O; Thompson, Alastair; Vinnicombe, Sarah
2014-01-01
Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer® ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness <50 kPa to 41 % for tumours with a mean stiffness of >150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bas, Ahmet, E-mail: dr.ahmetbas@hotmail.com; Samanci, Cesur, E-mail: cesursamanci@gmail.com; Gulsen, Fatih, E-mail: drfgulsen@yahoo.com
2015-08-15
PurposeTo evaluate the effect of ShearWave™ elastography (SWE) for the assessment of liver fibrosis after radioembolization (RE) in patients with liver malignancies.Materials and MethodsWe prospectively examined the effects of SWE before and after RE in 17 adult patients, from June 2012 to September 2013. All patients underwent SWE within 1 month before and 3 months (96.3 ± 22.9 days) after RE. Measurements were taken in segments III, IV, V, and VI (lateral/medial left lobe and anterior/posterior right lobe, respectively). Liver stiffness was studied in the 39 treated segments.ResultsThe mean stiffness of liver tissue according to the pre-RE SWE measurements was not different from the post-REmore » SWE measurements in the segments that did not undergo RE. Conversely, segments treated with RE were significantly stiffer according to the post-RE SWE measurements (mean SWE 17.4 kPa) than according to the baseline measurements (7.0 kPa) (p < 0.001). Patients with hepatocellular carcinoma and preexisting infection with hepatitis B and C viruses had higher pre-embolization stiffness, and the post-embolization stiffness of the treated segments in these patients was higher than that in the remainder of the study population.ConclusionThese data suggest that SWE measurements of liver stiffness increase as early as the third month after RE. SWE could be used as a noninvasive complementary imaging method for preliminary assessment of liver fibrosis before and after RE.« less
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2014-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Clinical application of a color map pattern on shear-wave elastography for invasive breast cancer.
Lee, Seokwon; Jung, Younglae; Bae, Youngtae
2016-03-01
The aim of this study was to classify the color map pattern on shear-wave elastography (SWE) and to determine its association with clinicopathological factors for clinical application in invasive breast cancer. From June to December 2014, 103 invasive breast cancers were imaged by B-mode ultrasonography (US) and SWE just before surgery. The color map pattern identified on the SWE could be classified into three main categories: type 1 (diffuse pattern), increased stiffness in the surrounding stroma and the interior lesion itself; type 2 (lateral pattern), marked peri-tumoral stiffness at the anterior and lateral portions with no or minor stiffness at the posterior portion; and type 3 (rim-off pattern), marked peri-tumoral stiffness at the anterior and posterior portion with no or minor stiffness at both lateral portions. High-grade density on mammography (grade 3-4) was more frequent in the type 1 pattern than the other pattern types (80.5% in high-grade density vs. 19.5% in low-grade density). For type 1 tumors, the extent of synchronous non-invasive cancers (pT0), ductal carcinoma in situ (DCIS), was 1.8-2.0 times wider than that measured by US or magnetic resonance imaging (MRI). For type 2 tumors, the invasive tumor components (pT size) size was 1.3 times greater than measured by MRI (p = 0.049). On the other hand, the pT size and pT0 extent of type 3 tumors were almost equal to the preoperative US and MRI measurements. In terms of immunohistochemical (IHC) profiles, type 3 tumors showed a high histologic grade (p = 0.021), poor differentiation (p = 0.009), presence of necrosis (p = 0.018), and high Ki-67 (p = 0.002). The percentage of HER2-positive cancers was relatively high within the type 2 group, and the percentage of triple negative breast cancer was relatively high in the type 3 group (p = 0.011). We expect that assessments of the SWE color map pattern will prove useful for surgical or therapeutic plan decisions and to predict prognosis in invasive breast cancer patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Youk, Ji Hyun; Son, Eun Ju; Han, Kyunghwa; Gweon, Hye Mi; Kim, Jeong-Ah
2018-07-01
Background Various size and shape of region of interest (ROI) can be applied for shear-wave elastography (SWE). Purpose To investigate the diagnostic performance of SWE according to ROI settings for breast masses. Material and Methods To measure elasticity for 142 lesions, ROIs were set as follows: circular ROIs 1 mm (ROI-1), 2 mm (ROI-2), and 3 mm (ROI-3) in diameter placed over the stiffest part of the mass; freehand ROIs drawn by tracing the border of mass (ROI-M) and the area of peritumoral increased stiffness (ROI-MR); and circular ROIs placed within the mass (ROI-C) and to encompass the area of peritumoral increased stiffness (ROI-CR). Mean (E mean ), maximum (E max ), and standard deviation (E SD ) of elasticity values and their areas under the receiver operating characteristic (ROC) curve (AUCs) for diagnostic performance were compared. Results Means of E mean and E SD significantly differed between ROI-1, ROI-2, and ROI-3 ( P < 0.0001), whereas means of E max did not ( P = 0.50). For E SD , ROI-1 (0.874) showed a lower AUC than ROI-2 (0.964) and ROI-3 (0.975) ( P < 0.002). The mean E SD was significantly different between ROI-M and ROI-MR and between ROI-C and ROI-CR ( P < 0.0001). The AUCs of E SD in ROI-M and ROI-C were significantly lower than in ROI-MR ( P = 0.041 and 0.015) and ROI-CR ( P = 0.007 and 0.004). Conclusion Shear-wave elasticity values and their diagnostic performance vary based on ROI settings and elasticity indices. E max is recommended for the ROIs over the stiffest part of mass and an ROI encompassing the peritumoral area of increased stiffness is recommended for elastic heterogeneity of mass.
Evans, A; Purdie, C A; Jordan, L; Macaskill, E J; Flynn, J; Vinnicombe, S
2016-11-01
The aim of this study is to establish predictors of invasion in lesions yielding an ultrasound-guided biopsy diagnosis of ductal carcinoma in situ (DCIS). Patients subjected to ultrasound-guided core biopsy yielding DCIS were studied. At shear-wave elastography (SWE) a threshold of 50 kPa was used for mean elasticity (Emean) to dichotomise the elasticity data between invasive and non-invasive masses. Data recorded included the mammographic and ultrasound features, the referral source, and grade of DCIS in the biopsy. The chi-square test was used to detect statistical significance. Of 57 lesions, 24 (42%) had invasion at excision. Symptomatic patients and patients with stiff lesions were more likely to have invasion than patients presenting through screening and with soft lesions (58% [14 of 24] versus 30% [10 of 33], p=0.03) and (51% [20 of 39] versus 22% [4 of 18], p=0.04). No other factors showed a relationship with invasion. Combining the two predictors of invasion improved risk stratification with symptomatic and stiff lesions having a risk of invasion of 67% (12 of 18) and soft lesions presenting at screening having only a 17% (2 of 12) risk of invasion (p=0.02). Stiffness on SWE and the referral source of the patient are predictors of occult invasion in women with an ultrasound-guided core biopsy diagnosis of DCIS. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C
2016-03-01
Classify chronic liver disease (CLD) from ultrasound shear-wave elastography (SWE) imaging by means of a computer aided diagnosis (CAD) system. The proposed algorithm employs an inverse mapping technique (red-green-blue to stiffness) to quantify 85 SWE images (54 healthy and 31 with CLD). Texture analysis is then applied involving the automatic calculation of 330 first and second order textural features from every transformed stiffness value map to determine functional features that characterize liver elasticity and describe liver condition for all available stages. Consequently, a stepwise regression analysis feature selection procedure is utilized toward a reduced feature subset that is fed into the support vector machines (SVMs) classification algorithm in the design of the CAD system. With regard to the mapping procedure accuracy, the stiffness map values had an average difference of 0.01 ± 0.001 kPa compared to the quantification results derived from the color-box provided by the built-in software of the ultrasound system. Highest classification accuracy from the SVM model was 87.0% with sensitivity and specificity values of 83.3% and 89.1%, respectively. Receiver operating characteristic curves analysis gave an area under the curve value of 0.85 with [0.77-0.89] confidence interval. The proposed CAD system employing color to stiffness mapping and classification algorithms offered superior results, comparing the already published clinical studies. It could prove to be of value to physicians improving the diagnostic accuracy of CLD and can be employed as a second opinion tool for avoiding unnecessary invasive procedures.
Effects of age and pathology on shear wave speed of the human rotator cuff.
Baumer, Timothy G; Dischler, Jack; Davis, Leah; Labyed, Yassin; Siegal, Daniel S; van Holsbeeck, Marnix; Moutzouros, Vasilios; Bey, Michael J
2018-01-01
Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Shear wave elastography in medullary thyroid carcinoma diagnostics
Gumińska, Anna; Bakuła-Zalewska, Elwira; Mlosek, Krzysztof; Słapa, Rafał Z.; Wareluk, Paweł; Krauze, Agnieszka; Ziemiecka, Agnieszka; Migda, Bartosz; Jakubowski, Wiesław; Dedecjus, Marek
2015-01-01
Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. Aim The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. Materials and methods A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4–15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young's (E) modulus values for MTC (EmaxLR, EmeanLR) and the surrounding thyroid tissues (EmaxSR, EmeanSR), as well as mean E-values (EmeanLRz) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. Results The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was) 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. Conclusions SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the measurement of serum calcitonin levels, B-mode ultrasound and FNAB. PMID:26807293
Ahn, Su Joa; Lee, Jeong Min; Chang, Won; Lee, Sang Min; Kang, Hyo-Jin; Yang, Hyunkyung; Yoon, Jeong Hee; Park, Sae Jin; Han, Joon Koo
2017-01-01
To assess intra- and inter-observer reproducibility of a new point shear wave elastography technique (pSWE, S-Shearwave, Samsung Medison) and compare its accuracy in assessing liver stiffness (LS) with an established pSWE technique (Virtual Touch Quantification, VTQ). Thirty-three patients were enrolled in this Institutional Review Board-approved prospective study. LS values were measured by VTQ on an Acuson S2000 system (Siemens Healthineer) and S-Shearwave on an RS-80A (Samsung Medison) in the same session, followed by two further S-Shearwave sessions for inter- and intra-observer variation at 8-hour intervals. The technical success rate (SR) and reliability of the measurements of both pSWE techniques were compared. The intra- and inter-observer reproducibility of S-Shearwave was determined by intraclass correlation coefficients (ICCs). LS values were measured by both methods of pSWE. The diagnostic performance in severe fibrosis (F ≥ 3) and cirrhosis (F = 4) was evaluated using the receiver operating characteristics curve analysis and the Obuchowski measure with the LS values of transient elastography as the referenced standard. The VTQ (100%, 33/33) and S-Shearwave (96.9%, 32/33) techniques did not display a significant difference in technical SR ( p = 0.63) or reliability of LS measurements (96.9%, 32/33; 93.9%, 30/32, respectively, p = 0.61). The inter- and intra-observer agreement for LS measurements using the S-Shearwave technique was excellent (ICC = 0.98 and 0.99, respectively). The mean LS values of both pSWE techniques were not significantly different and exhibited a good correlation (r = 0.78). To detect F ≥ 3 and F = 4, VTQ and S-Shearwave showed comparable diagnostic accuracy as indicated by the following outcomes: areas under receiver operating characteristics curve (AUROC) = 0.87 (95% confidence intervals [CI] 0.70-0.96), 0.89 for VTQ (95% CI 0.74-0.97), respectively; and AUROC = 0.84 (95% CI 0.67-0.94), 0.94 (95% CI 0.80-0.99) for S-Shearwave (p > 0.48), respectively. The Obuchowski measures were similarly high for S-Shearwave and VTQ (0.94 vs. 0.95). S-Shearwave shows excellent inter- and intra-observer agreement and diagnostic effectiveness comparable to VTQ in detecting LS.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.
Elastography for the pancreas: Current status and future perspective
Kawada, Natsuko; Tanaka, Sachiko
2016-01-01
Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas. PMID:27076756
Elastography for the pancreas: Current status and future perspective.
Kawada, Natsuko; Tanaka, Sachiko
2016-04-14
Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas.
Engel, Aaron J; Bashford, Gregory R
2015-08-01
Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
Grgurevic, Ivica; Bokun, Tomislav; Salkic, Nermin N; Brkljacic, Boris; Vukelić-Markovic, Mirjana; Stoos-Veic, Tajana; Aralica, Gorana; Rakic, Mislav; Filipec-Kanizaj, Tajana; Berzigotti, Annalisa
2018-06-01
To analyse elastographic characteristics of focal liver lesions (FLL)s and diagnostic performance of real-time two-dimensional shear-wave elastography (RT-2D-SWE) in order to differentiate benign and malignant FLLs. Consecutive patients diagnosed with FLL by abdominal ultrasound (US) underwent RT-2D-SWE of FLL and non-infiltrated liver by intercostal approach over the right liver lobe. The nature of FLL was determined by diagnostic work-up, including at least one contrast-enhanced imaging modality (MDCT/MRI), check-up of target organs when metastatic disease was suspected and FLL biopsy in inconclusive cases. We analysed 196 patients (median age 60 [range 50-68], 50.5% males) with 259 FLLs (57 hepatocellular carcinomas, 17 cholangiocarcinomas, 94 metastases, 71 haemangiomas, 20 focal nodular hyperplasia) of which 70 (27%) were in cirrhotic liver. Malignant lesions were stiffer (P < .001) with higher variability in intralesional stiffness (P = .001). The best performing cut-off of lesion stiffness was 22.3 kPa (sensitivity 83%; specificity 86%; positive predictive value [PPV] 91.5%; negative predictive value [NPV] 73%) for malignancy. Lesion stiffness <14 kPa had NPV of 96%, while values >32.5 kPa had PPV of 96% for malignancy. Lesion stiffness, lesion/liver stiffness ratio and lesion stiffness variability significantly predicted malignancy in stepwise logistic regression (P < .05), and were used to construct a new Liver Elastography Malignancy Prediction (LEMP) score with accuracy of 96.1% in validation cohort (online calculator available at http://bit.do/lemps). The comprehensive approach demonstrated in this study enables correct differentiation of benign and malignant FLL in 96% of patients by using RT-2D-SWE. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The link between tissue elasticity and thermal dose in vivo
NASA Astrophysics Data System (ADS)
Sapin-de Brosses, Emilie; Pernot, Mathieu; Tanter, Mickaël
2011-12-01
The objective of this study was to investigate in vivo the relationship between stiffness and thermal dose. For this purpose, shear wave elastography (SWE)—a novel ultrasound-based technique for real-time mapping of the stiffness of biological soft tissues—is performed in temperature-controlled experiments. Experiments were conducted on nine anesthetized rats. Their right leg was put in a thermo-regulated waterbath. The right leg of each animal was heated at one particular temperature between 38 °C and 48.5 °C for 15 min to 3 h. Shear waves were generated in the muscle using the acoustic radiation force induced by a linear ultrasonic probe. The shear wave propagation was imaged in real time by the probe using an ultrafast scanner prototype (10 000 frames s-1). The local tissue stiffness was derived from the shear wave speed. Two optical fiber sensors were inserted into the muscle to measure in situ the temperature. Stiffness was found to increase strongly during the experiments. When expressed as a function of the thermal dose, the stiffness curves were found to be the same for all experiments. A thermal dose threshold was found at 202 min for an eightfold stiffness increase. Finally, the time-temperature relationship was established for different stiffness ratios. The slope of the time-temperature relationship based on stiffness measurements was found identical to the one obtained for cell death in the seminal paper on the thermal dose by Sapareto and Dewey in 1984 (Int. J. Radiat. Oncol. Biol. Phys. 10 787-800). The present results highlight the stiffness increase as a good indicator of thermal necrosis. SWE imaging can be used in vivo for necrosis threshold determination in thermal therapy.
Park, Jiyoon; Woo, Ok Hee; Shin, Hye Seon; Cho, Kyu Ran; Seo, Bo Kyoung; Kang, Eun Young
2015-10-01
The purpose of this study is to evaluate the diagnostic performance of SWE in palpable breast mass and to compare with color overlay pattern in SWE with conventional US and quantitative SWE for assessing palpable breast mass. SWE and conventional breast US were performed in 133 women with 156 palpable breast lesions (81 benign, 75 malignant) between August 2013 to June 2014. Either pathology or periodic imaging surveillance more than 2 years was a reference standard. Existence of previous image was blinded to performing radiologists. US BI-RADS final assessment, qualitative and quantitative SWE measurements were evaluated. Diagnostic performances of grayscale US, SWE and US combined to SWE were calculated and compared. Correlation between pattern classification and quantitative SWE was evaluated. Both color overlay pattern and quantitative SWE improved the specificity of conventional US, from 81.48% to 96.30% (p=0.0005), without improvement in sensitivity. Color overlay pattern was significantly related to all quantitative SWE parameters and malignancy rate (p<0.0001.). The optimal cutoff of color overlay pattern was between 2 and 3. Emax with optimal cutoff at 45.1 kPa showed the highest Az value, sensitivity, specificity and accuracy among other quantitative SWE parameters (p<0.0001). Echogenic halo on grayscale US showed significant correlation with color overlay pattern and pathology (p<0.0001). In evaluation of palpable breast mass, conventional US combine to SWE improves specificity and reduces the number of biopsies that ultimately yield a benign result. Color overlay pattern classification is more quick and easy and may represent quantitative SWE measurements with similar diagnostic performances. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jeong, Jae Yoon; Kim, Tae Yeob; Sohn, Joo Hyun; Kim, Yongsoo; Jeong, Woo Kyoung; Oh, Young-Ha; Yoo, Kyo-Sang
2014-01-01
AIM: To evaluate the correlation between liver stiffness measurement (LSM) by real-time shear wave elastography (SWE) and liver fibrosis stage and the accuracy of LSM for predicting significant and advanced fibrosis, in comparison with serum markers. METHODS: We consecutively analyzed 70 patients with various chronic liver diseases. Liver fibrosis was staged from F0 to F4 according to the Batts and Ludwig scoring system. Significant and advanced fibrosis was defined as stage F ≥ 2 and F ≥ 3, respectively. The accuracy of prediction for fibrosis was analyzed using receiver operating characteristic curves. RESULTS: Seventy patients, 15 were belonged to F0-F1 stage, 20 F2, 13 F3 and 22 F4. LSM was increased with progression of fibrosis stage (F0-F1: 6.77 ± 1.72, F2: 9.98 ± 3.99, F3: 15.80 ± 7.73, and F4: 22.09 ± 10.09, P < 0.001). Diagnostic accuracies of LSM for prediction of F ≥ 2 and F ≥ 3 were 0.915 (95%CI: 0.824-0.968, P < 0.001) and 0.913 (95%CI: 0.821-0.967, P < 0.001), respectively. The cut-off values of LSM for prediction of F ≥ 2 and F ≥ 3 were 8.6 kPa with 78.2% sensitivity and 93.3% specificity and 10.46 kPa with 88.6% sensitivity and 80.0% specificity, respectively. However, there were no significant differences between LSM and serum hyaluronic acid and type IV collagen in diagnostic accuracy. CONCLUSION: SWE showed a significant correlation with the severity of liver fibrosis and was useful and accurate to predict significant and advanced fibrosis, comparable with serum markers. PMID:25320528
Jeong, Jae Yoon; Kim, Tae Yeob; Sohn, Joo Hyun; Kim, Yongsoo; Jeong, Woo Kyoung; Oh, Young-Ha; Yoo, Kyo-Sang
2014-10-14
To evaluate the correlation between liver stiffness measurement (LSM) by real-time shear wave elastography (SWE) and liver fibrosis stage and the accuracy of LSM for predicting significant and advanced fibrosis, in comparison with serum markers. We consecutively analyzed 70 patients with various chronic liver diseases. Liver fibrosis was staged from F0 to F4 according to the Batts and Ludwig scoring system. Significant and advanced fibrosis was defined as stage F ≥ 2 and F ≥ 3, respectively. The accuracy of prediction for fibrosis was analyzed using receiver operating characteristic curves. Seventy patients, 15 were belonged to F0-F1 stage, 20 F2, 13 F3 and 22 F4. LSM was increased with progression of fibrosis stage (F0-F1: 6.77 ± 1.72, F2: 9.98 ± 3.99, F3: 15.80 ± 7.73, and F4: 22.09 ± 10.09, P < 0.001). Diagnostic accuracies of LSM for prediction of F ≥ 2 and F ≥ 3 were 0.915 (95%CI: 0.824-0.968, P < 0.001) and 0.913 (95%CI: 0.821-0.967, P < 0.001), respectively. The cut-off values of LSM for prediction of F ≥ 2 and F ≥ 3 were 8.6 kPa with 78.2% sensitivity and 93.3% specificity and 10.46 kPa with 88.6% sensitivity and 80.0% specificity, respectively. However, there were no significant differences between LSM and serum hyaluronic acid and type IV collagen in diagnostic accuracy. SWE showed a significant correlation with the severity of liver fibrosis and was useful and accurate to predict significant and advanced fibrosis, comparable with serum markers.
Hamada, Koichi; Saitoh, Satoshi; Nishino, Noriyuki; Fukushima, Daizo; Horikawa, Yoshinori; Nishida, Shinya; Honda, Michitaka
2018-01-01
To evaluate the relationship between fibrosis and HCC after sustained virological response (SVR) to treatment for chronic hepatitis C (HCV). This single-center study retrospectively evaluated 196 patients who achieved SVR after HCV infection. The associations of risk factors with HCC development after HCV eradication were evaluated using univariate and multivariate Cox proportional hazards regression models. Among the 196 patients, 8 patients (4.1%) developed HCC after SVR during a median follow-up of 26 months. Multivariate analyses revealed that HCC development was independently associated with age of ≥75 years (risk ratio [RR] = 35.16), α- fetoprotein levels of ≥6 ng/mL (RR = 40.30), and SWE results of ≥11 kPa (RR = 28.71). Our findings indicate that SWE may facilitate HCC surveillance after SVR and the identification of patients who have an increased risk of HCC after HCV clearance.
Analysis of Rayleigh-Lamb Modes in Soft-solids with Application to Surface Wave Elastography
NASA Astrophysics Data System (ADS)
Benech, Nicolás; Grinspan, Gustavo; Aguiar, Sofía; Brum, Javier; Negreira, Carlos; tanter, Mickäel; Gennisson, Jean-Luc
The goal of Surface Wave Elastography (SE) techniques is to estimate the shear elasticity of the sample by measuring the surface wave speed. In SE the thickness of the sample is often assumed to be infinite, in this way, the surface wave speed is directly linked to the sample's shear elasticity. However for many applications this assumption is not true. In this work, we study experimentally the Rayleigh-Lamb modes in soft solids of finite thickness to explore the optimal conditions for SWE. Experiments were carried out in three tissue mimicking phantoms of different thicknesses (10 mm, 20 mm and 60 mm) and same shear elasticity. The surface waves were generated at the surface of the phantom using piston attached to a mechanical vibrator. The central frequency of the excitation was varied between 60 Hz to 160 Hz. One component of the displacement field generated by the piston was measured at the surface and in the bulk of the sample trough a standard speckle tracking technique using a 256 element, 7.5 MHz central frequency linear array and an ultrasound ultrafast electronics. Finally, by measuring the phase velocity at each excitation frequency, velocity dispersion curves were obtained for each phantom. The results show that instead of a Rayleigh wave, zero order symmetric (S0) and antisymmetric (A0) Lamb modes are excited with this type of source. Moreover, in this study we show that due to the near field effects of the source, which are appreciable only in soft solids at low frequencies, both Lamb modes are separable in time and space. We show that while the Ao mode dominates close the source, the S0 mode dominates far away.
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
ShearWave™ elastography for evaluation of the elasticity of Hashimoto's thyroiditis.
Liu, Haifang; Zhu, Yuping; Jiao, Jie; Yuan, Jia; Pu, Tianning; Yong, Qiang
2018-04-13
The aim of this study was to assess the elasticity of Hashimoto's thyroiditis in the different processes via supersonic ShearWave™ Elastography (SWE™). Quantitative information is delivered as Young's modulus value expressed in kilo-Pascal (kPa). 30 healthy female and 30 healthy male individuals aging at 40±20 y had undergone conventional ultrasonography and SWE to determine the influence of gender on elasticity of thyroid. Also 60 female and 60 male patients (mean age, 40±20 y) with Hashimoto's thyroiditis in different processes underwent conventional ultrasonography and SWE to determine the elasticity of thyroid in Hashimoto's thyroiditis. Furthermore, the relationship between elasticity values and thyroid peroxidase antibody (TPOAB) in the patients was investigated. We found significant impact of gender on elasticity values of healthy thyroids. Our study showed that increased elasticity values with statistical significance in hyperthyroidism stage, normal thyroid function stage and hypothyroidism were shown. Low degree relationship between elasticity values and TPOAB was found in 60 male patients. However, there was no such correlation in female patients.
Shear wave velocity imaging using transient electrode perturbation: phantom and ex vivo validation.
DeWall, Ryan J; Varghese, Tomy; Madsen, Ernest L
2011-03-01
This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures.
Stafford, Ryan E; Aljuraifani, Rafeef; Hug, François; Hodges, Paul W
2017-04-01
To investigate whether increases in stiffness can be detected in the anatomical region associated with the striated urethral sphincter (SUS) during voluntary activation using shear-wave elastography (SWE); to identify the location and area of the stiffness increase relative to the point of greatest dorsal displacement of the mid urethra (i.e. SUS); and to determine the relationship between muscle stiffness and contraction intensity. In all, 10 healthy men participated. A linear ultrasound (US) transducer was placed mid-sagittal on the perineum adjacent to a pair of electromyography electrodes that recorded non-specific pelvic floor muscle activity. Stiffness in the area expected to contain the SUS was estimated via US SWE at rest and during voluntary pelvic floor muscles contractions to 5%, 10% and 15% maximum. Still image frames were exported for each repetition and analysed with software that detected increases in stiffness above 150% of the resting stiffness. Pelvic floor muscle contraction elicited an increase in stiffness above threshold within the region expected to contain the SUS for all participants and contraction intensities. The mean (SD) ventral-dorsal distance between the centre of the stiffness area and region of maximal motion of the mid-urethra (caused by SUS contraction) was 5.6 (1.8), 6.2 (0.8), and 5.8 (0.7) mm for 5%, 10% and 15% maximal voluntary contraction, respectively. Greater pelvic floor muscle contraction intensity resulted in a concomitant increase in stiffness, which differed between contraction intensities (5% vs 10%, P < 0.001; 5% vs 15%, P < 0.001; 10% vs 15%, P = 0.003). Voluntary contraction of the pelvic floor muscles in men is associated with an area of stiffness increase measured with SWE, which concurs with the expected location of the SUS. The increase in stiffness occurred in association with an increase in perineal surface electromyography activity, providing evidence that stiffness amplitude relates to general pelvic floor muscle contraction intensity. Future applications of SWE may include investigations of patient populations in which dysfunction of the SUS is thought to play an important role, or investigation of the effect of rehabilitation programmes that target this muscle. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Shear wave elastography results correlate with liver fibrosis histology and liver function reserve.
Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue
2016-05-07
To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures: significantly lower with F4 (P = 0.037) and F3 (P = 0.032) as compared to F0 and significantly lower with F4 as compared to F2 (P = 0.032). SWE LSM shows a good correlation with histologic fibrosis grading and pharmacologic quantitative liver function reserve in experimental severe fibrosis and cirrhosis.
Placental elastography in a murine intrauterine growth restriction model.
