The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids*
Dueholm, Morten S.; Larsen, Poul; Finster, Kai; Stenvang, Marcel R.; Christiansen, Gunna; Vad, Brian S.; Bøggild, Andreas; Otzen, Daniel E.; Nielsen, Per Halkjær
2015-01-01
Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. PMID:26109065
The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.
Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær
2015-08-14
Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Flux-trapping during the formation of field-reversed configurations
NASA Astrophysics Data System (ADS)
Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.
1982-11-01
Flux-trapping during the early formation phases of a field-reversed configuration has been studied experimentally on the field-reversed theta-pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of reverse-bias flux. Contrary to previous analysis, the rate of flux loss was not governed exclusively by inertially limited plasma convection to the tube walls. At high reverse flux levels, a pressure bearing sheath was observed to form at the tube walls and the flux loss was restricted by resistive diffusion across this sheath. The characteristic time for flux loss was 0.08rt (cm) μsec, independent of the bias field and independent of the fill pressure for fill pressures above 15 mTorr D2. Octopole barrier fields were found to be effective in limiting the inertially governed flux loss at very early times before the wall sheath formed.
Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M
2016-05-01
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Development of a Standard Platinum Resistance Thermometer for Use up to the Copper Point
NASA Astrophysics Data System (ADS)
Tavener, J. P.
2015-08-01
The international temperature scale of 1990 defines temperatures in the range from 13.8 K to 1234.93 K () using a standard platinum resistance thermometer (SPRT) as an interpolating instrument. For temperatures above , the current designs of an SPRT require extreme care to avoid contamination, especially by metallic impurities, which can cause rapid and irreversible drift. This study investigates the performance of a new design of a high-temperature SPRT with the aim of improving the stability of the SPRTs and extending their temperature range. The prototype SPRTs have an alumina sheath, a sapphire support for the sensing element, which are aspirated with dry air and operated with a dc bias voltage to suppress the diffusion of metal-ion contaminants. Three prototype thermometers were exposed to temperatures near or above the copper freezing point, , for total exposure times in excess of 500 h and exhibited drifts in the triple-point resistance of less than 10 mK. The new design eliminates some of the problems associated with fused-silica sheaths and sensor-support structures and is a viable option for a high-accuracy thermometer for temperatures approaching.
Allelic analysis of sheath blight resistance with association mapping in rice
USDA-ARS?s Scientific Manuscript database
Sheath blight is one of the most devastating diseases world-wide in rice. For the first time, we adopted association mapping to identify quantitative trait loci for sheath blight resistance from the USDA rice mini-core collection. The phenotyping was conducted with a newly developed micro-chamber me...
Simplified Methods for Improving the Blast Resistance of Cold-Formed Steel Walls
2011-01-01
sheathing products such as oriented strand board ( OSB ) offer a level of blast resistance that may be effective in mitigating lower-level blast...considered in order to keep designs to a minimum cost. Standard sheathing materials such as OSB , gypsum and plywood— as well as specially selected sheathing...commercially available clip connectors. Sheathing materials such as gypsum and OSB are brittle and have significantly lower capacity than sheet steel
Kiirats, Olavi; Lea, Peter J.; Franceschi, Vincent R.; Edwards, Gerald E.
2002-01-01
A mutant of the NAD-malic enzyme-type C4 plant, Amaranthus edulis, which lacks phosphoenolpyruvate carboxylase (PEPC) in the mesophyll cells was studied. Analysis of CO2 response curves of photosynthesis of the mutant, which has normal Kranz anatomy but lacks a functional C4 cycle, provided a direct means of determining the liquid phase-diffusive resistance of atmospheric CO2 to sites of ribulose 1,5-bisphosphate carboxylation inside bundle sheath (BS) chloroplasts (rbs) within intact plants. Comparisons were made with excised shoots of wild-type plants fed 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate, an inhibitor of PEPC. Values of rbs in A. edulis were 70 to 180 m2 s−1 mol−1, increasing as the leaf matured. This is about 70-fold higher than the liquid phase resistance for diffusion of CO2 to Rubisco in mesophyll cells of C3 plants. The values of rbs in A. edulis are sufficient for C4 photosynthesis to elevate CO2 in BS cells and to minimize photorespiration. The calculated CO2 concentration in BS cells, which is dependent on input of rbs, was about 2,000 μbar under maximum rates of CO2 fixation, which is about six times the ambient level of CO2. High re-assimilation of photorespired CO2 was demonstrated in both mutant and wild-type plants at limiting CO2 concentrations, which can be explained by high rbs. Increasing O2 from near zero up to ambient levels under low CO2, resulted in an increase in the gross rate of O2 evolution measured by chlorophyll fluorescence analysis in the PEPC mutant; this increase was simulated from a Rubisco kinetic model, which indicates effective refixation of photorespired CO2 in BS cells. PMID:12376660
Radio frequency sheaths in an oblique magnetic field
Myra, James R.; D'Ippolito, Daniel A.
2015-06-01
The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less
Analysis of rice PDR-like ABC transporter genes in sheath blight resistance
USDA-ARS?s Scientific Manuscript database
Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...
Comparison of phenotyping methods for resistance to stem rot and aggregated sheath spot in rice
USDA-ARS?s Scientific Manuscript database
Stem and sheath diseases caused by Sclerotium oryzae Cattaneo (SCL) and Rhizoctonia oryzae-sativae Sawada Mordue (ROS) can severely reduce rice (Oryza sativa L.) yield and grain quality. Genetic resistance is the best strategy to control them. Phenotypic selection for resistance is hampered due to a...
CONTROLLED NUCLEAR FUSION REACTOR
Tuck, J.L.; Kruskal, M.; Colgate, S.A.; Rosenbluth, M.N.
1962-01-01
A plasma generating and heating device is described which comprises a ceramic torus with exterior layers of a thick metal membrane and a metallic coil. In operation, the coil generates a B/sub z/ field prior to the formation of an enclosing plasma sheath. Diffusion of the trapped magnetic field outward through the plasma sheath causes enhanced heating, particularly after the sheath has been pinched. (D.L.C.)
Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K
2002-12-01
Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.
High-Temperature, Bellows Hybrid Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)
1994-01-01
A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.
Ion and electron sheath characteristics in a low density and low temperature plasma
NASA Astrophysics Data System (ADS)
Borgohain, Binita; Bailung, H.
2017-11-01
Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.
Hossain, Md Kamal; Jena, Kshirod Kumar; Bhuiyan, Md Atiqur Rahman; Wickneswari, Ratnam
2016-01-01
Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson’s correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars. PMID:27795687
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Flux-trapping during the formation of field-reversed configurations
NASA Astrophysics Data System (ADS)
Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.
1981-10-01
Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.
USDA-ARS?s Scientific Manuscript database
Rice sheath blight (RSB) caused by the soil borne pathogen Rhizoctonia solani, is one of the most destructive diseases of rice, causing severe losses in rice yield and quality annually. The major gene (s) governing the resistance to RSB have not been found in cultivated rice worldwide. However, ri...
Armstrong, Jean; Keep, Rory; Armstrong, William
2009-01-01
Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O(2) loss (ROL), underwater gas films and bud growth. Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured. Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die. Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O(2) diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season.
Sensors for measurement of moisture diffusion in power cables with oil-impregnated paper
NASA Astrophysics Data System (ADS)
Thomas, Z. M.; Zahn, M.; Yang, W.
2007-07-01
Some old power cables use oil-impregnated paper as the insulation material, which is enclosed by a layer of lead sheath. As cracks can form on the sheath of aged cables, the oil-impregnated paper can be exposed to the environmental conditions, and ambient moisture can diffuse into the paper through the cracks, causing a reduced breakdown voltage. To understand this diffusion phenomenon, multi-wavelength dielectrometry sensors have been used to measure permittivity and conductivity, aiming to obtain information on the moisture content. Different electrode-grouping strategies have been suggested to obtain more detailed information. Effectively, an electrode-grouping approach forms a type of electrical capacitance tomography sensor. This paper presents different sensor designs together with a capacitance measuring circuit. Some analytical results are also presented.
Kohno, H.; Myra, J. R.
2017-07-24
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, H.; Myra, J. R.
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
Stability of the Tonks–Langmuir discharge pre-sheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tskhakaya, D. D.; Kos, L.; Tskhakaya, D.
The article formulates the stability problem of the plasma sheath in the Tonks–Langmuir discharge. Using the kinetic description of the ion gas, i.e., the stability of the potential shape in the quasi-neutral pre-sheath regarding the high and low frequency, the perturbations are investigated. The electrons are assumed to be Maxwell–Boltzmann distributed. Regarding high-frequency perturbations, the pre-sheath is shown to be stable. The stability problem regarding low-frequency perturbations can be reduced to an analysis of the “diffusion like” equation, which results in the instability of the potential distribution in the pre-sheath. By means of the Particle in Cell simulations, also themore » nonlinear stage of low frequency oscillations is investigated. Comparing the figure obtained with the figure for linear stage, one can find obvious similarity in the spatial-temporal behavior of the potential.« less
Mulon, Pierre-Yves; Achard, Damien; Babkine, Marie
2010-01-01
A 17-month-old Holstein heifer was presented for persistent enlargement above the right hind fetlock of 1-month’s duration. Diffuse plantar soft tissue swelling was present on the radiographs and ultrasonography revealed the presence of multiple porcupine quill extremities embedded in the subcutaneous tissue within the flexor tendon sheath wall. Surgical removal was performed. PMID:21037892
Measurements of Sheath Currents and Equilibrium Potential on the Explorer VIII Satellite (1960 xi)
NASA Technical Reports Server (NTRS)
Bourdeau, R. E.; Donley, J. L.; Serbu, G. P.; Whipple, E. C., Jr.
1961-01-01
Experimental data were obtained from the Explorer VIII satellite on five parameters pertinent to the problem of the interaction of space vehicles with an ionized atmosphere. The five parameters are: photoemission current due to electrons emitted from the satellite surfaces as a result of solar radiation; electron and positive ion currents due to the diffusion of charged particles from the medium to the spacecraft; the vehicle potential relative to the medium, and the ambient electron temperature. Included in the experimental data is the aspect dependence of the photoemission and diffusion currents. On the basis of the observations, certain characteristics of the satellite's plasma sheath are postulated.
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Maheshwari, Aditya V; Muro-Cacho, Carlos A; Pitcher, J David
2007-10-01
Pigmented villonodular synovitis (PVNS) is a benign but potentially aggressive lesion, characterized by synovial villonodular proliferation with hemosiderin pigmentation and stromal infiltration of histiocytes and giant cells. This consists of a common family of lesions, including localized and diffuse forms of pigmented villonodular synovitis, giant cell tumor of the tendon sheath (nodular tenosynovitis) and the very rare cases of extra-articular pigmented villonodular synovitis arising from the bursa (pigmented villonodular bursitis or diffuse giant cell tumor of the tendon sheath). The purpose of this paper is to present two rare cases of pigmented villonodular bursitis arising from the pes anserinus bursa. The various differentials along with a review of literature of similar lesions are also being discussed. However, as with other lesions, clinicoradiographic features along with close histological correlation is essential for diagnosis.
Analytical solutions and particle simulations of cross-field plasma sheaths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerver, M.J.; Parker, S.E.; Theilhaber, K.
1989-08-30
Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye lengthmore » wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs.« less
USDA-ARS?s Scientific Manuscript database
Two advanced backcross populations were developed between a popular southern US tropical japonica rice (Oryza sativa L.) cultivar Bengal and two different of Oryza nivara (IRGC100898; IRGC104705) accessions to identify quantitative trait loci (QTLs) related to sheath blight (SB) disease resistance. ...
Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.
1987-03-07
were constructed of aluminium : the thermo- limitations in the melt are not expected to dominate couple sheath was stainless steel. the exchange rate...silver ion, D is its T, C0 , and t) with Schott 8011 glass (left) and a Fisher self-diffusion coefficient, and t is the time of diffusion. microscope
Primary Dermal Irritation Potential of Components of the M-258A-1 Decontamination Kit (Study 1).
1981-09-01
cells and lymphocytes with an occasional heterophil in the connective tissue sheaths of a few hair follicles deep in the dermis. DX: Folliculitis ...acute, diffuse, mild to moderate, dermis, skin. DX: Folliculitis , subacute, multifocal, minimal, hair follicles, skin. Slide 4 - Skin: The entire skin...the dermis. DX: Hyperplasia, diffuse, moderate, epidermis, skin. DX: Degeneration, subacute, diffuse, minimal to mild, dermis, skin. DX: Folliculitis
Floating potential of emitting surfaces in plasmas with respect to the space potential
Kraus, B. F.; Raitses, Y.
2018-03-19
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
Floating potential of emitting surfaces in plasmas with respect to the space potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, B. F.; Raitses, Y.
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi
2016-01-01
Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.
NASA Technical Reports Server (NTRS)
Huddleston, D.; Neugebauer, M.; Goldstein, B.
1994-01-01
The shape of the velocity distribution of water-group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates on ionization, energy diffusion, and loss in the mid-cometosheath.
Evaluation of the High-Heel Roof-to-Wall Connection with Extended OSB Wall Sheathing
Andrew DeRenzis; Vladimir Kochkin; Xiping Wang
2013-01-01
A recently completed testing project conducted to evaluate optimized structural roof-to-wall attachment solutions demonstrated the effectiveness of wood structural panels in restraining high-heel trusses against rotation. This study was designed to further evaluate the performance of OSB wall sheathing panels extended over the high-heel truss in resisting combined...
Anode sheath transition in an anodic arc for synthesis of nanomaterials
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2016-06-01
The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.
Contino, E K; King, M R; Valdés-Martínez, A; McIlwraith, C W
2015-03-01
Hindlimb proximal suspensory desmopathy is a common injury of sport horses but diagnosis can be difficult because diagnostic analgesia of the region lacks specificity. Perineural analgesia of the deep branch of the lateral plantar nerve (DBLPN) has been proposed as a more specific method of isolating pain of the proximal aspect of the suspensory ligament but the technique has not been evaluated in vivo. To determine the extent of diffusion of contrast medium and mepivacaine following DBLPN analgesia using a single-needle injection technique and to determine if there is inadvertent involvement of the tarsal sheath and/or tarsometatarsal (TMT) joint using this technique. In vivo experimental study. Perineural injection of the DBLPN was performed in 16 limbs with 3 ml of either mepivacaine hydrochloride or positive contrast medium. Contrast medium-injected limbs were radiographed 5, 15, and 30 min post injection and diffusion characteristics were described. In mepivacaine-injected limbs, synovial fluid from the TMT joint was obtained 10 and 20 min post injection and mepivacaine concentrations were analysed. At 5, 15 and 30 min post injection, the contrast medium extended, on average, 19.6, 20.6 and 21.0 mm proximal and 38.0, 43.5 and 51.9 mm distal to the injection site, respectively. Three of 8 (37.5%) limbs had evidence of contrast medium in the tarsal sheath. Two of 8 (25%) limbs had mepivacaine concentrations within the TMT joint sufficient to produce analgesia (>300 mg/l) at 10 min post injection. Contrast medium diffused further in a distal direction than in a proximal direction. Analgesia of the DBLPN can result in inadvertent involvement of the tarsal sheath and/or TMT joint. © 2014 EVJ Ltd.
Development of Fire Resistant/Heat Resistant Sewing Thread
2016-03-01
Final 3. DATES COVERED (From - To) October 2014 – June 2015 4. TITLE AND SUBTITLE DEVELOPMENT OF FIRE RESISTANT /HEAT RESISTANT SEWING THREAD 5a...core to sheath ratio of 70:30 will offer a high performance, low cost sewing thread with required fire resistant /heat resistant properties. 15...Properties ............................................................................... 18 1 DEVELOPMENT OF FIRE RESISTANT /HEAT
A smart core-sheath nanofiber that captures and releases red blood cells from the blood
NASA Astrophysics Data System (ADS)
Shi, Q.; Hou, J.; Zhao, C.; Xin, Z.; Jin, J.; Li, C.; Wong, S.-C.; Yin, J.
2016-01-01
A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells. Electronic supplementary information (ESI) available: Electrospinning of polymer nanofibers; FTIR spectra and XPS spectra of PCL, PNIPAAm and PCL/PNIPAAm nanofibers; SEM images of PCL/PNIPAAm nanofibers with varied composition; PNIPAAm content on the sheath of nanofibers; stability of core-sheath PCL/PNIPAAm nanofibers. Platelet adhesion on the PCL/PNIPAAm nanofibers in the presence of NK; Protein adsorption on nanofibers. See DOI: 10.1039/c5nr07070h
Study on plasma sheath and plasma transport properties in the azimuthator
NASA Astrophysics Data System (ADS)
Zhenyu, WANG; Binhao, JIANG; N, A. STROKIN; A, N. STUPIN
2018-04-01
A physical model of transport in an azimuthator channel with the sheath effect resulting from the interaction between the plasma and insulation wall is established in this paper. Particle in cell simulation is carried out by the model and results show that, besides the transport due to classical and Bohm diffusions, the sheath effect can significantly influences the transport in the channel. As a result, the ion density is larger than the electron density at the exit of azimuthator, and the non-neutral plasma jet is divergent, which is unfavorable for mass separation. Then, in order to improve performance of the azimuthator, a cathode is designed to emit electrons. Experiment results have demonstrated that the auxiliary cathode can obviously compensate the space charge in the plasma.