Quibel, T; Deloison, B; Chammings, F; Chalouhi, G E; Siauve, N; Alison, M; Bessières, B; Gennisson, J L; Clément, O; Salomon, L J
2015-11-01
To compare placental elasticity in normal versus intrauterine growth restriction (IUGR) murine pregnancies using shear wave elastography (SWE). Intrauterine growth restriction was created by ligation of the left uterine artery of Sprague-Dawley rats on E17. Ultrasonography (US) and elastography were performed 2 days later on exteriorized horns after laparotomy. Biparietal diameter (BPD) and abdominal diameter (AD) were measured and compared in each horn. Placental elasticity of each placenta was compared in the right and left horns, respectively, using the Young's modulus, which increases with increasing stiffness of the tissue. Two hundred seventeen feto-placental units from 18 rats were included. Fetuses in the left ligated horn had smaller biometric measurements than those in the right horn (6.7 vs 7.2 mm, p < 0.001, and 9.2 vs 11.2 mm, p < 0.001 for BPD and AD, respectively). Mean fetal weight was lower in the pups from the left than the right horn (1.65 vs 2.11 g; p < 0.001). Mean (SD) Young's modulus was higher for placentas from the left than the right horn (11.7 ± 1.5 kPa vs 8.01 ± 3.8 kPa, respectively; p < 0.001), indicating increased stiffness in placentas from the left than the right horn. There was an inverse relationship between fetal weight and placental elasticity (r = 0.42; p < 0.001). Shear wave elastography may be used to provide quantitative elasticity measurements of the placenta. In our model, placentas from IUGR fetuses demonstrated greater stiffness, which correlated with the degree of fetal growth restriction. © 2015 John Wiley & Sons, Ltd.
Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Bo, Xiao-Wan; Li, Xiao-Long; Wu, Rong; Xu, Jun-Mei; Zhang, Yi-Feng; Zhang, Kun
2016-09-01
To evaluate the diagnostic performance of a new method of combined two-dimensional shear wave elastography (i.e. virtual touch imaging quantification, VTIQ) and ultrasound (US) Breast Imaging Reporting and Data System (BI-RADS) in the differential diagnosis of breast lesions. From September 2014 to December 2014, 276 patients with 296 pathologically proven breast lesions were enrolled in this study. The conventional US images were interpreted by two independent readers. The diagnosis performances of BI-RADS and combined BI-RADS and VTIQ were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. Observer consistency was also evaluated. Pathologically, 212 breast lesions were benign and 84 were malignant. Compared with BI-RADS alone, the AUROCs and specificities of the combined method for both readers increased significantly (AUROC: 0.862 vs. 0.693 in reader 1, 0.861 vs. 0.730 in reader 2; specificity: 91.5 % vs. 38.7 % in reader 1, 94.8 % vs. 47.2 % in reader 2; all P < .05). The Kappa value between the two readers for BI-RADS assessment was 0.614, and 0.796 for the combined method. The combined VTIQ and BI-RADS had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone. • Combination of conventional ultrasound and elastography distinguishes breast cancers more effectively. • Combination of conventional ultrasound and elastography increases observer consistency. • BI-RADS weights more than the 2D-SWE with an increase in malignancy probability.
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.
Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya
2018-04-18
We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.
Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2014-11-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.
Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.
2014-01-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066
Shear Wave Velocity Imaging Using Transient Electrode Perturbation: Phantom and ex vivo Validation
Varghese, Tomy; Madsen, Ernest L.
2011-01-01
This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures. PMID:21075719
Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide
2015-01-01
Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.
Vergari, Claudio; Dubois, Guillaume; Vialle, Raphael; Gennisson, Jean-Luc; Tanter, Mickael; Dubousset, Jean; Rouch, Philippe; Skalli, Wafa
2016-04-01
Intervertebral disc (IVD) is key to spine biomechanics, and it is often involved in the cascade leading to spinal deformities such as idiopathic scoliosis, especially during the growth spurt. Recent progress in elastography techniques allows access to non-invasive measurement of cervical IVD in adults; the aim of this study was to determine the feasibility and reliability of shear wave elastography in healthy children lumbar IVD. Elastography measurements were performed in 31 healthy children (6-17 years old), in the annulus fibrosus and in the transverse plane of L5-S1 or L4-L5 IVD. Reliability was determined by three experienced operators repeating measurements. Average shear wave speed in IVD was 2.9 ± 0.5 m/s; no significant correlations were observed with sex, age or body morphology. Intra-operator repeatability was 5.0 % while inter-operator reproducibility was 6.2 %. Intraclass correlation coefficient was higher than 0.9 for each operator. Feasibility and reliability of IVD shear wave elastography were demonstrated. The measurement protocol is compatible with clinical routine and the results show the method's potential to give an insight into spine deformity progression and early detection. • Intervertebral disc mechanical properties are key to spine biomechanics • Feasibility of shear wave elastography in children lumbar disc was assessed • Measurement was fast and reliable • Elastography could represent a novel biomarker for spine pathologies.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
NASA Astrophysics Data System (ADS)
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Sadeghi, Seyedali; Newman, Cassidy; Cortes, Daniel H
2018-01-01
Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS). Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE) method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years) were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3-5 miles), middle distance (10 subjects, 10-13 miles), and long distance (three subjects, 26+ miles). Shear Wave Elastography (SWE) measurements were taken on both legs of each subject on the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus, lateral gastrocnemius (LG), medial gastrocnemius (MG), biceps femoris (BF) and semitendinosus (ST) muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus ( p = 0.05), while running distance had considerable effect on the biceps femoris ( p = 0.02), vastus lateralis ( p < 0.01) and semitendinosus muscles ( p = 0.02). Sixty-seven percent of muscles exhibited a decreasing stiffness trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
NASA Astrophysics Data System (ADS)
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves.
Henni, Anis Hadj; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-26
Shear Wave Induced Resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
NASA Astrophysics Data System (ADS)
Kwiecinski, Wojciech; Bessière, Francis; Constanciel Colas, Elodie; Apoutou N'Djin, W.; Tanter, Mickaël; Lafon, Cyril; Pernot, Mathieu
2015-10-01
Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion’s extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n=11 ) and mapped (n= 7 ). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n = 3), then atrial (left, n= 2 ) and ventricular (left n=1 , right n=1 ) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5 ± 0.1 kPa to 6.0 ± 0.3 kPa in the atrium and from 1.3 ± 0.3 kPa to 13.5 ± 9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3 ± 5.5 kPa (versus 4.4 ± 1.6 kPa before ablation) in the chicken breast, to 30.3 ± 10.3 kPa (versus 12.2 ± 4.3 kPa) in the atria and to 73.8 ± 13.9 kPa (versus 21.2 ± 3.3 kPa) in the ventricles. On gross pathology, the size of the lesions ranged from 0.1 to 1.5 cm2 in the imaging plane area. Elasticity-estimated depths and widths of the lesions differed respectively with a median of 0.2 mm (first quartile Q1: -0.8 mm third quartile Q3: 2.6 mm) for a mean squared error (MSE) of 5.1 mm2 and a median of 0.2 mm (Q1: -2.7 mm Q3: 2.7 mm) for a MSE of 11.1 mm2 from gross pathology. We have demonstrated the feasibility of the HIFU thermal ablation monitoring using a dual therapy and imaging transesophageal device. The combination of HIFU, ultrasound imaging and SWE on the same transesophageal system could lead to a new clinical device for a safer and controlled treatment of a wide variety of cardiac arrhythmias.
Kwiecinski, Wojciech; Bessière, Francis; Colas, Elodie Constanciel; N'Djin, W Apoutou; Tanter, Mickaël; Lafon, Cyril; Pernot, Mathieu
2015-10-21
Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion's extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n = 11) and mapped (n = 7). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n = 3), then atrial (left, n = 2) and ventricular (left n = 1, right n = 1) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5 ± 0.1 kPa to 6.0 ± 0.3 kPa in the atrium and from 1.3 ± 0.3 kPa to 13.5 ± 9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3 ± 5.5 kPa (versus 4.4 ± 1.6 kPa before ablation) in the chicken breast, to 30.3 ± 10.3 kPa (versus 12.2 ± 4.3 kPa) in the atria and to 73.8 ± 13.9 kPa (versus 21.2 ± 3.3 kPa) in the ventricles. On gross pathology, the size of the lesions ranged from 0.1 to 1.5 cm(2) in the imaging plane area. Elasticity-estimated depths and widths of the lesions differed respectively with a median of 0.2 mm (first quartile Q1: -0.8 mm; third quartile Q3: 2.6 mm) for a mean squared error (MSE) of 5.1 mm(2) and a median of 0.2 mm (Q1: -2.7 mm; Q3: 2.7 mm) for a MSE of 11.1 mm(2) from gross pathology. We have demonstrated the feasibility of the HIFU thermal ablation monitoring using a dual therapy and imaging transesophageal device. The combination of HIFU, ultrasound imaging and SWE on the same transesophageal system could lead to a new clinical device for a safer and controlled treatment of a wide variety of cardiac arrhythmias.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
Strain Elastography - How To Do It?
Dietrich, Christoph F.; Barr, Richard G.; Farrokh, André; Dighe, Manjiri; Hocke, Michael; Jenssen, Christian; Dong, Yi; Saftoiu, Adrian; Havre, Roald Flesland
2017-01-01
Tissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed. PMID:29226273
Elastography in clinical practice.
Barr, Richard G
2014-11-01
Elastography is a new technique that evaluates tissue stiffness. There are two elastography methods, strain and shear wave elastography. Both techniques are being used to evaluate a wide range of applications in medical imaging. Elastography of breast masses and prostates have been shown to have high accuracy for characterizing masses and can significantly decrease the need for biopsies. Shear wave elastography has been shown to be able to detect and grade liver fibrosis and may decrease the need for liver biopsy. Evaluation of other organs is still preliminary. This article reviews the principles of elastography and its potential clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.
Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik
2018-01-01
to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.
Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Trzasko, Joshua D; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2018-05-01
Shear wave elastography methods are able to accurately measure tissue stiffness, allowing these techniques to monitor the progression of hepatic fibrosis. While many methods rely on acoustic radiation force to generate shear waves for 2-D imaging, probe oscillation shear wave elastography (PROSE) provides an alternative approach by generating shear waves through continuous vibration of the ultrasound probe while simultaneously detecting the resulting motion. The generated shear wave field in in vivo liver is complicated, and the amplitude and quality of these shear waves can be influenced by the placement of the vibrating probe. To address these challenges, a real-time shear wave visualization tool was implemented to provide instantaneous visual feedback to optimize probe placement. Even with the real-time display, it was not possible to fully suppress residual motion with established filtering methods. To solve this problem, the shear wave signal in each frame was decoupled from motion and other sources through the use of a parameter-free empirical mode decomposition before calculating shear wave speeds. This method was evaluated in a phantom as well as in in vivo livers from five volunteers. PROSE results in the phantom as well as in vivo liver correlated well with independent measurements using the commercial General Electric Logiq E9 scanner.
Improving arrival time identification in transient elastography
NASA Astrophysics Data System (ADS)
Klein, Jens; McLaughlin, Joyce; Renzi, Daniel
2012-04-01
In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Quantitative shear wave ultrasound elastography: initial experience in solid breast masses
2010-01-01
Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Results Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Conclusions Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification. PMID:21122101
Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.
Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair
2010-01-01
Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification.
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-07-10
The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy.
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-01-01
Background: The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. Methods: One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. Results: For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Conclusion: Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy. PMID:22691969
Akagi, Ryota; Kusama, Saki
2015-08-01
The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Putz, Franz Josef; Hautmann, Matthias G; Banas, Miriam C; Jung, Ernst Michael
2017-01-01
The plantar fasciitis is a common disease with a high prevalence in public and a frequent cause of heel pain. In our pilot study, we wanted to characterise the feasibility of shear-wave elastography and contrast-enhanced ultrasound (CEUS) in the assessment of the plantar fasciitis. 23 cases of painful heels were examined by B-Mode ultrasound, Power Doppler (PD), shear wave elastography and contrast-enhanced ultrasound before anti-inflammatory radiation. Time-intensity-curves were analysed by the integrated software. The results for area-under-the-curve (AUC), peak, time-to-peak (TTP) and mean-transit-time (MTT) were compared between the plantar fascia and the surrounding tissue. All cases showed thickening of the plantar fascia, in most cases with interstitial oedema (87.0%). Shear wave elastography showed inhomogeneous stiffness of the plantar fascia. 83.3% of cases showed a visible hyperperfusion in CEUS at the proximal plantar fascia in comparison to the surrounding tissue. This hyperperfusion could also be found in 75.0% of cases with no signs of vascularisation in PD. AUC (p = 0.0005) and peak (p = 0.037) were significantely higher in the plantar fascia than in the surrounding tissue. CEUS and shear wave elastography are new diagnostic tools in the assessment of plantar fasciitis and can provide quantitative parameters for monitoring therapy.
Xiao, Guangqin; Zhu, Sixian; Xiao, Xiao; Yan, Lunan; Yang, Jiayin; Wu, Gang
2017-11-01
Many noninvasive methods for diagnosing liver fibrosis (LF) have been proposed. To determine the best method for diagnosing LF in nonalcoholic fatty liver disease (NAFLD), we conducted a systemic review and meta-analysis to compare the performance of aspartate aminotransferase to platelets ratio index (APRI), fibrosis-4 index (FIB-4), BARD score, NAFLD fibrosis score (NFS), FibroScan, shear wave elastography (SWE), and magnetic resonance elastography (MRE) for diagnosing LF in NAFLD. We compared the sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUROC) of these noninvasive methods for detecting significant fibrosis (SF), advanced fibrosis (AF), and cirrhosis. Heterogeneity was explored using meta-regression. Sixty-four articles with a total of 13,046 NAFLD subjects were included. The overall mean prevalence of SF, AF, and cirrhosis was 45.0%, 24.0%, and 9.4% in NAFLD patients, respectively. With an APRI threshold of 1.0 and 1.5, the sensitivities and specificities were 50.0% and 84.0% and 18.3% and 96.1%, respectively, for AF. With a FIB-4 threshold of 2.67 and 3.25, the sensitivities and specificities were 26.6% and 96.5% and 31.8% and 96.0%, respectively, for AF. The summary sensitivities and specificities of BARD score (threshold of 2), NFS (threshold of -1.455), FibroScan M (threshold of 8.7-9), SWE, and MRE for detecting AF were 0.76 and 0.61, 0.72 and 0.70, 0.87 and 0.79, 0.90 and 0.93, and 0.84 and 0.90, respectively. The summary AUROC values using APRI, FIB-4, BARD score, NFS, FibroScan M probe, XL probe, SWE, and MRE for diagnosing AF were 0.77, 0.84, 0.76, 0.84, 0.88, 0.85, 0.95, and 0.96, respectively. MRE and SWE may have the highest diagnostic accuracy for staging fibrosis in NAFLD patients. Among the four noninvasive simple indexes, NFS and FIB-4 probably offer the best diagnostic performance for detecting AF. (Hepatology 2017;66:1486-1501). © 2017 by the American Association for the Study of Liver Diseases.
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
NASA Astrophysics Data System (ADS)
Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao
2017-01-01
Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.
Kramer, Harald; Pickhardt, Perry J; Kliewer, Mark A; Hernando, Diego; Chen, Guang-Hong; Zagzebski, James A; Reeder, Scott B
2017-01-01
The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard. Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS. There was excellent correlation between MRS and both proton-density fat-fraction MRI (r 2 = 0.992; slope, 0.974; intercept, -0.943) and SECT (r 2 = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r 2 = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r 2 = 0.004; slope, 0.069; intercept, 6.168). Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over conventional SECT attenuation. US-SWE has poor accuracy for liver fat quantification.
[Shear waves elastography of the placenta in pregnant baboon].
Quarello, E; Lacoste, R; Mancini, J; Melot-Dusseau, S; Gorincour, G
2015-03-01
To evaluate tissue characteristics of the placenta by transabdominal ShearWave Elastography in pregnant baboon. For 9 months (03/2013-12/2013) two operators (EQ, GG) performed ultrasound of the placenta during pregnancy pregnant baboons station partner primatology project. The identification of the placenta was performed previously in 2D ultrasound. The elastography method was then activated. Three measurements were carried out by operator for each placenta. The intraclass correlation coefficients within and between observers were calculated for the objective assessment (elastography) of placental maturity. During the study period, 21 pregnant baboons were included and ultrasounds were performed between 1 and 3 times each. The measurements have been carried out by two operators in 100% of cases. The intra- and inter-observer ICC for single values are respectively 0.657 - 95% CI (0.548 to 0.752) and 0.458 - 95% CI (0.167 to 0.675). The intra- and inter-observer ICC for average values are respectively 0.852 - 95% CI (0.784 to 0.901) and 0.628 - 95% CI (0.286 to 0.806). The study by transabdominal ShearWave Elastography of placenta's pregnant baboons is possible. The intra- and inter-operator reproducibility of this method is good using the average of three measurements. The objective study via elastography ShearWave of the degree of placental maturity seems not yet be used in clinical practice. Studies of larger cohorts are needed. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ultrasound Elastography: Review of Techniques and Clinical Applications
Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.
2017-01-01
Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467
Glińska-Suchocka, K; Kubiak, K; Spużak, J; Jankowski, M; Borusewicz, P
2017-03-28
Shear wave elastography is a novel technique enabling real-time measurement of the elasticity of liver tissue. The color map is superimposed on the classic ultrasound image of the assessed tissue, which enables a precise evaluation of the stiffness of the liver tissue. The aim of the study was to assess the stiffness of normal liver tissue in the guinea pig using shear wave elastography. The study was carried out on 36 guinea pigs using the SuperSonic Imagine Aixplorer scanner, and a 1 to 6 MH convex SC6-1 transducer. An ultrasound guided Try-Cut liver core needle biopsy was carried out in all the studied animals and the collected samples were examined to exclude pathological lesions. The mean liver tissue stiffness ranged from 0.89 to 5.40 kPa. We found that shear wave elastography is an easy, non-invasive technique that can be used to assess the stiffness of liver tissue. The obtained results can be used in future studies to assess the types and changes of liver tissue in the course of various types of liver disease.
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.
Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio
2018-06-01
The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa
2015-09-01
Development of shear wave elastography gave access to non-invasive muscle stiffness assessment in vivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-07
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-01
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
Lindner, Franziska; Mühlberg, Reinhard; Wiegand, Johannes; Tröltzsch, Michael; Hoffmeister, Albrecht; Keim, Volker; Karlas, Thomas
2018-06-01
Recurrent ascitic decompensation is a frequent complication of advanced alcoholic liver disease. Ascites can be controlled by transjugular intrahepatic portosystemic shunt (TIPS) implantation, but specific pre-procedural outcome predictors are not well established. Liver and spleen stiffness measurement (LSM, SSM) correlate with outcome of compensated liver disease, but data for decompensated cirrhosis disease are scarce. Therefore, the predictive value of LSM and SSM was evaluated in patients with refractory ascites treated with TIPS insertion or receiving conservative therapy. Patients with alcoholic liver cirrhosis and recurrent or refractory ascites were stratified according to TIPS eligibility. LSM was prospectively assessed by transient elastography (TE, XL probe) and point shear wave elastography (pSWE). pSWE was also used for SSM. The primary study endpoint was transplant-free survival after 12 months. In addition, correlation of LSM and SSM with TIPS complications was analyzed. 43 patients (16 % female, age 55.5 [28.6 - 79.6] years) were recruited, n = 20 underwent TIPS and n = 23 were treated with repeated paracenteses only. 15 patients died and five underwent liver transplantation during follow-up. LSM and SSM at baseline did not predict the patients' outcome in the TIPS cohort and in patients with conservative therapy. SSM was increased in two cases with spontaneous TIPS occlusion and declined after revision. LSM and SSM cannot be recommended for risk stratification in cirrhotic patients with refractory ascites. SSM may be useful in monitoring TIPS function during follow-up. © Georg Thieme Verlag KG Stuttgart · New York.
Sonographic Elastography of Mastitis.
Sousaris, Nicholas; Barr, Richard G
2016-08-01
Sonographic elastography has been shown to be a useful imaging modality in characterizing breast lesions as benign or malignant. However, in preliminary research, mastitis has given false-positive findings on both strain and shear wave elastography. In this article, we review the findings in mastitis with and without abscess formation on both strain and shear wave elastography. The elastographic findings in all cases were suggestive of a malignancy according to published thresholds. In cases of mastitis with abscess formation, there is a characteristic appearance, with a central very soft area (abscess cavity) and a very stiff outer rim (edema and inflammation). This appearance should raise the suspicion of mastitis with abscess formation, since these findings are rare in breast cancers.
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-05-01
To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Imaging mechanical properties of hepatic tissue by magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Yin, Meng; Rouviere, Olivier; Burgart, Lawrence J.; Fidler, Jeff L.; Manduca, Armando; Ehman, Richard L.
2006-03-01
PURPOSE: To assess the feasibility of a modified phase-contrast MRI technique (MR Elastography) for quantitatively assessing the mechanical properties of hepatic tissues by imaging propagating acoustic shear waves. MATERIALS AND METHODS: Both phantom and human studies were performed to develop and optimize a practical imaging protocol by visualizing and investigating the diffraction field of shear waves generated from pneumatic longitudinal drivers. The effects of interposed ribs in a transcostal approach were also investigated. A gradient echo MRE pulse sequence was adapted for shear wave imaging in the liver during suspended respiration, and then tested to measure hepatic shear stiffness in 13 healthy volunteers and 1 patient with chronic liver disease to determine the potential of non-invasively detecting liver fibrosis. RESULTS: Phantom studies demonstrate that longitudinal waves generated by the driver are mode-converted to shear waves in a distribution governed by diffraction principles. The transcostal approach was determined to be the most effective method for generating shear waves in human studies. Hepatic stiffness measurements in the 13 normal volunteers demonstrated a mean value of 2.0+/-0.2kPa. The shear stiffness measurement in the patient was much higher at 8.5kPa. CONCLUSION: MR Elastography of the liver shows promise as a method to non-invasively detect and characterize diffuse liver disease, potentially reducing the need for biopsy to diagnose hepatic fibrosis.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy
2015-10-21
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.
Current status of musculoskeletal application of shear wave elastography.
Ryu, JeongAh; Jeong, Woo Kyoung
2017-07-01
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Current status of musculoskeletal application of shear wave elastography
2017-01-01
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography. PMID:28292005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garra, B.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
Goertz, Ruediger S; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F; Wildner, Dane
2016-12-01
Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. A total of 195 patients were included in the study. Healthy parenchyma (n=21) and lipomatosis (n=30) showed similar shear wave velocities of about 1.3m/s. Acute pancreatitis (n=35), chronic pancreatitis (n=53) and adenocarcinoma (n=52) showed consecutively increasing ARFI values, respectively. NET (n=4) revealed the highest shear wave velocities amounting to 3.62m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
Arterial waveguide model for shear wave elastography: implementation and in vitro validation
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.
2017-07-01
Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.
Thiele, Maja; Detlefsen, Sönke; Sevelsted Møller, Linda; Madsen, Bjørn Stæhr; Fuglsang Hansen, Janne; Fialla, Annette Dam; Trebicka, Jonel; Krag, Aleksander
2016-01-01
Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score and collagen-proportionate area were used as reference. We performed a prospective study of 199 consecutive patients with ongoing or prior alcohol abuse, but without known liver disease. One group of patients had a high pretest probability of cirrhosis because they were identified at hospital liver clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver biopsy after an overnight fast. Transient elastography and 2-dimensional shear wave elastography identified subjects in each group with significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5) with high accuracy (area under the curve ≥0.92). There was no difference in diagnostic accuracy between techniques. The cutoff values for optimal identification of significant fibrosis by transient elastography and 2-dimensional shear wave elastography were 9.6 kPa and 10.2 kPa, and for cirrhosis 19.7 kPa and 16.4 kPa. Negative predictive values were high for both groups, but the positive predictive value for cirrhosis was >66% in the high-risk group vs approximately 50% in the low-risk group. Evidence of alcohol-induced damage to cholangiocytes, but not ongoing alcohol abuse, affected liver stiffness. The collagen-proportionate area correlated with Ishak grades and accurately identified individuals with significant fibrosis and cirrhosis. In a prospective study of individuals at risk for liver fibrosis due to alcohol consumption, we found elastography to be an excellent tool for diagnosing liver fibrosis and for excluding (ruling out rather than ruling in) cirrhosis. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
Hernandez-Andrade, Edgar; Aurioles-Garibay, Alma; Garcia, Maynor; Korzeniewski, Steven J.; Schwartz, Alyse G.; Ahn, Hyunyoung; Martinez-Varea, Alicia; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Romero, Roberto
2014-01-01
Aim To investigate the effect of depth on cervical shear-wave elastography. Methods Shear-wave elastography was applied to estimate the velocity of propagation of the acoustic force impulse (shear-wave) in the cervix of 154 pregnant women at 11-36 weeks of gestation. Shear-wave speed (SWS) was evaluated in cross-sectional views of the internal and external cervical os in five regions of interest: anterior, posterior, lateral right, lateral left, and endocervix. Distance from the center of the US transducer to the center of the each region of interest was registered. Results In all regions, SWS decreased significantly with gestational age (p=0.006). In the internal os SWS was similar among the anterior, posterior and lateral regions, and lower in the endocervix. In the external os, the endocervix and anterior regions showed similar SWS values, lower than those from the posterior and lateral regions. In the endocervix, these differences remained significant after adjustment for depth, gestational age and cervical length. SWS estimations in all regions of the internal os were higher than those of the external os, suggesting denser tissue. Conclusion Depth from the ultrasound probe to different regions in the cervix did not significantly affect the SWS estimations. PMID:25029081
Liu, Xiaona; Li, Na; Wen, Chaoyang
2017-01-01
Background We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. Methods A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. Results DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Conclusions Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus may be helpful for improving the sensitivity and reproducibility of SWE for DVT diagnosis and staging. PMID:28614362
Liu, Xiaona; Li, Na; Wen, Chaoyang
2017-01-01
We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus may be helpful for improving the sensitivity and reproducibility of SWE for DVT diagnosis and staging.
Chiu, Tsz-chun Roxy; Ngo, Hiu-ching; Lau, Lai-wa; Leung, King-wah; Lo, Man-him; Yu, Ho-fai; Ying, Michael
2016-01-01
Aims This study was undertaken to investigate the immediate effect of static stretching on normal Achilles tendon morphology and stiffness, and the different effect on dominant and non-dominant legs; and to evaluate inter-operator and intra-operator reliability of using shear-wave elastography in measuring Achilles tendon stiffness. Methods 20 healthy subjects (13 males, 7 females) were included in the study. Thickness, cross-sectional area and stiffness of Achilles tendons in both legs were measured before and after 5-min static stretching using grey-scale ultrasound and shear-wave elastography. Inter-operator and intra-operator reliability of tendon stiffness measurements of six operators were evaluated. Results Result showed that there was no significant change in the thickness and cross-sectional area of Achilles tendon after static stretching in both dominant and non-dominant legs (p > 0.05). Tendon stiffness showed a significant increase in non-dominant leg (p < 0.05) but not in dominant leg (p > 0.05). The inter-operator reliability of shear-wave elastography measurements was 0.749 and the intra-operator reliability ranged from 0.751 to 0.941. Conclusion Shear-wave elastography is a useful and non-invasive imaging tool to assess the immediate stiffness change of Achilles tendon in response to static stretching with high intra-operator and inter-operator reliability. PMID:27120097
NASA Astrophysics Data System (ADS)
Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.
2015-02-01
In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions.
Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J
2018-05-01
Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
NASA Astrophysics Data System (ADS)
Zhou, Kanheng; Wang, Yan; Feng, Kairui; Li, Chunhui; Huang, Zhihong
2018-02-01
HIFU is a truly noninvasive, acoustic therapeutic technique that utilizes high intensity acoustic field in the focus to kill the targeted tissue for disease treatment purpose. The mechanical properties of targeted tissue changes before and after treatment, and this change can be accurately detected by shear wave elastography. Hence, shear wave elastography is usually used for monitoring HIFU treatment asynchronously. To improve the low spatial resolution in ultrasound shear wave elastography, and to perform diseases diagnosis, treatment and monitoring in the same system, a new setup that combines HIFU and PhS-OCT system was proposed in this study. This proposed setup could do 1) HIFU treatment when the transducer works at high energy level, 2) ultrasound induced shear wave optical coherence elastography for HIFU treatment asynchronous monitoring when the transducer works at low energy level. Ex-vivo bovine liver tissue was treated at the same energy level for different time (0s, 1s, 5s, 9s) in this research. Elastography was performed on the lesion area of the sample after HIFU treatment, and the elastogram was reconstructed by the time of flight time method. The elastogram results clearly show the boundary of HIFU lesion area and surrounding normal tissue, even for 1s treatment time. And the average elasticity of the lesion grows linearly as the treatment time increases. Combined with OCT needle probe, the proposed method has a large potential not only to be used for superficial diseases treatment, but also to be used for high-precision-demanded diseases treatment, e.g. nervous disease treatment.
Value of ultrasound shear wave elastography in the diagnosis of adenomyosis.
Acar, S; Millar, E; Mitkova, M; Mitkov, V
2016-11-01
The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. The following values of Young's modulus were found in subgroup A (adenomyosis): Emean - 72.7 (22.6-274.2) kPa (median, 5-95th percentiles), Emax - 94.8 (29.3-300.0) kPa, SD - 9.9 (2.6-26.3) kPa; in subgroup B (non adenomyosis) - 28.3 (12.7-59.5) kPa, 33.6 (16.0-80.8) kPa, 3.0 (1.4-15.6) kPa; in the control group - 24.4 (17.9-32.4) kPa, 29.8 (21.6-40.8) kPa, 2.3 (1.3-6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis.
DeWall, Ryan J.; Varghese, Tomy
2013-01-01
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. PMID:22293748
DeWall, Ryan J; Varghese, Tomy
2012-01-01
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE
Cortes, Daniel H.; Suydam, Stephen M.; Silbernagel, Karin Grävare; Buchanan, Thomas S.; Elliott, Dawn M.
2015-01-01
Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study are to present an elastography method to measure localized viscoelastic properties of tendon and to present initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction specific wave speeds were calculated using Local Frequency Estimation. Maps of viscoelastic properties were obtained using a pixel wise curve-fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels to those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as function of frequency that highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon showed that it is feasible to quantify local viscoeasltic properties. Similarly, measurement in the semitendinosus tendon showed a substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential of evaluating localized changes in tendon viscoelastic properties due to injury and during recovery in a clinical setting. PMID:25796414
Yada, Norihisa; Tamaki, Nobuhura; Koizumi, Yohei; Hirooka, Masashi; Nakashima, Osamu; Hiasa, Yoichi; Izumi, Namiki; Kudo, Masatoshi
2017-01-01
Performing shear wave imaging is simple, but can be difficult when inflammation, jaundice, and congestion are present. Therefore, the correct diagnosis of liver fibrosis using shear wave imaging alone might be difficult in mild-to-moderate fibrosis cases. Strain imaging can diagnose liver fibrosis without the influence of inflammation. Therefore, the combined use of strain and shear wave imaging (combinational elastography) for cases without jaundice and congestion might be useful for evaluating fibrosis and inflammation. We enrolled consecutive patients with liver disease, without jaundice or liver congestion. Strain and shear wave imaging, blood tests, and liver biopsy were performed on the same day. The liver fibrosis index (LF index) was calculated by strain imaging; real-time tissue elastography, and the shear wave velocity (Vs) was calculated by shear wave imaging. Fibrosis index (F index) and activity index (A index) were calculated as a multiple regression equation for determining hepatic fibrosis and inflammation using histopathological diagnosis as the gold standard. The diagnostic ability of F index for fibrosis and A index for inflammation were compared using LF index and Vs. The total number of enrolled cases was 388. The area under the receiver operating characteristic (AUROC) was 0.87, 0.80, 0.83, and 0.80, at diagnosis of fibrosis stage with an F index of F1 or higher, F2 or higher, F3 or higher, and F4, respectively. The AUROC was 0.94, 0.74, and 0.76 at diagnosis of activity grade with an A index of A1 or higher, A2 or higher, and A3, respectively. The diagnostic ability of F index for liver fibrosis and A index for inflammation was higher than for other conventional diagnostic values. The combined use of strain and shear wave imaging (combinational elastography) might increase the positive diagnosis of liver fibrosis and inflammation. © 2017 S. Karger AG, Basel.
Slapa, Rafal Z.; Piwowonski, Antoni; Jakubowski, Wieslaw S.; Bierca, Jacek; Szopinski, Kazimierz T.; Slowinska-Srzednicka, Jadwiga; Migda, Bartosz; Mlosek, R. Krzysztof
2012-01-01
Although elastography can enhance the differential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in differential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiffness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in differentiation of thyroid nodules with regard to their stiffness. SSWE showed the possibility of differentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating different elastographic methods are warranted. PMID:22685685
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Suga, Mikio; Matsuda, Tetsuya; Minato, Kotaro; Oshiro, Osamu; Chihara, Kunihiro; Okamoto, Jun; Takizawa, Osamu; Komori, Masaru; Takahashi, Takashi
2003-07-01
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. Moreover, a propagating shear wave is distorted by reflections from the boundaries of objects. However, the distortions are minimal around the wave front of the propagating shear wave. Therefore, we can avoid the effect of reflection on a region of interest (ROI) by adjusting the duration of mechanical vibrations. Thus, the ROI is often shorter than the propagating shear wavelength. In the MRE sequence, a motion-sensitizing gradient (MSG) is synchronized with mechanical cyclic motion. MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.
Ingle, Atul; Varghese, Tomy
2014-09-03
This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.
Amador, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F.; Urban, Matthew W.
2017-01-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared to conventional TTP. PMID:28092532
Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W
2017-04-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.
Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2012-01-01
Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690
Transurethral prostate magnetic resonance elastography: prospective imaging requirements.
Arani, Arvin; Plewes, Donald; Chopra, Rajiv
2011-02-01
Tissue stiffness is known to undergo alterations when affected by prostate cancer and may serve as an indicator of the disease. Stiffness measurements can be made with magnetic resonance elastography performed using a transurethral actuator to generate shear waves in the prostate gland. The goal of this study was to help determine the imaging requirements of transurethral magnetic resonance elastography and to evaluate whether the spatial and stiffness resolution of this technique overlapped with the requirements for prostate cancer detection. Through the use of prostate-mimicking gelatin phantoms, frequencies of at least 400 Hz were necessary to obtain accurate stiffness measurements of 10 mm diameter inclusions, but the detection of inclusions with diameters as small as 4.75 mm was possible at 200 Hz. The shear wave attenuation coefficient was measured in vivo in the canine prostate gland, and was used to predict the detectable penetration depth of shear waves in prostate tissue. These results suggested that frequencies below 200 Hz could propagate to the prostate boundary with a signal to noise ratio (SNR) of 60 and an actuator capable of producing 60 μm displacements. These requirements are achievable with current imaging and actuator technologies, and motivate further investigation of magnetic resonance elastography for the targeting of prostate cancer. Copyright © 2010 Wiley-Liss, Inc.
DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.
2012-01-01
Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063
Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions
Srinivasa Babu, Aparna; Wells, Michael L.; Teytelboym, Oleg M.; Mackey, Justin E.; Miller, Frank H.; Yeh, Benjamin M.; Ehman, Richard L.
2016-01-01
Chronic liver disease has multiple causes, many of which are increasing in prevalence. The final common pathway of chronic liver disease is tissue destruction and attempted regeneration, a pathway that triggers fibrosis and eventual cirrhosis. Assessment of fibrosis is important not only for diagnosis but also for management, prognostic evaluation, and follow-up of patients with chronic liver disease. Although liver biopsy has traditionally been considered the reference standard for assessment of liver fibrosis, noninvasive techniques are the emerging focus in this field. Ultrasound-based elastography and magnetic resonance (MR) elastography are gaining popularity as the modalities of choice for quantifying hepatic fibrosis. These techniques have been proven superior to conventional cross-sectional imaging for evaluation of fibrosis, especially in the precirrhotic stages. Moreover, elastography has added utility in the follow-up of previously diagnosed fibrosis, the assessment of treatment response, evaluation for the presence of portal hypertension (spleen elastography), and evaluation of patients with unexplained portal hypertension. In this article, a brief overview is provided of chronic liver disease and the tools used for its diagnosis. Ultrasound-based elastography and MR elastography are explored in depth, including a brief glimpse into the evolution of elastography. Elastography is based on the principle of measuring tissue response to a known mechanical stimulus. Specific elastographic techniques used to exploit this principle include MR elastography and ultrasonography-based static or quasistatic strain imaging, one-dimensional transient elastography, point shear-wave elastography, and supersonic shear-wave elastography. The advantages, limitations, and pitfalls of each modality are emphasized. ©RSNA, 2016 PMID:27689833
Passive optical coherence elastography using a time-reversal approach (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude
2017-02-01
Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.
Cortes, Daniel H; Suydam, Stephen M; Silbernagel, Karin Grävare; Buchanan, Thomas S; Elliott, Dawn M
2015-06-01
Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study were to describe an elastography method for measuring localized viscoelastic properties of tendons and to discuss the initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction-specific wave speeds were calculated using local frequency estimation. Maps of viscoelastic properties were obtained using a pixel-wise curve fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels with those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as a function of frequency, which highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon indicated that it is feasible to quantify local viscoelastic properties. Similarly, measurement in the semitendinosus tendon revealed substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential to evaluate localized changes in tendon viscoelastic properties caused by injury and during recovery in a clinical setting. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.
2017-05-01
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.
Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W
2017-05-21
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.
Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W
2017-01-01
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasiplanar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions. PMID:28426437
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Value of ultrasound shear wave elastography in the diagnosis of adenomyosis
Millar, E; Mitkova, M; Mitkov, V
2016-01-01
Background The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. Methods One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. Results The following values of Young’s modulus were found in subgroup A (adenomyosis): Emean – 72.7 (22.6–274.2) kPa (median, 5–95th percentiles), Emax – 94.8 (29.3–300.0) kPa, SD – 9.9 (2.6–26.3) kPa; in subgroup B (non adenomyosis) – 28.3 (12.7–59.5) kPa, 33.6 (16.0–80.8) kPa, 3.0 (1.4–15.6) kPa; in the control group – 24.4 (17.9–32.4) kPa, 29.8 (21.6–40.8) kPa, 2.3 (1.3–6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). Conclusion This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis. PMID:27847535
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-11-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.
Ultrasound elastographic techniques in focal liver lesions
Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara
2016-01-01
Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses. PMID:26973405
Ultrasound elastographic techniques in focal liver lesions.
Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara
2016-03-07
Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.
Sonoelastography in the musculoskeletal system: Current role and future directions.
Winn, Naomi; Lalam, Radhesh; Cassar-Pullicino, Victor
2016-11-28
Ultrasound is an essential modality within musculoskeletal imaging, with the recent addition of elastography. The elastic properties of tissues are different from the acoustic impedance used to create B mode imaging and the flow properties used within Doppler imaging, hence elastography provides a different form of tissue assessment. The current role of ultrasound elastography in the musculoskeletal system will be reviewed, in particular with reference to muscles, tendons, ligaments, joints and soft tissue tumours. The different ultrasound elastography methods currently available will be described, in particular strain elastography and shear wave elastography. Future directions of ultrasound elastography in the musculoskeletal system will also be discussed.
Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine
2014-01-01
The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.
Real-time shear wave elastography may predict autoimmune thyroid disease.
Vlad, Mihaela; Golu, Ioana; Bota, Simona; Vlad, Adrian; Timar, Bogdan; Timar, Romulus; Sporea, Ioan
2015-05-01
To evaluate and compare the values of the elasticity index as measured by shear wave elastography in healthy subjects and in patients with autoimmune thyroid disease, in order to establish if this investigation can predict the occurrence of autoimmune thyroid disease. A total of 104 cases were included in the study group: 91 women (87.5%), out of which 52 (50%) with autoimmune thyroid disease diagnosed by specific tests and 52 (50%) healthy volunteers, matched for age and gender. For all the subjects, three measurements were performed on each thyroid lobe and a mean value was calculated. The data were expressed in kPa. The investigation was performed with an Aixplorer system (SuperSonic Imagine, France), using a linear high-resolution 15-4 MHz transducer. The mean value for the elasticity index was similar in the right and the left thyroid lobes, both in normal subjects and in patients with autoimmune thyroid disease: 19.6 ± 6.6 vs. 19.5 ± 6.8 kPa, p = 0.92, and 26.6 ± 10.0 vs. 25.8 ± 11.7 kPa, p = 0.71, respectively. This parameter was significantly higher in patients with autoimmune thyroid disease than in controls (p < 0.001). For a cut-off value of 22.3 kPa, which resulted in the highest sum of sensitivity and specificity, the elasticity index assessed by shear wave elastography had a sensitivity of 59.6% and a specificity of 76.9% (AUROC = 0.71; p < 0.001) for predicting the presence of autoimmune thyroid disease. Quantitative elasticity index measured by shear wave elastography was significantly higher in autoimmune thyroid disease than in normal thyroid parenchyma and may predict the presence of autoimmune thyroid disease.
Magnetic resonance elastography to observe deep areas: comparison of external vibration systems.
Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo
2007-01-01
MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves deep inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus deep inside the body.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2015-03-01
Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.
Shin, Hyun Joo; Kim, Myung-Joon; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung
2016-10-01
To investigate consistency in shear wave velocities (SWVs) on ultrasound elastography using different machines, transducers and acquisition depths. The SWVs were measured using an elasticity phantom with a Young's modulus of 16.9 kPa, with three recently introduced ultrasound elastography machines (A, B and C from different vendors) and two transducers (low and high frequencies) at four depths (2, 3, 4 and 5 cm). Mean SWVs from 15 measurements and coefficient of variations (CVs) were compared between three machines, two transducers and four acquisition depths. The SWVs using the high frequency transducer were not acquired at 5 cm depth in machine B, and a high frequency transducer was not available in machine C. The mean SWVs in the three machines were different (p ≤ 0.002). The CVs were 0-0.09 in three machines. The mean SWVs between the two transducers were different (p < 0.001) except at 4 and 5 cm depths in machine A. The SWVs were affected by the acquisition depths in all conditions (p < 0.001). There is considerable difference in SWVs on ultrasound elastography depending on different machines, transducers and acquisition depths. Caution is needed when using the cutoff values of SWVs in different conditions. • The shear wave velocities (SWVs) are different between different ultrasound elastography machines • The SWVs are also different between different transducers and acquisition depths • Caution is needed when using the cutoff SWVs measured under different conditions.
Liver elastography, comments on EFSUMB elastography guidelines 2013
Cui, Xin-Wu; Friedrich-Rust, Mireen; Molo, Chiara De; Ignee, Andre; Schreiber-Dietrich, Dagmar; Dietrich, Christoph F
2013-01-01
Recently the European Federation of Societies for Ultrasound in Medicine and Biology Guidelines and Recommendations have been published assessing the clinical use of ultrasound elastography. The document is intended to form a reference and to guide clinical users in a practical way. They give practical advice for the use and interpretation. Liver disease forms the largest section, reflecting published experience to date including evidence from meta-analyses with shear wave and strain elastography. In this review comments and illustrations on the guidelines are given. PMID:24151351
Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki
2017-11-01
Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael
2015-11-07
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8 ± 0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07 ± 0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.
Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam
2013-02-01
Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al(2)O(3) particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al(2)O(3). The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al(2)O(3) phantom at a depth of 52.4 and 36.6 mm, respectively. PAA mixed with Al(2)O(3) provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue.
Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam
2013-01-01
Purpose: Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Methods: Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Results: Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al2O3 particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al2O3. The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al2O3 phantom at a depth of 52.4 and 36.6 mm, respectively. Conclusions: PAA mixed with Al2O3 provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue. PMID:23387774
Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong
2017-08-01
To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P < 0.05). SWS SD was identified to be the strongest factor associated with the QSWP, followed by tumor malignancy and the depth of the lesion. In conclusion, SWATC display may be useful for characterization of breast lesions.
Building an open-source simulation platform of acoustic radiation force-based breast elastography
NASA Astrophysics Data System (ADS)
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-03-01
Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-01-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
NASA Astrophysics Data System (ADS)
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-04-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-03-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Real-Time Palpation Imaging for Improved Detection and Discrimination of Breast Abnormalities
2005-07-01
contrasts are also in the range of elastic contrasts in terms of shear storage moduli for 85 Hz shear waves in in vivo MR breast elastography (Sinkus et al... elastography ) may aid the differentiation of benign and malignant solid breast masses .(4-19) This research is based on the fact that benign and malignant...on 445 breast masses of which 42 were discarded based on our exclusion criteria leaving 403 (157 malignant-39.0%; 246 benign-61.0%) lesions as
Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki
2015-12-01
Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rjosk-Dendorfer, D; Reichelt, A; Clevert, D-A
2014-03-01
In recent years the use of elastography in addition to sonography has become a routine clinical tool for the characterization of breast masses. Whereas free hand compression elastography results in qualitative imaging of tissue stiffness due to induced compression, shear wave elastography displays quantitative information of tissue displacement. Recent studies have investigated the use of elastography in addition to sonography and improvement of specificity in differentiating benign from malignant breast masses could be shown. Therefore, additional use of elastography could help to reduce the number of unnecessary biopsies in benign breast lesions especially in category IV lesions of the ultrasound breast imaging reporting data system (US-BI-RADS).
Noorkoiv, Marika; Baltzopoulos, Vasilios; Gokalp, Hulya; Marzilger, Robert; Mohagheghi, Amir A.
2018-01-01
Aims The aim of this study was to examine the acute effects of dynamic stretching (DS) exercise on passive ankle range of motion (RoM), resting localized muscle stiffness, as measured by shear wave speed (SWS) of medial gastrocnemius muscle, fascicle strain, and thickness. Methods/Results Twenty-three participants performed a DS protocol. Before and after stretching, SWS was measured in the belly of the resting medial gastrocnemius muscle (MGM) using shear wave elastography. DS produced small improvements in maximum dorsiflexion (+1.5° ±1.5; mean difference ±90% confidence limits) and maximum plantarflexion (+2.3° ±1.8), a small decrease in fascicle strain (-2.6% ±4.4) and a small increase in SWS at neutral resting angle (+11.4% ±1.5). There was also a small increase in muscle thickness (+4.1mm ±2.0). Conclusions Through the use of elastography, this is the first study to suggest that DS increases muscle stiffness, decreases fascicle strain and increases muscle thickness as a result of improved RoM. These results can be beneficial to coaches, exercise and clinical scientists when choosing DS as a muscle conditioning or rehabilitation intervention. PMID:29723229
Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent
2012-10-01
Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.
Hatta, Taku; Giambini, Hugo; Zhao, Chunfeng; Sperling, John W; Steinmann, Scott P; Itoi, Eiji; An, Kai-Nan
2016-01-01
Although the margin convergence (MC) technique has been recognized as an option for rotator cuff repair, little is known about the biomechanical effect on repaired rotator cuff muscle, especially after supplemented footprint repair. The purpose of this study was to assess the passive stiffness changes of the supraspinatus (SSP) muscle after MC techniques using shear wave elastography (SWE). A 30 × 40-mm U-shaped rotator cuff tear was created in 8 cadaveric shoulders. Each specimen was repaired with 6 types of MC technique (1-, 2-, 3-suture MC with/without footprint repair, in a random order) at 30° glenohumeral abduction. Passive stiffness of four anatomical regions in the SSP muscle was measured based on an established SWE method. Data were obtained from the SSP muscle at 0° abduction under 8 different conditions: intact (before making a tear), torn, and postoperative conditions with 6 techniques. MC techniques using 1-, or 2-suture combined with footprint repair showed significantly higher stiffness values than the intact condition. Passive stiffness of the SSP muscle was highest after a 1-suture MC with footprint repair for all regions when compared among all repair procedures. There was no significant difference between the intact condition and a 3-suture MC with footprint repair. MC techniques with single stitch and subsequent footprint repair may have adverse effects on muscle properties and tensile loading on repair, increasing the risk of retear of repairs. Adding more MC stitches could reverse these adverse effects.
NASA Astrophysics Data System (ADS)
Arani, Arvin; Huang, Yuexi; Bronskill, Michael; Chopra, Rajiv
2009-04-01
MRI-guided transurethral ultrasound therapy is being developed as a minimally invasive treatment for localized prostate cancer. The capability to identify target regions prior to therapy would provide an integrated diagnostic and therapeutic solution to the management of this disease. The objective of this project is to evaluate the feasibility of performing elastography using a transurethral actuator. Shear waves were generated in the prostate by vibrating the transurethral actuator longitudinally and resolving the tissue displacements with a 1.5 Tesla MRI. A piezoelectric actuator was used to vibrate the transurethral device with an amplitude of 32 um at frequencies of 100 and 250 Hz. GRE imaging sequences with displacement encoded along the direction of vibration were acquired transverse and parallel to the rod to visualize the dynamics of wave propagation. Experiments were performed in phantoms (8% gelatin) and in a canine model (n = 5). Vibration was achieved in the MRI without significant loss of SNR in the images. The shear waves produced in the gel were cylindrical in nature, and extended along the length of the rod. Shear wave propagation in the canine prostate gland was observed at 100 and 250 Hz, and shear modulus values agreed with previously published values.
An ultrasound transient elastography system with coded excitation.
Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang
2017-06-28
Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
Comparative study of shear wave-based elastography techniques in optical coherence tomography
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Yao, Jianing; Meemon, Panomsak; Parker, Kevin J.
2017-03-01
We compare five optical coherence elastography techniques able to estimate the shear speed of waves generated by one and two sources of excitation. The first two techniques make use of one piezoelectric actuator in order to produce a continuous shear wave propagation or a tone-burst propagation (TBP) of 400 Hz over a gelatin tissue-mimicking phantom. The remaining techniques utilize a second actuator located on the opposite side of the region of interest in order to create three types of interference patterns: crawling waves, swept crawling waves, and standing waves, depending on the selection of the frequency difference between the two actuators. We evaluated accuracy, contrast to noise ratio, resolution, and acquisition time for each technique during experiments. Numerical simulations were also performed in order to support the experimental findings. Results suggest that in the presence of strong internal reflections, single source methods are more accurate and less variable when compared to the two-actuator methods. In particular, TBP reports the best performance with an accuracy error <4.1%. Finally, the TBP was tested in a fresh chicken tibialis anterior muscle with a localized thermally ablated lesion in order to evaluate its performance in biological tissue.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.
2016-03-01
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.
Ability of Magnetic Resonance Elastography to Assess Taut Bands
Chen, Qingshan; Basford, Jeffery; An, Kai-Nan
2008-01-01
Background Myofascial taut bands are central to diagnosis of myofascial pain. Despite their importance, we still lack either a laboratory test or imaging technique capable of objectively confirming either their nature or location. This study explores the ability of magnetic resonance elastography to localize and investigate the mechanical properties of myofascial taut bands on the basis of their effects on shear wave propagation. Methods This study was conducted in three phases. The first involved the imaging of taut bands in gel phantoms, the second a finite element modeling of the phantom experiment, and the third a preliminary evaluation involving eight human subjects-four of whom had, and four of whom did not have myofascial pain. Experiments were performed with a 1.5 Tesla magnetic resonance imaging scanner. Shear wave propagation was imaged and shear stiffness was reconstructed using matched filtering stiffness inversion algorithms. Findings The gel phantom imaging and finite element calculation experiments supported our hypothesis that taut bands can be imaged based on its outstanding shear stiffness. The preliminary human study showed a statistically significant 50-100% (p=0.01) increase of shear stiffness in the taut band regions of the involved subjects relative to that of the controls or in nearby uninvolved muscle. Interpretation This study suggests that magnetic resonance elastography may have a potential for objectively characterizing myofascial taut bands that have been up to now detectable only by the clinician's fingers. PMID:18206282
Comb-push ultrasound shear elastography of breast masses: initial results show promise.
Denis, Max; Mehrmohammadi, Mohammad; Song, Pengfei; Meixner, Duane D; Fazzio, Robert T; Pruthi, Sandhya; Whaley, Dana H; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-01-01
To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE) for classification of breast masses. CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF) beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results. Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s) in comparison to benign masses (3.65 ± 1.36 m/s). Therefore, the stiffness of the mass quantified by the Young's modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC), the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC). CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses.
Suydam, Stephen M; Soulas, Elizabeth M; Elliott, Dawn M; Silbernagel, Karin Gravare; Buchanan, Thomas S; Cortes, Daniel H
2015-06-01
Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2 kPa and 141.0 Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p = 0.013, 0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Suydam, Stephen M.; Soulas, Elizabeth M.; Elliott, Dawn M.; Silbernagel, Karin Gravare; Buchanan, Thomas S.; Cortes, Daniel H.
2015-01-01
Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2kPa and 141.0Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p=0.013,0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. PMID:25882209
Practice guideline for the performance of breast ultrasound elastography.
Lee, Su Hyun; Chang, Jung Min; Cho, Nariya; Koo, Hye Ryoung; Yi, Ann; Kim, Seung Ja; Youk, Ji Hyun; Son, Eun Ju; Choi, Seon Hyeong; Kook, Shin Ho; Chung, Jin; Cha, Eun Suk; Park, Jeong Seon; Jung, Hae Kyoung; Ko, Kyung Hee; Choi, Hye Young; Ryu, Eun Bi; Moon, Woo Kyung
2014-01-01
Ultrasound (US) elastography is a valuable imaging technique for tissue characterization. Two main types of elastography, strain and shear-wave, are commonly used to image breast tissue. The use of elastography is expected to increase, particularly with the increased use of US for breast screening. Recently, the US elastographic features of breast masses have been incorporated into the 2nd edition of the Breast Imaging Reporting and Data System (BI-RADS) US lexicon as associated findings. This review suggests practical guidelines for breast US elastography in consensus with the Korean Breast Elastography Study Group, which was formed in August 2013 to perform a multicenter prospective study on the use of elastography for US breast screening. This article is focused on the role of elastography in combination with B-mode US for the evaluation of breast masses. Practical tips for adequate data acquisition and the interpretation of elastography results are also presented.
Imaging Feedback of Histotripsy Treatments Using Ultrasound Shear Wave Elastography
Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.
2013-01-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young’s modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young’s modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions’ Young’s modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change. PMID:22711412
Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2012-06-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change.
Sağlam, Dilek; Bilgici, Meltem Ceyhan; Kara, Cengiz; Yılmaz, Gülay Can; Çamlıdağ, İlkay
2017-11-01
The aim of this study is to determine the effects of type 1 diabetes on pancreas and kidney elasticity in children, using acoustic radiation force impulse ultrasound elastography. Sixty autoantibody-positive patients with type 1 diabetes (45% girls; mean [± SD] age, 11.7 ± 4.4 years; range, 1.9-19.3 years) admitted to the pediatric endocrinology outpatient clinic and 32 healthy children (50% girls; mean age, 10.2 ± 3.8 years; range, 2.1-17.3 years) were included in the study. Acoustic radiation force impulse elastography measurements were performed of the kidneys and pancreas in both groups. Body mass index, duration of diabetes, HbA1c levels, and insulin dosage of patients with type 1 diabetes were recorded. The mean shear-wave velocities of the pancreas were 0.99 ± 0.25 m/s in patients with type 1 diabetes and 1.09 ± 0.22 m/s in healthy control subjects; the difference was not significant (p = 0.08). The median shear-wave velocities of the right and left kidneys in patients with type 1 diabetes were 2.43 ± 0.29 and 2.47 ± 0.25 m/s, respectively. There were no significant differences in the shear-wave velocities of the right and left kidneys between the patients with type 1 diabetes and the healthy control subjects (p = 0.91 and p = 0.73, respectively). Correlation analysis showed no correlation between the shear-wave velocities of the pancreas and kidney versus HbA1c level, duration of diabetes, insulin dosage, height, weight, and body mass index of the patients with type 1 diabetes. The current study showed no significant difference in the shear-wave velocity of kidneys in children with type 1 diabetes with normoalbuminuria compared with the healthy control subjects. We also observed that the shear-wave velocity of the pancreas in children with type 1 diabetes and healthy control subjects did not differ significantly.
Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.
2014-01-01
Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395
Comb-push Ultrasound Shear Elastography (CUSE) with Various Ultrasound Push Beams
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Greenleaf, James F.; Chen, Shigao
2013-01-01
Comb-push Ultrasound Shear Elastography (CUSE) has recently been shown to be a fast and accurate two-dimensional (2D) elasticity imaging technique that can provide a full field-of- view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE – Focused CUSE (F-CUSE) and Marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g. kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging. PMID:23591479
Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Zhao, Heng; Greenleaf, James F; Chen, Shigao
2013-08-01
Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE-focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.