Song, Yuan Yuan; Cao, Man; Xie, Li Jun; Liang, Xiao Ting; Zeng, Ren Sen; Su, Yi Juan; Huang, Jing Hua; Wang, Rui Long; Luo, Shi Ming
2011-11-01
Arbuscular mycorrhizas are the most important symbioses in terrestrial ecosystems and they enhance the plant defense against numerous soil-borne pathogenic fungi and nematodes. Two corn (Zea mays) varieties, Gaoyou-115 that is susceptible to sheath blight disease caused by Rhizoctonia solani and Yuenong-9 that is resistant, were used for mycorrhizal inoculation in this study. Pre-inoculation of susceptible Gaoyou-115 with arbuscular mycorrhizal fungus (AMF) Glomus mosseae significantly reduced the disease incidence and disease severity of sheath blight of corn. HPLC analysis showed that AMF inoculation led to significant increase in 2,4-dihydroxy-7-methoxy-2 H-1,4-benzoxazin-3(4 H)-one (DIMBOA) accumulation in the roots of both corn varieties and in leaves of resistant Yuenong-9. R. solani inoculation alone did not result in accumulation of DIMBOA in both roots and leaves of the two corn varieties. Our previous study showed that DIMBOA strongly inhibited mycelial growth of R. solani in vitro. Real-time PCR analysis showed that mycorrhizal inoculation itself did not affect the transcripts of most genes tested. However, pre-inoculation with G. mosseae induced strong responses of three defense-related genes PR2a, PAL, and AOS, as well as BX9, one of the key genes in DIMBOA biosynthesis pathway, in the leaves of corn plants of both Yuenong-9 and Gaoyou-115 after the pathogen attack. Induction of defense responses in pre-inoculated plants was much higher and quicker than that in non-inoculated plants upon R. solani infection. These results indicate that induction of accumulation of DIMBOA, an important phytoalexin in corn, and systemic defense responses by AMF, plays a vital role in enhanced disease resistance of mycorrhizal plants of corn against sheath blight. This study also suggests that priming is an important mechanism in mycorrhiza-induced resistance.
Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++
NASA Astrophysics Data System (ADS)
Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.
2018-07-01
The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.
Characterization of tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurochkina, Lidia P., E-mail: lpk@ibch.r; Aksyuk, Anastasia A.; Sachkova, Maria Yu.
2009-12-20
The tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa encoded by gene 29 was identified and its expression system was developed. Localization of the protein on the virion was confirmed by immunoelectron microscopy. Properties of gene product (gp) 29 were studied by electron microscopy, immunoblotting and limited trypsinolysis. Recombinant gp29 assembles into the regular tubular structures (polysheaths) of variable length. Trypsin digestion of gp29 within polysheaths or extended sheath of virion results in specific cleavage of the peptide bond between Arg135 and Asp136. However, this cleavage does not affect polymeric structure of polysheaths, sheaths and viral infectivity. Digestion bymore » trypsin of the C-truncated gp29 mutant, lacking the ability to self-assemble, results in formation of a stable protease-resistant fragment. Although there is no sequence homology of phiKZ proteins to proteins of other bacteriophages, some characteristic biochemical properties of gp29 revealed similarities to the tail sheath protein of bacteriophage T4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in
2014-09-15
Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservationmore » laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.« less
NASA Astrophysics Data System (ADS)
Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.
2018-01-01
The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.
Investigation of surface boundary conditions for continuum modeling of RF plasmas
NASA Astrophysics Data System (ADS)
Wilson, A.; Shotorban, B.
2018-05-01
This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.
Alba-Ferrara, L M; de Erausquin, Gabriel A
2013-01-01
Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.
Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it
Hoffman, Robert A.
1980-01-01
The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.
RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Pei; Ye, L.; Jiang. J., Jiang. J.
The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg)more » wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.« less
NASA Astrophysics Data System (ADS)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun
2015-02-01
The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.
Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Lstiburek, J. W.
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less
Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H
2015-07-24
Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties. Copyright © 2015, American Association for the Advancement of Science.
A smart core-sheath nanofiber that captures and releases red blood cells from the blood.
Shi, Q; Hou, J; Zhao, C; Xin, Z; Jin, J; Li, C; Wong, S-C; Yin, J
2016-01-28
A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli
2015-02-15
The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay inmore » the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.« less
Ammar, El-Desouky; Richardson, Matthew L.; Abdo, Zaid; Hall, David G.; Shatters, Robert G.
2014-01-01
The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae), is the principal vector of the phloem-limited bacteria strongly associated with huanglongbing (HLB), the world’s most serious disease of citrus. Host plant resistance may provide an environmentally safe and sustainable method of controlling ACP and/or HLB. Two xCitroncirus accessions (hybrids of Poncirus trifoliata and Citrus spp.), that are relatively resistant (UN-3881) or relatively susceptible (Troyer-1459) to ACP adults with regard to adult longevity, were compared in relation to ACP feeding behavior and some structural features of the leaf midrib. The settling (putative feeding/probing) sites of ACP adults on various parts of the leaf were not influenced primarily by plant accession. However, fewer ACP stylet sheaths were found in the midrib and fewer stylet sheath termini reached the vascular bundle (phloem and/or xylem) in UN-3881 compared to Troyer-1459 plants. Furthermore, in midribs of UN-3881 leaves the fibrous ring (sclerenchyma) around the phloem was significantly wider (thicker) compared to that in midribs of Troyer-1459 leaves. Our data indicate that feeding and/or probing by ACP adults into the vascular bundle is less frequent in the more resistant (UN-3881) than in the more susceptible (Troyer-1459) accessions. Our results also suggest that the thickness of the fibrous ring may be a barrier to stylet penetration into the vascular bundle, which is important for successful ACP feeding on the phloem and for transmitting HLB-associated bacteria. These results may help in the development of citrus plants resistant to ACP, which in turn could halt or slow the spread of the HLB-associated bacteria by this vector. PMID:25343712
DOE Office of Scientific and Technical Information (OSTI.GOV)
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less
Kagiava, Alexia; Theophilidis, George
2013-10-01
Abstract Studies have shown that the sciatic nerve epineural sheath acts as a barrier and has a delaying effect on the diffusion of local anesthetics into the nerve fibers and endoneurium. The purpose of this work is to assess and to quantify the permeability of the epineural sheath. For this purpose, we isolated the rat sciatic nerve in a three-chamber recording bath that allowed us to monitor the constant in amplitude evoked nerve compound action potential (nCAP) for over 24 h. For nerves exposed to the compounds under investigation, we estimated the IT50 the time required to inhibit the nCAP to 50% of its initial value. For desheathed nerves, the half-vitality time was denoted as IT50(-) and for the ensheath normal nerves as IT50(+). There was no significant difference between the IT50 of desheathed and ensheathed nerves exposed to normal saline. The IT50(-) for nerves exposed to 40 mM lidocaine was 12.1 ± 0.95 s (n=14) and the IT50(+) was 341.4 ± 2.49 s (n=6). The permeability (P) coefficient of the epineural sheath was defined as the ratio IT50(+)/IT50(-). The P coefficient for 40 mM lidocaine and linalool was 28.2 and 3.48, correspondingly, and for 30 mM 2-heptanone was 4.87. This is an indication that the epineural sheath provided a stronger barrier against lidocaine, compared to natural local anesthetics, linalool and 2-heptanone. The methodology presented here is a useful tool for studying epineural sheath permeability to compounds with local anesthetic properties.
Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy.
Steshenko, Olena; Andrade, Débora M; Honigmann, Alf; Mueller, Veronika; Schneider, Falk; Sezgin, Erdinc; Hell, Stefan W; Simons, Mikael; Eggeling, Christian
2016-06-07
Myelin is a multilayered membrane that ensheathes axonal fibers in the vertebrate nervous system, allowing fast propagation of nerve action potentials. It contains densely packed lipids, lacks an actin-based cytocortex, and requires myelin basic protein (MBP) as its major structural component. This protein is the basic constituent of the proteinaceous meshwork that is localized between adjacent cytoplasmic membranes of the myelin sheath. Yet, it is not clear how MBP influences the organization and dynamics of the lipid constituents of myelin. Here, we used optical stimulated emission depletion super-resolution microscopy in combination with fluorescence correlation spectroscopy to assess the characteristics of diffusion of different fluorescent lipid analogs in myelin membrane sheets of cultured oligodendrocytes and in micrometer-sized domains that were induced by MBP in live epithelial PtK2 cells. Lipid diffusion was significantly faster and less anomalous both in oligodendrocytes and inside the MBP-rich domains of PtK2 cells compared with undisturbed live PtK2 cells. Our data show that MBP reorganizes lipid diffusion, possibly by preventing the buildup of an actin-based cytocortex and by preventing most membrane proteins from entering the myelin sheath region. Yet, in contrast to myelin sheets in oligodendrocytes, the MBP-induced domains in epithelial PtK2 cells demonstrate no change in lipid order, indicating that segregation of long-chain lipids into myelin sheets is a process specific to oligodendrocytes. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
High-temperature, flexible, thermal barrier seal
NASA Technical Reports Server (NTRS)
Sirocky, Paul J. (Inventor); Steinetz, Bruce M. (Inventor)
1991-01-01
This device seals the sliding interfaces between structural panels that are roughly perpendicular to each other or whose edges are butted against one another. The nonuniformity of the gap between the panels requires significant flexibility along the seal length. The seal is mounted in a rectangular groove in a movable structural panel. A plurality of particles or balls is densely packed in an outer sheathing. The balls are laterally preloaded to maintain sealing contact with the adjacent wall using a pressurized linear bellows. Distortions in the adjacent panel are accommodated by rearrangement of the particles within the outer sheathing. Leakage through the seal is minimized by densely compacting the internal particles and by maintaining positive preload along the back side of the seal. The braid architecture of the outer sheathing is selected to minimize leakage through the seal and to resist mechanical abrasion.
The Role of Bundle Sheath Extensions and Life Form in Stomatal Responses to Leaf Water Status1[W][OA
Buckley, Thomas N.; Sack, Lawren; Gilbert, Matthew E.
2011-01-01
Bundle sheath extensions (BSEs) are key features of leaf structure with currently little-understood functions. To test the hypothesis that BSEs reduce the hydraulic resistance from the bundle sheath to the epidermis (rbe) and thereby accelerate hydropassive stomatal movements, we compared stomatal responses with reduced humidity and leaf excision among 20 species with heterobaric or homobaric leaves and herbaceous or woody life forms. We hypothesized that low rbe due to the presence of BSEs would increase the rate of stomatal opening (V) during transient wrong-way responses, but more so during wrong-way responses to excision (Ve) than humidity (Vh), thus increasing the ratio of Ve to Vh. We predicted the same trends for herbaceous relative to woody species given greater hydraulic resistance in woody species. We found that Ve, Vh, and their ratio were 2.3 to 4.4 times greater in heterobaric than homobaric leaves and 2.0 to 3.1 times greater in herbaceous than woody species. To assess possible causes for these differences, we simulated these experiments in a dynamic compartment/resistance model, which predicted larger Ve and Ve/Vh in leaves with smaller rbe. These results support the hypothesis that BSEs reduce rbe. Comparison of our data and simulations suggested that rbe is approximately 4 to 16 times larger in homobaric than heterobaric leaves. Our study provides new evidence that variations in the distribution of hydraulic resistance within the leaf and plant are central to understanding dynamic stomatal responses to water status and their ecological correlates and that BSEs play several key roles in the functional ecology of heterobaric leaves. PMID:21459977
Gao, Yue; Zhang, Chong; Han, Xiao; Wang, Zi Yuan; Ma, Lai; Yuan, De Peng; Wu, Jing Ni; Zhu, Xiao Feng; Liu, Jing Miao; Li, Dao Pin; Hu, Yi Bing; Xuan, Yuan Hu
2018-04-16
Pathogen-host interaction is a complicated process; pathogens mainly infect host plants to acquire nutrients, especially sugars. Rhizoctonia solani, the causative agent of sheath blight disease, is a major pathogen of rice. However, it is not known, as to how this pathogen obtains sugar from rice plants. In this study, we found that the rice sugar transporter, OsSWEET11 is involved in the pathogenesis of sheath blight disease. qRT-PCR and β-d-glucuronidase expression analyses showed that R. solani infection significantly enhanced OsSWEET11 expression in leaves among the clade III SWEET members. The analyses of transgenic plants revealed that Ossweet11 mutants were less susceptible, whereas plants overexpressing OsSWEET11 were more susceptible to sheath blight compared to wild-type controls, but the yield of OsSWEET11 mutants and overexpressors was reduced. SWEETs become active upon oligomerization. Split-ubiquitin yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that mutated-OsSWEET11 interacted with normal OsSWEET11. In addition, expressing conserved residue mutated-AtSWEET1 inhibits normal AtSWEET1 activity. To analyze whether inhibition of OsSWEET11 function in mesophyll cells is related to defense against this disease, mutated- OsSWEET11 was expressed under the control of Rubisco promoter, which is specific for green tissues. The resistance of transgenic plants to sheath blight disease, but not other disease was improved, while yield production was not evidently affected. Overall, these results suggest that R. solani might acquire sugar from rice leaves by activating OsSWEET11 expression. The plants can be protected from infection by manipulating the expression of OsSWEET11 without affecting the crop yield. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
Improving UV Resistance of High Performance Fibers
NASA Astrophysics Data System (ADS)
Hassanin, Ahmed
High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4% rutile TiO2 nanoparticles showed excellent protection of braid from PBO. Only 7.5% strength loss was observed. To optimize the degree of protection of the sheath loaded with UV blocker particles, computational models were developed to optimize the protective layer thickness/weight and the amount of UV particles that provide the maximum protection with lightest weight of the protective layer and minimum amount of UV particles. The simulated results were found to be higher that the experimental results due to the tendency of nanoparticles to be agglomerated in real experiments. The third approach to achieve a maximum protection with the minimum weight added is constructing a sleeve from SpectraRTM (Ultra High Molecular Weight Polyethylene (UHMWPE) high performance fiber), which is known to resist UV, woven fabric. Covering the braid from PBO fiber with Spectra RTM woven fabric provide hybrid structure with two compatible components that can share the load and thus maintain the high strength to weight ratio. Although the SpectraRTM fabric had maximum cover factor, 20 % of visible light and about 15 % of UV were able to penetrate the fabric. This transmittance of UV-VIS light negatively affected the protection performance of the SpectraRTM woven fabric layer. It is thought that SpectraRTM fabric be coated with a thin layer (mentioned earlier) containing UV blocker for additional protection while maintain strength contribution to the hybrid structure. To maximize the strength to weight ratio of the hybrid structure (with core from PBO braid and sheath from SpectraRTM woven fabric) an established finite element model was utilized. The theoretical results using the finite element theory indicated that by controlling the bending rigidity of the filling yarn of the SpectraRTM fabric, the extension at peak load of woven fabric in warp direction (loading direction) could be controlled to match the braid extension at peak load. The match in the extension at peak load of the two components of the hybrid structure allowed the maximum strength to weight ratio. Thus, the SpectraRTM woven layer could achieve both the protection from UV and the load share in the hybrid structure.
Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold
2005-10-01
Caspase-14, a member of the caspase family of cysteine proteases, is almost exclusively expressed in the epidermis. Studies on human and mouse cells and tissues have implicated caspase-14 in terminal differentiation of epidermal keratinocytes and in the formation of the stratum corneum. Here we investigated evolutionary aspects of the role of caspase-14 by analyzing its distribution in the epidermis and hair follicles of representative species of placental mammals, marsupials, and monotremes. Immunocytochemical staining showed that caspase-14 is consistently expressed in the granular and corneous layer of the epidermis of all mammalian species investigated. Ultrastructural analysis using gold-labeled anticaspase-14 antibodies revealed that caspase-14 is associated preferentially with keratin bundles and amorphous material of keratohyalin granules, but is also present in nuclei of transitional cells of the granular layer and in corneocytes. In hair follicles, caspase-14 was diffusely present in cornifying cells of the outer root sheath, in the companion layer, and, most abundantly, in the inner root sheath of all mammalian species here analyzed. In Henle and Huxley layers of the inner root sheath, labeling was seen in nuclei and, more diffusely, among trichohyalin granules of cornifying cells. In summary, the tissue expression pattern and the intracellular localization of caspase-14 are highly conserved among diverse mammalian species, suggesting that this enzyme is involved in a molecular process that appeared early in the evolution of mammalian skin. The association of caspase-14 with keratohyalin and trichohyalin granules may indicate a specific role of caspase-14 in the maturation of these keratinocyte-specific structures.
Examination of a demyelinated fiber by action-potential-encoded second harmonic generation
NASA Astrophysics Data System (ADS)
Chen, Xin-guang; Luo, Zhi-hui; Yang, Hong-qin; Huang, Yi-mei; Xie, Shu-sen
2012-03-01
Axonal demyelination is a common phenomenon in the nervous system in human. Conventional measured approaches such as surface recording electrode and diffusion tensor imaging, are hard to fast and accurately determine the demyelinated status of a fiber. In this study, we first presented a mathematical model of nerve fiber demyelination, and it was combined with second harmonic generation(SHG) technique to study the characteristics of action-potential-encoded SHG and analyze the sensitivity of SHG signals responded to membrane potential. And then, we used this approach to fast examine the injured myelin sheaths resulted from demyelination. Each myelin sheath of a fiber was examined simultaneously by this approach. The results showed that fiber demyelination led to observable attenuation of action potential amplitude. The delay of action potential conduction would be markedly observed when the fiber demyelination was more than 80%. Furthermore, the normal and injured myelin sheaths of a myelinated fiber could be distinguished via the changes of SHG signals, which revealed the possibility of SHG technique in the examination of a demyelinated fiber. Our study shows that this approach may have potential application values in clinic.
Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-11-01
Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less
Modeling fluid diffusion in cerebral white matter with random walks in complex environments
NASA Astrophysics Data System (ADS)
Levy, Amichai; Cwilich, Gabriel; Buldyrev, Sergey V.; Weeden, Van J.
2012-02-01
Recent studies with diffusion MRI have shown new aspects of geometric order in the brain, including complex path coherence within the cerebral cortex, and organization of cerebral white matter and connectivity across multiple scales. The main assumption of these studies is that water molecules diffuse along myelin sheaths of neuron axons in the white matter and thus the anisotropy of their diffusion tensor observed by MRI can provide information about the direction of the axons connecting different parts of the brain. We model the diffusion of particles confined in the space of between the bundles of cylindrical obstacles representing fibrous structures of various orientations. We have investigated the directional properties of the diffusion, by studying the angular distribution of the end point of the random walks as a function of their length, to understand the scale over which the distribution randomizes. We will show evidence of qualitative change in the behavior of the diffusion for different volume fractions of obstacles. Comparisons with three-dimensional MRI images will be illustrated.
Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice
Jia, Limeng; Yan, Wengui; Zhu, Chengsong; Agrama, Hesham A.; Jackson, Aaron; Yeater, Kathleen; Li, Xiaobai; Huang, Bihu; Hu, Biaolin; McClung, Anna; Wu, Dianxing
2012-01-01
Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice. PMID:22427867
Optic nerve sheath meningiomas.
Saeed, Peerooz; Rootman, Jack; Nugent, Robert A; White, Valerie A; Mackenzie, Ian R; Koornneef, Leo
2003-10-01
To study the natural history and growth of optic nerve sheath meningiomas and evaluate their management outcome. Clinicopathologic retrospective noncomparative case series. A retrospective study of 88 patients who were treated between 1976 and 1999 at the University of British Columbia and the University of Amsterdam. Clinical reports, imaging studies, and histopathologic findings were reviewed. The mean age at onset of symptoms was 40.3 years, and most were seen in middle-aged females. Patients typically presented with visual loss, frequently associated with optic atrophy or papilledema and occasionally optociliary shunt vessels. On imaging, the optic nerve demonstrated segmental or diffuse thickening of the sheath or globular growth. Calcification was seen in 31% of cases and was associated with slower tumor growth. Tumors with posterior components in the orbit had more frequent intracranial involvement. Intracranial extension was more frequent and had a greater growth rate in younger patients. Irregular margins in the orbit implied local invasion. A presenting visual acuity better than 20/50 correlated with longer preservation of vision. Patients who underwent radiotherapy showed improvement in their visual acuity, and tumor growth was halted. Optic sheath decompression did not preserve vision. En bloc tumor excision was associated with no detectable recurrence in contrast to debulked tumors that recurred. Meningiomas show characteristic indolent growth. Management therefore should be conservative in most cases. Radiotherapy is indicated in patients with progressive visual deterioration. Surgery, when indicated, should be an en bloc excision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A; Railkar, Sudhir; Shiao, Ming C
Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climatemore » showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.« less
USDA-ARS?s Scientific Manuscript database
Rice lesion mimic mutants (LMM) exhibit necrotic lesions resembling programmed cell death (PCD). PCD is one of the significant hallmarks of disease resistance genes mediated defense responses. LMM can be used to study the mechanisms of plant disease resistance. In the present study, a total of 133 ...
Computed Tomography Findings of Pigmented Villonodular Synovitis in a Dog.
Dempsey, Lara M; Maddox, Thomas W; Meiring, Thelma; Wustefeld-Janssens, Brandan; Comerford, Eithne J
2018-06-04
Pigmented villonodular synovitis (PVNS) is a rare benign and usually monoarticular neoplastic lesion arising from the synovium, bursae and tendon sheaths in humans, horses and dogs. Categorization for PVNS in humans includes localized and diffuse forms of PVNS and tenosynovial giant cell tumour (TGCT), although histologically they are the same. The localized form is characterized by discrete nodular lesions, the diffuse form is often intra-articular, infiltrative, affecting the entire synovium with more aggressive behaviour and TGCT occurs along tendon sheaths. Computed tomography (CT) of PVNS is well described in humans but not documented in the veterinary literature. Pigmented villonodular synovitis is not a straightforward diagnosis and CT is useful to further characterize radiographic findings. A representative open surgical biopsy of the synovium is essential to obtaining the diagnosis and ruling out malignancy. Currently, there are no guidelines for the diagnosis of PVNS in dogs or long-term follow-up of these cases. This case report describes the presentation, diagnostic findings, treatment and long-term outcome of a 4-year-old male Labrador Retriever with confirmed PVNS. Clinical outcome was considered fair with the dog's lameness and symptoms remaining stable with medical management 3 years following the initial diagnosis. Schattauer GmbH Stuttgart.
NASA Astrophysics Data System (ADS)
Walker, D. N.; Fernsler, R. F.; Blackwell, D. D.; Amatucci, W. E.; Messer, S. J.
2006-05-01
In a recently published work1 we use a simpler derivation of collisionless resistance in spherical geometry than previous authors, relying primarily on Gauss' law along with the continuity and cold fluid equations. The accompanying experimental work is based on measurements of the rf impedance characteristics of a small spherical probe immersed in a laboratory plasma. The data taken are from network analyzer measurements of the reflection coefficient obtained when applying a low level rf signal to the probe which is either near floating potential or negatively dc-biased in a low pressure plasma. The reduced density in the sheath alters the plasma impedance which becomes resistive, in spite of collisionless conditions, and hence the characterization of energy absorption as collisionless arises. Consistent with earlier work, the solutions obtained indicate that the plasma resistance is inversely proportional to the plasma density gradient evaluated at the location where the plasma frequency is equal to the applied frequency. Significant energy absorption is predicted and observed at frequencies generally near one-half the plasma frequency. *Work supported by ONR 1 Walker, D.N., R.F. Fernsler, D.D. Blackwell, W.A. Amatucci, S.J. Messer, Phys of Plasmas, To Appear 3/2006
Hu, Wenjin; Pan, Xinli; Li, Fengfeng
2018-01-01
To explore the pathogenesis of Rhizoctonia solani and its phytotoxin phenylacetic acid (PAA) on maize leaves and sheaths, treated leaf and sheath tissues were analyzed and interpreted by ultra-performance liquid chromatography-mass spectrometry combined with chemometrics. The PAA treatment had similar effects to those of R. solani on maize leaves regarding the metabolism of traumatin, phytosphingosine, vitexin 2'' O-beta-D-glucoside, rutin and DIBOA-glucoside, which were up-regulated, while the synthesis of OPC-8:0 and 12-OPDA, precursors for the synthesis of jasmonic acid, a plant defense signaling molecule, was down-regulated under both treatments. However, there were also discrepancies in the influences exhibited by R. solani and PAA as the metabolic concentration of zeaxanthin diglucoside in the R. solani infected leaf group decreased. Conversely, in the PAA-treated leaf group, the synthesis of zeaxanthin diglucoside was enhanced. Moreover, although the synthesis of 12 metabolites were suppressed in both the R. solani- and PAA-treated leaf tissues, the inhibitory effect of R. solani was stronger than that of PAA. An increased expression of quercitrin and quercetin 3-O-glucoside was observed in maize sheaths treated by R. solani, while their concentrations were not changed significantly in the PAA-treated sheaths. Furthermore, a significant decrease in the concentration of L-Glutamate, which plays important roles in plant resistance to necrotrophic pathogens, only occurred in the R. solani-treated sheath tissues. The differentiated metabolite levels may be the partial reason of why maize sheaths were more susceptible to R. solani than leaves and may explain the underlying mechanisms of R. solani pathogenesis. PMID:29408919
Hu, Wenjin; Pan, Xinli; Li, Fengfeng; Dong, Wubei
2018-01-01
To explore the pathogenesis of Rhizoctonia solani and its phytotoxin phenylacetic acid (PAA) on maize leaves and sheaths, treated leaf and sheath tissues were analyzed and interpreted by ultra-performance liquid chromatography-mass spectrometry combined with chemometrics. The PAA treatment had similar effects to those of R. solani on maize leaves regarding the metabolism of traumatin, phytosphingosine, vitexin 2'' O-beta-D-glucoside, rutin and DIBOA-glucoside, which were up-regulated, while the synthesis of OPC-8:0 and 12-OPDA, precursors for the synthesis of jasmonic acid, a plant defense signaling molecule, was down-regulated under both treatments. However, there were also discrepancies in the influences exhibited by R. solani and PAA as the metabolic concentration of zeaxanthin diglucoside in the R. solani infected leaf group decreased. Conversely, in the PAA-treated leaf group, the synthesis of zeaxanthin diglucoside was enhanced. Moreover, although the synthesis of 12 metabolites were suppressed in both the R. solani- and PAA-treated leaf tissues, the inhibitory effect of R. solani was stronger than that of PAA. An increased expression of quercitrin and quercetin 3-O-glucoside was observed in maize sheaths treated by R. solani, while their concentrations were not changed significantly in the PAA-treated sheaths. Furthermore, a significant decrease in the concentration of L-Glutamate, which plays important roles in plant resistance to necrotrophic pathogens, only occurred in the R. solani-treated sheath tissues. The differentiated metabolite levels may be the partial reason of why maize sheaths were more susceptible to R. solani than leaves and may explain the underlying mechanisms of R. solani pathogenesis.
NASA Astrophysics Data System (ADS)
Rainey, Dustin K.; Jones, Brian
2010-05-01
The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.
Alternative model of space-charge-limited thermionic current flow through a plasma
NASA Astrophysics Data System (ADS)
Campanell, M. D.
2018-04-01
It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.
Novel everting urologic access sheath: potential advantages of decreased cellular advancement.
Camargo, Affonso H L A; Rubenstein, Jonathan N; Sozen, Sinan; Ershoff, Brent D; Stoller, Marshall L
2006-02-01
Axial forces are imposed on the urothelium during advancement of instruments across the urinary tract, potentially transferring cellular debris, bacteria, or urothelial carcinoma from one anatomic location to another. A prototype access sheath (Cystoglide; Percutaneous Systems, Mountain View, CA) was created that everts and radially dilates but does not provide axial forces during deployment that can be used in a variety of anatomic systems. We created a urinary-tract model to evaluate the in-vitro advancement of cells to compare this technology with using instruments alone. Blocks of sterile agar were created with 17F tracts of three lengths (2.7, 5.5, and 11 cm) with 5 mL of Luria-Bertani broth/ampicillin solution in a well at the end. The tips of a Cystoglide sheath and a traditional urologic instrument of the same diameter were dipped into a suspension of ampicillin-resistant Escherichia coli and advanced through the tracts. After a 10-second exposure, 4 mL of broth was collected and cultured. Bacterial growth was compared by measuring the optical density (OD) of the broth at multiple time points. The mean overall OD of the broth was significantly lower (P < 0.001) in the novel-sheath cultures than with a traditional instrument for all advancements at all tract lengths. The Cystoglide sheath significantly reduces the advancement of cells within an artificial urinary tract compared with a non-everting instrument. Clinical studies are needed to assess the utility of this technology in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-11-01
Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less
Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1
Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki
1990-01-01
To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719
NASA Astrophysics Data System (ADS)
Grivel, J. C.; Andersen, N. H.; Pinholt, R.; Ková, P.; Husek, I.; Hässler, W.; Herrmann, M.; Perner, O.; Rodig, C.; Homeyer, J.
2006-06-01
The phase transformations occurring in the ceramic core of Fe-sheathed MgB2 wires and tapes prepared by in-situ reaction of Mg and B precursor powders, have been studied by means of high-energy x-ray diffraction. In particular, the time evolution of the Fe2B phase, forming at the interface between the sheath and the ceramic, was studied at different sintering temperatures. The reactivity of the sheath towards Fe2B formation is strongly dependent on powder pre-treatment. In wires produced with commercial Mg and B powders without additional mechanical activation, the Fe2B phase starts forming around 650°C. In contrast, in tapes produced from a mixture of Mg and B powders subjected to high-energy ball milling, the interfacial Fe2B layer forms readily at 600°C. The increase of Fe2B volume fraction is linear to first approximation, showing that the interfacial layer does not act as a diffusion barrier against further reaction between the sheath and the ceramic core. If the ceramic core is converted to MgB2 at a temperature, which is low enough to avoid Fe2B formation, the interface is stable during further annealing at temperatures up to 700°C at least. However, too high annealing temperatures (T > 800°C), would result in formation of Fe2B, probably following the partial decomposition of MgB2.
Shabanamol, S; Sreekumar, J; Jisha, M S
2017-10-01
The present study tried to explore the possible in vitro biocontrol mechanisms of Lysinibacillus sphaericus , a diazotrophic endophyte from rice against the rice sheath blight pathogen Rhizoctonia solani. The in vivo biocontrol potential of the isolate and the induction of systemic resistance under greenhouse conditions have also been experimented employing different treatments with positive control carbendazim, the chemical fungicide. The endophytic isolate showed 100% growth inhibition of the fungal pathogen via volatile organic compound production and was positive for the production of siderophores, biosurfactants, HCN, and ammonia. Under greenhouse conditions, foliar and soil application of L. sphaericus significantly decreased the percentage of disease incidence. All bacterized treatments are superior to chemical fungicide treatment. Application of L. sphaericus in single and combination treatments induces systemic resistance as evident from the significant accumulation of defense enzymes such as peroxides, polyphenol oxides and phenylalanine ammonia in addition to the increase of phenolic compounds. The results biologically prospect endophytic diazotroph L. sphaericus as a potent plant growth promoter with excellent biocontrol efficiency.
Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model
NASA Astrophysics Data System (ADS)
Abd Al-Halim, Mohamed A.; Afify, M. S.
2017-03-01
The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.
Zhang, Jinfeng; Chen, Lei; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Cheng, Yuanzhi; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping
2017-01-01
Rice sheath blight, caused by Rhizoctonia solani , is one of the most devastating diseases for stable rice production in most rice-growing regions of the world. Currently, studies of the molecular mechanism of rice sheath blight resistance are scarce. Here, we used an RNA-seq approach to analyze the gene expression changes induced by the AG1 IA strain of R. solani in rice at 12, 24, 36, 48, and 72 h. By comparing the transcriptomes of TeQing (a moderately resistant cultivar) and Lemont (a susceptible cultivar) leaves, variable transcriptional responses under control and infection conditions were revealed. From these data, 4,802 differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses suggested that most DEGs and related metabolic pathways in both rice genotypes were common and spanned most biological activities after AG1 IA inoculation. The main difference between the resistant and susceptible plants was a difference in the timing of the response to AG1 IA infection. Photosynthesis, photorespiration, and jasmonic acid and phenylpropanoid metabolism play important roles in disease resistance, and the relative response of disease resistance-related pathways in TeQing leaves was more rapid than that of Lemont leaves at 12 h. Here, the transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG1 IA.
Alternative model of space-charge-limited thermionic current flow through a plasma
Campanell, M. D.
2018-04-19
It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less
Alternative model of space-charge-limited thermionic current flow through a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanell, M. D.
It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less
Development of molecular markers for breeding for disease resistant crops
USDA-ARS?s Scientific Manuscript database
Rice blast disease caused by the filamentous ascomycetes fungus Magnaporthe oryzae and sheath blight disease caused by the soil borne fungus Rhizocotonia solani are the two major rice diseases that threaten stable rice production in the USA and worldwide. These two diseases have been managed with a ...
Kromdijk, Johannes; Ubierna, Nerea; Cousins, Asaph B; Griffiths, Howard
2014-07-01
Crop species with the C4 photosynthetic pathway are generally characterized by high productivity, especially in environmental conditions favouring photorespiration. In comparison with the ancestral C3 pathway, the biochemical and anatomical modifications of the C4 pathway allow spatial separation of primary carbon acquisition in mesophyll cells and subsequent assimilation in bundle-sheath cells. The CO2-concentrating C4 cycle has to operate in close coordination with CO2 reduction via the Calvin-Benson-Bassham (CBB) cycle in order to keep the C4 pathway energetically efficient. The gradient in CO2 concentration between bundle-sheath and mesophyll cells facilitates diffusive leakage of CO2. This rate of bundle-sheath CO2 leakage relative to the rate of phosphoenolpyruvate carboxylation (termed leakiness) has been used to probe the balance between C4 carbon acquisition and subsequent reduction as a result of environmental perturbations. When doing so, the correct choice of equations to derive leakiness from stable carbon isotope discrimination (Δ(13)C) during gas exchange is critical to avoid biased results. Leakiness responses to photon flux density, either short-term (during measurements) or long-term (during growth and development), can have important implications for C4 performance in understorey light conditions. However, recent reports show leakiness to be subject to considerable acclimation. Additionally, the recent discovery of two decarboxylating C4 cycles operating in parallel in Zea mays suggests that flexibility in the transported C4 acid and associated decarboxylase could also aid in maintaining C4/CBB balance in a changing environment. In this paper, we review improvements in methodology to estimate leakiness, synthesize reports on bundle-sheath leakiness, discuss different interpretations, and highlight areas where future research is necessary. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Contribution of Gypsum Wallboard to Racking Resistance of Light-Frame Walls.
1983-12-01
contribution to wall ’ ~sheathing to the framing members, and axial loads on racking resistance. Such information may lead to more diagonal braces used...wallboard was centered over the joint and fastened to the narrow face of the wood pieces using 1-1/4-inch drywall nails . Two nails were used to fasten...pulled apart placing a lateral load on the nailed connection, similar to the connector loading incurred at the nailed connection along the bottom plate of
Dust trap formation in a non-self-sustained discharge with external gas ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.
2015-11-15
Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less
Saller, H.A.; Keeler, J.R.
1959-07-14
The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.
Low cost fuel cell diffusion layer configured for optimized anode water management
Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E
2013-08-27
A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.
30 CFR 77.700-1 - Approved methods of grounding.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved methods of grounding. 77.700-1 Section... COAL MINES Grounding § 77.700-1 Approved methods of grounding. Metallic sheaths, armors, and conduits... methods of grounding will be approved: (a) A solid connection to metal waterlines having low resistance to...
30 CFR 77.700-1 - Approved methods of grounding.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved methods of grounding. 77.700-1 Section... COAL MINES Grounding § 77.700-1 Approved methods of grounding. Metallic sheaths, armors, and conduits... methods of grounding will be approved: (a) A solid connection to metal waterlines having low resistance to...
30 CFR 77.700-1 - Approved methods of grounding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved methods of grounding. 77.700-1 Section... COAL MINES Grounding § 77.700-1 Approved methods of grounding. Metallic sheaths, armors, and conduits... methods of grounding will be approved: (a) A solid connection to metal waterlines having low resistance to...
USDA-ARS?s Scientific Manuscript database
Oryza meridionalis is the wild Oryza species endemic to Australia. There are eight AA genome Oryza species, one of which is cultivated rice, O. sativa and O. meridionalis is the most diverged of the eight species. An O. eridionalis (IRGC105608) accession was identified as being moderately resistant...