Compression-sensitive magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf
2013-08-01
Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.
Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki
2014-05-01
The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.
In vivo time-harmonic multifrequency elastography of the human liver
NASA Astrophysics Data System (ADS)
Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf
2014-04-01
Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.
Atay, Stefan M.; Kroenke, Christopher D.; Sabet, Arash; Bayly, Philip V.
2008-01-01
In this study, the magnetic resonance elastography (MRE) technique was used to estimate the dynamic shear modulus of mouse brain tissue in vivo. The technique allows visualization and measurement of mechanical shear waves excited by lateral vibration of the skull. Quantitative measurements of displacement in three dimensions (3-D) during vibration at 1200 Hz were obtained by applying oscillatory magnetic field gradients at the same frequency during an MR imaging sequence. Contrast in the resulting phase images of the mouse brain is proportional to displacement. To obtain estimates of shear modulus, measured displacement fields were fitted to the shear wave equation. Validation of the procedure was performed on gel characterized by independent rheometry tests and on data from finite element simulations. Brain tissue is, in reality, viscoelastic and nonlinear. The current estimates of dynamic shear modulus are strictly relevant only to small oscillations at a specific frequency, but these estimates may be obtained at high frequencies (and thus high deformation rates), non-invasively throughout the brain. These data complement measurements of nonlinear viscoelastic properties obtained by others at slower rates, either ex vivo or invasively. PMID:18412500
Comb-Push Ultrasound Shear Elastography of Breast Masses: Initial Results Show Promise
Song, Pengfei; Fazzio, Robert T.; Pruthi, Sandhya; Whaley, Dana H.; Chen, Shigao; Fatemi, Mostafa
2015-01-01
Purpose or Objective To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE) for classification of breast masses. Materials and Methods CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF) beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results. Results Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s) in comparison to benign masses (3.65 ± 1.36 m/s). Therefore, the stiffness of the mass quantified by the Young’s modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC), the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC). Conclusion CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses. PMID:25774978
Bharat, Shyam; Varghese, Tomy
2010-10-01
Quasi-static electrode displacement elastography, used for in-vivo imaging of radiofrequency ablation-induced lesions in abdominal organs such as the liver and kidney, is extended in this paper to dynamic vibrational perturbations of the ablation electrode. Propagation of the resulting shear waves into adjoining regions of tissue can be tracked and the shear wave velocity used to quantify the shear (and thereby Young's) modulus of tissue. The algorithm used utilizes the time-to-peak displacement data (obtained from finite element analyses) to calculate the speed of shear wave propagation in the material. The simulation results presented illustrate the feasibility of estimating the Young's modulus of tissue and is promising for characterizing the stiffness of radiofrequency-ablated thermal lesions and surrounding normal tissue.
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
Elyas, Eli; Grimwood, Alex; Erler, Janine T.; Robinson, Simon P.; Cox, Thomas R.; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C.
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms. PMID:28107368
Anderson localization of shear waves observed by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Klatt, D.; Braun, J.; Sack, I.
2010-07-01
In this letter we present for the first time an experimental investigation of shear wave localization using motion-sensitive magnetic resonance imaging (MRI). Shear wave localization was studied in gel phantoms containing arrays of randomly positioned parallel glass rods. The phantoms were exposed to continuous harmonic vibrations in a frequency range from 25 to 175 Hz, yielding wavelengths on the order of the elastic mean free path, i.e. the Ioffe-Regel criterion of Anderson localization was satisfied. The experimental setup was further chosen such that purely shear horizontal waves were induced to avoid effects due to mode conversion and pressure waves. Analysis of the distribution of shear wave intensity in experiments and simulations revealed a significant deviation from Rayleigh statistics indicating that shear wave energy is localized. This observation is further supported by experiments on weakly scattering samples exhibiting Rayleigh statistics and an analysis of the multifractality of wave functions. Our results suggest that motion-sensitive MRI is a promising tool for studying Anderson localization of time-harmonic shear waves, which are increasingly used in dynamic elastography.
Trottmann, M; Rübenthaler, J; Marcon, J; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
To investigate the difference of standard values of Supersonic shear imaging (SSI) and Acoustic Radiation Force Impulse (ARFI) technique in the evaluation of testicular tissue stiffness in vivo. 58 healthy male testes were examined using B-mode sonography and ARFI and SSI. B-mode sonography was performed in order to scan the testis for pathologies followed by performance of real-time elastography in three predefined areas (upper pole, central portion and lower pole) using the SuperSonic® Aixplorer ultrasound device (SuperSonic Imagine, Aix-en-Provence, France). Afterwards a second assessment of the same testicular regions by elastography followed using the ARFI technique of the Siemens Acuson 2000™ ultrasound device (Siemens Health Care, Germany). Values of shear wave velocity were described in m/s. Parameters of elastography techniques were compared using paired sample t-test. The values of SSI were all significantly higher in all measured areas compared to ARFI (p < 0.001 to p = 0.015). Quantitatively there was a higher mean SSI wave velocity value of 1,1 compared to 0.8 m/s measured by ARFI. SSI values are significantly higher than ARFI values when measuring the stiffness of testicular tissue and should only be compared with caution.
Reverberant shear wave fields and estimation of tissue properties
NASA Astrophysics Data System (ADS)
Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin
2017-02-01
The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.
2018-01-01
This review aimed to describe the state of the art in muscle-tendon unit (MTU) assessment by supersonic shear wave imaging (SSI) elastography in states of muscle contraction and stretching, during aging, and in response to injury and therapeutic interventions. A consensus exists that MTU elasticity increases during passive stretching or contraction, and decreases after static stretching, electrostimulation, massage, and dry needling. There is currently no agreement regarding changes in the MTU due to aging and injury. Currently, the application of SSI for the purpose of diagnosis, rehabilitation, and physical training remains limited by a number of issues, including the lack of normative value ranges, the lack of consensus regarding the appropriate terminology, and an inadequate understanding of the main technical limitations of this novel technology. PMID:28607322
Chino, Kentaro; Takahashi, Hideyuki
2016-04-01
Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.
Ultrasound elastography: principles, techniques, and clinical applications.
Dewall, Ryan J
2013-01-01
Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.
Yavuz, Alpaslan; Yokus, Adem; Taken, Kerem; Batur, Abdussamet; Ozgokce, Mesut; Arslan, Harun
2018-05-02
To evaluate the reliability of testicular stiffness quantification using shear wave elastography in predicting the fertility potential of males and for the pre-diagnosis of disorders based upon sperm quantification. One hundred males between the ages of 19-49 years (mean age of 28.77±6.11), ninety of whom with complaints of infertility, were enrolled in this prospective study. Scrotal grey-scale, Doppler ultrasound (US), and mean testicular shear wave velocity quantifications (SWVQs) were performed. The volumes of testes, as well as the grade of varicocele if present, were recorded. The mean shear wave velocity values (SWVVs) of each testis and a mean testicular SWVV for each patient were calculated. The semen-analyses of patients were consecutively performed. There were significant negative correlations between the mean testicular SWVVs of patients and their sperm counts or the testis volumes (r=-0.399, r=-0.565; p<0.01, respectively). A positive correlation was found between testicular volumes and sperm counts (r=0.491, p<0.01). The cut-off values regarding mean testicular SWVV to distinguish normal sperm count from azoospermia and oligozoospermia were 1.465 m/s (75.0% sensitivity and 75.0% specificity) and 1.328 m/s (64.3% sensitivity and 68.2% specificity), respectively, and the value to distinguish oligozoospermia from azoospermia was 1.528 m/s (66.7% sensitivity, 60.7% specificity). The mean testicular SWVQ using the ARFI shear wave technique was a reliable, non-invasive and acceptably stable method for predicting male infertility, especially related to sperm count issues.
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2013-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Magin, Richard L
2016-01-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model who took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields. PMID:27579850
NASA Astrophysics Data System (ADS)
Schwartz, Benjamin L.; Yin, Ziying; Magin, Richard L.
2016-09-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
Schwartz, Benjamin L; Yin, Ziying; Magin, Richard L
2016-09-21
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
[Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].
Shin, Jung Woo; Park, Neung Hwa
2016-07-25
The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis.
Zhao, Jingxin; Zhai, Fei; Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun
2017-01-01
Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis.
Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun
2017-01-01
Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis. PMID:28107385
Berg, Wendie A; Mendelson, Ellen B; Cosgrove, David O; Doré, Caroline J; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude
2015-08-01
The objective of our study was to compare quantitative maximum breast mass stiffness on shear-wave elastography (SWE) with histopathologic outcome. From September 2008 through September 2010, at 16 centers in the United States and Europe, 1647 women with a sonographically visible breast mass consented to undergo quantitative SWE in this prospective protocol; 1562 masses in 1562 women had an acceptable reference standard. The quantitative maximum stiffness (termed "Emax") on three acquisitions was recorded for each mass with the range set from 0 (very soft) to 180 kPa (very stiff). The median Emax and interquartile ranges (IQRs) were determined as a function of histopathologic diagnosis and were compared using the Mann-Whitney U test. We considered the impact of mass size on maximum stiffness by performing the same comparisons for masses 9 mm or smaller and those larger than 9 mm in diameter. The median patient age was 50 years (mean, 51.8 years; SD, 14.5 years; range, 21-94 years), and the median lesion diameter was 12 mm (mean, 14 mm; SD, 7.9 mm; range, 1-53 mm). The median Emax of the 1562 masses (32.1% malignant) was 71 kPa (mean, 90 kPa; SD, 65 kPa; IQR, 31-170 kPa). Of 502 malignancies, 23 (4.6%) ductal carcinoma in situ (DCIS) masses had a median Emax of 126 kPa (IQR, 71-180 kPa) and were less stiff than 468 invasive carcinomas (median Emax, 180 kPa [IQR, 138-180 kPa]; p = 0.002). Benign lesions were much softer than malignancies (median Emax, 43 kPa [IQR, 24-83 kPa] vs 180 kPa [IQR, 129-180 kPa]; p < 0.0001). Usual benign lesions were soft, including 62 cases of fibrocystic change (median Emax, 32 kPa; IQR, 24-94 kPa), 51 cases of fibrosis (median Emax, 36 kPa; IQR, 22-102 kPa), and 301 fibroadenomas (median Emax, 45 kPa; IQR, 30-79 kPa). Eight lipomas (median Emax, 14 kPa; IQR, 8-15 kPa), 154 cysts (median Emax, 29 kPa; IQR, 10-58 kPa), and seven lymph nodes (median Emax, 17 kPa; IQR, 9-40 kPa) were softer than usual benign lesions (p < 0.0001 for lipomas and cysts; p = 0.007 for lymph nodes). Risk lesions were slightly stiffer than usual benign lesions (p = 0.002) but tended to be softer than DCIS (p = 0.14). Fat necrosis and abscesses were relatively stiff. Conclusions were similar for both small and large masses. Despite overlap in Emax values, maximum stiffness measured by SWE is a highly effective predictor of the histopathologic severity of sonographically depicted breast masses.
Marangon, Iris; Silva, Amanda A. K.; Guilbert, Thomas; Kolosnjaj-Tabi, Jelena; Marchiol, Carmen; Natkhunarajah, Sharuja; Chamming's, Foucault; Ménard-Moyon, Cécilia; Bianco, Alberto; Gennisson, Jean-Luc; Renault, Gilles; Gazeau, Florence
2017-01-01
Tumor stiffening, stemming from aberrant production and organization of extracellular matrix (ECM), has been considered a predictive marker of tumor malignancy, non-invasively assessed by ultrasound shear wave elastography (SWE). Being more than a passive marker, tumor stiffening restricts the delivery of diagnostic and therapeutic agents to the tumor and per se could modulate cellular mechano-signaling, tissue inflammation and tumor progression. Current strategies to modify the tumor extracellular matrix are based on ECM-targeting chemical agents but also showed deleterious systemic effects. On-demand excitable nanomaterials have shown their ability to perturb the tumor microenvironment in a spatiotemporal-controlled manner and synergistically with chemotherapy. Here, we investigated the evolution of tumor stiffness as well as tumor integrity and progression, under the effect of mild hyperthermia and thermal ablation generated by light-exposed multi-walled carbon nanotubes (MWCNTs) in an epidermoid carcinoma mouse xenograft. SWE was used for real-time mapping of the tumor stiffness, both during the two near infrared irradiation sessions and over the days after the treatment. We observed a transient and reversible stiffening of the tumor tissue during laser irradiation, which was lowered at the second session of mild hyperthermia or photoablation. In contrast, over the days following photothermal treatment, the treated tumors exhibited a significant softening together with volume reduction, whereas non-treated growing tumors showed an increase of tumor rigidity. The organization of the collagen matrix and the distribution of CNTs revealed a spatio-temporal correlation between the presence of nanoheaters and the damages on collagen and cells. This study highlights nanohyperthermia as a promising adjuvant strategy to reverse tumor stiffening and normalize the mechanical tumor environment. PMID:28042338
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
Piscaglia, Fabio; Marinelli, Sara; Bota, Simona; Serra, Carla; Venerandi, Laura; Leoni, Simona; Salvatore, Veronica
2014-03-01
This review illustrates the state of the art clinical applications and the future perspectives of ultrasound elastographic methods for the evaluation of chronic liver diseases, including the most widely used and validated technique, transient elastography, followed by shear wave elastography and strain imaging elastography. Liver ultrasound elastography allows the non-invasive evaluation of liver stiffness, providing information regarding the stage of fibrosis, comparable to liver biopsy which is still considered the gold standard; in this way, it can help physicians in managing patients, including the decision as to when to start antiviral treatment. The characterization of focal liver lesions and the prognostic role of the elastographic technique in the prediction of complications of cirrhosis are still under investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Analysis of Transient Shear Wave in Lossy Media.
Parker, Kevin J; Ormachea, Juvenal; Will, Scott; Hah, Zaegyoo
2018-07-01
The propagation of shear waves from impulsive forces is an important topic in elastography. Observations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some underlying models of shear wave propagation. The models typically include specific choices of the spatial and temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheological model of the tissue's viscoelastic properties. Estimators of attenuation and shear wave speed are derived from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements of phase velocity. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Novel Method for Vessel Cross-Sectional Shear Wave Imaging.
He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen
2017-07-01
Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Diagnostic performance of shear wave elastography of the breast according to scanning orientation.
Kim, Solip; Choi, SeonHyeong; Choi, Yoonjung; Kook, Shin-Ho; Park, Hee Jin; Chung, Eun Chul
2014-10-01
To evaluate the influence of the scanning orientation on diagnostic performance measured by the mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio on ultrasound-based shear wave elastography in differentiating breast cancers from benign lesions. In this study, a total of 260 breast masses from 235 consecutive patients were observed from March 2012 to November 2012. For each lesion, the mean elasticity value, maximum elasticity value, and fat-to-lesion ratio were measured along two orthogonal directions, and all values were compared with pathologic results. There were 59 malignant and 201 benign lesions. Malignant masses showed higher mean elasticity, maximum elasticity, and fat-to-lesion ratio values than benign lesions (P < .0001). The areas under the receiver operating characteristic curves were as follows: average mean elasticity on both views, 0.870; mean elasticity on the transverse view, 0.866; maximum elasticity on both views, 0.865; maximum elasticity on the transverse view, 0.864; mean elasticity on the longitudinal view, 0.849; fat-to-lesion ratio on both views, 0.849; maximum elasticity on the longitudinal view, 0.845; fat-to-lesion ratio on the transverse view, 0.841; and fat-to-lesion ratio on the longitudinal view, 0.814. Intraclass correlation coefficients for agreement between the scanning directions were as follows: mean elasticity, 0.852; maximum elasticity, 0.842; fat-to-lesion ratio, 0.746, for masses; and mean elasticity, 0.392, for anterior mammary fat. Mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio values were helpful in differentiating benign and malignant breast masses. The scanning orientation did not significantly affect the diagnostic performance of shear wave elastography for breast masses. © 2014 by the American Institute of Ultrasound in Medicine.
Liu, Bo-Ji; Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Zhang, Yi-Feng; Xu, Jun-Mei; Liu, Chang; Liu, Lin-Na; Li, Xiao-Long; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao
2015-12-01
The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77-0.84) and 0.84 (95% CI: 0.81-0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56-7.62) and 0.23 (95% CI: 0.17-0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58-52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Changes in ultrasound shear wave elastography properties of normal breast during menstrual cycle.
Rzymski, P; Skórzewska, A; Opala, T
2011-01-01
Elastography is a novel technique capable of noninvasively assessing the elastic properties of breast tissue. Because the risk factors for breast cancer include hormonal status and proliferation, the aim of our study was to estimate the intensity of sonoelastographic changes during the menstrual cycle. Eight women aged 20-23 years with regular menstrual cycles underwent B-mode sonography and sonoelastography (ShearWave on Aixplorer, France) on days 3, 10, 17 and 24. Mean values of glandular and fat tissue elasticity did not change statistically significantly during the menstrual cycle as well as glandular to fat tissue ratio. During almost the whole cycle differences between outer and inner quadrants in glandular and fat tissue were statistically significant. The lowest values of elasticity occurred on the 10th day and the highest on the 24th of the menstrual cycle. There were statistically significant differences in elasticity between inner and outer quadrants of both breasts close to day 3 and 17 of the menstrual cycle.
Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping
2017-01-01
Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria
2015-01-01
Background. Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence. PMID:26609528
Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria
2015-01-01
Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.
Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong
2018-04-13
To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Barr, Richard G; Zhang, Zheng
2015-04-01
To determine whether addition of quality measure (QM) of shear-wave (SW) velocity (Vs) estimation can increase SW elastography sensitivity for breast cancer. With written informed consent, this institutional review board-approved, HIPAA-compliant study included 143 women (mean age, 48.5 years ± 8.7) scheduled for breast biopsy. Mean lesion size was 16.4 mm ± 11.8; 95 (66%) lesions were benign; 48 (34%), malignant. If more than one lesion was present, lesion with highest Breast Imaging Reporting and Data System (BI-RADS) category was chosen. If there were more than one with highest BI-RADS category, a lesion was randomly selected. Conventional ultrasonography (US), strain elastography, and SW elastography were performed with QM. QM assesses SW quality to provide accurate Vs. Lesions were evaluated for Vs and QM (high or low). Lesions with Vs of less than 4.5 m/sec were classified benign; lesions with Vs of 4.5 m/sec or greater, malignant. Results were correlated with pathologic findings. Vs data with or without incorporating QM were used to determine SW elastography diagnostic performance. Binomial proportions and exact 95% confidence intervals (CIs) were calculated. In 95 benign lesions, 13 (14%) had no SW elastography signal; 77 (81%), Vs of less than 4.5 m/sec; and five (5%), Vs of 4.5 m/sec or greater. In 48 malignant lesions, eight (17%) had no SW elastography signal; 20 (42%), Vs of less than 4.5 m/sec; and 20 (42%), V of 4.5 m/sec or greater. QM was low in 17 of 20 (85%) malignant lesions with Vs of less than 4.5 m/sec. Without QM, using Vs of 4.5 m/sec or greater as test positive, SW elastography had lesion-level sensitivity of 50% (95% CI: 34%, 66%); specificity, 94% (95% CI: 86%, 98%); positive predictive value (PPV), 80% (95% CI: 59%, 93%); and negative predictive value (NPV), 79% (95% CI: 70%, 87%). Using QM where additional lesions with both low Vs and low QM were treated as test positive, SW elastography had lesion-level sensitivity of 93% (95% CI: 80%, 98%); specificity, 89% (95% CI: 80%, 95%); PPV, 80% (95% CI: 66%, 91%); and NPV, 96% (95% CI: 89%, 99%). Addition of QM can improve SW elastography sensitivity, with no significant change in specificity. © RSNA, 2014 Online supplemental material is available for this article.
WE-E-9A-01: Ultrasound Elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emelianov, S; Hall, T; Bouchard, R
2014-06-15
Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement and imaging can contribute to diagnosis of breast and prostate cancer, staging of liver fibrosis, age estimation of deep veinous fhrombosis, confirmation of thermal lesions in the liver after RF ablation.« less
Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes.
Detorakis, Efstathios T; Drakonaki, Eleni E; Ginis, Harilaos; Karyotakis, Nikolaos; Pallikaris, Ioannis G
2014-01-01
A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia.
Using magnetic resonance elastography to assess the dynamic mechanical properties of cartilage
NASA Astrophysics Data System (ADS)
Lopez, Orlando; Amrami, Kimberly; Rossman, Phillip; Ehman, Richard L.
2004-04-01
This work explored the feasibility of using Magnetic Resonance Elastography (MRE) technology to enable in vitro quantification of dynamic mechanical behavior of cartilage through its thickness. A customized system for MRE of cartilage was designed to include components for adequate generation and detection of high frequency mechanical shear waves within small and stiff materials. The system included components for mechanical excitation, motion encoding, and imaging of small samples. Limitations in sensitivity to motion encoding of high frequency propagating mechanical waves using a whole body coil (i.e. Gmax = 2.2 G/cm) required the design of a local gradient coil system to achieve a gain in gradient strength of at least 5 times. The performance of the new system was tested using various cartilage-mimicking phantom materials. MRE of a stiff 5% agar gelatin phantom demonstrated gains in sensitivity to motion encoding of high frequency mechanical waves in cartilage like materials. MRE of fetal bovine cartilage samples yielded a distribution of shear stiffness within the thickness of the cartilage similar to values found in the literature, hence, suggesting the feasibility of using MRE to non-invasively and directly assess the dynamic mechanical properties of cartilage.
Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.
2017-01-01
Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760
Nakamura, Masatoshi; Hasegawa, Satoshi; Umegaki, Hiroki; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ibuki, Satoko; Ichihashi, Noriaki
2016-08-01
Hamstring muscle strain is one of the most common injuries in sports. Therefore, to investigate the factors influencing hamstring strain, the differences in passive tension applied to the hamstring muscles at the same knee and hip positions as during terminal swing phase would be useful information. In addition, passive tension applied to the hamstrings could change with anterior or posterior tilt of the pelvis. The aims of this study were to investigate the difference in passive tension applied to the individual muscles composing the hamstrings during passive elongation, and to investigate the effect of pelvic position on passive tension. Fifteen healthy men volunteered for this study. The subject lay supine with the angle of the trunk axis to the femur of their dominant leg at 70° and the knee angle of the dominant leg fixed at 30° flexion. In three pelvic positions ("Non-Tilt", "Anterior-Tilt" and "Posterior-Tilt"), the shear elastic modulus of each muscle composing the hamstrings (semitendinosus, semimembranosus, and biceps femoris) was measured using an ultrasound shear wave elastography. The shear elastic modulus of semimembranosus was significantly higher than the others. Shear elastic modulus of the hamstrings in Anterior-Tilt was significantly higher than in Posterior-Tilt. Passive tension applied to semimembranosus is higher than the other muscles when the hamstring muscle is passively elongated, and passive tension applied to the hamstrings increases with anterior tilt of the pelvis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Update on Breast Cancer Detection Using Comb-push Ultrasound Shear Elastography
Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H.; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-01-01
In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale being that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue’s mechanical properties. CUSE utilizes a simultaneous multiple laterally spaced radiation force (ARF) excitations and detection sequence to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property is quantified by Young’s modulus. In this study, the tissue stiffness of 73 breast masses is interrogated. The mean shear wave speeds for malignant masses (3.42 ± 1.32 m/s) were higher than benign breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p < 0.001), when tissue elasticity is quantified by Young’s modulus. A Young’s modulus > 83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC). PMID:26688871
Update on Breast Cancer Detection Using Comb-Push Ultrasound Shear Elastography.
Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra
2015-09-01
In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale is that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue's mechanical properties. CUSE utilizes a sequence of simultaneous multiple laterally spaced acoustic radiation force (ARF) excitations and detection to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property can be quantified. In this study, the tissue stiffnesses of 73 breast masses were interrogated. The mean shear wave speeds for benign masses (3.42 ± 1.32 m/s) were lower than malignant breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p <; 0.001), when tissue elasticity is quantified by Young's modulus. A Young's modulus >83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with a receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC).
Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L
2007-02-01
The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.
Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Kouichi; Onishi, Takaaki; Nishijo, Hisao
2016-01-01
Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography
NASA Astrophysics Data System (ADS)
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella
2017-08-01
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella
2017-07-12
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L
2016-03-21
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Pre-clinical MR elastography: Principles, techniques, and applications
NASA Astrophysics Data System (ADS)
Bayly, P. V.; Garbow, J. R.
2018-06-01
Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.
High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement
2005-06-01
Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in
Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness
Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan
2014-01-01
The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780
Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves
NASA Astrophysics Data System (ADS)
Greenleaf, James F.; Chen, Shigao
2007-03-01
Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.
Diagnostic features of quantitative comb-push shear elastography for breast lesion differentiation
Denis, Max; Gregory, Adriana; Mehrmohammadi, Mohammad; Kumar, Viksit; Meixner, Duane; Fazzio, Robert T.; Fatemi, Mostafa
2017-01-01
Background Lesion stiffness measured by shear wave elastography has shown to effectively separate benign from malignant breast masses. The aim of this study was to evaluate different aspects of Comb-push Ultrasound Shear Elastography (CUSE) performance in differentiating breast masses. Methods With written signed informed consent, this HIPAA- compliant, IRB approved prospective study included patients from April 2014 through August 2016 with breast masses identified on conventional imaging. Data from 223 patients (19–85 years, mean 59.93±14.96 years) with 227 suspicious breast masses identifiable by ultrasound (mean size 1.83±2.45cm) were analyzed. CUSE was performed on all patients. Three regions of interest (ROI), 3 mm in diameter each, were selected inside the lesion on the B-mode ultrasound which also appeared in the corresponding shear wave map. Lesion elasticity values were measured in terms of the Young’s modulus. In correlation to pathology results, statistical analyses were performed. Results Pathology revealed 108 lesions as malignant and 115 lesions as benign. Additionally, 4 lesions (BI-RADS 2 and 3) were considered benign and were not biopsied. Average lesion stiffness measured by CUSE resulted in 84.26% sensitivity (91 of 108), 89.92% specificity (107 of 119), 85.6% positive predictive value, 89% negative predictive value and 0.91 area under the curve (P<0.0001). Stiffness maps showed spatial continuity such that maximum and average elasticity did not have significantly different results (P > 0.21). Conclusion CUSE was able to distinguish between benign and malignant breast masses with high sensitivity and specificity. Continuity of stiffness maps allowed for choosing multiple quantification ROIs which covered large areas of lesions and resulted in similar diagnostic performance based on average and maximum elasticity. The overall results of this study, highlights the clinical value of CUSE in differentiation of breast masses based on their stiffness. PMID:28257467
Diagnostic features of quantitative comb-push shear elastography for breast lesion differentiation.
Bayat, Mahdi; Denis, Max; Gregory, Adriana; Mehrmohammadi, Mohammad; Kumar, Viksit; Meixner, Duane; Fazzio, Robert T; Fatemi, Mostafa; Alizad, Azra
2017-01-01
Lesion stiffness measured by shear wave elastography has shown to effectively separate benign from malignant breast masses. The aim of this study was to evaluate different aspects of Comb-push Ultrasound Shear Elastography (CUSE) performance in differentiating breast masses. With written signed informed consent, this HIPAA- compliant, IRB approved prospective study included patients from April 2014 through August 2016 with breast masses identified on conventional imaging. Data from 223 patients (19-85 years, mean 59.93±14.96 years) with 227 suspicious breast masses identifiable by ultrasound (mean size 1.83±2.45cm) were analyzed. CUSE was performed on all patients. Three regions of interest (ROI), 3 mm in diameter each, were selected inside the lesion on the B-mode ultrasound which also appeared in the corresponding shear wave map. Lesion elasticity values were measured in terms of the Young's modulus. In correlation to pathology results, statistical analyses were performed. Pathology revealed 108 lesions as malignant and 115 lesions as benign. Additionally, 4 lesions (BI-RADS 2 and 3) were considered benign and were not biopsied. Average lesion stiffness measured by CUSE resulted in 84.26% sensitivity (91 of 108), 89.92% specificity (107 of 119), 85.6% positive predictive value, 89% negative predictive value and 0.91 area under the curve (P<0.0001). Stiffness maps showed spatial continuity such that maximum and average elasticity did not have significantly different results (P > 0.21). CUSE was able to distinguish between benign and malignant breast masses with high sensitivity and specificity. Continuity of stiffness maps allowed for choosing multiple quantification ROIs which covered large areas of lesions and resulted in similar diagnostic performance based on average and maximum elasticity. The overall results of this study, highlights the clinical value of CUSE in differentiation of breast masses based on their stiffness.
Characterization of focal breast lesions by means of elastography.
Fischer, T; Sack, I; Thomas, A
2013-09-01
The modern method of sonoelastography of the breast is used for differentiating focal lesions. This review gives an overview of the different techniques available and discusses their roles in the routine clinical setting. The presented techniques include compression or vibration elastography as well as shear wave elastography. Descriptions of the methods are supplemented by a discussion of the clinical role of each technique based on the most recent literature. We discuss by outlining two recent experimental approaches - MRI and tomosynthesis elastography. Currently available data suggest that elastography is an important supplementary tool for the differentiation of breast tumors under routine clinical conditions. The specificity improves with the immediate availability of additional diagnostic information using real-time techniques and/or the calculation of strain ratios (SR). Elastography is especially helpful in women with involuted breasts for differentiating BI-RADS-US 3 and 4 lesions and for evaluating very small cancers without the typical imaging features of malignancy. Here, elastography techniques are highly specific, while the sensitivity decreases compared to B-mode ultrasound. SR calculation is especially helpful in women who have a high risk of breast cancer and high pretest likelihood. B-mode ultrasound is still the first-line method for the initial evaluation of the breast. If suspicious findings are detected, elastography with or without SR calculation is the most crucial supplementary tool. © Georg Thieme Verlag KG Stuttgart · New York.
Brain palpation from physiological vibrations using MRI.
Zorgani, Ali; Souchon, Rémi; Dinh, Au-Hoang; Chapelon, Jean-Yves; Ménager, Jean-Michel; Lounis, Samir; Rouvière, Olivier; Catheline, Stefan
2015-10-20
We present a magnetic resonance elastography approach for tissue characterization that is inspired by seismic noise correlation and time reversal. The idea consists of extracting the elasticity from the natural shear waves in living tissues that are caused by cardiac motion, blood pulsatility, and any muscle activity. In contrast to other magnetic resonance elastography techniques, this noise-based approach is, thus, passive and broadband and does not need any synchronization with sources. The experimental demonstration is conducted in a calibrated phantom and in vivo in the brain of two healthy volunteers. Potential applications of this "brain palpation" approach for characterizing brain anomalies and diseases are foreseen.
Penzkofer, Tobias; Tempany-Afdhal, Clare M.
2013-01-01
It is now universally recognized that many prostate cancers are over-diagnosed and over-treated. The European Randomized Study of Screening for Prostate Cancer (ERSPC) from 2009 evidenced that, to save one man from death of prostate cancer, over 1,400 men had to be screened, and 48 had to undergo treatment. Detection of prostate cancer is traditionally based upon digital rectal examination (DRE) and measuring serum prostate specific antigen (PSA), followed by ultrasound guided biopsy. The primary role of imaging for the detection and diagnosis of prostate cancer has been transrectal ultrasound (TRUS) guidance during biopsy. MRI has traditionally been used primarily for staging disease in men with biopsy proven cancer. It is has a well-established role in detecting T3 disease, planning radiation therapy, especially 3D conformal or intensity modulated external beam radiation therapy (IMRT), and planning and guiding interstitial seed implant or brachytherapy. New advances have now established prostate MRI can accurately characterize focal lesions within the gland, an ability that has led to new opportunities for improved cancer detection and guidance for biopsy. There are two new approaches to prostate biopsy are under investigation both use pre-biopsy MRI to define potential targets for sampling and then the biopsy is performed either with direct real-time MR guidance (in-bore) or MR fusion/registration with TRUS images (out-of-bore). In-bore or out-of-bore MRI-guided prostate biopsies have the advantage of using the MR target definition for accurate localization and sampling of targets or suspicious lesions. The out-of-bore method uses combined MRI/TRUS with fusion software that provided target localization and increases the sampling accuracy for TRUS-guided biopsies by integrating prostate MRI information with TRUS. Newer parameters for each imaging modality such as sonoelastography or shear wave elastography (SWE), contrast enhanced US (CEUS) and MRI-elastography, show promise to further enrich data sets. PMID:24000133
Thörmer, Gregor; Reiss-Zimmermann, Martin; Otto, Josephin; Hoffmann, Karl-Titus; Moche, Michael; Garnov, Nikita; Kahn, Thomas; Busse, Harald
2013-06-01
To present a novel method for MR elastography (MRE) of the prostate at 3 Tesla using a modified endorectal imaging coil. A commercial endorectal coil was modified to dynamically generate mechanical stress (contraction and dilation) in a prostate phantom with embedded phantom "lesions" (6 mm diameter) and in a porcine model. Resulting tissue displacements were measured with a motion-sensitive EPI sequence at actuation frequencies of 50-200 Hz. Maps of shear modulus G were calculated from the measured phase-difference shear-wave patterns. In the G maps of the phantom, "lesions" were easily discernible against the background. The average G values of regions of interest placed in the "lesion" (8.2 ± 1.9 kPa) were much higher than those in the background (3.6 ± 1.4 kPa) but systematically lower than values reported by the vendor (13.0 ± 1.0 and 6.7 ± 0.7 kPa, respectively). In the porcine model, shear waves could be generated and measured shear moduli were substantially different for muscle (7.1 ± 2.0 kPa), prostate (3.0 ± 1.4 kPa), and bulbourethral gland (5.6 ± 1.9 kPa). An endorectal MRE concept is technically feasible. The presented technique will allow for simultaneous MRE and MRI acquisitions using a commercial base device with minor, MR-conditional modifications. The diagnostic value needs to be determined in further trials. Copyright © 2012 Wiley Periodicals, Inc.
Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki
2017-07-01
Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.
2011-10-01
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.
Okamoto, R J; Clayton, E H; Bayly, P V
2011-10-07
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G″ (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.
Zellers, Jennifer A; Cortes, Daniel H; Silbernagel, Karin Grävare
2016-12-01
Achilles tendon rupture results in significant functional deficits regardless of treatment strategy (surgical versus non-surgical intervention). Recovery post-rupture is highly variable, making comprehensive patient assessment critical. Assessment tools may change along the course of recovery as the patient progresses - for instance, moving from a seated heel-rise to standing heel-rise to jump testing. However, tools that serve as biomarkers for early recovery may be particularly useful in informing clinical decision-making. The purpose of this case report was to describe the progress of a young, athletic individual following Achilles tendon rupture managed non-surgically, using patient reported and functional performance outcome measures and comprehensively evaluating Achilles tendon structure and function incorporating a novel imaging technique (cSWE). The subject is a 26 year-old, female basketball coach who sustained an Achilles tendon rupture and was managed non-surgically. The subject was able to steadily progress using a gradual tendon loading treatment approach well-supported by the literature. Multiple evaluative techniques including the addition of diagnostic ultrasound imaging and continuous shear wave elastography (cSWE) to standard clinical tests and measures were used to assess patient-reported symptoms, tendon structure, and tendon functional performance. Five assessments were performed over the course of 2-14 months post-rupture. By the 14-month follow-up, the subject had achieved full self-reported function. Tendon structural and mechanical properties showed similar shear modulus by 14 months, however, viscosity continued to be lower and tendon length longer on the ruptured side. Functional performance, evidenced by the heel-rise test and jump tests, also showed a positive trajectory, however, deficits of 12-28% remained between ruptured and non-ruptured sides at 14 months. This case report outlines comprehensive outcomes assessment in an athletic individual following non-surgically managed Achilles tendon rupture using a wide variety of tools that capture different aspects of tendon health. Interestingly, the course of recovery of patient symptoms, functional performance, and tendon structure do not occur in the same time frame. Therefore, it is important to assess patient outcomes using multiple outcome measures encompassing different aspects of patient performance to ensure the patient is progressing steadily with rehabilitation. Level 4.
NASA Astrophysics Data System (ADS)
Remenieras, Jean-Pierre; Dejobert, Maelle; Bastard, Cécile; Miette, Véronique; Perarnau, Jean-Marc; Patat, Frédéric
Nonalcoholic fatty liver disease (NAFLD) is characterized by accumulation of fat within the Liver. The main objective of this work is (1) to evaluate the feasibility of measuring in vivo in the liver the shear wave phase velocity dispersion cs(ω) between 20 Hz and 90 Hz using vibration-controlled transient elastography (VCTE); (2) to estimate through the rheological Kelvin-Voigt model the shear elastic μ and shear viscosity η modulus; (3) to correlate the evolution of these viscoelastic parameters on two patients at Tours Hospital with the hepatic fat percentage measured with T1-weighted gradient-echo in-and out-phase MRI sequence. For the first volunteer who has 2% of fat in the liver, we obtained μ = 1233 ± 133 Pa and η = 0.5 ± 0.4 Pa.s. For the patient with 22% of fat, we measure μ = 964 ± 91 Pa and η = 1.77 ± 0.3 Pa.s. In conclusion, this novel method showed to be sensitive in characterizing the visco-elastic properties of fatty liver.
Characterization of glioblastoma in an orthotopic mouse model with magnetic resonance elastography.
Schregel, Katharina; Nazari, Navid; Nowicki, Michal O; Palotai, Miklos; Lawler, Sean E; Sinkus, Ralph; Barbone, Paul E; Patz, Samuel
2017-11-29
Glioblastoma (GBM) is the most common primary brain tumor. It is highly malignant and has a correspondingly poor prognosis. Diagnosis and monitoring are mainly accomplished with MRI, but remain challenging in some cases. Therefore, complementary methods for tumor detection and characterization would be beneficial. Using magnetic resonance elastography (MRE), we performed a longitudinal study of the biomechanical properties of intracranially implanted GBM in mice and compared the results to histopathology. The biomechanical parameters of viscoelastic modulus, shear wave speed and phase angle were significantly lower in tumors compared with healthy brain tissue and decreased over time with tumor progression. Moreover, some MRE parameters revealed sub-regions at later tumor stages, which were not easily detectable on anatomical MRI images. Comparison with histopathology showed that softer tumor regions contained necrosis and patches of viable tumor cells. In contrast, areas of densely packed tumor cells and blood vessels identified with histology coincided with higher values of viscoelastic modulus and shear wave speed. Interestingly, the phase angle was independent from these anatomical variations. In summary, MRE depicted longitudinal and morphological changes in GBM and may prove valuable for tumor characterization in patients. Copyright © 2017 John Wiley & Sons, Ltd.
Ultrafast imaging of cell elasticity with optical microelastography
Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan
2018-01-01
Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488
Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics
Şirli, Roxana; Sporea, Ioan; Popescu, Alina; Dănilă, Mirela
2015-01-01
Progressive fibrosis is encountered in almost all chronic liver diseases. Its clinical signs are diagnostic in advanced cirrhosis, but compensated liver cirrhosis is harder to diagnose. Liver biopsy is still considered the reference method for staging the severity of fibrosis, but due to its drawbacks (inter and intra-observer variability, sampling errors, unequal distribution of fibrosis in the liver, and risk of complications and even death), non-invasive methods were developed to assess fibrosis (serologic and elastographic). Elastographic methods can be ultrasound-based or magnetic resonance imaging-based. All ultrasound-based elastographic methods are valuable for the early diagnosis of cirrhosis, especially transient elastography (TE) and acoustic radiation force impulse (ARFI) elastography, which have similar sensitivities and specificities, although ARFI has better feasibility. TE is a promising method for predicting portal hypertension in cirrhotic patients, but it cannot replace upper digestive endoscopy. The diagnostic accuracy of using ARFI in the liver to predict portal hypertension in cirrhotic patients is debatable, with controversial results in published studies. The accuracy of ARFI elastography may be significantly increased if spleen stiffness is assessed, either alone or in combination with liver stiffness and other parameters. Two-dimensional shear-wave elastography, the ElastPQ technique and strain elastography all need to be evaluated as predictors of portal hypertension. PMID:26556985
Elastography: current status, future prospects, and making it work for you.
Garra, Brian S
2011-09-01
Elastography has emerged as a useful adjunct tool for ultrasound diagnosis. Elastograms are images of tissue stiffness and may be in color, grayscale, or a combination of the two. The first and most common application of elastography is for the diagnosis of breast lesions where studies have shown an area under the receiver operating characteristic curve of 0.88 to 0.95 for distinguishing cancer from benign lesions. The technique is also useful for the diagnosis of complex cysts, although different scanners may vary in how they display such lesions. Recent advances in elastography include quantification using strain ratios, acoustic radiation force impulse imaging, and shear wave velocity estimation. These are useful not only for characterizing focal masses but also for diagnosing diffuse organ diseases such as liver cirrhosis. Other near term potential applications for elastography include characterization of thyroid nodules and lymph node evaluation for metastatic disease. Prostate cancer detection is also a potential application, but obtaining high-quality elastograms may be difficult. This area is evolving. Other promising applications include atheromatous plaque and arterial wall evaluation, venous thrombus evaluation, graft rejection, and monitoring of tumor ablation therapy. When contemplating the acquisition of a system with elastography in this rapidly evolving field, a clear picture of the manufacturer's plans for future upgrades (including quantification) should be obtained.
Ultrasound elastography of the prostate: state of the art.
Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O
2013-05-01
Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.
Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan
2014-11-01
The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A unifying fractional wave equation for compressional and shear waves.
Holm, Sverre; Sinkus, Ralph
2010-01-01
This study has been motivated by the observed difference in the range of the power-law attenuation exponent for compressional and shear waves. Usually compressional attenuation increases with frequency to a power between 1 and 2, while shear wave attenuation often is described with powers less than 1. Another motivation is the apparent lack of partial differential equations with desirable properties such as causality that describe such wave propagation. Starting with a constitutive equation which is a generalized Hooke's law with a loss term containing a fractional derivative, one can derive a causal fractional wave equation previously given by Caputo [Geophys J. R. Astron. Soc. 13, 529-539 (1967)] and Wismer [J. Acoust. Soc. Am. 120, 3493-3502 (2006)]. In the low omegatau (low-frequency) case, this equation has an attenuation with a power-law in the range from 1 to 2. This is consistent with, e.g., attenuation in tissue. In the often neglected high omegatau (high-frequency) case, it describes attenuation with a power-law between 0 and 1, consistent with what is observed in, e.g., dynamic elastography. Thus a unifying wave equation derived properly from constitutive equations can describe both cases.
Development of an intravascular ultrasound elastography based on a dual-element transducer
NASA Astrophysics Data System (ADS)
Shih, Cho-Chiang; Chen, Pei-Yu; Ma, Teng; Zhou, Qifa; Shung, K. Kirk; Huang, Chih-Chung
2018-04-01
The ability to measure the elastic properties of plaques and vessels would be useful in clinical diagnoses, particularly for detecting a vulnerable plaque. This study demonstrates the feasibility of the combination of intravascular ultrasound (IVUS) and acoustic radiation force elasticity imaging for detecting the distribution of stiffness within atherosclerotic arteries ex vivo. A dual-frequency IVUS transducer with two elements was used to induce the propagation of the shear wave (by the 8.5 MHz pushing element) which could be simultaneously monitored by the 31 MHz imaging element. The wave-amplitude image and the wave-velocity image were reconstructed by measuring the peak displacement and wave velocity of shear wave propagation, respectively. System performance was verified using gelatin phantoms. The phantom results demonstrate that the stiffness differences of shear modulus of 1.6 kPa can be distinguished through the wave-amplitude and wave-velocity images. The stiffness distributions of the atherosclerotic aorta from a rabbit were obtained, for which the values of peak displacement and the shear wave velocity were 3.7 ± 1.2 µm and 0.38 ± 0.19 m s-1 for the lipid-rich plaques, and 1.0 ± 0.2 µm and 3.45 ± 0.45 m s-1 for the arterial walls, respectively. These results indicate that IVUS elasticity imaging can be used to distinguish the elastic properties of plaques and vessels.
Leung, Wilson K.C.; Chu, KL
2017-01-01
Background Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness) of the Achilles tendon (AT), medial and lateral gastrocnemius muscles (MG and LG) was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. Methods Forty-five healthy young adults (36 males and nine females) performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. Results After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P < 0.001), whereas the increases in the MG and LG stiffness were found to be more drastic by 75 + 47.7% (P < 0.001) and 71.7 + 51.8% (P < 0.001), respectively. Regarding the AT, MG and LG stiffness measurements, the inter-operator reliability was 0.940, 0.987 and 0.986, and the intra-operator reliability was 0.916 to 0.978, 0.801 to 0.961 and 0.889 to 0.985, respectively. Discussion The gastrocnemius muscles were shown to bear larger mechanical loads than the AT during an acute bout of eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the rehabilitation of patients with Achilles tendinopathy. PMID:28740756
Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F
2018-01-01
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.
Langdon, Jonathan H; Elegbe, Etana; Gonzalez, Raul S; Osapoetra, Laurentius; Ford, Tristan; McAleavey, Stephen A
2017-11-01
The clinical use of elastography for monitoring fibrosis progression is challenged by the subtle changes in liver stiffness associated with early-stage fibrosis and the comparatively large variance in stiffness estimates provided by elastography. Single-tracking-location (STL) shear wave elasticity imaging (SWEI) is an ultrasound elastography technique previously found to provide improved estimate precision compared with multiple-tracking-location (MTL) SWEI. Because of the improved precision, it is reasonable to expect that STL-SWEI would provide improved ability to differentiate liver fibrosis stage compared with MTL-SWEI. However, this expectation has not been previously challenged rigorously. In this work, the performance of STL- and MTL-SWEI in the setting of a rat model of liver fibrosis is characterized, and the advantages of STL-SWEI in staging fibrosis are explored. The purpose of this study was to determine what advantages, if any, arise from using STL-SWEI instead of MTL-SWEI in the characterization of fibrotic liver. Thus, the ability of STL-SWEI to differentiate livers at various METAVIR fibrosis scores, for ex vivo postmortem measurements, is explored. In addition, we examined the effect of the common confounding factor of fluid versus solid boundary conditions in SWEI experiments. Sprague-Dawley rats were treated with carbon tetrachloride over several weeks to produce liver disease of varying severity. STL and MTL stiffness measurements were performed ex vivo and compared with the METAVIR scores from histological analysis and the duration of treatment. A strong association was observed between liver stiffness and weeks of treatment with the liver toxin carbon tetrachloride. Direct comparison of STL- and MTL-SWEI measurements revealed no significant difference in ability to differentiate fibrosis stages based on SWEI mean values. However, image interquartile range was greatly improved in the case of STL-SWEI, compared with MTL-SWEI, at small beam spacing. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam
2016-04-01
It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.
Elastographic techniques of thyroid gland: current status.
Andrioli, Massimiliano; Persani, Luca
2014-08-01
Thyroid nodules are very common with malignancies accounting for about 5 %. Fine-needle biopsy is the most accurate test for thyroid cancer diagnosis. Elastography, a new technology directly evaluating the elastic property of the tissue, has been recently added to the diagnostic armamentarium of the endocrinologists as noninvasive predictor of thyroid malignancy. In this paper, we critically reviewed characteristics and applications of elastographic methods in thyroid gland. Elastographic techniques can be classified on the basis of the following: source-of-tissue compression (free-hand, carotid vibration, ultrasound pulses), processing time (real-time, off-line), stiffness expression (qualitative, semi-quantitative, or quantitative). Acoustic radiation force impulse and aixplorer shear wave are the newest and most promising quantitative elastographic methods. Primary application of elastography is the detection of nodular lesions suspicious for malignancy. Published data show a high sensitivity and negative predictive value of the technique. Insufficient data are available on the possible application of elastography in the differential diagnosis of indeterminate lesions and in thyroiditis. Elastography represents a noninvasive tool able to increase the performance of ultrasound in the selection of thyroid nodules at higher risk of malignancy. Some technical improvements and definition of more robust quantitative diagnostic criteria are required for assigning a definite role in the management of thyroid nodules and thyroiditis to elastography.
Wagner, Mathilde; Corcuera-Solano, Idoia; Lo, Grace; Esses, Steven; Liao, Joseph; Besa, Cecilia; Chen, Nelson; Abraham, Ginu; Fung, Maggie; Babb, James S; Ehman, Richard L; Taouli, Bachir
2017-08-01
Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.
Melero-Ferrer, Josep Lluís; Osa-Sáez, Ana; Buendía-Fuentes, Francisco; Ballesta-Cuñat, Antonio; Flors, Lucía; Rodríguez-Serrano, María; Calvillo-Batllés, Pilar; Arnau-Vives, Miguel-Ángel; Palencia-Pérez, Miguel A; Rueda-Soriano, Joaquín
2014-07-01
The development of liver fibrosis and cirrhosis due to long-standing liver congestion is known to occur in adult patients with Fontan circulation. Hepatic elastography has shown to be a useful tool for the noninvasive assessment and staging of liver fibrosis in chronic liver diseases, although the utility of this technique in Fontan patients remains to be adequately studied. Twenty-one patients with Fontan circulation underwent an abdominal ultrasound and an acoustic radiation force impulse (ARFI) elastography. In order to compare the results from this group, a cohort of 14 healthy controls and another group containing 17 patients with cirrhosis were included. The association between the velocity values measured with elastography and clinical and analytical parameters were also studied. Mean shear waves propagation velocity in liver tissue in the Fontan group was 1.86 ± 0.5 m/s, with 76% of patients over the cirrhosis threshold (1.55 m/s). The control group had a mean velocity of 1.09 ± 0.06 m/s, while the cirrhotic group obtained 2.71 ± 0.51 m/s. Seven patients with Fontan circulation had increased liver enzymes. Liver ultrasound showed evidence of chronic liver disease in six patients. Velocity values obtained in the presence or absence of analytical or liver ultrasound abnormalities showed significant differences in the univariate analysis (P = .04 and P = .03 respectively). In conclusion, ARFI elastography showed increased wave propagation velocity values in the Fontan population suggesting increased liver stiffness which could be related to advanced fibrosis. A statistically significant association between ARFI values and the presence of analytical and ultrasound abnormalities has been demonstrated. © The Author(s) 2014.
High Contrast Ultrafast Imaging of the Human Heart
Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael
2014-01-01
Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135
Tozaki, Mitsuhiro; Isobe, Sachiko; Sakamoto, Masaaki
2012-10-01
We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.
Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouared, Abderrahmane; Kazemirad, Siavash; Montagnon, Emmanuel
2016-04-15
Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagationmore » problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.« less
High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement
2006-06-01
1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in Medicine and Biology 24... elastography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...Body Figure 2 shows the results of a set of experiments involving a simulated breast . The phantom (purchased from CIR, Inc.) was designed to
NASA Astrophysics Data System (ADS)
Han, Zhaolong; Aglyamov, Salavat R.; Li, Jiasong; Singh, Manmohan; Wang, Shang; Vantipalli, Srilatha; Wu, Chen; Liu, Chih-hao; Twa, Michael D.; Larin, Kirill V.
2015-02-01
We demonstrate the use of a modified Rayleigh-Lamb frequency equation in conjunction with noncontact optical coherence elastography to quantify the viscoelastic properties of the cornea. Phase velocities of air-pulse-induced elastic waves were extracted by spectral analysis and used for calculating the Young's moduli of the samples using the Rayleigh-Lamb frequency equation (RLFE). Validation experiments were performed on 2% agar phantoms (n=3) and then applied to porcine corneas (n=3) in situ. The Young's moduli of the porcine corneas were estimated to be ˜60 kPa with a shear viscosity ˜0.33 Pa.s. The results demonstrate that the RLFE is a promising method for noninvasive quantification of the corneal biomechanical properties and may potentially be useful for clinical ophthalmological applications.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; He, Qiong; Qian, Lin-Xue; Geng, Huiying; Liu, Yanlin; Yang, Xue-Yi; Luo, Jianwen; Cao, Yanping
2016-09-01
In part I of this study, we investigated the elastic Cherenkov effect (ECE) in an incompressible transversely isotropic (TI) soft solid using a combined theoretical and computational approach, based on which an inverse method has been proposed to measure both the anisotropic and hyperelastic parameters of TI soft tissues. In this part, experiments were carried out to validate the inverse method and demonstrate its usefulness in practical measurements. We first performed ex vivo experiments on bovine skeletal muscles. Not only the shear moduli along and perpendicular to the direction of muscle fibers but also the elastic modulus EL and hyperelastic parameter c2 were determined. We next carried out tensile tests to determine EL, which was compared with the value obtained using the shear wave elastography method. Furthermore, we conducted in vivo experiments on the biceps brachii and gastrocnemius muscles of ten healthy volunteers. To the best of our knowledge, this study represents the first attempt to determine EL of human muscles using the dynamic elastography method and inverse analysis. The significance of our method and its potential for clinical use are discussed.
Imaging of optically diffusive media by use of opto-elastography
NASA Astrophysics Data System (ADS)
Bossy, Emmanuel; Funke, Arik R.; Daoudi, Khalid; Tanter, Mickael; Fink, Mathias; Boccara, Claude
2007-02-01
We present a camera-based optical detection scheme designed to detect the transient motion created by the acoustic radiation force in elastic media. An optically diffusive tissue mimicking phantom was illuminated with coherent laser light, and a high speed camera (2 kHz frame rate) was used to acquire and cross-correlate consecutive speckle patterns. Time-resolved transient decorrelations of the optical speckle were measured as the results of localised motion induced in the medium by the radiation force and subsequent propagating shear waves. As opposed to classical acousto-optic techniques which are sensitive to vibrations induced by compressional waves at ultrasonic frequencies, the proposed technique is sensitive only to the low frequency transient motion induced in the medium by the radiation force. It therefore provides a way to assess both optical and shear mechanical properties.
Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael
2016-04-01
Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Piscaglia, Fabio; Salvatore, Veronica; Mulazzani, Lorenzo; Cantisani, Vito; Colecchia, Antonio; Di Donato, Roberto; Felicani, Cristina; Ferrarini, Alessia; Gamal, Nesrine; Grasso, Valentina; Marasco, Giovanni; Mazzotta, Elena; Ravaioli, Federico; Ruggieri, Giacomo; Serio, Ilaria; Sitouok Nkamgho, Joules Fabrice; Serra, Carla; Festi, Davide; Schiavone, Cosima; Bolondi, Luigi
2017-07-01
Whether Fibroscan thresholds can be immediately adopted for none, some or all other shear wave elastography techniques has not been tested. The aim of the present study was to test the concordance of the findings obtained from 7 of the most recent ultrasound elastography machines with respect to Fibroscan. Sixteen hepatitis C virus-related patients with fibrosis ≥2 and having reliable results at Fibroscan were investigated in two intercostal spaces using 7 different elastography machines. Coefficients of both precision (an index of data dispersion) and accuracy (an index of bias correction factors expressing different magnitudes of changes in comparison to the reference) were calculated. Median stiffness values differed among the different machines as did coefficients of both precision (range 0.54-0.72) and accuracy (range 0.28-0.87). When the average of the measurements of two intercostal spaces was considered, coefficients of precision significantly increased with all machines (range 0.72-0.90) whereas of accuracy improved more scatteredly and by a smaller degree (range 0.40-0.99). The present results showed only moderate concordance of the majority of elastography machines with the Fibroscan results, preventing the possibility of the immediate universal adoption of Fibroscan thresholds for defining liver fibrosis staging for all new machines. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
Role of shear wave sonoelastography in differentiation between focal breast lesions.