46 CFR 32.65-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...
46 CFR 32.65-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...
46 CFR 32.60-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...
46 CFR 32.60-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...
46 CFR 32.65-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...
46 CFR 32.60-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...
46 CFR 32.60-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...
46 CFR 32.65-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...
46 CFR 32.60-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...
46 CFR 32.65-25 - Living quarters-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...
Kinetics of Uptake and Washout of Lidocaine in Rat Sciatic Nerve In Vitro
Leeson, Stanley; Strichartz, Gary
2012-01-01
Background The potency and efficacy of local anesthetics injected clinically for peripheral nerve block depends strongly on the rate of neural drug uptake. However, since diffusion into surrounding tissues and removal by the vascular system are major factors in the overall distribution of lidocaine in vivo, true kinetics of drug/neural tissue interactions must be studied in the absence of those confounding factors. Methods Uptake: Ensheathed or desheathed isolated rat sciatic nerves were exposed to [14C]-lidocaine for 0-180min and then removed and the lidocaine content of nerve and sheath analyzed. Washout: Isolated nerves were soaked in [14C]-lidocaine for 60min and then placed in lidocaine-free solution for 0-30min, with samples removed at different times to assess the drug content. Experimental variables included the effects of the ensheathing epineurium, lidocaine concentration, pH, presence of CO2-bicarbonate, and incubation duration. Results The equilibrium uptake of lidocaine increased with incubation time, concentration and the fraction of molecules in the non-ionized form. The uptake rate was unaffected by drug concentration, but was about halved by the presence of the epineurial sheath, with the washout rate slowed less. Slight alkalinization, from pH 6.8 to pH 7.4, by bicarbonate-CO2 buffer or a non-bicarbonate buffer, enhanced the neural uptake, and to the same degree. The washout of lidocaine was faster after shorter incubations at high concentrations than when equal amounts of lidocaine were taken up after long incubations at low lidocaine concentrations. Conclusion Lidocaine enters a nerve by a process other than free diffusion, through an epineurial sheath that is a slight obstacle. Given the rapid entry in vitro compared to the much smaller and transient content measured in vivo, it seems highly unlikely that lidocaine equilibrates with the nerve during a peripheral blockade. PMID:23400993
Lenz, Michael; Kard, Brad; Creffield, James W; Evans, Theodore A; Brown, Kenneth S; Freytag, Edward D; Zhong, Jun-Hong; Lee, Chow-Yang; Yeoh, Boon-Hoi; Yoshimura, Tsuyoshi; Tsunoda, Kunio; Vongkaluang, Charunee; Sornnuwat, Yupaporn; Roland, Ted A; de Santi, Marie Pommier
2013-06-01
A comparative field study was conducted to evaluate the ability of subterranean termites to damage a set of four different plastic materials (cable sheathings) exposed below- and above-ground. Eight pest species from six countries were included, viz., Coptotermes formosanus (Shiraki) in China, Japan, and the United States; Coptotermes gestroi (Wasmann) in Thailand and Malaysia; Coptotermes curvignathus (Holmgren) and Coptotermes kalshoveni (Kemner) in Malaysia; Coptotermes acinaciformis (Froggatt) with two forms of the species complex and Mastotermes darwiniensis (Froggatt) in Australia; and Reticulitermes flavipes (Kollar) in the United States. Termite species were separated into four tiers relative to decreasing ability to damage plastics. The first tier, most damaging, included C. acinaciformis, mound-building form, and M. darwiniensis, both from tropical Australia. The second tier included C. acinaciformis, tree-nesting form, from temperate Australia and C. kalshoveni from Southeast Asia. The third tier included C. curcignathus and C. gestroi from Southeast Asia and C. formosanus from China, Japan, and the United States, whereas the fourth tier included only R. flavipes, which caused no damage. A consequence of these results is that plastics considered resistant to termite damage in some locations will not be so in others because of differences in the termite fauna, for example, resistant plastics from the United States and Japan will require further testing in Southeast Asia and Australia. However, plastics considered resistant in Australia will be resistant in all other locations.
Analysis of Plasma Communication Schemes for Hypersonic Vehicles: Final Report
2009-02-01
repel the more mobile species. In this way quasi -neutrality can be maintained in the plasma. The potential drops near the conducting surfaces are of... potential VM cannot be determined from a quasi - neutral diffusion theory and depends on the details of sheath physics at electrode surfaces. In the...the mid potential VM, which cannot be determined by simple quasi -neutral fluid theory, is in general a function of L. This L dependence, which
Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System
NASA Astrophysics Data System (ADS)
Begum, M.; Das, N.
2018-01-01
The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasel, Stella, E-mail: Stella.Blasel@kgu.de; Hattingen, Elke; Berkefeld, Joachim
2009-07-15
The detection of clinically silent ischemic lesions on postprocedural diffusion-weighted magnetic resonance images has become a preferred method for the description of embolic risks. The purpose of this single-center study was to evaluate whether diffusion-weighted imaging (DWI) could determine material related or technical risk factors of filter-protected carotid stenting. Eighty-four patients with symptomatic severe ({>=}60%) carotid artery stenoses received filter-protected carotid stenting. Standard DWI (b = 1000) was performed within 48 h before and after carotid stenting. The occurrence and load of new postinterventional DWI lesions were assessed. Multivariate analysis was performed to determine risk factors associated with DWI lesions,more » with emphasis on technical factors such as use of different access devices (guiding catheter method vs. long carotid sheath method), type of stent (open-cell nitinol stent vs. closed-cell Wallstent), and protective device (filters with 80-{mu}m vs. 110-120-{mu}m pore size). Markers for generalized atherosclerosis and for degree and site of stenosis were assessed to allow comparison of adequate risk profiles. Access, protective device, and stent type were not significantly associated with new embolic DWI lesions when we compared patients with equivalent risk profiles (long carotid sheath method 48% [11 of 23] vs. guiding catheter method 44% [27 of 61], Wallstent 47% [15 of 32] vs. nitinol stent 44% [23 of 52], and small pore size filter 61% [11 of 18] vs. large pore size filter 41% [27 of 66]). Single-center DWI studies with a moderate number of cases are inadequate for proper assessment of the embolic risk of technical- or material-related risk factors in carotid stenting. Larger multicenter studies with more cases are needed.« less
Fabrication and researching of weathering resistant double cladding power delivery fiber
NASA Astrophysics Data System (ADS)
Rong, Liang; Ren, Junjiang; Li, Rundong; Wang, Lianping; Zou, Huan
2016-01-01
A novel well weathering resistant power delivery fiber which is of double cladding and high optical energy transmitting ability is developed via fluoroplastic out sheath extruding process. The fiber has been comprehensively evaluated including optical performance, mechanical performance, environmental suitability and laser transmitting property. It is shown that the fiber has not only low attenuation, high numerical aperture and better mechanical bending performance, but also outstanding weathering resistance and high power laser transmitting performance, which implies the qualification of the fiber for various kinds of applying situations, such as laser ignition, laser induced expanding sound underwater, ship-based and airborne laser weapon.
Retrobulbar pigmented peripheral nerve sheath tumor in a dog.
Curto, Elizabeth; Clode, Alison B; Durrant, Jessica; Montgomery, Keith W; Gilger, Brian C
2016-11-01
A 1-year-old male castrated Pug was referred for unilateral exophthalmos unresponsive to oral antibiotic and anti-inflammatory therapy. Clinical findings included exophthalmos of the left eye with lateral strabismus, resistance to retropulsion, and an elevated nictitans. Hematologic and biochemical analyses were within normal limits. Findings following computed tomography (CT) of the head included an expansile retrobulbar soft tissue mass with bony lysis extending into the left nasal cavity and nasopharynx. Ultrasound-guided fine-needle aspirates and biopsy samples obtained via rhinoscopy were nondiagnostic. Palliative exenteration was elected; the patient was euthanized 13 weeks following exenteration due to development of neurologic signs and perceived poor quality of life. The histopathologic diagnosis was a malignant pigmented peripheral nerve sheath tumor. © 2015 American College of Veterinary Ophthalmologists.
Modelling Force Transfer Around Openings of Full-Scale Shear Walls
Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker
2011-01-01
Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...
High temperature liquid level sensor
Tokarz, Richard D.
1983-01-01
A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.
MEMBRANE AND PROTOPLASM RESISTANCE IN THE SQUID GIANT AXON
Cole, Kenneth S.; Hodgkin, Alan L.
1939-01-01
The direct current longitudinal resistance of the squid giant axon was measured as a function of the electrode separation. Large sea water electrodes were used and the inter-electrode length was immersed in oil. The slope of the resistance vs. separation curve is large for a small electrode separation, but becomes smaller and finally constant as the separation is increased. An analysis of the resistance vs. length curves gives the following results. The nerve membrane has a resistance of about 1000 ohm cm.2 The protoplasm has a specific resistance of about 1.4 times that of sea water. The resistance of the connective tissue sheath outside the fiber corresponds to a layer of sea water about 20µ in thickness. The characteristic length for the axon is about 2.3 mm. in oil and 6.0 mm. in sea water. PMID:19873126
Equilibrium theory of cylindrical discharges with special application to helicons
NASA Astrophysics Data System (ADS)
Curreli, Davide; Chen, Francis F.
2011-11-01
Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature Te and neutral density nn. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform Te and nn, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.
Investigation of Ion Acoustic Wave Instabilities Near Positive Electrodes
NASA Astrophysics Data System (ADS)
Hood, Ryan; Chu, Feng; Baalrud, Scott; Merlino, Robert; Skiff, Fred
2017-10-01
Electron sheaths occur when an electrode is biased above the plasma potential, most often during the electron saturation portion of a Langmuir probe trace. Through the presheath, electrons are accelerated to velocities exceeding the electron thermal speed at the sheath edge, while ions do not develop any appreciable flow. PIC simulations have shown that ion acoustic instabilities are excited by the differential flow between ions and electrons in the presheath region of a low temperature plasma. We present the first experimental measurements investigating these instabilities using Laser-Induced Fluorescence diagnostics in a multidipole argon plasma. The plasma dispersion relation is measured from the power spectra of the imaged LIF signal and compared to the simulation results. In addition, optical pumping is measured using time-resolved LIF measurements and fit to a model in order to determine the diffusion rate, which may be enhanced due to the instability. This research was supported by the Office of Fusion Energy Sciences at the U.S. Department of Energy under contract DE-AC04-94SL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, R.; Rudakov, D. L.; Stangeby, P. C.
Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less
DeGeorge, Brent R; Rodeheaver, George T; Drake, David B
2014-01-01
Devastating volar hand injuries with significant damage to the skin and soft tissues, pulley structures and fibro-osseous sheath, flexor tendons, and volar plates pose a major problem to the reconstructive hand surgeon. Despite advances in tendon handling, operative technique, and postoperative hand rehabilitation, patients who have undergone flexor tendon reconstruction are often plagued by chronic pain, stiffness, and decreased range of motion with resultant decreased ability to work and poor quality of life. In this article, we expand the technique of human composite flexor tendon allografts (CFTAs), pioneered by Dr E.E. Peacock, Jr, which consist of both the intrasynovial and extrasynovial flexor digitorum superficialis and flexor digitorum profundus tendons and their respective fibro-osseous sheath consisting of the digital pulley structures, periosteum, and volar plates procured from cadaveric donors with the use of modern tissue processing techniques. Human cadaveric CFTAs were procured and divided into 2 groups-unprocessed CFTAs and processed CFTAs, which are cleansed and sterilized to a sterility assurance level of 10(-6). Physical length and width relationships as well as tensile strength and gliding resistance assessments were recorded pre-tissue and post-tissue processing. The histologic properties of the composite allografts were assessed before and after tissue processing. There was no significant difference with respect to physical properties of the composite allografts before or after tissue processing. The processed composite allografts demonstrated equivalent maximum load to failure and elastic modulus compared to unprocessed tendons. The gliding resistance of the composite tendon allografts was not significantly different between the 2 groups. The use of CFTAs addresses the issues of adhesion formation and lack of suitable donor material by providing a source of intrasynovial tendon in its unaltered fibro-osseous sheath without donor morbidity. This approach represents an important step toward designing an ideal material for complex flexor tendon reconstruction, which takes advantage of an intrasynovial flexor tendon in its native fibro-osseous sheath without the need for additional donor morbidity using a construct which can be engineered to have minimal tissue reactivity, negligible potential for disease transmission, and improved tendon healing properties versus standard tendon allograft.
Full-scale shear wall tests for force transfer around openings
Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker
2010-01-01
Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...
NASA Astrophysics Data System (ADS)
Furniss, C. P.
New metal-sheathed thermocouple systems are described which have lowered operational heat treatment costs and process engineering. The improvements which these thermocouples represent over conventional ones with regard to chemical composition, thermomechanical properties, oxidation resistance, weldability, and coefficient of linear expansion are pointed out. Experimentally determined cost savings for a variety of applications are reported.
Frost-Christensen, Henning; Floto, Franz
2007-01-01
Cuticular membranes (CMs) were isolated from leaves of amphibious and submerged plants and their CO2 resistances were determined as a contribution to establish quantitatively the series of resistances met by CO2 diffusing from bulk water to the chloroplasts of submerged leaves. The isolation was performed enzymatically; permeabilities were determined and converted to resistances. The range of permeance values was 3 to 43 x 10(-6) m s(-1) corresponding to resistance values of 23 to 295 x 10(3) s m(-1), i.e. of the same order of magnitude as boundary layer resistances. The sum of boundary layer, CM, leaf cell and carboxylation resistances could be contained within the total diffusion resistance as determined from the photosynthetic CO2 affinity of the leaf. From the same species, the aerial leaf CM resistance was always higher than the aquatic leaf CM resistance. In a terrestrial plant, the CM resistance to CO2 diffusion was found lower in leaves developed submerged.
Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui
2016-01-01
Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558
Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota.
Campbell, S E
1979-09-01
A cyanophyte dominated mat, desert crust, forms the ground cover in areas measuring hundreds of square meters in Utah and smaller patches in Colorado. The algal mat shows stromatolitic features such as sediment trapping and accretion, a convoluted surface, and polygonal cracking. Sand and clay particles are immobilized by a dense network of filaments of the two dominating cyanophyte species, Microcoleus vaginatus and M. chthonoplastes, which secrete sheaths to which particles adhere. These microorganisms can tolerate long periods of desiccation and are capable of instant reactivation and migration following wetting. Migration occurs in two events: 1. immediately following wetting of dry mat, trichomes are mechanically expelled from the sheath as it swells during rehydration, and 2. subsequently, trichomes begin a self-propelled gliding motility which is accompanied by further production of sheath. The maximum distance traveled on solid agar by trichomes of Microcoleus vaginatus during a 12 hour period of light was 4.8 cm. This corresponds to approximately 500 times the length of the fastest trichome, and provides a measure of the potential for spreading of the mat in nature via the motility of the trichomes. Dehydration resistence of the sheath modifies the extracellular environment of the trichomes and enables their transition to dormancy. Following prolonged wetting and evaporative drying of the mat in the laboratory, a smooth wafer-like crust is formed by the sheaths of Microcleus trichomes that have migrated to the surface. Calcium carbonate precipitates among the algal filaments under experimental conditions, indicating a potential for mat lithification and fossilization in the form of a caliche crust. It is suggested that limestones containing tubular microfossils may, in part, be of such an origin. The formation of mature Precambrian soils may be attributable to soil accretion, stabilization, and biogenic modification by blue-green algal land mats similar to desert crust.
Han, Daewoo; Steckl, Andrew J
2017-12-13
Core-sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core-sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core-sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core-sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films.
Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers
Paulin, Gregory A; Ouriadov, Alexei; Lessard, Eric; Sheikh, Khadija; McCormack, David G; Parraga, Grace
2015-01-01
Diffusion-weighted magnetic resonance imaging (MRI) provides a way to generate in vivo lung images with contrast sensitive to the molecular displacement of inhaled gas at subcellular length scales. Here, we aimed to evaluate hyperpolarized 3He MRI estimates of the alveolar dimensions in 38 healthy elderly never-smokers (73 ± 6 years, 15 males) and 21 elderly ex-smokers (70 ± 10 years, 14 males) with (n = 8, 77 ± 6 years) and without emphysema (n = 13, 65 ± 10 years). The ex-smoker and never-smoker subgroups were significantly different for FEV1/FVC (P = 0.0001) and DLCO (P = 0.009); while ex-smokers with emphysema reported significantly diminished FEV1/FVC (P = 0.02) and a trend toward lower DLCO (P = 0.05) than ex-smokers without emphysema. MRI apparent diffusion coefficients (ADC) and CT measurements of emphysema (relative area–CT density histogram, RA950) were significantly different (P = 0.001 and P = 0.007) for never-smoker and ex-smoker subgroups. In never-smokers, the MRI estimate of mean linear intercept (260 ± 27 μm) was significantly elevated as compared to the results previously reported in younger never-smokers (210 ± 30 μm), and trended smaller than in the age-matched ex-smokers (320 ± 72 μm, P = 0.06) evaluated here. Never-smokers also reported significantly smaller internal (220 ± 24 μm, P = 0.01) acinar radius but greater alveolar sheath thickness (120 ± 4 μm, P < 0.0001) than ex-smokers. Never-smokers were also significantly different than ex-smokers without emphysema for alveolar sheath thickness but not ADC, while ex-smokers with emphysema reported significantly different ADC but not alveolar sheath thickness compared to ex-smokers without CT evidence of emphysema. Differences in alveolar measurements in never- and ex-smokers demonstrate the sensitivity of MRI measurements to the different effects of smoking and aging on acinar morphometry. PMID:26462748
Composition of the sheath produced by the green alga Chlorella sorokiniana.
Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H
2006-05-01
To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.