Dobruch-Sobczak, Katarzyna; Nowicki, Andrzej
2015-02-01
Our goal in this study was to evaluate the relevance of shear wave sonoelastography (SWE) in the differential diagnosis of masses in the breast with respect to ultrasound (US). US and SWE were performed (Aixplorer System, SuperSonic Imagine, Aix en Provence, France) in 76 women (aged 24 to 85) with 84 lesions (43 malignant, 41 benign). The study included BI-RADS-US (Breast Imaging Reporting and Data System for Ultrsound) category 3-5 lesions. In elastograms, the following values were calculated: mean elasticity in lesions (E(av.l)) and in fat tissue (E(av.f.)) and maximal (E(max.adj.)) and mean (E(av.adj.)) elasticity in lesions and adjacent tissues. The sensitivity and specificity of the BI-RADS category 4a/4b cutoff value were 97.7% and 90.2%. For an E(av.adj.) of 68.5 kPa, the cutoff sensitivity was 86.1% and the specificity was 87.8%, and for an E(max.adj.) of 124.1 kPa, 74.4% and 92.7%, respectively. For BI-RADS-US category 3 lesions, E(av.l), E(max.adj.) and E(av.adj.) were below cutoff levels. On the basis of our findings, E(av.adj.) had lower sensitivity and specificity compared with US. Emax.adj. improved the specificity of breast US with loss of sensitivity. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.
2017-02-01
Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.
Supersonic Shear Wave Elastography of Response to Anti-cancer Therapy in a Xenograft Tumor Model.
Chamming's, Foucauld; Le-Frère-Belda, Marie-Aude; Latorre-Ossa, Heldmuth; Fitoussi, Victor; Redheuil, Alban; Assayag, Franck; Pidial, Laetitia; Gennisson, Jean-Luc; Tanter, Mickael; Cuénod, Charles-André; Fournier, Laure S
2016-04-01
Our objective was to determine if supersonic shear wave elastography (SSWE) can detect changes in stiffness of a breast cancer model under therapy. A human invasive carcinoma was implanted in 22 mice. Eleven were treated with an anti-angiogenic therapy and 11 with glucose for 24 d. Tumor volume and stiffness were assessed during 2 wk before treatment and 0, 7, 12, 20 and 24 d after the start of therapy using SSWE. Pathology was assessed after 12 and 24 d of treatment. We found that response to therapy was associated with early softening of treated tumors only, resulting in a significant difference from non-treated tumors after 12 d of treatment (p = 0.03). On pathology, large areas of necrosis were observed at 12 d in treated tumors. Although treatment was still effective, treated tumors subsequently stiffened during a second phase of the treatment (days 12-24), with a small amount of necrosis observed on pathology on day 24. In conclusion, SSWE was able to measure changes in the stiffness of tumors in response to anti-cancer treatment. However, stiffness changes associated with good response to treatment may change over time, and increased stiffness may also reflect therapy efficacy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Zhu, Ying; Dong, Changfeng; Yin, Yin; Chen, Xin; Guo, Yanrong; Zheng, Yi; Shen, Yuanyuan; Wang, Tianfu; Zhang, Xinyu; Chen, Siping
2015-02-01
Shear wave based ultrasound elastography utilizes mechanical excitation or acoustic radiation force to induce shear waves in deep tissue. The tissue response is monitored to obtain elasticity information about the tissue. During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. However, biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In this study, two shear wave-based elasticity imaging methods, shear wave dispersion ultrasound vibrometry (SDUV) and acoustic radiation force impulsive (ARFI) imaging, were compared. The discrepancy between the measurements obtained by the two methods was analyzed, and the role of viscosity was investigated. To this end, four types of gelatin phantoms containing 0%, 20%, 30% and 40% castor oil were fabricated to mimic different viscosities of soft tissue. For the SDUV method, the shear elasticity μ1 was 3.90 ± 0.27 kPa, 4.49 ± 0.16 kPa, 2.41 ± 0.33 kPa and 1.31 ± 0.09 kPa; and the shear viscosity μ2 was 1.82 ± 0.31 Pa•s, 2.41 ± 0.35 Pa•s, 2.65 ± 0.13 Pa•s and 2.89 ± 0.14 Pa•s for 0%, 20%, 30% and 40% oil, respectively in both cases. For the ARFI measurements, the shear elasticity μ was 7.30 ± 0.20 kPa, 8.20 ± 0.31 kPa, 7.42 ± 0.21 kPa and 5.90 ± 0.36 kPa for 0%, 20%, 30% and 40% oil, respectively. The SDUV results demonstrated that the elasticity first increased from 0% to 20% oil and then decreased for the 30% and 40% oil. The viscosity decreased consistently as the concentration of castor oil increased from 0% to 40%. The elasticity measured by ARFI showed the same trend as that of the SDUV but exceeded the results measured by SDUV. To clearly validate the impact of viscosity on the elasticity estimation, an independent measurement of the elasticity and viscosity by dynamic mechanical analysis (DMA) was conducted on these four types of gelatin phantoms and then compared with SDUV and ARFI results. The shear elasticities obtained by DMA (3.44 ± 0.31 kPa, 4.29 ± 0.13 kPa, 2.05 ± 0.29 kPa and 1.06 ± 0.18 kPa for 0%, 20%, 30% and 40% oil, respectively) were lower than those by SDUV, whereas the shear viscosities obtained by DMA (2.52 ± 0.32 Pa·s, 3.18 ± 0.12 Pa·s, 3.98 ± 0.19 Pa·s and 4.90 ± 0.20 Pa·s for 0%, 20%, 30% and 40% oil, respectively) were greater than those obtained by SDUV. However, the DMA results showed that the trend in the elasticity and viscosity data was the same as that obtained from the SDUV and ARFI. The SDUV results demonstrated that adding castor oil changed the viscoelastic properties of the phantoms and resulted in increased dispersion of the shear waves. Viscosity can provide important and independent information about the inner state of the phantoms, in addition to the elasticity. Because the ARFI method ignores the dispersion of the shear waves, namely viscosity, it may bias the estimation of the true elasticity. This study sheds further light on the significance of the viscosity measurements in shear wave based elasticity imaging methods. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Ultrasonic tracking of shear waves using a particle filter.
Ingle, Atul N; Ma, Chi; Varghese, Tomy
2015-11-01
This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques.
Park, So Hyun; Lee, Seung Soo; Sung, Ji-Youn; Na, Kiyong; Kim, Hyoung Jung; Kim, So Yeon; Park, Beom Jin; Byun, Jae Ho
2018-05-01
To determine the feasibility of acoustic radiation force impulse (ARFI) elastography in the evaluation of hepatic sinusoidal obstruction syndrome (SOS) in rat models. Rat SOS models of various severities were created by monocrotaline gavage (n = 40) or by intraperitoneal injection of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX) (n = 16). Liver shear-wave velocity (SWV) was measured using ARFI elastography. Liver samples were analysed for the SOS score, steatosis, lobular inflammation and fibrosis. The liver SWV was significantly elevated in the SOS models (1.29-2.24 m/s) compared with that of the matched control rats (1.01-1.09; p≤.09; veFor seven FOLFOX-treated rats which were longitudinally followed-up, the liver SWV significantly increased at 7 weeks (1.32±0.13 m/s) compared with the baseline (1.08±0.1 m/s, p=.015) and then significantly declined after a 2-week, treatment-free period (1.15±0.13 m/s; p=.048). Multivariate analysis revealed that the SOS score (p<.001) and lobular inflammation (p=.044) were independently correlated with the liver SWV. Liver SWV is elevated in SOS in proportion to the degree of sinusoidal injury and lobular inflammation in rat SOS models. ARFI elastography has potential as an examination for diagnosis, severity assessment and follow-up of SOS. • Liver SWV using ARFI elastography was significantly elevated in SOS rat. • Sinusoidal injury and lobular inflammation grades had correlation with liver SWV. • ARFI elastography has potential for diagnosis, severity assessment, and follow-up of SOS.
A multi-purpose electromagnetic actuator for magnetic resonance elastography.
Feng, Yuan; Zhu, Mo; Qiu, Suhao; Shen, Ping; Ma, Shengyuan; Zhao, Xuefeng; Hu, Chun-Hong; Guo, Liang
2018-04-19
An electromagnetic actuator was designed for magnetic resonance elastography (MRE). The actuator is unique in that it is simple, portable, and capable of brain, abdomen, and phantom imagings. A custom-built control unit was used for controlling the vibration frequency and synchronizing the trigger signals. An actuation unit was built and mounted on the specifically designed clamp and holders for different imaging applications. MRE experiments with respect to gel phantoms, brain, and liver showed that the actuator could produce stable and consistent mechanical waves. Estimated shear modulus using local frequency estimate method demonstrated that the measurement results were in line with that from MRE studies using different actuation systems. The relatively easy setup procedure and simple design indicated that the actuator system had the potential to be applied in many different clinical studies. Copyright © 2018 Elsevier Inc. All rights reserved.
The simulation of magnetic resonance elastography through atherosclerosis.
Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R
2016-06-14
The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dillman, Jonathan R; Smith, Ethan A; Davenport, Matthew S; DiPietro, Michael A; Sanchez, Ramon; Kraft, Kate H; Brown, Richard K J; Rubin, Jonathan M
2015-10-01
To determine if ultrasonographic (US) renal shear-wave speed (SWS) measurements obtained either before or after intravenous diuretic administration can be used to discriminate obstructive hydronephrosis from unobstructive hydronephrosis in children, with diuretic renal scintigraphy as the reference standard. Institutional review board approval and parental informed consent were obtained for this HIPAA-compliant prospective cross-sectional blind comparison with a reference standard. Between November 2012 and September 2014, 37 children (mean age, 4.1 years; age range, 1 month to 17 years) underwent shear-wave elastography of the kidneys immediately before and immediately after diuretic renal scintigraphy (reference standard for presence of urinary tract obstruction). Median SWS measurements (in meters per second), as well as change in median SWS (median SWS after diuretic administration minus median SWS before diuretic administration) were correlated with the amount of time required for kidney radiotracer activity to fall by 50% after intravenous administration of the diuretic (T1/2). Median SWS measurements were compared with degree of obstruction and degree of hydronephrosis with analysis of variance. Receiver operating characteristic (ROC) curves were created. Radiotracer T1/2 values after diuretic administration did not correlate with median SWS measurements obtained before (r = -0.08, P = .53) or after (r = -0.0004, P >.99) diuretic administration, nor did they correlate with intraindividual change in median SWS (r = 0.07, P = .56). There was no significant difference in pre- or postdiuretic median SWS measurements between kidneys with scintigraphic evidence of no, equivocal, or definite urinary tract obstruction (P > .5) or for median SWS measurements between kidneys with increasing degree of hydronephrosis (P > .5). ROC curves showed poor diagnostic performance of median SWS in discerning no, equivocal, or definite urinary tract obstruction (area under the ROC curve ranged from 0.50 to 0.62). US SWS measurements did not enable discrimination of obstructive hydronephrosis from unobstructive hydronephrosis in children. (©) RSNA, 2015 Online supplemental material is available for this article.
Gao, Jing; Zheng, Xiao; Zheng, Yuan-Yi; Zuo, Guo-Qing; Ran, Hai-Tao; Auh, Yong Ho; Waldron, Levi; Chan, Tiffany; Wang, Zhi-Gang
2016-05-01
To assess the feasibility of splenic shear wave elastography in monitoring transjugular intrahepatic portosystemic shunt (TIPS) function. We measured splenic shear wave velocity (SWV), main portal vein velocity (PVV), and splenic vein velocity (SVV) in 33 patients 1 day before and 3 days to 12 months after TIPS placement. We also measured PVV, SVV, and SWV in 10 of 33 patients with TIPS dysfunction 1 day before and 3 to 6 days after TIPS revision. Analyses included differences in portosystemic pressure gradient (PPG), PVV, SVV, and mean SWV before and after TIPS procedures; comparison of median SWV before and after TIPS procedures; differences in PVV, SVV, and SWV before and at different times up to 12 months after TIPS placement; accuracy of PVV, SVV, and SWV in determining TIPS dysfunction; and correlation between PPG and SWV. During 12 months of follow-up, 23 of 33 patients had functioning TIPS, and 10 had TIPS dysfunction. The median SWV was significantly different before and after primary TIPS placement (3.60 versus 3.05 m/s; P = .005), as well as before and after revision (3.73 versus 3.06 m/s; P = .003). The PPG, PVV, and SVV were also significantly different before and after TIPS placement and revision (P < .001). The PPG and SWV decreased, whereas PVV and SVV increased, after successful TIPS procedures. A positive correlation was observed between PPG and SWV (r = 0.70; P < .001), and a negative correlation was observed between PPG and PVV and SVV (r = -0.65; P < .001). The areas under the receiver operating characteristic curve for PVV, SVV, and SWV in determining TIPS dysfunction were 0.82, 0.84, and 0.81, respectively. Splenic SWV is compatible with splenoportal venous velocity in quantitatively monitoring TIPS function and determining TIPS dysfunction. © 2016 by the American Institute of Ultrasound in Medicine.
Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P
2012-01-01
Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) . Copyright © 2011 Wiley-Liss, Inc.
Ultrasonic tracking of shear waves using a particle filter
Ingle, Atul N.; Ma, Chi; Varghese, Tomy
2015-01-01
Purpose: This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Methods: Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Results: Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. Conclusions: The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques. PMID:26520761
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the potential of using Q-SWI-OCT as an essential tool for nondestructive biomechanical evaluation of myocardium.
Agarwal, Arjit; Agarwal, Shubhra; Chandak, Shruti
2018-06-01
Background Preterm birth is one of the important causes of neonatal morbidity where we rely on subjective criteria such as modified Bishop's scoring and contemporary sonographic measurement of cervical length. Acoustic radiation force impulse (ARFI) is a technological advancement in elastography that can be employed in prediction of cervical softening and preterm labor. Purpose To evaluate the role of ARFI technique and shear wave velocity (SWV) estimates as a predictor of preterm birth and its comparison with other clinical and sono-elastographic measures. Material and Methods Thirty-four pregnant women (gestation age = 28-37 weeks age) showing features suggestive of preterm labor were included and evaluated with modified Bishop's score, cervical length by ultrasound (US), ARFI to derive Elastography index (EI), and SWV of the cervix. The patients were later divided into two groups, using the clinical outcome of preterm or term delivery. Results Twenty patients delivered at term (gestational age > 37 weeks) and 14 were preterm. Receiver operating characteristics (ROC) curves showed SWV with highest sensitivity and specificity (93% and 90%, respectively) for the prediction of preterm birth at a cutoff value of 2.83 m/s. EI and modified Bishop's score were comparable to each other, but were less sensitive techniques. Conclusion Elastographic assessment of antenatal cervix is a novel technique of virtual palpation of internal os and can be utilized as an objective criterion for preterm birth prediction.
Zengel, Pamela; Notter, Florian; Clevert, Dirk A
2018-06-06
Ultrasound is the method of choice for preoperative evaluation of tumours of the parotid glands. However, existing methods do not allow for clear differentiation between the most common benign tumours and malignant tumours. The aim of our study was to evaluate if acoustic radiation force, Virtual Touch Quantification (VTQ) elastography helps to improve the preoperative evaluation of parotid masses. We investigated the parenchyma of 102 parotid glands, 14 lymph nodes of healthy volunteers and 51 tumours of the parotid gland via ultrasound, colour Doppler ultrasound and VTQ. The results were matched with histopathology and analyzed. The perfusion in pleomorphic adenoma, the most frequent benign tumour of the parotid gland, was significantly lower in comparison to malignant tumours. All tumours showed statistically significant higher perfusion in comparison to the parenchyma or the lymph nodes of the gland. Shear wave velocity of the user-defined region of interest was statistically significant more frequently an overflow value higher than 8.5 m/s in total tumours in comparison to parenchyma or lymph nodes. The different tumour types presented no significant difference in the shear wave velocity. VTQ in combination with classical ultrasound examination provides additional data useful in distinguishing between benign and malignant tumours and thus shows promise for integration into preexisting ultrasound protocols. However, despite the improvement, clear differentiation of tumours is still not possible and further investigation is recommended.
NASA Astrophysics Data System (ADS)
Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew
2016-03-01
Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.
Liu, Bo-Ji; Xu, Hui-Xiong; Zhang, Yi-Feng; Xu, Jun-Mei; Li, Dan-Dan; Bo, Xiao-Wan; Li, Xiao-Long; Guo, Le-Hang; Xu, Xiao-Hong; Qu, Shen
2015-03-01
The purpose of the study was to explore the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in differential diagnosis between benign and malignant thyroid nodules in patients with coexistent Hashimoto's thyroiditis (HT). A total of 141 pathological proven nodules in 141 HT patients (7 males and 134 females, mean age 50.1 years, range 23-75 years) received conventional ultrasound (US), elasticity imaging (EI) and ARFI elastography, including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ), before surgery. Shear wave velocity (SWV) and SWV ratio were measured for each nodule on VTQ. The US, EI and ARFI elastography features were compared between benign and malignant nodules in HT patients. Receiver operating characteristic curve (ROC) analyses and area under curve (AUC) were performed to assess the diagnostic performance. Pathologically, 70 nodules were benign and 71 nodules were malignant. Significant differences were found between benign and malignant nodules in HT patients for EI (EI score) and ARFI (VTI grade and SWV) (all P value <0.05). The AUCs for EI, VTI, SWV and SWV ratio were 0.68 [95% confidence interval (CI): 0.59-0.77], 0.90 (95% CI: 0.84-0.95), 0.77 (95%CI: 0.70-0.85) and 0.74 (95%CI: 0.66-0.82), respectively. The cut-off points were EI score ≥3, VTI grade ≥4, SWV ≥2.58 m/s and SWV ratio ≥1.03, respectively. In conclusion, ARFI elastography is useful for differentiation between benign and malignant thyroid nodules in HT patients. The diagnostic performance of ARFI elastography is better than EI.
Franchi-Abella, Stéphanie; Corno, Lucie; Gonzales, Emmanuel; Antoni, Guillemette; Fabre, Monique; Ducot, Béatrice; Pariente, Danièle; Gennisson, Jean-Luc; Tanter, Mickael; Corréas, Jean-Michel
2016-02-01
To evaluate the feasibility of using supersonic shear-wave elastography (SSWE) in children and normal values of liver stiffness with the use of control patients of different ages (from neonates to teenagers) and the diagnostic accuracy of supersonic shear wave elastography for assessing liver fibrosis by using the histologic scoring system as the reference method in patients with liver disease, with a special concern for early stages of fibrosis. The institutional review board approved this prospective study. Informed consent was obtained from parents and children older than 7 years. First, 51 healthy children (from neonate to 15 years) were analyzed as the control group, and univariate and multivariate comparisons were performed to study the effect of age, transducer, breathing condition, probe, and position on elasticity values. Next, 45 children (from 1 month to 17.2 years old) who underwent liver biopsy were analyzed. SSWE measurements were obtained in the same region of the liver as the biopsy specimens. Biopsy specimens were reviewed in a blinded manner by a pathologist with the use of METAVIR criteria. The areas under the receiver operating characteristics curve (AUCs) were calculated for patients with fibrosis stage F0 versus those with stage F1-F2, F2 or higher, F3 or higher, and F4 or higher. A successful rate of SSWE measurement was 100% in 96 patients, including neonates. Liver stiffness values were significantly higher when an SC6-1 probe (Aixplorer; SuperSonic Imagine SA, Aix-enProvence, France) was used than when an SL15-4 probe (Aixplorer) was used (mean ± standard deviation, 6.94 kPa ± 1.42 vs 5.96 kPa ± 1.31; P = .006). There was no influence of sex, the location of measurement, or respiratory status on liver elasticity values (P = .41-.93), although the power to detect such a difference was low. According to the degree of liver fibrosis at liver biopsy, 88.5%-96.8% of patients were correctly classified, with AUCs of 0.90-0.98 (95% confidence interval [CI]: 0.8, 1.0). The AUC for patients with stage F0 versus stage F1-F2 was 0.93 (95% CI: 0.87, 0.99). SSWE allows accurate assessment of liver fibrosis, even in children with early stage (F1-F2) disease, and the choice of transducer influences liver stiffness values. © RSNA, 2015.
Are rapid changes in brain elasticity possible?
NASA Astrophysics Data System (ADS)
Parker, K. J.
2017-09-01
Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.
Remote ultrasound palpation for robotic interventions using absolute elastography.
Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu
2012-01-01
Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.
Damughatla, Anirudh R; Raterman, Brian; Sharkey-Toppen, Travis; Jin, Ning; Simonetti, Orlando P; White, Richard D; Kolipaka, Arunark
2015-01-01
To determine the correlation in abdominal aortic stiffness obtained using magnetic resonance elastography (MRE) (μ(MRE)) and MRI-based pulse wave velocity (PWV) shear stiffness (μ(PWV)) estimates in normal volunteers of varying age, and also to determine the correlation between μ(MRE) and μ(PWV). In vivo aortic MRE and MRI were performed on 21 healthy volunteers with ages ranging from 18 to 65 years to obtain wave and velocity data along the long axis of the abdominal aorta. The MRE wave images were analyzed to obtain mean stiffness and the phase contrast images were analyzed to obtain PWV measurements and indirectly estimate stiffness values from the Moens-Korteweg equation. Both μ(MRE) and μ(PWV) measurements increased with age, demonstrating linear correlations with R(2) values of 0.81 and 0.67, respectively. Significant difference (P ≤ 0.001) in mean μ(MRE) and μ(PWV) between young and old healthy volunteers was also observed. Furthermore, a poor linear correlation of R(2) value of 0.43 was determined between μ(MRE) and μ(PWV) in the initial pool of volunteers. The results of this study indicate linear correlations between μ(MRE) and μ(PWV) with normal aging of the abdominal aorta. Significant differences in mean μ(MRE) and μ(PWV) between young and old healthy volunteers were observed. © 2013 Wiley Periodicals, Inc.
High resolution SAW elastography for ex-vivo porcine skin specimen
NASA Astrophysics Data System (ADS)
Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong
2018-02-01
Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.
Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.
Zhou, Boran; Zhang, Xiaoming
2018-05-23
Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density by using the DNN model together with the surface wave speed and lung stiffness measurements. Copyright © 2018 Elsevier B.V. All rights reserved.
Shear wave arrival time estimates correlate with local speckle pattern.
Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan
2015-12-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.
Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern
McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan
2016-01-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847
Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew
2014-12-01
Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, M.
In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented spatial and temporal resolution compared to fMRI. Combined with contrast agents, our group demonstrated that Ultrafast Ultrasound Localization could provide a first in vivo and non invasive imaging modality at microscopic scales deep into organs. Many of these ultrafast modes should lead to major improvements in ultrasound screening, diagnosis, and therapeutic monitoring. Learning Objectives: Achieve familiarity with recent advances in ultrafast ultrasound imaging technology. Develop an understanding of potential applications of ultrafast ultrasound imaging for diagnosis and therapeutic monitoring. Dr. Tanter is a co-founder of Supersonic Imagine,a French company positioned in the field of medical ultrasound imaging and therapy.« less
WE-B-210-00: Carson/Zagzebski Distinguished Lectureship
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented spatial and temporal resolution compared to fMRI. Combined with contrast agents, our group demonstrated that Ultrafast Ultrasound Localization could provide a first in vivo and non invasive imaging modality at microscopic scales deep into organs. Many of these ultrafast modes should lead to major improvements in ultrasound screening, diagnosis, and therapeutic monitoring. Learning Objectives: Achieve familiarity with recent advances in ultrafast ultrasound imaging technology. Develop an understanding of potential applications of ultrafast ultrasound imaging for diagnosis and therapeutic monitoring. Dr. Tanter is a co-founder of Supersonic Imagine,a French company positioned in the field of medical ultrasound imaging and therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, M.
In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented spatial and temporal resolution compared to fMRI. Combined with contrast agents, our group demonstrated that Ultrafast Ultrasound Localization could provide a first in vivo and non invasive imaging modality at microscopic scales deep into organs. Many of these ultrafast modes should lead to major improvements in ultrasound screening, diagnosis, and therapeutic monitoring. Learning Objectives: Achieve familiarity with recent advances in ultrafast ultrasound imaging technology. Develop an understanding of potential applications of ultrafast ultrasound imaging for diagnosis and therapeutic monitoring. Dr. Tanter is a co-founder of Supersonic Imagine,a French company positioned in the field of medical ultrasound imaging and therapy.« less
Probing myocardium biomechanics using quantitative optical coherence elastography
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.
Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).
Yin, Ziying; Magin, Richard L; Klatt, Dieter
2014-05-01
To present a new technique for concurrent MR elastography (MRE) and diffusion MRI: diffusion-MRE (dMRE). In dMRE, shear wave motion and MR signal decay due to diffusion are encoded into the phase and magnitude components of the MR signal by using a pair of bipolar gradients for both motion-sensitization and diffusion encoding. The pulse sequence timing is adjusted so that the bipolar gradients are sensitive to both coherent and incoherent intravoxel motions. The shape, number, and duration of the gradient lobes can be adjusted to provide flexibility and encoding efficiency. In this proof-of-concept study, dMRE was validated using a tissue phantom composed of a gel bead embedded in a hydrated mixture of agarose and gelatin. The apparent diffusion coefficient (ADC) and shear stiffness measured using dMRE were compared with results obtained from separate, conventional spin-echo (SE) diffusion and SE-MRE acquisitions. The averaged ADC values (n = 3) for selected ROIs in the beads were (1.75 ± 0.16) μm(2) /ms and (1.74 ± 0.16) μm(2) /ms for SE-diffusion and dMRE methods, respectively. The corresponding shear stiffness values in the beads were (2.45 ± 0.23) kPa and (2.42 ± 0.20) kPa. Simultaneous MRE and diffusion acquisition is feasible and can be implemented with no observable interference between the two methods. Copyright © 2014 Wiley Periodicals, Inc.
Towards the Early Detection of Breast Cancer in Young Women
2005-10-01
T. Shiina, and F. Tranquart. Progress in Freehand Elastography of the Breast . IEICE Transactions on Information and Systems, E85D (1):5–14, 2002. [3...Meaney, Naomi R. Miller, Tsuyoshi Shiina, and Francois Tranquart. Progress in freehand elastography of the breast . IEICE Transactions on Information...solution of the non-linear inverse elasticity problem 28 [26] Liew HL and Pinsky PM. Recovery of shear modulus in elastography using an adjoint method
Zhou, Lu-Yao; Jiang, Hong; Shan, Quan-Yuan; Chen, Dong; Lin, Xiao-Na; Liu, Bao-Xian; Xie, Xiao-Yan
2017-08-01
To prospectively assess the diagnostic performance of supersonic shear wave elastography (SSWE) in identifying biliary atresia (BA) among infants with conjugated hyperbilirubinaemia by comparing this approach with grey-scale ultrasonography (US). Forty infants were analysed as the control group to determine normal liver stiffness values. The use of SSWE values for identifying BA was investigated in 172 infants suspected of having BA, and results were compared with the results obtained by grey-scale US. The Mann-Whitney U test, unpaired t-test, Spearman correlation and linear regression were also performed. The success rates of SSWE measurements in the control and study group were 100% (40/40) and 96.4% (244/253), respectively. Age, direct bilirubin, and indirect bilirubin all significantly correlated with SSWE in the liver (all P < 0.001). Linear regression showed that age had a greater effect on SSWE values than direct or indirect bilirubin. The diagnostic performance of liver stiffness values in identifying BA was lower than that of grey-scale US (area under the receiver operating characteristic curve [AUC], 0.790 vs 0.893, P < 0.001). SSWE is feasible and valuable in differentiating BA from non-BA. However, its diagnostic performance does not exceed that of grey-scale US. • SSWE could be successfully performed in an infant population. • For infants, the liver stiffness will increase as age increases. • SSWE is potentially useful in assessing infants suspected of biliary atresia. • SSWE is inferior to grey-scale US in identifying biliary atresia.
Elastography Study of Hamstring Behaviors during Passive Stretching
Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine
2015-01-01
Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862
Ultrasound sonoelastography in the evaluation of thyroiditis and autoimmune thyroid disease.
Ruchała, Marek; Szmyt, Krzysztof; Sławek, Sylwia; Zybek, Ariadna; Szczepanek-Parulska, Ewelina
2014-01-01
Sonoelastography (USE) is a constantly evolving imaging technique used for the noninvasive and objective estimation of tissue stiffness. Several USE methods have been developed, including Quasi-Static or Strain Elastography and Shear Wave Elastography. The utility of USE has been demonstrated in differentiating between malignant and benign thyroid lesions. Recently, USE has been applied in the evaluation of thyroiditis and autoimmune thyroid disease (AITD).Thyroid inflammatory illnesses constitute a diverse group of diseases and may manifest various symptoms. These conditions may share some parallel clinical, biochemical, and ultrasonographic features, which can lead to diagnostic difficulties. USE may be an additional tool, supporting other methods in the diagnosis and treatment monitoring of thyroid diseases, other than thyroid nodular disease.The aim of this article was to analyse and summarise the available literature on the applicability of different elastographic techniques in the diagnosis, differentiation and monitoring of various types of thyroiditis and AITD. Advantages and limitations of this technique are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wang, Min; Jiang, Jingfeng
2017-02-01
Shear wave elastography is increasingly being used to non-invasively stage liver fibrosis by measuring shear wave speed (SWS). This study quantitatively investigates intrinsic variations among SWS measurements obtained from heterogeneous media such as fibrotic livers. More specifically, it aims to demonstrate that intrinsic variations in SWS measurements, in general, follow a non-Gaussian distribution and are related to the heterogeneous nature of the medium being measured. Using the principle of maximum entropy (ME), our primary objective is to derive a probability density function (PDF) of the SWS distribution in conjunction with a lossless stochastic tissue model. Our secondary objective is to evaluate the performance of the proposed PDF using Monte Carlo (MC)-simulated shear wave (SW) data against three other commonly used PDFs. Based on statistical evaluation criteria, initial results showed that the derived PDF fits better to MC-simulated SWS data than the other three PDFs. It was also found that SW fronts stabilized after a short (compared with the SW wavelength) travel distance in lossless media. Furthermore, in lossless media, the distance required to stabilize the SW propagation was not correlated to the SW wavelength at the low frequencies investigated (i.e. 50, 100 and 150 Hz). Examination of the MC simulation data suggests that elastic (shear) wave scattering became more pronounced when the volume fraction of hard inclusions increased from 10 to 30%. In conclusion, using the principle of ME, we theoretically demonstrated for the first time that SWS measurements in this model follow a non-Gaussian distribution. Preliminary data indicated that the proposed PDF can quantitatively represent intrinsic variations in SWS measurements simulated using a two-phase random medium model. The advantages of the proposed PDF are its physically meaningful parameters and solid theoretical basis.
Transient elastography with the XL probe rapidly identifies patients with nonhepatic ascites.
Kohlhaas, Anna; Durango, Esteban; Millonig, Gunda; Bastard, Cecile; Sandrin, Laurent; Golriz, Mohammad; Mehrabi, Arianeb; Büchler, Markus W; Seitz, Helmut Karl; Mueller, Sebastian
2012-01-01
In contrast with other elastographic techniques, ascites is considered an exclusion criterion for assessment of fibrosis stage by transient elastography. However, a normal liver stiffness could rule out hepatic causes of ascites at an early stage. The aim of the present study was to determine whether liver stiffness can be generally determined by transient elastography through an ascites layer, to determine whether the ascites-mediated increase in intra-abdominal pressure affects liver stiffness, and to provide initial data from a pilot cohort of patients with various causes of ascites. Using the XL probe in an artificial ascites model, we demonstrated (copolymer phantoms surrounded by water) that a transient elastography-generated shear wave allows accurate determination of phantom stiffness up to a water lamella of 20 mm. We next showed in an animal ascites model that increased intra-abdominal pressure does not affect liver stiffness. Liver stiffness was then determined in 24 consecutive patients with ascites due to hepatic (n = 18) or nonhepatic (n = 6) causes. The cause of ascites was eventually clarified using routine clinical, imaging, laboratory, and other tools. Valid (75%) or acceptable (25%) liver stiffness data could be obtained in 23 patients (95.8%) with ascites up to an ascites lamella of 39 mm. The six patients (25%) with nonhepatic causes of ascites (eg, pancreatitis, peritoneal carcinomatosis) had a significantly lower liver stiffness (<8 kPa) as compared with the remaining patients with hepatic ascites (>30 kPa). Mean liver stiffness was 5.4 kPa ± 1.3 versus 66.2 ± 13.3 kPa. In conclusion, the presence of ascites and increased intra-abdominal pressure does not alter underlying liver stiffness as determined by transient elastography. We suggest that, using the XL probe, transient elastography can be used first-line to identify patients with nonhepatic ascites at an early stage.
Transient elastography with the XL probe rapidly identifies patients with nonhepatic ascites
Kohlhaas, Anna; Durango, Esteban; Millonig, Gunda; Bastard, Cecile; Sandrin, Laurent; Golriz, Mohammad; Mehrabi, Arianeb; Büchler, Markus W; Seitz, Helmut Karl; Mueller, Sebastian
2012-01-01
Background In contrast with other elastographic techniques, ascites is considered an exclusion criterion for assessment of fibrosis stage by transient elastography. However, a normal liver stiffness could rule out hepatic causes of ascites at an early stage. The aim of the present study was to determine whether liver stiffness can be generally determined by transient elastography through an ascites layer, to determine whether the ascites-mediated increase in intra-abdominal pressure affects liver stiffness, and to provide initial data from a pilot cohort of patients with various causes of ascites. Methods and results Using the XL probe in an artificial ascites model, we demonstrated (copolymer phantoms surrounded by water) that a transient elastography-generated shear wave allows accurate determination of phantom stiffness up to a water lamella of 20 mm. We next showed in an animal ascites model that increased intra-abdominal pressure does not affect liver stiffness. Liver stiffness was then determined in 24 consecutive patients with ascites due to hepatic (n = 18) or nonhepatic (n = 6) causes. The cause of ascites was eventually clarified using routine clinical, imaging, laboratory, and other tools. Valid (75%) or acceptable (25%) liver stiffness data could be obtained in 23 patients (95.8%) with ascites up to an ascites lamella of 39 mm. The six patients (25%) with nonhepatic causes of ascites (eg, pancreatitis, peritoneal carcinomatosis) had a significantly lower liver stiffness (<8 kPa) as compared with the remaining patients with hepatic ascites (>30 kPa). Mean liver stiffness was 5.4 kPa ± 1.3 versus 66.2 ± 13.3 kPa. Conclusion In conclusion, the presence of ascites and increased intra-abdominal pressure does not alter underlying liver stiffness as determined by transient elastography. We suggest that, using the XL probe, transient elastography can be used first-line to identify patients with nonhepatic ascites at an early stage. PMID:24367229
Yanrong Guo; Haoming Lin; Xinyu Zhang; Huiying Wen; Siping Chen; Xin Chen
2017-07-01
Acoustic radiation force impulse (ARFI) elastography is a non-invasive method for the assessment of liver by measuring liver stiffness. The aim of this study is to evaluate the accuracy of ARFI for the diagnosis of liver fibrosis and to assess impact of steatosis on liver fibrosis stiffness measurement, in rats model of non-alcoholic fatty liver disease (NAFLD). The rat models were conducted in 59 rats. The right liver lobe was processed and embedded in a fabricated gelatin solution. Liver mechanics were measured using shear wave velocity (SWV) induced by acoustic radiation force. In rats with NAFLD, the diagnostic performance of ARFI elastography in predicting severe fibrosis (F ≥ 3) and cirrhosis (F ≥ 4) had the areas under the receiver operating characteristic curves (AUROC) of 0.993 and 0.985. Among rats mean SWV values were significantly higher in rats with severe steatosis by histology compared to those mild or without steatosis for F0-F2 fibrosis stages (3.07 versus 2.51 m/s, P = 0.01). ARFI elastography is a promising method for staging hepatic fibrosis with NAFLD in rat models. The presence of severe steatosis is a significant factor for assessing the lower stage of fibrosis.
Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study
NASA Astrophysics Data System (ADS)
Gomez, A.; Rus, G.; Saffari, N.
2016-01-01
Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible.
Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.
Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng
2018-06-06
Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.
WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanter, M.
In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented spatial and temporal resolution compared to fMRI. Combined with contrast agents, our group demonstrated that Ultrafast Ultrasound Localization could provide a first in vivo and non invasive imaging modality at microscopic scales deep into organs. Many of these ultrafast modes should lead to major improvements in ultrasound screening, diagnosis, and therapeutic monitoring. Learning Objectives: Achieve familiarity with recent advances in ultrafast ultrasound imaging technology. Develop an understanding of potential applications of ultrafast ultrasound imaging for diagnosis and therapeutic monitoring. Dr. Tanter is a co-founder of Supersonic Imagine,a French company positioned in the field of medical ultrasound imaging and therapy.« less
Quantitative evaluation of pancreatic tumor fibrosis using shear wave elastography.
Kuwahara, Takamichi; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Sugimoto, Hiroyuki; Hayashi, Daijuro; Morishima, Tomomasa; Kawai, Manabu; Suhara, Hiroki; Takeyama, Tomoaki; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Watanabe, Osamu; Ishigami, Masatoshi; Shimoyama, Yoshie; Nakamura, Shigeo; Hashimoto, Senju; Goto, Hidemi
There is no established non-invasive method for diagnosis of pancreatic fibrosis. Shear wave elastography (SW-EG) may be a candidate for this purpose. The aims of this study were to assess the reproducibility of SW-EG in the normal imaging pancreas (Phase 1) and to evaluate the diagnostic performance of SW-EG for pancreatic fibrosis classified histologically (Phase 2). Phase 1: This included 127 cases that underwent SW-EG of the normal imaging pancreas. SW-EG was measured at least five times in the pancreatic parenchyma and the median of repeated measurements was defined as the pancreatic elastic modulus (PEM). Phase 2: This included 53 cases that underwent SW-EG of the pancreatic parenchyma preoperatively and in which pancreas parenchyma were evaluated histologically. Histological fibrosis was graded in 4 stages: normal, mild, moderate, and severe. Phase 1: Median PEM in the head, body, and tail of the pancreas were 3.23, 3.17, and 2.91 kPa, respectively, with no significant difference among regions (P = 0.554). The intraclass correlation coefficient showed good reproducibility (ρ = 0.71) after 5 measurements. Phase 2: There was a significant positive correlation between PEM and the histological pancreatic fibrosis stage (r s = 0.63, P < 0.001). Areas under the receiver operating characteristic curve for the accuracy of SW-EG for diagnosis of pancreatic fibrosis were 0.85 (≥mild), 0.84 (≥moderate), and 0.87 (severe). SW-EG can be used to determine the stage of pancreatic fibrosis non-invasively with high accuracy and reproducibility. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Wakker, Jonas; Kratzer, Wolfgang; Graeter, Tilmann; Schmidberger, Julian
2018-05-09
To determine normal values for acoustic radiation force impulse (ARFI) shear wave elastography of the Achilles tendon. Using the VTIQ mode with the Acuson S3000™ (Siemens Healthcare, Erlangen, Germany), we measured the shear wave velocity (SWV) in m/s and the diameter in mm of both Achilles tendons in 182 healthy volunteers. The tendon was displayed in a sagittal view with a relaxed tendon. The parameters were tested for correlations with the anthropometric data of the subjects, between the genders and different age groups, as well as information obtained from the history, such as smoking and sporting activities. Using a sagittal acoustic window, we determined a mean SWV of 9.09 ± 0.71 m/s for the left Achilles tendon and 9.17 ± 0.61 m/s for the right. There was a significant difference between the results for the right and left side (p < 0.05). The diameter on the left was 4.7 ± 0.9 mm. On the right, it was 4.8 ± 0.9 mm. Likewise there was a significant difference between the results for the diameter of the left and right side (p < 0.05). Neither gender, body mass index (BMI) nor age had a significant effect on either of the measured parameters (p > 0.05). The same goes for the consumption of tobacco and alcohol (p > 0.05). Age, gender, BMI, smoking or the consumption of alcohol did not affect either the elasticity or the diameter of the Achilles tendon.
Ichihashi, Noriaki; Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Fujita, Kosuke; Umehara, Jun; Nakao, Sayaka; Ibuki, Satoko
2016-12-01
The aims of this study were to investigate the effects of a 4-week intervention of static stretching (SS) on muscle hardness of the semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) muscles. Shear elastic modulus was measured by using ultrasound shear wave elastography as the index of muscle hardness. Thirty healthy men (age 22.7 ± 2.2 years) volunteered for this study and were randomly assigned to the SS intervention group (n = 15) or the control group (n = 15). Participants in the SS intervention group received a 4-week stretch intervention for the hamstrings of their dominant leg. Shear elastic moduli of the hamstrings were measured at initial evaluation and after 4 weeks in both groups at a determined angle. In all muscles, the shear elastic modulus decreased significantly after SS intervention. The percentage change in the shear elastic modulus from the value at initial evaluation to after 4 weeks intervention was greatest in the SM. These results suggest that SS intervention has chronic effects on reducing hardness of the hamstring muscle components, especially the SM muscle.
A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.
Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki
2016-08-01
We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.
A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography.
Neumann, Wiebke; Schad, Lothar R; Zollner, Frank G
2017-07-01
Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.
An octahedral shear strain-based measure of SNR for 3D MR elastography
NASA Astrophysics Data System (ADS)
McGarry, M. D. J.; Van Houten, E. E. W.; Perriñez, P. R.; Pattison, A. J.; Weaver, J. B.; Paulsen, K. D.
2011-07-01
A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.
NASA Astrophysics Data System (ADS)
Brinker, Spencer Thomas
The contents of this dissertation include investigations in Magnetic Resonance Elastography (MRE) using a preclinical 9.4 Tesla small animal Magnetic Resonance Imaging (MRI) system along with synthetic materials that mimic the mechanical properties of soft human tissue. MRE is used for studying the mechanical behavior of soft tissue particularly applicable to medical applications. Wave motion induced by a mechanical driver is measured with MRI to acquire internal displacement fields over time and space within a material media. Complex shear modulus of the media is calculated from the response of mechanical wave transmission through the material. Changes in soft tissue stiffness is associated with disease progression and thus, is why assessing tissue mechanical properties with MRE has powerful diagnostic potential due to the noninvasive procedure of MRI. The experiments performed in this dissertation used elastic phantoms and specimens to observe the influence of pre-stress on MRE derived mechanical properties while additional mechanical measurements from other related material testing methods were synchronously collected alongside MRI scanning. An organ simulating phantom was used to explore changes in MRE stiffness in response to gas and liquid cyclic pressure loading. MRE stiffness increased with pressure and hysteresis was observed in cyclic pressure loading. The results suggest MRE is applicable to pressure related disease assessment. In addition, an interconnected porosity pressure phantom was constructed for future porous media investigations. A custom system was also built to demonstrate concurrent tensile testing during MRE for investigating homogeneous soft material media undergoing pre-tension. Stiffness increased with uniaxial tensile stress and strain. The tension and stiffness relationship explored can be related to the stress analysis of voluntary muscle. The results also offer prospective experimental strategies for community wide standards on MRE calibration methods. Lastly, a novel platform was developed for synchronous acquisition of Scanning Laser Doppler Vibrometry (SLDV) and MRE for examining surface wave dynamics related to internal media wave propagation in soft material experiencing sinusoidal mechanical excitation. The results indicate that optical displacement measurements of media on the surface are similar in nature to internal displacement measured from MRE. It is concluded that optical and MRI based elastography yield similar values of complex shear modulus.
Model-based elastography: a survey of approaches to the inverse elasticity problem
Doyley, M M
2012-01-01
Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam
2015-03-01
By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.
NASA Astrophysics Data System (ADS)
Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi
2011-06-01
Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).
Detection of FUS induced lesions by MR-elastography
NASA Astrophysics Data System (ADS)
Jenne, Jürgen W.; Divkovic, Gabriela; Siegler, Peter
2005-03-01
MRI (Magnetic Resonance Imaging) has proven to be an exact and safe method to guide FUS (Focused ultrasound surgery) therapy. Besides its excellent soft tissue contrast, important for a precise treatment planning, MRI allows fast and reliable measurement of temperature changes caused by FUS application. In this study we compare standard MR-imaging parameters (relaxation times, spin density) with MR measured tissue elasticity in order to differentiate between FUS induced thermal lesions and normal tissue in vitro. In addition we tried to observe FUS induced shear waves by dynamic MRE. FUS was performed with an MRI compatible 1.7 MHz fixed focus transducer (NA 0.44; f'= 68 mm). With increasing acoustic power (30-70 W) the difference in relaxation times T1, T2 and spin density between normal and lesioned tissue also increased. We measured values in the range 5% to 24%. The difference in tissue strain had a value of 23% at 30 W and was nearly constant (52-61%) at higher FUS power. Compared with standard MRI parameters MRE showed a clearly higher sensitivity to detect FUS induced lesions. With our experimental setup it was possible to image FUS induced shear waves. The measured wave length at 400Hz repetition rate was 7 mm. However, further experiments are necessary to utilize the potential of MRE in practice.
Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling.
Morales-Artacho, A J; Lacourpaille, L; Guilhem, G
2017-12-01
This study investigated the effects of active and/or passive warm-up tasks on the hamstring muscles stiffness through elastography and passive torque measurements. On separate occasions, fourteen males randomly completed four warm-up protocols comprising Control, Cycling, Foam rolling, or Cycling plus Foam rolling (Mixed). The stiffness of the hamstring muscles was assessed through shear wave elastography, along with the passive torque-angle relationship and maximal range of motion (ROM) before, 5, and 30 minutes after each experimental condition. At 5 minutes, Cycling and Mixed decreased shear modulus (-10.3% ± 5.9% and -7.7% ± 8.4%, respectively; P≤.0003, effect size [ES]≥0.24) and passive torque (-7.17% ± 8.6% and -6.2% ± 7.5%, respectively; P≤.051, ES≥0.28), and increased ROM (+2.9% ± 2.9% and +3.2% ± 3.5%, respectively; P≤.001, ES≥0.30); 30 minutes following Mixed, shear modulus (P=.001, ES=0.21) and passive torque (P≤.068, ES≥0.2) were still slightly decreased, while ROM increased (P=.046, ES=0.24). Foam rolling induced "small" immediate short-term decreases in shear modulus (-5.4% ± 5.7% at 5 minutes; P=.05, ES=0.21), without meaningful changes in passive torque or ROM at any time point (P≥.12, ES≤0.23). These results suggest that the combined warm-up elicited no acute superior effects on muscle stiffness compared with cycling, providing evidence for the key role of active warm-up to reduce muscle stiffness. The time between warm-up and competition should be considered when optimizing the effects on muscle stiffness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Seguin, Johanne; Mignet, Nathalie; Latorre Ossa, Heldmuth; Tanter, Mickaël; Gennisson, Jean-Luc
2017-10-01
A recent ultrasound imaging technique-shear wave elastography-showed its ability to image and quantify the mechanical properties of biological tissues, such as prostate or liver tissues. In the present study this technique was used to evaluate the relationship among tumor growth, stiffness and reduction of treatment with combretastatin (CA4 P) in allografted colon tumor CT26 in mice. During 12 d, CT26 tumor growth (n = 52) was imaged by ultrasound, and shear modulus was quantified, showing a good correlation between tumor volume and stiffness (r = 0.59). The treatment was initiated at d 12 and monitored every d during 4 d. Following the treatment, the tumor volume had decreased, while the elasticity of the tumor volume remained steady throughout the treatment. After segmentation using the shear modulus map, a detailed analysis showed a decrease in the stiffness after treatment. This reduction in the mechanical properties was shown to correlate with tissue reorganization, particularly, fibrosis and necrosis, assessed by histology. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Evidence for intermuscle difference in slack angle in human triceps surae.
Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu
2015-04-13
This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.
Contributions of Hamstring Stiffness to Straight-Leg-Raise and Sit-and-Reach Test Scores.
Miyamoto, Naokazu; Hirata, Kosuke; Kimura, Noriko; Miyamoto-Mikami, Eri
2018-02-01
The passive straight-leg-raise (PSLR) and the sit-and-reach (SR) tests have been widely used to assess hamstring extensibility. However, it remains unclear to what extent hamstring stiffness (a measure of material properties) contributes to PSLR and SR test scores. Therefore, we aimed to clarify the relationship between hamstring stiffness and PSLR and SR scores using ultrasound shear wave elastography. Ninety-eight healthy subjects completed the study. Each subject completed PSLR testing, and classic and modified SR testing of the right leg. Muscle shear modulus of the biceps femoris, semitendinosus, and semimembranosus was quantified as an index of muscle stiffness. The relationships between shear modulus of each muscle and PSLR or SR scores were calculated using Pearson's product-moment correlation coefficients. Shear modulus of the semitendinosus and semimembranosus showed negative correlations with the two PSLR and two SR scores (absolute r value≤0.484). Shear modulus of the biceps femoris was significantly correlated with the PSLR score determined by the examiner and the modified SR score (absolute r value≤0.308). The present findings suggest that PSLR and SR test scores are strongly influenced by factors other than hamstring stiffness and therefore might not accurately evaluate hamstring stiffness. © Georg Thieme Verlag KG Stuttgart · New York.
Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2016-01-01
Purpose The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods Low-amplitude (≤10 μm) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. Corneas were then cross-linked by either of two methods: UV-A/riboflavin (UV-CXL) or rose-Bengal/green light (RGX). Phase velocities of the elastic waves were fitted to a previously developed modified Rayleigh-Lamb frequency equation to obtain the viscoelasticity of the corneas before and after the cross-linking treatments. Micro-scale depth-resolved phase velocity distribution revealed the depth-wise heterogeneity of both cross-linking techniques. Results Under standard treatment settings, UV-CXL significantly increased the stiffness of the corneas by ∼47% (P < 0.05), but RGX did not produce statistically significant increases. The shear viscosities were unaffected by either cross-linking technique. The depth-wise phase velocities showed that UV-CXL affected the anterior ∼34% of the corneas, whereas RGX affected only the anterior ∼16% of the corneas. Conclusions UV-CXL significantly strengthens the cornea, whereas RGX does not, and the effects of cross-linking by UV-CXL reach deeper into the cornea than cross-linking effects of RGX under similar conditions. PMID:27409461
Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy
2013-03-01
This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.
Ronot, Maxime; Lambert, Simon A.; Wagner, Mathilde; Garteiser, Philippe; Doblas, Sabrina; Albuquerque, Miguel; Paradis, Valérie; Vilgrain, Valérie; Sinkus, Ralph; Van Beers, Bernard E.
2014-01-01
Objective To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis. Materials and Methods The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5±2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures. Results At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p<0.0001). This parameter had an Obuchowski measure of 0.89+/−0.03. This measure was significantly larger than that of the loss modulus (0.78+/−0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/−0.03, p = 0.84). Conclusion Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus. PMID:24722733
Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Mizuno, Kazuyuki; Sone, Yasuhiro; Kataoka, Saki; Hashinokuchi, Shinichi
2017-12-01
There is insufficient research on whether direct-acting antiviral (DAA) therapy can improve liver fibrosis in patients with chronic hepatitis C virus (HCV). We evaluated sequential changes in liver stiffness using shear wave elastography in patients with HCV who received DAA therapy. A total of 210 patients with HCV who received daclatasvir and asunaprevir therapy and achieved sustained virological response (SVR) were analyzed. Liver stiffness, as evaluated by shear wave elastography, and laboratory data were assessed before treatment (baseline), at end of treatment (EOT), and at 24 weeks after EOT (SVR24). Alanine aminotransferase levels (ALT) decreased over time, and there were significant differences between baseline and EOT and between EOT and SVR24. Although platelet counts did not significantly differ between baseline and EOT, they increased significantly from EOT to SVR24. The median (interquartile range) liver stiffness values at baseline, EOT, and SVR24 were 10.2 (7.7-14.7), 8.8 (7.1-12.1), and 7.6 (6.3-10.3) kPa, respectively (P < 0.001, baseline vs EOT; P < 0.001, EOT vs SVR24). Additionally, in patients with ALT ≤ 30 (indicating low necroinflammatory activity in the liver) and Fibrosis-4 index > 2.0 (n = 75), the liver stiffness values at baseline, EOT, and SVR24 were 9.6 (7.7-15.2), 9.2 (7.3-12.1), and 7.7 (6.3-10.1) kPa, respectively (P < 0.001, baseline vs EOT; P < 0.001, EOT vs SVR24). These results suggest that early improvement of liver stiffness starts during the administration of DAAs in patients who achieve SVR, and this effect is particularly pronounced in patients with progressive liver fibrosis. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-01
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-07
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.
Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V
2018-03-01
The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.
2017-02-01
In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.
The biomechanics of simple steatosis and steatohepatitis
NASA Astrophysics Data System (ADS)
Parker, K. J.; Ormachea, J.; Drage, M. G.; Kim, H.; Hah, Z.
2018-05-01
Magnetic resonance and ultrasound elastography techniques are now important tools for staging high-grade fibrosis in patients with chronic liver disease. However, uncertainty remains about the effects of simple accumulation of fat (steatosis) and inflammation (steatohepatitis) on the parameters that can be measured using different elastographic techniques. To address this, we examine the rheological models that are capable of capturing the dominant viscoelastic behaviors associated with fat and inflammation in the liver, and quantify the resulting changes in shear wave speed and viscoelastic parameters. Theoretical results are shown to match measurements in phantoms and animal studies reported in the literature. These results are useful for better design of elastographic studies of fatty liver disease and steatohepatitis, potentially leading to improved diagnosis of these conditions.
Schwartz, Benjamin L.; Yin, Ziying; Yaşar, Temel K.; Liu, Yifei; Khan, Altaf A.; Ye, Allen Q.; Royston, Thomas J.; Magin, Richard L.
2016-01-01
Aim The focus of this paper is to report on the design and construction of a multiply connected phantom for use in magnetic resonance elasography (MRE)–an imaging technique that allows for the non-invasive visualization of the displacement field throughout an object from externally driven harmonic motion–as well as its inverse modeling with a closed-form analytic solution which is derived herein from first principles. Methods Mathematically, the phantom is described as two infinite concentric circular cylinders with unequal complex shear moduli, harmonically vibrated at the exterior surface in a direction along their common axis. Each concentric cylinder is made of a hydrocolloid with its own specific solute concentration. They are assembled in a multi-step process for which custom scaffolding was designed and built. A customized spin-echo based MR elastography sequence with a sinusoidal motion-sensitizing gradient was used for data acquisition on a 9.4 T Agilent small-animal MR scanner. Complex moduli obtained from the inverse model are used to solve the forward problem with a finite element method. Results Both complex shear moduli show a significant frequency dependence (p < 0.001) in keeping with previous work. Conclusion The novel multiply connected phantom and mathematical model are validated as a viable tool for MRE studies. Significance On a small enough scale much of physiology can be mathematically modeled with basic geometric shapes, e.g. a cylinder representing a blood vessel. This work demonstrates the possibility of elegant mathematical analysis of phantoms specifically designed and carefully constructed for biomedical MRE studies. PMID:26886963
Yoshitake, Yasuhide; Uchida, Daiki; Hirata, Kosuke; Mayfield, Dean L; Kanehisa, Hiroaki
2018-06-06
To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.
Magnetic resonance elastography of the brain: A comparison between pigs and humans.
Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen
2018-01-01
Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance elastography as a whole. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping
2016-11-01
A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.