Arrivault, Stéphanie; Obata, Toshihiro; Szecówka, Marek; Mengin, Virginie; Guenther, Manuela; Hoehne, Melanie; Fernie, Alisdair R; Stitt, Mark
2017-01-01
Worldwide efforts to engineer C 4 photosynthesis into C 3 crops require a deep understanding of how this complex pathway operates. CO 2 is incorporated into four-carbon metabolites in the mesophyll, which move to the bundle sheath where they are decarboxylated to concentrate CO 2 around RuBisCO. We performed dynamic 13 CO 2 labeling in maize to analyze C flow in C 4 photosynthesis. The overall labeling kinetics reflected the topology of C 4 photosynthesis. Analyses of cell-specific labeling patterns after fractionation to enrich bundle sheath and mesophyll cells revealed concentration gradients to drive intercellular diffusion of malate, but not pyruvate, in the major CO 2 -concentrating shuttle. They also revealed intercellular concentration gradients of aspartate, alanine, and phosphenolpyruvate to drive a second phosphoenolpyruvate carboxykinase (PEPCK)-type shuttle, which carries 10-14% of the carbon into the bundle sheath. Gradients also exist to drive intercellular exchange of 3-phosphoglycerate and triose-phosphate. There is rapid carbon exchange between the Calvin-Benson cycle and the CO 2 -concentrating shuttle, equivalent to ~10% of carbon gain. In contrast, very little C leaks from the large pools of metabolites in the C concentration shuttle into respiratory metabolism. We postulate that the presence of multiple shuttles, alongside carbon transfer between them and the Calvin-Benson cycle, confers great flexibility in C 4 photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Ding, R.; Rudakov, D. L.; Stangeby, P. C.; ...
2017-03-24
Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less
Advanced electric propulsion and space plasma contactor research
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1987-01-01
A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.
NASA Astrophysics Data System (ADS)
Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo
2002-04-01
Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.
Prager, Sean M; Lewis, O Milo; Michels, Jerry; Nansen, Christian
2014-04-01
The ecological theory on host plant choice by herbivores suggests that mothers should choose plants that will maximize their offspring's success. In annual host plants, physiology (and therefore host suitability) is sometimes influenced by maturity and growth stage, which may influence female choice. Potato plants were grown under greenhouse conditions and used in choice and no-choice bioassays to determine the effect of plant maturity and variety on oviposition and number of stylet sheaths (which approximate stylet insertions) by tomato/potato psyllids. No-choice bioassays suggested that maturity (time since planting) did not influence oviposition behavior, but oviposition varied significantly among potato plant varieties. There was a significant effect of both maturity and variety on the number of stylet sheaths, which peak toward the middle of the growing season. We also examined tomato/potato psyllid responses to plants grown in a commercial field and again found no effect on oviposition but differences in stylet sheaths. The results suggest that differential susceptibility to zebra chip disease may be associated with unequal feeding rates. Future studies should examine whether the maturity of plants influences larval fitness. Finally, potato variety has an influence on both oviposition and "probing," and has implications for management strategies and the development of resistant potato varieties.
Kunoh, Tatsuki; Nagaoka, Noriyuki; McFarlane, Ian R.; Tamura, Katsunori; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun
2016-01-01
Species of the Fe/Mn-oxidizing bacteria Leptothrix produce tremendous amounts of microtubular, Fe/Mn-encrusted sheaths within a few days in outwells of groundwater that can rapidly clog water systems. To understand this mode of rapid sheath production and define the timescales involved, behaviors of sheath-forming Leptothrix sp. strain OUMS1 were examined using time-lapse video at the initial stage of sheath formation. OUMS1 formed clumps of tangled sheaths. Electron microscopy confirmed the presence of a thin layer of bacterial exopolymer fibrils around catenulate cells (corresponding to the immature sheath). In time-lapse videos, numerous sheath filaments that extended from the periphery of sheath clumps repeatedly fragmented at the apex of the same fragment, the fragments then aggregated and again elongated, eventually forming a large sheath clump comprising tangled sheaths within two days. In this study, we found that fast microscopic fragmentation, dissociation, re-aggregation and re-elongation events are the basis of the rapid, massive production of Leptothrix sheaths typically observed at macroscopic scales. PMID:27490579
RF sheaths for arbitrary B field angles
NASA Astrophysics Data System (ADS)
D'Ippolito, Daniel; Myra, James
2014-10-01
RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.
Zhu, Jiewei; Huang, Xiuli; Liu, Tong; Gao, Shigang; Chen, Jie
2012-08-01
ZmDIP was cloned and its function against Curvularia lunata was analyzed, according to a previous finding on a drought-inducible protein in resistant maize identified through MALDI-TOF-MS/MS. The ZmDIP expression varied in roots, leaf sheaths, and young, as well as old, leaves of different maize inbred lines. The ZmDIP transcript level changed in leaves over the course of time after inoculation with C. lunata. A prokaryotic expression analysis demonstrated that the gene can regulate the salt stress tolerance of Escherichia coli. The ZmDIP transient expression in the maize leaf showed that the gene was also linked to leaf resistance against the C. lunata infection. ZmDIP-mediated ROS and ABA signaling pathways were inferred to be closely associated with maize leaf resistance to the pathogen infection.
Dissipative cryogenic filters with zero dc resistance.
Bluhm, Hendrik; Moler, Kathryn A
2008-01-01
The authors designed, implemented, and tested cryogenic rf filters with zero dc resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in omega, as typical for skin depth based rf filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.
NASA Astrophysics Data System (ADS)
Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.
2018-05-01
A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.
Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution
NASA Astrophysics Data System (ADS)
Borgohain, Dima Rani; Saharia, K.
2018-03-01
Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.
NASA Astrophysics Data System (ADS)
Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas
2014-10-01
Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the phloem.
Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas
2014-10-01
Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the phloem.
NASA Astrophysics Data System (ADS)
Le, A.; Daughton, W. S.; Ohia, O.; Chen, L. J.; Liu, Y. H.
2017-12-01
We present 3D fully kinetic simulations of asymmetric reconnection with plasma parameters matching MMS magnetopause diffusion region crossings with varying guide fields of 0.1 [Burch et al., Science (2016)], 0.4 [Chen et al. JGR (2017)], and 1 [Burch and Phan, GRL (2016] of the reconnecting sheath field. Strong diamagnetic drifts across the magnetopause current sheet drive lower-hybrid drift instabilities (LHDI) over a range of wavelengths [Daughton, PoP (2003); Roytershteyn et al., PRL (2012)] that develop into a turbulent state. Magnetic field tracing diagnostics are employed to characterize the turbulent magnetic geometry and to evaluate the global reconnection rate. The contributions to Ohm's law are evaluated field line by field line, including time-averaged diagnostics that allow the quantification of anomalous resistivity and viscosity. We examine how fluctuating electric fields and chaotic magnetic field lines contribute to particle mixing across the separatrix, and we characterize the accelerated electron distributions that form under varying magnetic shear or guide field. The LHDI turbulence is found to strongly enhance transport and parallel electron heating in 3D compared to 2D, particularly along the magnetospheric separatrix [Le et al., GRL (2017)]. The PIC simulation results are compared to MMS observations.
Monga, Manoj; Bodie, Joshua; Ercole, Barbara
2004-09-01
To evaluate irrigant flows and intrapelvic pressures with small-diameter access sheaths. Ureteral access sheaths improve irrigant flow and decrease intrarenal pelvic pressures during flexible ureteroscopy. However, no comparisons of individual sheaths have been conducted. Previous studies have demonstrated more favorable results with the 12F sheath than with the 10F sheath. Ureteral access sheaths were tested ex vivo in porcine kidneys. An 18F angiocatheter was placed in the renal pelvis and connected to a Hewlett Packard Gauss Pressure transducer. Irrigant was maintained at 100 mm Hg pressure. Irrigant flow and intrapelvic pressures were measured with three flexible ureteroscopes at baseline and using each of four 10F sheaths, with the sheaths positioned in the middle ureter and the ureteroscopes positioned in the renal pelvis. The pressure at which irrigant efflux through the sheath occurred and the rate of irrigant efflux through the access sheath were measured. Intrapelvic pressures measured greater than 40 mm Hg, and irrigant flows remained at less than 15 mL/min when the Olympus URF-P3 and Storz 11274AAU flexible ureteroscopes were tested with all four sheaths. The intrapelvic pressures, irrigant inflow, and irrigant efflux with the Wolf 7325.172 (7.5F) flexible ureteroscope were optimized in combination with the Cook Peelaway 10F and Applied Access 10F sheaths. Small ureteral access sheaths should be used only with the Wolf 7325.172 flexible ureteroscope. The Cook Peelaway (10F) and Applied Access (10F) sheaths offered the greatest increase in irrigant flow and decrease in intrapelvic pressures.
NASA Technical Reports Server (NTRS)
Villarreal, Jennifer D.
2014-01-01
The objective is to define successive bed rest campaigns leading to a potential VIIP (Vision Impairment and Intracranial Pressure) countermeasure. To determine if the analog is successful, changes need to occur in the following outcome measures (dependent variables): Intracranial pressure; Retinal nerve fiber layer; Choroidal engorgement; Globe flattening; Axial biometry; Optic nerve sheath diameter distention; Cycloplegic refraction; Visual acuity. Study parameters (independent variables) to include: CO2; Sodium; Exercise (resistive & aerobic); Strict tilt angle.
Yang, Lihua; Guo, Yinli; Huang, Mengbin; Wu, Xiaoli; Li, Xiang; Chen, Guobing; Li, Ye; Bai, Jie
2018-01-01
Methamphetamine (METH) is a psychostimulant abused around the world. Emerging evidence indicates that METH causes brain damage. However, there are very few reports on METH-induced demyelination. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays the roles in protecting neurons from various stresses. However, whether Trx-1 resists demyelination induced by METH has not been reported. In this study, we found that METH-induced thin myelin sheaths in spinal cord, whereas Trx-1 overexpression transgenic (TG) mice restored the myelin sheaths thickness. The expressions of myelin-associated glycoprotein, myelin basic protein, and cyclin-dependent kinase 5 were decreased by METH, whereas these alterations were blocked in Trx-1 TG mice. The expressions of procaspase-12 and procaspase-3 were decreased by METH, the expression of calpain1 was increased by METH, whereas the alterations were suppressed in Trx-1 TG mice. As same as, the expressions of the extracellular signal-regulated kinase, nuclear factor κB, tumor necrosis factor-alpha, and interleukin-1beta were induced by METH, which were suppressed in Trx-1 TG mice. These data suggest that Trx-1 may play a critical role in resisting the METH-mediated demyelination in spinal cord through regulating endoplasmic reticulum stress and inflammation pathways. PMID:29467717
Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Kohta; Lstiburek, Joseph W.
2015-09-01
Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less
Dong, Yan; Fang, Xianping; Yang, Yong; Xue, Gang-Ping; Chen, Xian; Zhang, Weilin; Wang, Xuming; Yu, Chulang; Zhou, Jie; Mei, Qiong; Fang, Wang; Yan, Chengqi; Chen, Jianping
2017-01-01
The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH) is one of the major destructive pests of rice (Oryza sativa L.). Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant) and 02428 (SBPH-susceptible), were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05) at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs) showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD) and glutathione (GSH) were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT) activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA)-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and physiological responses to SBPH infestation. PMID:29089949
Sheath energy transmission in a collisional plasma with collisionless sheath
Tang, Xian-Zhu; Guo, Zehua
2015-10-16
Sheath energy transmission governs the plasma energy exhaust onto a material surface. The ion channel is dominated by convection, but the electron channel has a significant thermal conduction component, which is dominated by the Knudsen layer effect in the presence of an absorbing wall. First-principle kinetic simulations also reveal a robustly supersonic sheath entry flow. The ion sheath energy transmission and the sheath potential are accurately predicted by a sheath model of truncated bi-Maxwellian electron distribution. The electron energy transmission is further enhanced by a parallel heat flux of the perpendicular degrees of freedom.
Modeling of dynamic bipolar plasma sheaths
NASA Astrophysics Data System (ADS)
Grossmann, J. M.; Swanekamp, S. B.; Ottinger, P. F.
1991-08-01
The behavior of a one dimensional plasma sheath is described in regimes where the sheath is not in equilibrium because it carries current densities that are either time dependent, or larger than the bipolar Child-Langmuir level determined from the injected ion flux. Earlier models of dynamic bipolar sheaths assumed that ions and electrons evolve in a series of quasi-equilibria. In addition, sheath growth was described by the equation Zenoxs = (ji)-Zenouo, where xs is the velocity of the sheath edge, ji is the ion current density, nouo is the injected ion flux density, and Ze is the ion charge. In this paper, a generalization of the bipolar electron-to-ion current density ratio formula is derived to study regimes where ions are not in equilibrium. A generalization of the above sheath growth equation is also developed which is consistent with the ion continuity equation and which reveals new physics of sheath behavior associated with the emitted electrons and their evolution. Based on these findings, two new models of dynamic bipolar sheaths are developed. Larger sheath sizes and potentials than those of earlier models are found. In certain regimes, explosive sheath growth is predicted.
Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua
2018-05-01
To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.
Vladimir Kochkin; Andrew DeRenzis; Xiping Wang
2014-01-01
This study was designed to evaluate the performance of the extended wall structural panel connection in resisting combined uplift and shear forces at the roof-to-wall interface with a focus on a truss heel height of 24 in. to address the expected increases in the depth of attic insulation used in Climate Zones 5 and higher. Five full-size roof-wall assemblies were...
Temperature dependence of water diffusion pools in brain white matter.
Dhital, Bibek; Labadie, Christian; Stallmach, Frank; Möller, Harald E; Turner, Robert
2016-02-15
Water diffusion in brain tissue can now be easily investigated using magnetic resonance (MR) techniques, providing unique insights into cellular level microstructure such as axonal orientation. The diffusive motion in white matter is known to be non-Gaussian, with increasing evidence for more than one water-containing tissue compartment. In this study, freshly excised porcine brain white matter was measured using a 125-MHz MR spectrometer (3T) equipped with gradient coils providing magnetic field gradients of up to 35,000 mT/m. The sample temperature was varied between -14 and +19 °C. The hypothesis tested was that white matter contains two slowly exchanging pools of water molecules with different diffusion properties. A Stejskal-Tanner diffusion sequence with very short gradient pulses and b-factors up to 18.8 ms/μm(2) was used. The dependence on b-factor of the attenuation due to diffusion was robustly fitted by a biexponential function, with comparable volume fractions for each component. The diffusion coefficient of each component follows Arrhenius behavior, with significantly different activation energies. The measured volume fractions are consistent with the existence of three water-containing compartments, the first comprising relatively free cytoplasmic and extracellular water molecules, the second of water molecules in glial processes, and the third comprising water molecules closely associated with membranes, as for example, in the myelin sheaths and elsewhere. The activation energy of the slow diffusion pool suggests proton hopping at the surface of membranes by a Grotthuss mechanism, mediated by hydrating water molecules. Copyright © 2015 Elsevier Inc. All rights reserved.
Ghosh, Prithwi; Sen, Senjuti; Chakraborty, Joydeep; Das, Sampa
2016-03-01
Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.
Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg
2013-01-01
This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath’s piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers’ diameter regularity (core and sheath). The materials’ viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core’s specific resistance. PMID:28811400
Yilmaz, Erhan; Avci, Mustafa; Bulut, Mehmet; Kelestimur, Halidun; Karakurt, Lokman; Ozercan, Ibrahim
2010-03-01
Adhesion of the tendon, which can occur during healing of tendon repair, is negatively affected by the outcome of surgery. In this experimental study, we sought to prevent adhesion of the tendon, and determined the mechanical stiffness of repair tissue by wrapping sodium hyaluronate and carboxymethylcellulose (Seprafilm; Genzyme, Cambridge, Massachusetts) around the repaired tendon segments. The study group comprised 2 groups of 20 chickens. In group I, the right gastrocnemius tendons of the chickens were cut smoothly, and after tendon and sheath repair, the skin was sutured. In group II, the right gastrocnemius tendons of the chickens were cut, the tendons were repaired, and before skin closure, Seprafilm was wrapped around the repaired tendon segments. Plastic splints were used for holding the chickens' ankles in a neutral position, and they were allowed weight bearing for 8 weeks. In group II, anatomic space between the tendon-sheath and tendon was clear and the tendon-sheath complex was sliding easily around the repaired tendon segment, and this complex was more functional both biomechanically and histologically. Also, the Seprafilm-applied tendons (group II) were observed to be biomechanically more resistant to the tensile forces in group I. Seprafilm is an easily applied interpositional material that can be used safely to prevent adhesion during the tendon healing process. Copyright 2010, SLACK Incorporated.
Rapid and efficient detection of single chromophore molecules in aqueous solution
NASA Astrophysics Data System (ADS)
Li, Li-Qiang; Davis, Lloyd M.
1995-06-01
The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.
Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath
NASA Astrophysics Data System (ADS)
Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun
2018-01-01
There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.
NASA Astrophysics Data System (ADS)
Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo
2016-06-01
In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.
Gene Expression Profiling of the Intact Dermal Sheath Cup of Human Hair Follicles.
Niiyama, Shiro; Ishimatsu-Tsuji, Yumiko; Nakazawa, Yosuke; Yoshida, Yuzo; Soma, Tsutomu; Ideta, Ritsuro; Mukai, Hideki; Kishimoto, Jiro
2018-04-24
Cells that constitute the dermal papillae of hair follicles might be derived from the dermal sheath, the peribulbar component of which is the dermal sheath cup. The dermal sheath cup is thought to include the progenitor cells of the dermal papillae and possesses hair inductive potential; however, it has not yet been well characterized. This study investigated the gene expression profile of the intact dermal sheath cup, and identified dermal sheath cup signature genes, including extracellular matrix components and BMP-binding molecules, as well as TGF-b1 as an upstream regulator. Among these, GREM2, a member of the BMP antagonists, was found by in situ hybridization to be highly specific to the dermal sheath cup, implying that GREM2 is a key molecule contributing to maintenance of the properties of the dermal sheath cup.
Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations
NASA Astrophysics Data System (ADS)
Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.
2017-11-01
Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.
Are two plasma equilibrium states possible when the emission coefficient exceeds unity?
NASA Astrophysics Data System (ADS)
Campanell, M. D.; Umansky, M. V.
2017-05-01
Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a "space-charge limited" (SCL) sheath and an "inverse" sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different ways when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's "dip" forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.
Are two plasma equilibrium states possible when the emission coefficient exceeds unity?
Campanell, Michael D.; Umansky, M. V.