Badea, Alexandru Florin; Tamas Szora, Attila; Ciuleanu, Elisabeta; Chioreanu, Ioana; Băciuţ, Grigore; Lupşor Platon, Monica; Badea, Radu
2013-09-01
Evaluation of Acoustic Radiation Force Impulse Imaging (ARFI) elastography performance in predicting the elasticity of the submandibular glands in normal situations and after radiation therapy. A number of 54 normal submandibular glands from 27 voluntary subjects and 33 pathological submandibular glands (radiation submaxillities) from 18 patients who had undergone radiation therapy for various cervical and facial oncological conditions were included in study. All the patients had undergone a B mode ultrasonography (Tissue Harmonic Imaging, 8-14 MHz) while the submandibular volume was determined and subsequently an ARFI examination while the shear wave velocity (SWV) was measured (in the central, peripheral and subcapsular areas, with the results expressed in m/s). In the volunteers' group the mean value of the SWV of the left submandibular gland was 1.68 ± 0.46 m/s, determined in the centre of the gland, 1.88 ± 0.4 m/s in the periphery (corresponding to the subcapsular parenchyma) and the SWV of the right submandibular gland was 1.74 ± 0.35 m/s (centrally) and 1.84 ± 0.43 m/s in the periphery. The mean value of all measurements was 1.82 ± 0.41 m/s. The mean volume of the glands was 7.97 ± 2.63 cm3. In the group of patients who had underwent radiation therapy (at least 35Gy), the mean value of the SWV was 2.24 ± 0.49 m/s centrally and 2.1 ± 0.58 m/s in the periphery on the left and 1.99 ± 0.5 m/s centrally and 2.21 ± 0.52 m/s in the periphery on the right. The mean value of all the measurements was 2.13 ± 0.52 m/s and the mean volume of the gland was 5.95 ± 4.16 cm3. Elastography using ARFI technique is a valid examination in the evaluation of the normal and pathological submandibular gland stiffness. The values of the shear wave velocities that correspond to a normal stiffness, determined through the ARFI technique, are similar in the two glands. After cervical and facial radiation therapy the values of the SWV are increased, indicating a change in the consistency of the gland thus implying a structural transformation. The ARFI technique can be used in the evaluation of the salivary glands pathology.
Association Between Years of Competition and Shoulder Function in Collegiate Swimmers.
Dischler, Jack D; Baumer, Timothy G; Finkelstein, Evan; Siegal, Daniel S; Bey, Michael J
Shoulder injuries are common among competitive swimmers, and the progression of shoulder pathology is not well understood. The objective of this study was to assess the extent to which years of competitive swim training were associated with physical properties of the supraspinatus muscle and tendon, shoulder strength, and self-reported assessments of shoulder pain and function. Increasing years of competition will be associated with declining physical properties of the supraspinatus muscle/tendon and declining self-reported assessments of pain and function. Descriptive epidemiology study. Level 4. After institutional approval, 18 collegiate female swimmers enrolled in the study. For each swimmer, supraspinatus tendon thickness was measured; tendinosis was assessed using ultrasound imaging, supraspinatus muscle shear wave velocity was assessed using shear wave elastography, isometric shoulder strength was measured using a Biodex system, and self-reported assessments of pain/function were assessed using the Western Ontario Rotator Cuff (WORC) score. All subjects were tested before the start of the collegiate swim season. Linear regression was used to assess the association between years of competition and the outcome measures. Years of participation was positively associated with tendon thickness ( P = 0.01) and negatively associated with shear wave velocity ( P = 0.04) and WORC score ( P < 0.01). Shoulder strength was not associated with years of participation ( P > 0.39). Long-term competitive swim training is associated with declining measures of supraspinatus muscle/tendon properties and self-reported measures of pain and function. Although specific injury mechanisms are still not fully understood, these findings lend additional insight into the development of rotator cuff pathology in swimmers. Lengthy swimming careers may lead to a chronic condition of reduced mechanical properties in the supraspinatus muscle and tendon, thereby increasing the likelihood of rotator cuff pathology.
Acoustic radiation force impulse (ARFI) elastography for detection of renal damage in children.
Göya, Cemil; Hamidi, Cihad; Ece, Aydın; Okur, Mehmet Hanifi; Taşdemir, Bekir; Çetinçakmak, Mehmet Güli; Hattapoğlu, Salih; Teke, Memik; Şahin, Cahit
2015-01-01
Acoustic radiation force impulse (ARFI) imaging is a promising method for noninvasive evaluation of the renal parenchyma. To investigate the contribution of ARFI quantitative US elastography for the detection of renal damage in kidneys with and without vesicoureteral reflux (VUR). One hundred seventy-six kidneys of 88 children (46 male, 42 female) who had been referred for voiding cystourethrography and 20 healthy controls were prospectively investigated. Patients were assessed according to severity of renal damage on dimercaptosuccinic acid (DMSA) scintigraphy. Ninety-eight age- and gender-matched healthy children constituted the control group. Quantitative shear wave velocity (SWV) measurements were performed in the upper and lower poles and in the interpolar region of each kidney. DMSA scintigraphy was performed in 62 children (124 kidneys). Comparisons of SWV values of kidneys with and without renal damage and/or VUR were done. Significantly higher SWV values were found in non-damaged kidneys. Severely damaged kidneys had the lowest SWV values (P < 0.001). High-grade (grade V-IV) refluxing kidneys had the lowest SWV values, while non-refluxing kidneys had the highest values (P < 0.05). Significant negative correlations were found between the mean quantitative US elastography values and DMSA scarring score (r = -0.788, P < 0.001) and VUR grade (r = -0.634, P < 0.001). SWV values of the control kidneys were significantly higher than those of damaged kidneys (P < 0.05). Our findings suggest decreasing SWV of renal units with increasing grades of vesicoureteric reflux, increasing DMSA-assessed renal damage and decreasing DMSA-assessed differential function.
Habibi, Hatice Arioz; Cicek, Rumeysa Yasemin; Kandemirli, Sedat Giray; Ure, Emel; Ucar, Ayse Kalyoncu; Aslan, Mine; Caliskan, Salim; Adaletli, Ibrahim
2017-04-01
To investigate the role of acoustic radiation force impulse (ARFI) elastography in the detection of renal parenchymal damage in kidneys with and without ureteropelvic junction obstruction (UPJO). Twenty-five pediatric patients with a diagnosis of UPJO who underwent surgery and 15 pediatric patients with conservatively managed UPJO were prospectively evaluated with ARFI elastography. Sixteen healthy volunteers constituted the control group. Shear wave velocity (SWV) measurements in the upper, mid, and lower poles of the affected kidney were performed. SWV values of kidneys based on presence of UPJO and hydronephrosis grade were compared. The correlation of SWV values with residual renal function obtained from diethylenetriaminepentaacetic acid or mercaptoacetyltriglycine-3 renal scan was evaluated. Significantly, higher SWV values were found in control kidneys compared to kidneys affected by UPJO. The median SWVs were 2.82 (2.51-3.07) m/s for the control kidneys and 2.36 (2.09-2.53) m/s for the kidneys in the UPJO group (p < 0.001). When UPJO patients were grouped according to the grade of hydronephrosis, grade 0 hydronephrotic kidneys [2.35 (2.11-2.50) m/s] and grade 3-4 hydronephrotic kidneys [1.86 (1.96-2.25) m/s] had significantly lower SWV values compared to grade 1-2 hydronephrotic kidneys [2.62 (2.37-2.90) m/s] (p < 0.05). ARFI as a noninvasive, radiation-free procedure for evaluating parenchymal stiffness may prove useful in the diagnostic work-up and follow-up of children with UPJO-induced renal disease.
Lima, Kelly; Rouffaud, Remi; Pereira, Wagner; Oliveira, Liliam F
2018-04-30
To verify a relationship between the pennation angle of synthetic fibers and muscle fibers with the shear modulus (μ) generated by Supersonic shear imaging (SSI) elastography and to compare the anisotropy of synthetic and in vivo pennate muscle fibers in the x 2 -x 3 plane (probe perpendicular to water surface or skin). First, the probe of Aixplorer ultrasound scanner (v.9, Supersonic Imagine, Aix-en-Provence, France) was placed in 2 positions (parallel [aligned] and transverse to the fibers) to test the anisotropy in the x 2 -x 3 plane. Subsequently, it was inclined (x 1 -x 3 plane) in relation to the fibers, forming 3 angles (18.25 °, 21.55 °, 36.86 °) for synthetic fibers and one (approximately 0 °) for muscle fibers. On the x 2 -x 3 plane, μ values of the synthetic and vastus lateralis fibers were significantly lower (P < .0001) at the transverse probe position than the longitudinal one. In the x 1 -x 3 plane, the μ values were significantly reduced (P < .0001) with the probe angle increasing, only for the synthetic fibers (approximately 0.90 kPa for each degree of pennation angle). The pennation angle was not related to the μ values generated by SSI elastography for the in vivo lateral head of the gastrocnemius and vastus lateralis muscles. However, a μ reduction with an angle increase in the synthetic fibers was observed. These findings contribute to increasing the applicability of SSI in distinct muscle architecture at normal or pathologic conditions. © 2018 by the American Institute of Ultrasound in Medicine.
Calculating tissue shear modulus and pressure by 2D log-elastographic methods
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce R.; Zhang, Ning; Manduca, Armando
2010-08-01
Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ sdot u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms.
Office-Based Elastographic Technique for Quantifying Mechanical Properties of Skeletal Muscle
Ballyns, Jeffrey J.; Turo, Diego; Otto, Paul; Shah, Jay P.; Hammond, Jennifer; Gebreab, Tadesse; Gerber, Lynn H.; Sikdar, Siddhartha
2012-01-01
Objectives Our objectives were to develop a new, efficient, and easy-to-administer approach to ultrasound elastography and assess its ability to provide quantitative characterization of viscoelastic properties of skeletal muscle in an outpatient clinical environment. We sought to show its validity and clinical utility in assessing myofascial trigger points, which are associated with myofascial pain syndrome. Methods Ultrasound imaging was performed while the muscle was externally vibrated at frequencies in the range of 60 to 200 Hz using a handheld vibrator. The spatial gradient of the vibration phase yielded the shear wave speed, which is related to the viscoelastic properties of tissue. The method was validated using a calibrated experimental phantom, the biceps brachii muscle in healthy volunteers (n = 6), and the upper trapezius muscle in symptomatic patients with axial neck pain (n = 13) and asymptomatic (pain-free) control participants (n = 9). Results Using the experimental phantom, our method was able to quantitatively measure the shear moduli with error rates of less than 20%. The mean shear modulus ± SD in the normal biceps brachii measured 12.5 ± 3.4 kPa, within the range of published values using more sophisticated methods. Shear wave speeds in active myofascial trigger points and the surrounding muscle tissue were significantly higher than those in normal tissue at high frequency excitations (>100 Hz; P < .05). Conclusions Off-the-shelf office-based equipment can be used to quantitatively characterize skeletal muscle viscoelastic properties with estimates comparable to those using more sophisticated methods. Our preliminary results using this method indicate that patients with spontaneous neck pain and symptomatic myofascial trigger points have increased tissue heterogeneity at the trigger point site and the surrounding muscle tissue. PMID:22837285
Office-based elastographic technique for quantifying mechanical properties of skeletal muscle.
Ballyns, Jeffrey J; Turo, Diego; Otto, Paul; Shah, Jay P; Hammond, Jennifer; Gebreab, Tadesse; Gerber, Lynn H; Sikdar, Siddhartha
2012-08-01
Our objectives were to develop a new, efficient, and easy-to-administer approach to ultrasound elastography and assess its ability to provide quantitative characterization of viscoelastic properties of skeletal muscle in an outpatient clinical environment. We sought to show its validity and clinical utility in assessing myofascial trigger points, which are associated with myofascial pain syndrome. Ultrasound imaging was performed while the muscle was externally vibrated at frequencies in the range of 60 to 200 Hz using a handheld vibrator. The spatial gradient of the vibration phase yielded the shear wave speed, which is related to the viscoelastic properties of tissue. The method was validated using a calibrated experimental phantom, the biceps brachii muscle in healthy volunteers (n = 6), and the upper trapezius muscle in symptomatic patients with axial neck pain (n = 13) and asymptomatic (pain-free) control participants (n = 9). Using the experimental phantom, our method was able to quantitatively measure the shear moduli with error rates of less than 20%. The mean shear modulus ± SD in the normal biceps brachii measured 12.5 ± 3.4 kPa, within the range of published values using more sophisticated methods. Shear wave speeds in active myofascial trigger points and the surrounding muscle tissue were significantly higher than those in normal tissue at high frequency excitations (>100 Hz; P < .05). Off-the-shelf office-based equipment can be used to quantitatively characterize skeletal muscle viscoelastic properties with estimates comparable to those using more sophisticated methods. Our preliminary results using this method indicate that patients with spontaneous neck pain and symptomatic myofascial trigger points have increased tissue heterogeneity at the trigger point site and the surrounding muscle tissue.
Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf
2012-04-01
Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.
Correlation of Point Shear Wave Velocity and Kidney Function in Chronic Kidney Disease.
Grosu, Iulia; Bob, Flaviu; Sporea, Ioan; Popescu, Alina; Şirli, Roxana; Schiller, Adalbert
2018-04-24
Point shear wave elastography is a quantitative ultrasound-based imaging method used in the assessment of renal disease. Among point shear wave elastographic options, 2 techniques have been studied considerably: Virtual Touch quantification (VTQ; Siemens AG, Erlangen, Germany) and ElastPQ (EPQ; Philips Healthcare, Bothell, WA). Both rely on the tissue response to an acoustic beam generated by the ultrasound transducer. The data on renal VTQ are more extensive, whereas EPQ has been used less thus far in the assessment of the kidneys. This study aimed to evaluate the performance of EPQ in the kidney and compare it with VTQ. We studied 124 participants using EPQ: 22 with no renal disease and 102 with chronic kidney disease (CKD). Ninety-one were studied with both the EPQ and VTQ methods. We obtained 5 valid measurements in each kidney, expressed in meters per second. The mean kidney stiffness measurements ± SD obtained with EPQ in the healthy control group were as follows: right kidney, 1.23 ± 0.33 m/s; and left kidney, 1.26 ± 0.32 m/s (P = .6). In the patients with CKD (all stages), the mean kidney stiffness measurements obtained were significantly lower: right kidney, 1.09 ± 0.39 m/s; and left kidney, 1.04 ± 0.38 m/s (P = .4). We observed that, similar to VTQ, EPQ values decreased with CKD progression, based on analysis of variance results using different CKD stages. From a receiver operating characteristic curve analysis, the cutoff value for an estimated glomerular filtration rate of less than 45 mL/min was 1.24 m/s, and the value for an estimated glomerular filtration rate of less than 30 mL/min was 1.07 m/s. When using EPQ, the kidney shear wave velocity is decreased in patients with CKD, an observation similar to that obtained by using the VTQ method. © 2018 by the American Institute of Ultrasound in Medicine.
Factors that influence muscle shear modulus during passive stretch.
Koo, Terry K; Hug, François
2015-09-18
Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-resolution mechanical imaging of the kidney.
Streitberger, Kaspar-Josche; Guo, Jing; Tzschätzsch, Heiko; Hirsch, Sebastian; Fischer, Thomas; Braun, Jürgen; Sack, Ingolf
2014-02-07
The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis. © 2013 Published by Elsevier Ltd.
Kim, Woong; Ferguson, Virginia L.; Borden, Mark; Neu, Corey P.
2016-01-01
The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5–100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity—inherent in many soft tissues—are often not fully described and therefore require further advancements and future developments. PMID:26790865
Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?
Pita, Inês; Magro, Fernando
2018-01-01
Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.
Xu, Xiaohong; Luo, Liangping; Chen, Jiexin; Wang, Jiexin; Zhou, Honglian; Li, Mingyi; Jin, Zhanqiang; Chen, Nianping; Miao, Huilai; Lin, Manzhou; Dai, Wei; Ahuja, Anil T.; Wang, Yi-Xiang J.
2014-01-01
Aim. To explore acoustic radiation force impulse (ARFI) elastography in assessing residual tumors of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA). Materials and Methods. There were 83 HCC lesions among 72 patients. All patients were examined with ARFI, contrast enhanced ultrasound (CEUS), and CT or MRI. Tumor brightness on virtual touch tissue imaging (VTI) and shear wave velocity (SWV) were assessed before and approximately one month after RFA. Results. There were 14 residual tumors after RFA. VTI showed that all the tumors were darker after RFA. VTI was not able to distinguish the ablated lesions and the residual tumors. 13 residual tumor lesions were detected by CEUS. All completely ablated nodules had SWV demonstration of x.xx., while with those residual nodules, 6 tumors had x.xx measurement and 8 tumors had measurable SWV. nine lesions with residual tumors occurred in cirrhosis subjects and 5 lesions with residual tumors occurred in fibrosis subjects; there was no residual tumor in the normal liver subjects. Conclusion. VTI technique cannot demonstrate residual tumor post RFA. While SWV measurement of less than x.xx is likely associated with residual tumors, measurement of less than x.xx cannot exclude residual tumors. Liver cirrhosis is associated with decreased chance of a complete ablation. PMID:24895624
NASA Astrophysics Data System (ADS)
Sasso, Magali; Abdennour, Meriem; Liu, Yuejun; Hazrak, Hecham; Aron-Wisnewsky, Judith; Bouillot, Jean-Luc; Le Naour, Gilles; Bedossa, Pierre; Torjman, Joan; Clément, Karine; Miette, Véronique
Subcutaneous adipose tissue (scAT) in human obesity undergoes severe alteration such as fibrosis which is related to metabolic alterations and to less efficiency in losing weight after bariatric surgery. There is currently no non-invasive tool to assess fibrosis in scAT. Vibration Controlled Transient Elastography (VCTE) using FibroScan® is widely used to assess liver fibrosis in clinical practice. A novel device named AdipoScan™ which is based on VCTE has been developed by Echosens (Paris) so as to assess scAT. The objective of this study is to show the first AdipoScan clinical results. AdipoScan™ was assessed in vivo on 73 morbidly obese patients candidate for bariatric surgery who were enrolled in the Pitié Salpêtrière hospital. scAT shear wave speed measured by AdipoScan™ is significantly associated with scAT fibrosis, gender, hypertension status, total body fat mass assessed by DXA, hypertension status, glycemic, lipid, hepatic parameters and adiponectin. Results suggest that scAT evaluation before bariatric surgery can be useful in clinical practice since it is related to scAT fibrosis -who plays in role in weight loss resistance after bariatric surgery- and to obesity induced co-morbidities such as diabetes, hypertension liver dysfunction.
D Hughes, Joshua; Retzlaff, Amber; Sims, John; O'Brien, Erin; Giannini, Caterina; Huston, John; Van Gompel, Jamie J
2016-07-01
Adenoid cystic carcinoma (ACC) is an exocrine gland tumor accounting for approximately 10%-15% of all epithelial salivary neoplasms and occurs most often in the parotid and submandibular glands. Metastatic pituitary tumors are rare, and there is only 1 previously reported case of parotid ACC metastatic to the pituitary. Magnetic resonance elastography (MRE) is a dynamic magnetic resonance imaging (MRI)-based technique that measures the propagation of mechanically induced shear waves through a particular tissue to determine stiffness and offers a method to evaluate tissue consistency. We present the case of a 72-year-old woman with a remote history of parotid gland ACC and subsequent lung metastases presented after a fall that resulted in facial trauma. A non-contrast head computed tomography scan revealed a sellar/suprasellar mass, and follow-up MRI revealed a well-defined, enhancing 3.8-cm lesion. MRE showed the tumor to be firm. The tumor was resected through a transsphenoidal approach and was consistent with the MRE findings. Pathology returned as metastatic ACC. We report the second case of ACC metastatic to pituitary and the first firm pituitary tumor found by MRE and discuss the potential diagnostic value of MRE in pituitary lesions. Copyright © 2016 Elsevier Inc. All rights reserved.
A simple method for MR elastography: a gradient-echo type multi-echo sequence.
Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro
2015-01-01
To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Elastography methods applicable to the eye
NASA Astrophysics Data System (ADS)
Khan, Altaf A.; Cortina, Soledad M.; Chamon, Wallace; Royston, Thomas J.
2014-02-01
Elastography is the mapping of tissues and cells by their respective mechanical properties, such as elasticity and viscosity. Our interest primarily lies in the human eye. Combining Scanning Laser Doppler Vibrometry (SLDV) with geometrically focused mechanical vibratory excitations of the cornea, it is possible to reconstruct these mechanical properties of the cornea. Experiments were conducted on phantom corneas as well as excised donor human corneas to test feasibility and derive a method of modeling. Finite element analysis was used to recreate the phantom studies and corroborate with the experimental data. Results are in close agreement. To further expand the study, lamb eyes were used in MR Elastography studies. 3D wave reconstruction was created and elastography maps were obtained. With MR Elastography, it would be possible to noninvasively measure mechanical properties of anatomical features not visible to SLDV, such as the lens and retina. Future plans include creating a more robust finite element model, improving the SLDV method for in-vivo application, and continuing experiments with MR Elastography.
Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.
2009-01-01
The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516
NASA Astrophysics Data System (ADS)
Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.
2016-08-01
An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.
Effects of nonuniform Mach-number entrance on scramjet nozzle flowfield and performance
NASA Astrophysics Data System (ADS)
Zhang, Pu; Xu, Jinglei; Quan, Zhibin; Mo, Jianwei
2016-12-01
Considering the non-uniformities of nozzle entrance influenced by the upstream, the effects of nonuniform Mach-number coupled with shock and expansion-wave on the flowfield and performances of single expansion ramp nozzle (SERN) are numerically studied using Reynolds-Averaged Navier-Stokes equations. The adopted Reynolds-averaged Navier-Stokes methodology is validated by comparing the numerical results with the cold experimental data, and the average method used in this paper is discussed. Uniform and nonuniform facility nozzles are designed to generate different Mach-number profile for the inlet of SERN, which is direct-connected with different facility nozzle, and the whole flowfield is simulated. Because of the coupling of shock and expansion-wave, flow direction of nonuniform SERN entrance is distorted. Compared with Mach contour of uniform case, the line is more curved for coupling shock-wave entrance (SWE) case, and flatter for the coupling expansion-wave entrance (EWE) case. Wall pressure distribution of SWE case appears rising region, whereas decreases like stairs of EWE case. The numerical results reveal that the coupled shock and expansion-wave play significant roles on nozzle performances. Compared with the SERN performances of uniform entrance case at the same work conditions, the thrust of nonuniform entrance cases reduces by 3-6%, pitch moment decreases by 2.5-7%. The negative lift presents an incremental trend with EWE while the situation is the opposite with SWE. These results confirm that considering the entrance flow parameter nonuniformities of a scramjet nozzle coupled with shock or expansion-wave from the upstream is necessary.
Youk, Ji Hyun; Son, Eun Ju; Gweon, Hye Mi; Han, Kyung Hwa; Kim, Jeong-Ah
2015-01-01
To investigate whether the diagnostic performance of lesion-to-fat elasticity ratio (Eratio) was affected by the location of the reference fat. For 257 breast masses in 250 women who underwent shear-wave elastography before biopsy or surgery, multiple Eratios were measured with a fixed region-of-interest (ROI) in the mass along with multiple ROIs over the surrounding fat in different locations. Logistic regression analysis was used to determine that Eratio was independently associated with malignancy adjusted for the location of fat ROI (depth, laterality, and distance from lesion or skin). Mean (Emean) and maximum (Emax) elasticity values of fat were divided into four groups according to their interquartile ranges. Diagnostic performance of each group was evaluated using the area under the ROC curve (AUC). False diagnoses of Eratio were reviewed for ROIs on areas showing artifactual high or low stiffness and analyzed by logistic regression analysis to determine variables (associated palpable abnormality, lesion size, the vertical distance from fat ROI to skin, and elasticity values of lesion or fat) independently associated with false results. Eratio was independently associated with malignancy adjusted for the location of fat ROI (P<0.0001). Among four groups of fat elasticity values, the AUC showed no significant difference (<25th percentile, 25th percentile~median, median~75th percentile, and ≥75th percentile; 0.973, 0.982, 0.967, and 0.954 for Emean; 0.977, 0.967, 0.966, and 0.957 for Emax). Fat elasticity values were independently associated with false results of Eratio with the cut-off of 3.18 from ROC curve (P<0.0001). ROIs were set on fat showing artifactual high stiffness in 90% of 10 false negatives and on lesion showing vertical striped artifact or fat showing artifactual low stiffness in 77.5% of 71 false positives. Eratio shows good diagnostic performance regardless of the location of reference fat, except when it is placed in areas of artifacts.
Youk, Ji Hyun; Son, Eun Ju; Gweon, Hye Mi; Han, Kyung Hwa; Kim, Jeong-Ah
2015-01-01
Objectives To investigate whether the diagnostic performance of lesion-to-fat elasticity ratio (Eratio) was affected by the location of the reference fat. Methods For 257 breast masses in 250 women who underwent shear-wave elastography before biopsy or surgery, multiple Eratios were measured with a fixed region-of-interest (ROI) in the mass along with multiple ROIs over the surrounding fat in different locations. Logistic regression analysis was used to determine that Eratio was independently associated with malignancy adjusted for the location of fat ROI (depth, laterality, and distance from lesion or skin). Mean (Emean) and maximum (Emax) elasticity values of fat were divided into four groups according to their interquartile ranges. Diagnostic performance of each group was evaluated using the area under the ROC curve (AUC). False diagnoses of Eratio were reviewed for ROIs on areas showing artifactual high or low stiffness and analyzed by logistic regression analysis to determine variables (associated palpable abnormality, lesion size, the vertical distance from fat ROI to skin, and elasticity values of lesion or fat) independently associated with false results. Results Eratio was independently associated with malignancy adjusted for the location of fat ROI (P<0.0001). Among four groups of fat elasticity values, the AUC showed no significant difference (<25th percentile, 25th percentile~median, median~75th percentile, and ≥75th percentile; 0.973, 0.982, 0.967, and 0.954 for Emean; 0.977, 0.967, 0.966, and 0.957 for Emax). Fat elasticity values were independently associated with false results of Eratio with the cut-off of 3.18 from ROC curve (P<0.0001). ROIs were set on fat showing artifactual high stiffness in 90% of 10 false negatives and on lesion showing vertical striped artifact or fat showing artifactual low stiffness in 77.5% of 71 false positives. Conclusion Eratio shows good diagnostic performance regardless of the location of reference fat, except when it is placed in areas of artifacts. PMID:26368920
Miyamoto, N; Hirata, K; Kanehisa, H
2017-01-01
The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki
2018-05-29
Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.
Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle.
Ateş, Filiz; Andrade, Ricardo J; Freitas, Sandro R; Hug, François; Lacourpaille, Lilian; Gross, Raphael; Yucesoy, Can A; Nordez, Antoine
2018-03-01
While several studies demonstrated the occurrence of intermuscular mechanical interactions, the physiological significance of these interactions remains a matter of debate. The purpose of this study was to quantify the localized changes in the shear modulus of the gastrocnemius lateralis (GL), monoarticular dorsi- and plantar-flexor muscles induced by a change in knee angle. Participants underwent slow passive ankle rotations at the following two knee positions: knee flexed at 90° and knee fully extended. Ultrasound shear wave elastography was used to assess the muscle shear modulus of the GL, soleus [both proximally (SOL-proximal) and distally (SOL distal)], peroneus longus (PERL), and tibialis anterior (TA). This was performed during two experimental sessions (experiment I: n = 11; experiment II: n = 10). The shear modulus of each muscle was compared between the two knee positions. The shear modulus was significantly higher when the knee was fully extended than when the knee was flexed (P < 0.001) for the GL (averaged increase on the whole range of motion: + 5.8 ± 1.3 kPa), SOL distal (+ 4.5 ± 1.5 kPa), PERL (+ 1.1 ± 0.7 kPa), and TA (+ 1.6 ± 1.0 kPa). In contrast, a lower SOL-proximal shear modulus (P < 0.001, - 5.9 ± 1.0 kPa) was observed. As the muscle shear modulus is linearly related to passive muscle force, these results provide evidence of a non-negligible intermuscular mechanical interaction between the human lower leg muscles during passive ankle rotations. The role of these interactions in the production of coordinated movements requires further investigation.
Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes
Ingle, Atul; Varghese, Tomy
2014-01-01
This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405
Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.
Ingle, Atul; Varghese, Tomy
2014-08-01
This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.