2017-02-28
Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a “space-charge limited” (SCL) sheath and an “inverse” sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different waysmore » when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's “dip” forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Finally, our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Houbao, E-mail: caohoubao66@163.com; Du, Pingfan; Song, Lixin
2013-11-15
Graphical abstract: - Highlights: • The core–sheath TiO{sub 2}/SiO{sub 2} nanofibers were fabricated by co-electrospinning technique. • The catalytic property of nanofibers with different sheath thickness was studied. • The potential methods of improving catalytic efficiency are suggested. - Abstract: In this paper, core/sheath TiO{sub 2}/SiO{sub 2} nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO{sub 2}/SiO{sub 2} nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO{submore » 2} core and amorphous SiO{sub 2} sheath. The influences of SiO{sub 2} sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO{sub 2} nanofibers, the core/sheath TiO{sub 2}/SiO{sub 2} nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO{sub 2}/SiO{sub 2} nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance.« less
NASA Astrophysics Data System (ADS)
Jiang, Hao; Stewart, Derek A.
2016-04-01
Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.
Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy
Akin, Danny E.; Amos, Henry E.
1975-01-01
The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017
New Side-Looking Rogowski Coil Sensor for Measuring Large-Magnitude Fast Impulse Currents
NASA Astrophysics Data System (ADS)
Metwally, I. A.
2015-12-01
This paper presents a new design of a side-looking "flat spiral" self-integrating Rogowski coil that is wound by twin coaxial cable with individual sheath. The coil is tested with different impulse current waveforms up to 7 kA peak value to improve its performance. The coil design is optimized to achieve bandwidth and sensitivity up to 7.854 MHz and 3.623 V/kA, respectively. The coil is calibrated versus two commercial impulse-current measurement devices at different coil-to-wire separations, coil inclination angles, and impulse current waveforms. Distortion of the coil output voltage waveform is examined by using the lumped-element model to optimize the connections of the four cable winding sheaths and the coil termination resistance. Finally, the coil frequency response is investigated to optimize the coil design parameters and achieve the desired bandwidth (large low-frequency time constant), high rate of rise, no overshoot, very small droop, high rate of fall, and no backswing.
Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations
NASA Astrophysics Data System (ADS)
Jenkins, T. G.; Smithe, D. N.
2015-02-01
The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.
Ford, W.K.; Wyatt, M.; Plail, S.
1961-08-01
An arrangement is described for sealing a solid body of nuclear fuel, such as a uranium metal rod, into a closelyfitting thin metallic sheath with an internal atmosphere of inert gas. The sheathing process consists of subjecting the sheath, loaded with the nuclear fuel body, to the sequential operations of evacuation, gas-filling, drawing (to entrap inert gas and secure close contact between sheath and body), and sealing. (AEC)
Plasma Theory and Simulation Group Annual Progress Report for 1991
1991-12-31
beam formation analitically : i) the resistance of the (low-density) to the final, high-density cylindrical wall can be approximated by the regime...model is developed that predicts the ion angular distribution function in a highly collisional sheath. In a previous study2, the normal ion velocity...gets a linear dispersion relation of the form W2 = k 2 (T + Ti/m. + m,), (40) which predicts ion acoustic waves. These waves have the highest frequency
Engineered Herpes Simplex Viruses for the Treatment of Malignant Peripheral Nerve Sheath Tumors
2015-11-01
lines). This is an entry receptor usually limited to lymphoid cells has not been previously identified in neuroectodermal tissue. Year 3: As a... innate and adaptive immune 327 response. However, resistance is common in vitro and therefore, to the extent that tumor cell lines 328 maintain the...Handgretinger R, et al. Innate immune 461 defense defines susceptibility of sarcoma cells to measles vaccine virus-based oncolysis. J Virol. 462 2013;87
Nafee, N; Forier, K; Braeckmans, K; Schneider, M
2018-03-01
Nanocarrier-mediated transmucosal drug delivery based on conventional mucoadhesive, muco-inert or mucus-penetrating nanoparticles (NPs) is a growing field especially in challenging diseases like cystic fibrosis (CF). Efficacy of such systems dictates profound investigation of particle-mucus interaction and factors governing the whole process. Although variable techniques studying particle diffusion in mucus have been introduced, standardized procedures are lacking. The study comprised different methods based on micro- and macro-displacement as well as colloidal stability and turbidimetric experiments. Artificial sputum medium (ASM), CF sputum and mucus-secreting cell line (Calu-3 air interface culture, AIC) were applied. Solid lipid nanoparticles (SLNs) coated with variable hydrophilic sheath (poloxamer, Tween 80 or PVA) represented the nanocarriers under investigation. Both micro-displacement studies based on single particle tracking and macro-displacement experiments based on 3D-time laps confocal imaging revealed faster diffusion of poloxamer- > Tween- > PVA-coated SLNs. Compared to ASM, CF sputum showed not only lower diffusion rates but also remarkable discrepancies in particle-mucus diffusion rate due to sputum heterogenicity. Meanwhile, in case of Calu-3 AIC, thickness of the mucosal layer as well as density of mucus network were key determinants in the diffusion process. The points emphasized in this study highlight the road towards in vivo relevant particle-mucus interaction research. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel
NASA Astrophysics Data System (ADS)
Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik
2017-11-01
We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.
Superthermal (0.5- 100 keV) Electrons near the ICME-driven shocks
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, L.; Li, G.; Tao, J.; He, J.; Tu, C.
2016-12-01
We present a survey of the 0.5 - 100 keV electrons associated with ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 66 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, shock velocity Vs, shock compression ratio r and magnetosonic Mach number Ms. We average the electron data in the 1-hour interval immediately after the shock front to obtain the sheath electron fluxes and in the 4-hour quiet-time interval before the shock to obtain the pre-event electron fluxes. Then we subtract the pre-event electron fluxes from the sheath electron fluxes to obtain the enhanced electron fluxes at the shock. We find that the enhanced electron fluxes are positively correlated with Vs and Ms, and generally fit well to a double power-law spectrum, J E-β. At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, negatively correlated with r and Ms. At 2 - 100 keV, the fitted index β2 is smaller than β1, with values ( 1.9 to 3.4) similar to the spectral indexes of quiet-time superhalo electrons in the solar wind. β2 shows no obvious correlation with r and Ms. Neither of β1 or β2 is in agreement with the diffusive shock theoretical predication. These results suggest that electron acceleration by interplanetary shocks may be more significant at a few keVs and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons. However, a revision of the diffusive shock acceleration theory would be needed for the electron acceleration.
Functional Analysis of Corn Husk Photosynthesis[W][OA
Pengelly, Jasper J.L.; Kwasny, Scott; Bala, Soumi; Evans, John R.; Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Furbank, Robert T.; von Caemmerer, Susanne
2011-01-01
The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C3 photosynthetic pathway, in contrast to its leaves, which use the C4 photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO2 compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO2 assimilation rate in the husk was less than that in the leaves and did not saturate at high CO2, indicating CO2 diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO2 compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C4-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C4 photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained. PMID:21511990
NASA Astrophysics Data System (ADS)
Joshi, Manish; Sapra, B. K.; Khan, Arshad; Tripathi, S. N.; Shamjad, P. M.; Gupta, Tarun; Mayya, Y. S.
2012-12-01
Regional studies focusing on the role of atmospheric nanoparticles in climate change have gained impetus in the last decade. Several multi-institutional studies involving measurement of nanoparticles with several kinds of instruments are on the rise. It is important to harmonize these measurements as the instruments may work on different techniques or principles and are developed by different manufacturers. Scanning mobility particle sizers (SMPS) are often used to measure size distribution of nanoparticles in the airborne phase. Two such commercially available instruments namely, GRIMM and TSI-SMPS have been compared for ambient and laboratory generated conditions. A stand-alone condensation particle counter (CPC) of TSI make was used as a reference for particle concentration measurements. The consistency of the results in terms of mean size and geometric standard deviation was seen to be excellent for both the SMPSs, with GRIMM always showing slightly (approximately 10 %) lower mean size. The integrated number concentration from GRIMM-SMPS was seen to be closer to stand-alone reference CPC compared to TSI-SMPS, for an ambient overnight comparison. However, a concentration-dependent response, i.e. the variations between the two instruments increasing with the concentration, was observed and possible reasons for this have been suggested. A separate experiment was performed for studying the modifying effect of diffusion dryer and sheath air dryer on the measured aerosol size spectra. A significant hygroscopic growth was noted when diffusion dryer was attached to one of the SMPS. The introduction of sheath air dryer in GRIMM-SMPS produced a significant shift towards lower mean size. These results have been compared and discussed with the recent inter-comparison results to strengthen and harmonize the measurement protocols.
Tendon sheath fibroma in the thigh.
Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D
2012-04-01
Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men. Copyright 2012, SLACK Incorporated.
Hatton, Sean N; Panizzon, Matthew S; Vuoksimaa, Eero; Hagler, Donald J; Fennema-Notestine, Christine; Rinker, Daniel; Eyler, Lisa T; Franz, Carol E; Lyons, Michael J; Neale, Michael C; Tsuang, Ming T; Dale, Anders M; Kremen, William S
2018-05-01
Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD. © 2018 Wiley Periodicals, Inc.
Nerve sheath myxoma: report of a rare case.
Bhat, Amoolya; Narasimha, Apaparna; C, Vijaya; Vk, Sundeep
2015-04-01
Nerve sheath myxoma defined by Harkin and Reed is an uncommon benign neoplasm with nerve sheath like features. It has several cytological and histological differential diagnoses. One such lesion is neurothekeoma, which can be differentiated using immunohistochemistry. In most of the previous reports nerve sheath myxoma and neurothekeoma were considered synonymous and were often confused for one another. This case report separates the two using immunohistochemistry. Also, the cytological features of nerve sheath myxoma are not well documented in the past. This case report attempts to display the cyto-morphology of nerve sheath myxoma. We report a rare case of nerve sheath myxoma diagnosed on cytological features confirmed by histopathology and immunohistochemistry in a 32-year-old lady who presented with an asymptomatic nodule over the left cervical area and discuss its cyto-histological mimics.
Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution
NASA Astrophysics Data System (ADS)
Borgohain, D. R.; Saharia, K.
2018-01-01
The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity ( q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density ( B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.
Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu; ...
2017-09-01
A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu
A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less
Comprehensive Study of Plasma-Wall Sheath Transport Phenomena
2012-09-10
environment, a Langmuir probe and a Retarding Potential Analyzer (RPA). The Langmuir probe could be considered the seminal plasma diagnostic, and a large...plasma-sheath interface. Electric field is normalized by Te/LD (LD is the Debye length) and velocity is normalized by the Bohm speed. Figure 14...studying the interaction of the near-wall plasma sheath with a magnetic field , and modeled the plasma sheath of the GT thick-sheath (~10mm) plasma
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.; Myra, J. R.
2013-10-01
RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries. The sheath plays an important role in determining the efficiency of ICRF heating, the impurity influxes from the edge plasma, and the plasma-facing component damage. An important parameter in sheath theory is the angle θ between the equilibrium B field and the wall. Recent work with 1D and 2D sheath models has shown that the rapid variation of θ around a typical limiter can lead to enhanced sheath potentials and localized power deposition (hot spots) when the B field is near glancing incidence. The physics model used to obtain these results does not include some glancing-angle effects, e.g. possible modification of the angular dependence of the Child-Langmuir law and the role of the magnetic pre-sheath. Here, we report on calculations which explore these effects, with the goal of improving the fidelity of the rf sheath BC used in analytical and numerical calculations. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.
The magnetized sheath of a dusty plasma with grains size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin
2015-05-15
The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.
1987-01-01
Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.
Yeste, Marc; Barrera, Xavier; Coll, David; Bonet, Sergi
2011-07-01
The present study was undertaken to shed light on the relationship between boar sperm quality and dietary supplementation with omega-3 polyunsaturated fatty acids, which has been reported inconsistently in the literature. With this aim, such effects were evaluated and compared among three different porcine breeds: Duroc, Large-White, and Pietrain. Animals were randomly separated into two groups and fed either with a control diet or with a diet supplemented with omega-3. Sperm quality of these boar (ejaculate volume, sperm concentration, sperm viability, acrosome and mitochondrial sheath integrity, sperm motility, sperm morphology, and osmotic resistance of spermatozoa) was assessed every week for a 26-week period. Supplementing boar's diet with omega-3 did not affect ejaculate volume, sperm concentration, sperm motility, sperm viability, and acrosome and mitochondrial sheath integrity. In contrast, supplemented diet positively affected both sperm morphology in Large-White and Pietrain breeds and the osmotic resistance of Pietrain spermatozoa. No effects were seen for the same sperm parameters in Duroc breed. These breed-differences in boar fed with the supplemented diet could explain the contradictions in literature and might be related with differences in the composition of plasma membrane among breeds reported by other authors. Because no harmful effects were observed in the three evaluated breeds, but positive effects in Large-White and Pietrain boar, we can conclude that omega-3 fatty acids may be added to boar's diet at the levels used in this study to improve their sperm quality. More research is, however, needed to determine how these fatty acids differently affect the morphology and the osmotic resistance of the spermatozoa in these breeds. Copyright © 2011 Elsevier Inc. All rights reserved.
Measurement of plasma sheath overlap above a trench
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Steinberger, Thomas E.
2017-06-01
The plasma sheath above a rectangular trench has been experimentally characterized as the trench width is varied in a radio frequency (rf) plasma discharge for two different rf powers giving two different sets of plasma parameters. Measurements were made using the positions and all six normal mode frequencies of two dust particles floating just inside the sheath edge above the center of the trench. We find that sheath overlap occurs when the trench width ≲ 3 s 0 for a trench depth ≈0.7s0, where s0 is the planar sheath width. The electric field gradient inside the sheath edge increases with rf power.
An analytical investigation: Effect of solar wind on lunar photoelectron sheath
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Misra, Shikha
2018-02-01
The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.
Schricker, Amir A; Feld, Gregory K; Tsimikas, Sotirios
2015-11-15
Transseptal introducer sheaths are being used with increasing frequency for left-sided arrhythmia ablations and structural heart disease interventions. Sheath tip detachment and embolization is an uncommon but known complication, and several sheaths have been recalled due to such complications. We report a unique case of a fractured transseptal sheath tip that embolized to a branch of the right pulmonary artery in a patient who had undergone ablation of a left-sided atypical atrial flutter. During final removal of one of the two long 8.5-French SL1 transseptal sheaths used routinely as part of the ablation, the radiopaque tip of the sheath fractured and first embolized to the right atrium and subsequently to a secondary right pulmonary artery branch. Using techniques derived from percutaneous interventional approaches, including a multipurpose catheter, coronary guidewire, and monorail angioplasty balloon, the sheath tip was successfully wired through its inner lumen, trapped from the inside with the balloon, and removed from the body via a large femoral vein sheath, without complications. The approach detailed in this case may guide future cases and circumvent urgent surgical intervention. © 2015 Wiley Periodicals, Inc.
2014-01-01
Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, Steinar J.
1982-01-01
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.
Nerve Sheath Myxoma: Report of A Rare Case
Bhat, Amoolya; C, Vijaya; VK, Sundeep
2015-01-01
Nerve sheath myxoma defined by Harkin and Reed is an uncommon benign neoplasm with nerve sheath like features. It has several cytological and histological differential diagnoses. One such lesion is neurothekeoma, which can be differentiated using immunohistochemistry. In most of the previous reports nerve sheath myxoma and neurothekeoma were considered synonymous and were often confused for one another. This case report separates the two using immunohistochemistry. Also, the cytological features of nerve sheath myxoma are not well documented in the past. This case report attempts to display the cyto-morphology of nerve sheath myxoma. We report a rare case of nerve sheath myxoma diagnosed on cytological features confirmed by histopathology and immunohistochemistry in a 32-year-old lady who presented with an asymptomatic nodule over the left cervical area and discuss its cyto-histological mimics. PMID:26023558
Lung biopsy with a 12-gauge cutting needle is possible using an insertion sheath in animal models.
Izumi, Yotaro; Oyama, Takahiko; Kawamura, Masafumi; Kobayashi, Koichi
2004-11-01
The volume of lung tumor core biopsy specimens has been restricted because of concerns for complications such as bleeding and air leakage. In this animal experiment, we investigated the possibility of larger bore biopsies through the peripheral lung parenchyma. Lung biopsy was done in male domestic pigs (n= 4) under thoracotomy. A single biopsy using a 12-gauge cutting biopsy needle was done with sheath (sheath group, eight biopsies) or without sheath (nonsheath group, eight biopsies). After biopsy, bleeding time, bleeding amount, and positive airway pressure causing air leakage from the insertion site was compared between groups (Mann-Whitney U test). To observe long-term effects in closed-chest animals, percutaneous lung biopsy with the use of a sheath was carried out percutaneously in male beagles (n = 9). The animals were observed for 3 weeks. In the pigs (sheath group) after biopsy, bleeding flowed through the sheath and formed a sheath-molded fibrin plug that secured the insertion site. Bleeding time and amount decreased significantly in the sheath group compared with the nonsheath group (115 +/- 108 versus 295 +/- 150 seconds, P = .018, and 37 +/- 41 versus 98 +/- 72 grams, P= .027, respectively). Air leakage pressure was significantly higher in the sheath group compared with the nonsheath group (37 +/- 6 versus 18 +/- 5 cmH2O, P = .001). In the beagles, no complications such as pneumothorax, hemothorax, or airway bleeding was apparent. Although we have not evaluated lung tumor biopsy per se, lung tumor biopsy with a 12-gauge cutting needle may be possible with a use of a sheath.
46 CFR 111.05-7 - Armored and metallic sheathed cable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...
46 CFR 111.05-7 - Armored and metallic sheathed cable.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...
46 CFR 111.05-7 - Armored and metallic sheathed cable.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...
46 CFR 111.05-7 - Armored and metallic sheathed cable.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...
46 CFR 111.05-7 - Armored and metallic sheathed cable.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...
Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D
2001-10-01
The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.
Transient sheath overvoltages in armored power cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, B.; Sletbak, J.
1996-07-01
This paper is concerned with methods of limiting the build-up of transient voltages between sheath and armor in long armored power cables. Calculations by a frequency dependent cable model demonstrate that this voltage can be efficiently limited to an acceptable level by introducing sheath-armor bondings at regular intervals, or by using a semiconductive sheath-armor interlayer. The paper investigates the required minimum length between bondings, as well as the required conductivity of the sheath-armor interlayer if the use of bondings is to be avoided.
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, S.J.
1982-06-15
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.
NASA Astrophysics Data System (ADS)
Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto
2018-02-01
The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity ( D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature ( T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates ( T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates ( T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.
What is the size of a floating sheath? An answer
NASA Astrophysics Data System (ADS)
Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter
2016-09-01
The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.
Model and particle-in-cell simulation of ion energy distribution in collisionless sheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Zhuwen, E-mail: zzwwdxy@gznc.edu.cn; Key Laboratory of Photoelectron Materials Design and Simulation in Guizhou Province, Guiyang 550018; Scientific Research Innovation Team in Plasma and Functional Thin Film Materials in Guizhou Province, Guiyang 550018
2015-06-15
In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, themore » IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.« less
Crookston, R. Kent; Moss, Dale N.
1970-01-01
Low CO2 compensation points have been found to be associated with several unusual characteristics related to photosynthesis. One such characteristic is a prominent, chlorenchymatous vascular bundle sheath in the leaves. It has been suggested that the presence of this sheath in dicotyledons can serve as a means of detecting low CO2-compensating species. We collected 88 dicotyledon species from 22 families reported to have chlorenchymatous sheaths. Of the 88, only three, Tribulus terrestris, L., Boerhaavia paniculata, L. C. Rich, and Trianthema portulacastrum L., had low CO2 compensation points. Cross sections of the leaves of the other species revealed that they did have chlorenchymatous vascular bundle sheaths. However, these sheath cells contained chloroplasts which were not specialized for starch formation as were the bundle sheath chloroplasts of the low CO2-compensating species. Images PMID:16657506
Kizerwetter-Swida, M; Chrobak, D; Rzewuska, M; Binek, M
2009-01-01
We have evaluated 102 Staphylococcus intermedius isolates of canine origin for susceptibility to antimicrobial primary agents, i.e. penicillin, amoxicillin, amoxicillin with clavulanic acid, cefuroxime, trimethoprim/sulfonamides, neomycin, streptomycin, gentamicin, norfloxacin, tetracycline, vancomycin, erythromycin and secondary agents, i.e., chloramphenicol, ciprofloxacin, lincomycin, teicoplanin, rifampicin, imipenem, mupirocin. Antimicrobial sensitivity was examined using the disk diffusion method and performed according to NCCLS quidelines. Methicillin resistance was detected using the disk diffusion method with oxacillin, and the occurrence of mecA gene was detected by PCR. Resistance to streptomycin, penicillin, amoxicillin, neomycin, followed by tetracycline was predominant. From 14 mecA-positive strains, 12 were multidrug-resitant, and the remaining two showed atypical susceptibility. One strain resistant to oxacillin in the disc diffusion method was mecA-negative, suggesting a different mechanism of resistance. Our results indicate that the emergence of S. intermedius resistance to methicillin may be underestimated. In case of clinical multidrug-resitant S. intermedius isolates, resistance to methicillin should be considered.
Ion Dynamics Model for Collisionless Radio Frequency Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T.R.; Meyyappan, M.
2000-01-01
Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.
NASA Astrophysics Data System (ADS)
Jalilpour, P.; Foroutan, G.
2018-03-01
Multi-fluid numerical simulations are utilized to explore the effects of secondary emission by nanosize dust particles on the structure of a dusty plasma sheath in the presence of a beam of fast, mono-energetic electrons. It was found that the sheath dynamics depends strongly on the magnitude of the secondary emission yield δm. For δm smaller than unity, the secondary emission is weak, and the sheath width always increases with increasing beam flux, such that it experiences a sharp transition from the regime of thin sheath to the regime of thick sheath, at a given beam flux. For δm larger than unity, the secondary emission dominates the dust dynamics, and the sheath width always decreases with increasing beam flux. The sheath thickness decreases very quickly with the secondary emission yield, but increases with Em, the characteristic energy corresponding to the maximum secondary emission. As δm is increased, the absolute dust charge and hence the accelerating ion drag force are reduced. Then, the dust is decelerated and as a result the dust number density is enhanced. Increasing the dust radius and/or the dust number density leads to an enhanced secondary emission effect and thus to a narrower sheath width.
Schulz, H N; Jorgensen, B B; Fossing, H A; Ramsing, N B
1996-06-01
The filamentous sulfur bacteria Thioploca spp. produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm down into the sediment. The structure of the Thioploca communities off the Bay of Concepcion was investigated with respect to biomass, species distribution, and three-dimensional orientation of the sheaths. Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone. The maximum wet weight of sheaths, 800 g m(sup-2), was found at a depth of 90 m. The bacterial filaments within the sheaths contributed about 10% of this weight. The highest density of filaments was found within the uppermost 1 cm of the mat. On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp. from mixed populations containing Beggiatoa spp. Three distinct size classes of Thioploca spp. were found, two of which have been described previously as Thioploca araucae and Thioploca chileae. Many Thioploca filaments did not possess a visible sheath, and about 20% of the sheaths contained more than one Thioploca species. The three-dimensional sheath structure showed that Thioploca filaments can move from the surface and deep into the sediment.
Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe
NASA Astrophysics Data System (ADS)
Wanwan, Li; Zechun, Cao; Bin, Zhang; Feng, Zhan; Hongtao, Liu; Wenbin, Sang; Jiahua, Min; Kang, Sun
2006-06-01
In order to meet the requirements for the device design of radiation detectors, CdZnTe (or Cd 1-xZn xTe) crystals grown by Vertical Bridgman Method often need subsequent annealing to increase their resistivity. The nature of this treatment is a diffusion process. Thus, it is meaningful to relate the change of resistivity to the diffusion parameters. A model correlating resistivity and conduction type of CdZnTe with the main diffusion parameter—diffusion coefficient—is put forward in this paper. Combining the model with the analysis of our experimental data, DCd=1.464×10 -10, 1.085×10 -11 and 4.167×10 -13 cm 2/s are the values of Cd self-diffusion coefficient in Cd 0.9Zn 0.1Te at 1073, 973 and 873 K, respectively. The data coincide closely with the Cd self-diffusion coefficient in CdTe provided by different authors [E.D. Jones, N.M. Stewart, Self-diffusion of cadmium in cadmium telluride, J. Crystal Growth 84 (1987) 289-294; P.M. Borsenberger, D.A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277; R.C. Whelan, D. Shaw, in: D.G. Thomas (Ed.), II -VI Semiconductor Compounds, Benjamin, New York, 1967, p. 451]. With the data, the effects of annealing time on the change of resistivity and conduction type for Cd 0.9Zn 0.1Te wafers, which are annealed in saturated Cd vapor at 1073, 973 and 873 K, were simulated, and good consistency was found. This work suggests an alternative way to obtain the diffusion coefficient in semiconductor materials and also enables ones to analyze the diffusion process quantitatively and predict the annealing results.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Moore, T. J.
1977-01-01
A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
A Cytochemical Study of Extracellular Sheaths Associated with Rigidoporus lignosus during Wood Decay
Nicole, M.; Chamberland, H.; Rioux, D.; Lecours, N.; Rio, B.; Geiger, J. P.; Ouellette, G. B.
1993-01-01
An ultrastructural and cytochemical investigation of the development of Rigidoporus lignosus, a white-rot fungus inoculated into wood blocks, was carried out to gain better insight into the structure and role of the extracellular sheaths produced by this fungus during wood degradation. Fungal sheaths had a dense or loose fibrillar appearance and were differentiated from the fungal cell wall early after wood inoculation. Close association between extracellular fibrils and wood cell walls was observed at both early and advanced stages of wood alteration. Fungal sheaths were often seen deep in host cell walls, sometimes enclosing residual wood fragments. Specific gold probes were used to investigate the chemical nature of R. lignosus sheaths. While labeling of chitin, pectin, β-1,4- and β-1,3-glucans, β-glucosides, galactosamine, mannose, sialic acid, RNA, fucose, and fimbrial proteins over fungal sheaths did not succeed, galactose residues and laccase (a fungal phenoloxidase) were found to be present. The positive reaction of sheaths with the PATAg test indicates that polysaccharides such as β-1,6-glucans are important components. Our data suggest that extracellular sheaths produced by R. lignosus during host cell colonization play an important role in wood degradation. Transportation of lignin-degrading enzymes by extracellular fibrils indicates that alteration of plant polymers may occur within fungal sheaths. It is also proposed that R. lignosus sheaths may be involved in recognition mechanisms in fungal cell-wood surface interactions. Images PMID:16349017
Colbeck, E.W.
1959-02-01
A method is deseribed for forming a conveniently handled corrosion resistant U articlc comprising pouring molten U into an open-ended corrosion resistant metal eontainer such as Cu and its alloys, Al, or austenitic Ni stainless steel. The exposed surface of the cast U is covered with a metallic packing material such as a brazing flux consisting of Al-Si alloy. The container is sealed iii contact with substantially the entire exposed surface of the packing material. The article is then worked mechanically to reduce the cross section. l3651 A thorium--carbon alloy containing 0.1 to 0.5% by weight carbon, whieh is more resistant to water corrosion than pure thorium metal is presented. The alloy is prepared by fusing thorium metal with the desired amount of carbon at a temperature of about 1850 C. It is found that the carbon is present in the alloy as thorium monocarbide
NASA Technical Reports Server (NTRS)
Premont, E. J.; Stubenrauch, K. R.
1973-01-01
The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.
Lopez, A M; Sala-Blanch, X; Castillo, R; Hadzic, A
2014-01-01
The recommendations for the level of injection and ideal placement of the needle tip required for successful ultrasound-guided sciatic popliteal block vary among authors. A hypothesis was made that, when the local anesthetic is injected at the division of the sciatic nerve within the common connective tissue sheath, the block has a higher success rate than an injection outside the sheath. Thirty-four patients scheduled for hallux valgus repair surgery were randomized to receive either a sub-sheath block (n=16) or a peri-sheath block (n=18) at the level of the division of the sciatic nerve at the popliteal fossa. For the sub-sheath block, the needle was advanced out of plane until the tip was positioned between the tibial and peroneal nerves, and local anesthetic was then injected without moving the needle. For the peri-sheath block, the needle was advanced out of plane both sides of the sciatic nerve, to surround the sheath. Mepivacaine 1.5% and levobupivacaine 0.5% 30mL were used in both groups. The progression of motor and sensory block was assessed at 5min intervals. Duration of block was recorded. Adequate surgical block was achieved in all patients in the subsheath group (100%) compared to 12 patients (67%) in the peri-sheath group at 30min. Sensory block was achieved faster in the subsheath than peri-sheath (9.1±7.4min vs. 19.0±4.0; p<.001). Our study suggests that for successful sciatic popliteal block in less than 30min, local anesthetic should be injected within the sheath. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.
NASA Astrophysics Data System (ADS)
Riemann, Karl-Ulrich
2012-10-01
In typical gas discharges a quasineutral plasma is shielded from a negativ absorbing wall by a thin positive sheath that is nearly planar and collision-free. The subdivision of ``plasma'' and ``sheath'' was introduced by Langmuir and is based on a small ratio of the electron Debye lenghth λD to the dominant competing characteristic plasma length l. Depending on the special conditions, l may represent, e.g., the plasma extension, the ionization length, the ion mean free path, the ion gyro radius, or a geometric length. Strictly speaking, this subdivion is possible only in the asymptotic limit λD/l->0. The asymptotic analysis results in singularities at the ``sheath edge'' closely related to the ``Bohm criterion.'' Due to these singularities a direct smooth matching of the separate plasma and sheath soltions is not possible. To obtain a consistent smooth transition, the singular sheath edge must be bridged by an additinal narrow ``intermediate'' model zone accounting both for plasma processes (e.g., collisions) and for the first build up of space charge. Due to this complexity and to different interpretations of the ``classical'' papers by Langmuir and Bohm, the asymptotic plasma-sheath concept and the definition of the sheath edge were questioned and resulted in controversies during the last two decades. We discuss attempts to re-define the sheath edge, to account for finite values of λD/l in the Bohm criterion, and demonstrate the consistent matching of plasma and sheath. The investigations of the plasma-sheath transition discussed so far are based on a simplified fluid analysis that cannot account for the essential inhomogeneity of the boundary layer and for the dominant role of slow ions in space charge formation. Therefore we give special emphasis to the kinetic theory of the plasma-sheath transition. Unfortunately this approach results in an additional mathematical difficulty caused by ions with zero velocity. We discuss attempts to avoid this singularity by a modification of the kinetic Bohm criterion and investigate the influence of slow ions on the structure of the plasma-sheath transition. The most important conclusions are illustrated with selected examples.
Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation.
Huang, Hai-Jian; Liu, Cheng-Wen; Xu, Hai-Jun; Bao, Yan-Yuan; Zhang, Chuan-Xi
2017-04-01
The rice brown planthopper (BPH), Nilaparvata lugens, can rapidly adapt to new resistant rice varieties within several generations, rendering its management burdensome. However, the molecular mechanism underlying its adaptability remains unclear. In this study, we investigated the potential role of mucin-like protein (NlMul) in N. lugens virulence and adaptation to host resistance. NlMul is an important glycoprotein that constitutes both gelling and watery saliva, and specifically expressed in the salivary glands at all developmental stages except the egg period. Knocking down the expression of NlMul resulted in the secretion of short and single-branched salivary sheaths. NlMul might help BPH deal with plant resistance, and altered gene expression was observed when BPHs were transferred from a susceptible rice variety to a resistant one. The NlMul-deficient BPHs showed disordered developmental duration and a portion of these insects reared on resistant rice exhibited lethal effects. Our results uncover a saliva-mediated interaction between insect and host plant, and provide useful information in rice breeding and planthopper management. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
For Pentatomid stink bug agricultural pests, the number of salivary sheaths and sheath flanges—the portion of the sheath visible on the exterior surface of a food item—are good predictors of the loss of crop yield or quality from stink bug feeding. As the often assumed relationship between salivary ...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
Gold ink coating of thermocouple sheaths
Ruhl, H. Kenneth
1992-01-01
A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.
Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.
1984-04-10
A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn
Ion sheaths formed in the up- and downstream sides of a negatively biased metal plate/mesh in an ion-beam-background-plasma system were experimentally investigated in a double plasma device. Measured potential profiles near the plate exhibit asymmetric structure, showing thicker sheath in the downstream side. The presence of the ion beam causes the shrink of the sheaths on both sides. The sheath thickness decreases with the increase of beam energy and density. Furthermore, the sheaths near the mesh are substantially thinner than that near the plate because of the partial transmission of the mesh to the ions. In addition, the increase ofmore » neutral gas pressure leads to the reduction of the beam energy and density, resulting in the increase of the sheath thickness.« less
Goldspink, Lauren K; Mollinger, Joanne L; Barnes, Tamsin S; Groves, Mitchell; Mahony, Timothy J; Gibson, Justine S
2015-02-01
This study investigated antimicrobial resistance traits, clonal relationships and epidemiology of Histophilus somni isolated from clinically affected cattle in Queensland and New South Wales, Australia. Isolates (n = 53) were subjected to antimicrobial susceptibility testing against six antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin and tulathromycin) using disc diffusion and minimum inhibitory concentration (MIC) assays. Clonal relationships were assessed using repetitive sequence PCR and descriptive epidemiological analysis was performed. The H. somni isolates appeared to be geographically clonal, with 27/53 (47%) isolates grouping in one cluster from one Australian state. On the basis of disc diffusion, 34/53 (64%) isolates were susceptible to all antimicrobial agents tested; there was intermediate susceptibility to tulathromycin in 12 isolates, tilmicosin in seven isolates and resistance to tilmicosin in one isolate. Using MIC, all but one isolate was susceptible to all antimicrobial agents tested; the non-susceptible isolate was resistant to tetracycline, but this MIC result could not be compared to disc diffusion, since there are no interpretative guidelines for disc diffusion for H. somni against tetracycline. In this study, there was little evidence of antimicrobial resistance in H. somni isolates from Australian cattle. Disc diffusion susceptibility testing results were comparable to MIC results for most antimicrobial agents tested; however, results for isolates with intermediate susceptibility or resistance to tilmicosin and tulathromycin on disc diffusion should be interpreted with caution in the absence of MIC results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Corrosion resistant coatings suitable for elevated temperature application
Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX
2012-07-31
The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.
Demyelinating evidences in CMS rat model of depression: a DTI study at 7 T.
Hemanth Kumar, B S; Mishra, S K; Trivedi, R; Singh, S; Rana, P; Khushu, S
2014-09-05
Depression is among the most debilitating diseases worldwide. Long-term exposure to stressors plays a major role in development of human depression. Chronic mild stress (CMS) seems to be a valid animal model for depression. Diffusion tensor imaging (DTI) is capable of inferring microstructural abnormalities of the white matter and has shown to serve as non-invasive marker of specific pathology. We developed a CMS rat model of depression and validated with behavioral experiments. We measured the diffusion indices (mean diffusivity (MD), fractional anisotropy (FA), axial (λ∥) and radial (λ⊥) diffusivity) to investigate the changes in CMS rat brain during depression onset. Diffusion indices have shown to be useful to discriminate myelin damage from axon loss. DTI was performed in both control and CMS rats (n=10, in each group) and maps of FA, MD, λ∥ and λ⊥ diffusivity values were generated using in-house built software. The diffusion indices were calculated by region of interest (ROI) analysis in different brain regions like the frontal cortex, hippocampus, hypothalamus, cingulum, thalamus, caudate putamen, corpus callosum, cerebral peduncle and sensory motor cortex. The results showed signs of demyelination, reflected by increased MD, decreased FA and increased λ⊥. The results also suggest a possible role of edema or inflammation concerning the brain morphology in CMS rats. The overall finding using DTI suggests there might be a major role of loss of myelin sheath, which leads to disrupted connectivity between the limbic area and the prefrontal cortex during the onset of depression. Our findings indicate that interpretation of these indices may provide crucial information about the type and severity of mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe
Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.
1996-10-22
An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.
Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe
Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.
1996-01-01
An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.
Development of braided rope seals for hypersonic engine applications: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank
1992-01-01
A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.
Sheaths: A Comparison of Magnetospheric, ICME, and Heliospheric Sheaths
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Richardson, J. D.; Liu, W.
2007-01-01
When a supersonic flow encounters an obstacles, shocks form to divert the flow around the obstacle. The region between the shock and the obstacle is the sheath, where the supersonic flow is compressed, heated, decelerated, and deflected. Supersonic flows, obstacles, and thus sheaths are observed on many scales throughout the Universe. We compare three examples seen in the heliosphere, illustrating the interaction of the solar wind with obstacles of three very different scales lengths. Magnetosheaths form behind planetary bow shocks on scales ranging from tens to 100 planetary radii. ICME sheath form behind shocks driven by solar disturbances on scale lengths of a few to tens of AU. The heliosheath forms behind the termination shock due to the obstacle presented by the interstellar medium on scale lengths of tens to a hundred AU. Despite this range in scales some common features have been observed. Magnetic holes, possibly due to mirror mode waves, have been observed in all three of these sheaths. Plasma depletion layers are observed in planetary and ICME sheaths. Other features observed in some sheaths are wave activity (ion cyclotron, plasma), energetic particles, transmission of Alfven waves/shocks, tangential discontinuities turbulence behind quasi-parallel shocks, standing slow mode waves, and reconnection on the obstacle boundary. We compare these sheath regions, discussing similarities and differences and how these may relate to the scale lengths of these regions.
Peiffer, Michelle; Felton, Gary W.
2014-01-01
We examined the salivary gland structure of the brown marmorated stink bug (Pentatomidae: Halyomorpha halys) and developed methods for independent collection of watery saliva and sheath saliva. This stink bug has become a serious invasive pest of agriculture in the United States and its saliva is largely responsible for the damage it causes. We determined by protein gel analysis and shotgun proteomics that the suite of proteins comprising the sheath and watery saliva are very distinct. Our results indicate that a substantial amount of sheath proteins are derived from tomato when stink bugs feed on tomato fruit. Consequently, the sheath saliva is comprised of both insect and plant-derived proteins. Both sheath and watery saliva possessed amylase activities, but polyphenol oxidase and glucose oxidase activities were not detected in either saliva. Peroxidase activity was only detected in salivary sheaths, but only when stink bugs fed on tomato. Proteomic analysis indicated that the peroxidase was likely of plant origin. We also determined that sheath saliva, but not watery saliva elicited the jasmonate inducible defense gene proteinase inhibitor 2 (Pin2), but this induction was only observed when sheaths had been collected from tomato. This indicates that the eliciting factor of the saliva is likely of plant origin. Lastly, neither watery or sheath saliva affected the expression of the salicylate inducible gene pathogenesis related gene (Pr1a-P4). PMID:24586332
Out-diffusion of deep donors in nitrogen-doped silicon and the diffusivity of vacancies
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.
2012-07-01
A strong resistivity increase in annealed nitrogen-doped silicon samples was reported long ago—but has remained not fully understood. It is now shown that the complicated evolution of the resistivity depth profiles observed can be reproduced by a simple model based on the out-diffusion of some relevant species. Two versions of such an approach were analyzed: (A) out-diffusion of deep donors treated as VN (off-centre substitutional nitrogen), (B) out-diffusion of vacancies (V) and interstitial trimers (N3) produced by dissociation of VN3. Version B, although more complicated, is attractive due to a coincidence of the deduced vacancy diffusivity DV at 1000 °C with the value extrapolated from low-temperature data by Watkins.
NASA Technical Reports Server (NTRS)
Mc Crae, A. W., Jr.
1967-01-01
Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.
NASA Astrophysics Data System (ADS)
Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan
2018-05-01
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.
Farris-Tang retractor in optic nerve sheath decompression surgery.
Spiegel, Jennifer A; Sokol, Jason A; Whittaker, Thomas J; Bernard, Benjamin; Farris, Bradley K
2016-01-01
Our purpose is to introduce the use of the Farris-Tang retractor in optic nerve sheath decompression surgery. The procedure of optic nerve sheath fenestration was reviewed at our tertiary care teaching hospital, including the use of the Farris-Tang retractor. Pseudotumor cerebri is a syndrome of increased intracranial pressure without a clear cause. Surgical treatment can be effective in cases in which medical therapy has failed and disc swelling with visual field loss progresses. Optic nerve sheath decompression surgery (ONDS) involves cutting slits or windows in the optic nerve sheath to allow cerebrospinal fluid to escape, reducing the pressure around the optic nerve. We introduce the Farris-Tang retractor, a retractor that allows for excellent visualization of the optic nerve sheath during this surgery, facilitating the fenestration of the sheath and visualization of the subsequent cerebrospinal fluid egress. Utilizing a medial conjunctival approach, the Farris-Tang retractor allows for easy retraction of the medial orbital tissue and reduces the incidence of orbital fat protrusion through Tenon's capsule. The Farris-Tang retractor allows safe, easy, and effective access to the optic nerve with good visualization in optic nerve sheath decompression surgery. This, in turn, allows for greater surgical efficiency and positive patient outcomes.
Effect of electron reflection on magnetized plasma sheath in an oblique magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ting-Ting; Ma, J. X., E-mail: jxma@ustc.edu.cn; Wei, Zi-An
Magnetized plasma sheaths in an oblique magnetic field were extensively investigated by conventionally assuming Boltzmann relation for electron density. This article presents the study of the magnetized sheath without using the Boltzmann relation but by considering the electron reflection along the magnetic field lines caused by the negative sheath potential. A generalized Bohm criterion is analytically derived, and sheath profiles are numerically obtained, which are compared with the results of the conventional model. The results show that the ion Mach number at the sheath edge normal to the wall has a strong dependence on the wall potential, which differs significantlymore » from the conventional model in which the Mach number is independent of the wall potential. The floating wall potential is lower in the present model than that in the conventional model. Furthermore, the sheath profiles are appreciably narrower in the present model when the wall bias is low, but approach the result of the conventional model when the wall bias is high. The sheath thickness decreases with the increase of ion-to-electron temperature ratio and magnetic field strength but has a complex relationship with the angle of the magnetic field.« less
Hybrid particle traps and conditioning procedure for gas insulated transmission lines
Dale, Steinar J.; Cookson, Alan H.
1982-01-01
A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.
Miniature sheathed thermocouples for turbine blade temperature measurement
NASA Technical Reports Server (NTRS)
Holanda, R.; Glawe, G. E.; Krause, L. N.
1974-01-01
An investigation was made of sheathed thermocouples for turbine blade temperature measurements. Tests were performed on the Chromel-Alumel sheathed thermocouples with both two-wire and single-wire configurations. Sheath diameters ranged from 0.25 to 0.76 mm, and temperatures ranged from 1080 to 1250 K. Both steady-state and thermal cycling tests were performed for times up to 450 hr. Special-order and commercial-grade thermocouples were tested. The tests showed that special-order single-wire sheathed thermocouples can be obtained that are reliable and accurate with diameters as small as 0.25 mm. However, all samples of 0.25-mm-diameter sheathed commercial-grade two-wire and single-wire thermocouples that were tested showed unacceptable drift rates for long-duration engine testing programs. The drift rates were about 1 percent in 10 hr. A thermocouple drift test is recommended in addition to the normal acceptance tests in order to select reliable miniature sheathed thermocouples for turbine blade applications.
Aguiar, Rodrigo O C; Gasparetto, Emerson L; Escuissato, Dante L; Marchiori, Edson; Trudell, Debbie J; Haghighi, Parviz; Resnick, Donald
2006-11-01
To demonstrate the anatomy of the radial and ulnar bursae of the wrist using MR and US images. Ultrasonographic-guided tenography of the tendon sheath of flexor pollicis longus (FPL) and the common tendon sheath of the flexor digitorum of the fifth digit (FD5) of ten cadaveric hands was performed, followed by magnetic resonance imaging and gross anatomic correlation. Patterns of communication were observed between these tendon sheaths and the radial and ulnar bursae of the wrist. The tendon sheath of the FPL communicated with the radial bursa in 100% (10/10) of cases, and the tendon sheath of the FD5 communicated with the ulnar bursa in 80% (8/10). Communication of the radial and ulnar bursae was evident in 100% (10/10), and presented an "hourglass" configuration in the longitudinal plane. The ulnar and radial bursae often communicate. The radial bursa communicates with the FPL tendon sheath, and the ulnar bursa may communicate with the FD5 tendon sheath.
GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets
NASA Technical Reports Server (NTRS)
Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi
2007-01-01
A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.
Spontaneous Rectus Sheath Hematoma: an Overview of 4-Year Single Center Experience.
Aktürk, Okan Murat; Kayılıoğlu, Selami Ilgaz; Aydoğan, İhsan; Dinç, Tolga; Yildiz, Baris; Cete, Mükerrem; Erdoğan, Ahmet; Coşkun, Faruk
2015-12-01
Rectus sheath hematoma is a clinical entity characterized by the presence of blood within rectus abdominis muscle sheath. The aim of this study was to analyze clinical characteristics, diagnostic approach, treatment strategy, and outcomes of patients with rectus sheath hematoma. Patients diagnosed and treated for spontaneous rectus sheath hematoma between March 2010 and March 2014 were included in the study. A total of 10 patients were diagnosed as spontaneous rectus sheath hematoma. The mean age was 66.5 ± 16.9 years, and the mean hospital stay was 4.4 ± 1.8 days. There was no mortality. Six patients were using anticoagulant or antiplatelet agents. Eight patients recovered after conservative treatment. Two patients underwent surgery. Spontaneous rectus sheath hematoma is associated with anticoagulant therapy. Cases with abdominal pain and a non-pulsatile abdominal mass particularly in elderly women should be kept in mind. Treatment is mostly based on supportive care to preserve hemodynamic stability.
Gas insulated transmission line having low inductance intercalated sheath
Cookson, Alan H.
1978-01-01
A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.
Effect of collisions on photoelectron sheath in a gas
NASA Astrophysics Data System (ADS)
Sodha, Mahendra Singh; Mishra, S. K.
2016-02-01
This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.
Enhanced Microfluidic Electromagnetic Measurements
NASA Technical Reports Server (NTRS)
Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)
2015-01-01
Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito
2015-08-31
Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less
Time domain simulations of preliminary breakdown pulses in natural lightning.
Carlson, B E; Liang, C; Bitzer, P; Christian, H
2015-06-16
Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.
Time domain simulations of preliminary breakdown pulses in natural lightning
Carlson, B E; Liang, C; Bitzer, P; Christian, H
2015-01-01
Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Key Points Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations PMID:26664815
Divertor-leg instability for finite beta and radially-tilted divertor plate
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Ryutov, D. D.
2004-11-01
Plasma in the divertor leg may experience a fast instability caused by sheath boundary conditions (BC). Perturbations cannot penetrate beyond the X point because of very strong shearing in its vicinity. Accordingly, this instability could increase cross-field transport in the divertor leg, and thereby reduce the heat load on the divertor plate, without having any appreciable negative effect on core plasma confinement. A way of describing the role of shearing in terms of the surface resistivity attributed to a ``control plane'' below the X point has recently been suggested (Contr. Plasma Phys., v. 44, p. 168, 2004). We use this BC, plus sheath BC at the divertor plate. We include effects of finite beta and of the radial tilt of the divertor plate. We optimize the radial tilt in order to maximize radial transport in divertor legs. We discuss experimental signatures of the instability: i) phase velocity and wave-numbers of the most unstable modes; ii) correlations between fluctuations of various parameters; and iii) the differences between fluctuations in the common and private flux regions.
Behavior of Steel-Sheathed Shear Walls Subjected to Seismic and Fire Loads.
Hoehler, Matthew S; Smith, Christopher M; Hutchinson, Tara C; Wang, Xiang; Meacham, Brian J; Kamath, Praveen
2017-07-01
A series of tests was conducted on six 2.7 m × 3.7 m shear wall specimens consisting of cold-formed steel framing sheathed on one side with sheet steel adhered to gypsum board and on the opposite side with plain gypsum board. The specimens were subjected to various sequences of simulated seismic shear deformation and fire exposure to study the influence of multi-hazard interactions on the lateral load resistance of the walls. The test program was designed to complement a parallel effort at the University of California, San Diego to investigate a six-story building subjected to earthquakes and fires. The test results reported here indicate that the fire exposure caused a shift in the failure mode of the walls from local buckling of the sheet steel in cases without fire exposure, to global buckling of the sheet steel with an accompanying 35 % reduction in lateral load capacity after the wall had been exposed to fire. This behavior appears to be predictable, which is encouraging from the standpoint of residual lateral load capacity under these severe multi-hazard actions.
Gas sampling system for reactive gas-solid mixtures
Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.
1989-01-01
An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.
Gas sampling system for reactive gas-solid mixtures
Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.
1990-01-01
An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.
Parametric computational study of sheaths in multicomponent Ar/O2 plasma
NASA Astrophysics Data System (ADS)
Hromadka, J.; Ibehej, T.; Hrach, R.
2018-02-01
Our study is devoted to sheath structures emerging in Ar/O2 plasma. By means of two dimensional PIC/MCC computer model two configurations were investigated - sheath structure in the vicinity of a cylindrical Langmuir probe for two different biases and changes of the sheath structure when a cylindrical probe passes into a semi-planar probe. It was shown that O+ ions play important role in shielding out negative bias of a solid immersed in Ar/O2 plasma and edge effects of a semi-planar probe on its sheath structure were evaluated.
Koo, Kyo Chul; Yoon, Jun-Ho; Park, No-Cheol; Lee, Hye Sun; Ahn, Hyun Kyu; Lee, Kwang Suk; Kim, Do Kyung; Cho, Kang Su; Chung, Byung Ha; Hong, Chang Hee
2018-06-01
Excessive bulking force during primary access of the ureteral access sheath may induce ureteral injury. We investigated the efficacy of preoperative α-blockade to reduce ureteral access sheath insertion force and determine the upper limit required to avoid ureteral injury. In this randomized controlled trial 135 patients from a single institution who had ureteropelvic junction or renal pelvis stones and were scheduled to undergo retrograde intrarenal surgery were prospectively enrolled from December 2015 to January 2017. Of the patients 41 and 42 were randomly assigned to the control and experimental groups, respectively. The experimental group received α-blockade preoperatively. The 21 patients who were pre-stented were assessed separately. We developed a homemade device to measure maximal ureteral access sheath insertion force. Our ureteral access sheath insertion force measurement device showed excellent reproducibility. Higher insertion velocity resulted in greater maximal sheath insertion force. Maximal insertion force in the α-blockade group was significantly lower than in the control group at the ureterovesical junction (p = 0.008) and the proximal ureter (p = 0.036). Maximal insertion force in the α-blockade group was comparable to that in pre-stented patients. Female patients and patients 70 years old or older showed a lower maximal ureteral access sheath insertion force than their counterparts. The rate of grade 2 or greater ureteral injury was lower in the α-blockade group than in controls (p = 0.038). No injury occurred in any case in which ureteral access sheath insertion force did not exceed 600 G. Preoperative α-blockade and slow sheath placement may reduce maximal ureteral access sheath insertion force. If the force exceeds 600 G, a smaller diameter sheath may be an alternative. Alternatively the procedure can be terminated and followed later by pre-stented retrograde intrarenal surgery. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Investigation of dust transport on the lunar surface in laboratory plasmas
NASA Astrophysics Data System (ADS)
Wang, X.; Horanyi, M.; Robertson, S. H.
2009-12-01
There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.
Theory of the electron sheath and presheath
Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; ...
2015-12-30
Here, electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell(PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperaturemore » plasma conditions (T e >> T i), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.« less
Tsui, C K; Boedo, J A; Stangeby, P C
2018-01-01
A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter l p , and the model is thus referred to as the "perimeter sheath expansion method." l p is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ∼ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ∼ 0 and for V = V f .
NASA Astrophysics Data System (ADS)
Tsui, C. K.; Boedo, J. A.; Stangeby, P. C.; TCV Team
2018-01-01
A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter lp, and the model is thus referred to as the "perimeter sheath expansion method." lp is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ˜ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ˜ 0 and for V = Vf.
Ullah, Waqas; Hunter, Ross J; McLean, Ailsa; Dhinoja, Mehul; Earley, Mark J; Sporton, Simon; Schilling, Richard J
2015-03-01
In preclinical studies, catheter contact force (CF) during radiofrequency ablation correlates with the subsequent lesion size. We investigated the impact of steerable sheaths on ablation CF, its consistency, and wide area circumferential ablation (WACA) line reconnection sites. Five thousand and sixty-four ablations were analyzed across 60 patients undergoing first-time ablation for persistent AF using a CF-sensing catheter: 19 manual nonsteerable sheath (Manual-NSS), 11 manual steerable sheath, and 30 robotic steerable sheath (Sensei, Hansen Medical Inc.) procedures were studied. Ablation CFs were higher in the steerable sheath groups for all left atrial ablations and also WACA ablations specifically (P < 0.006), but less consistent per WACA segment (P < 0.005). There were significant differences in the CFs around both WACAs by group: in the left WACA CFs were lower with Manual-NSS, other than at the anterior-inferior and posterior-superior regions, and lower in the right WACA, other than the anterior-superior region. There was a difference in the proportion of segments chronically reconnecting across groups: Manual-NSS 26.5%, manual steerable sheath 4.6%, robotic 12% (P < 0.0005). The left atrial appendage/PV ridge and right posterior wall were common sites of reconnection in all groups. Steerable sheaths increased ablation CF; however, there were region-specific heterogeneities in the extent of increment, with some segments where they failed to increase CF. Steerable sheath use was associated with reduced WACA-segment reconnection. It may be that the benefits of steerable sheath use in terms of higher CFs could be translated to improved clinical outcomes if regional weaknesses of this technology are taken into account during ablation procedures. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendergrass, J.H.
1977-10-01
Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.
Theoretical and experimental research in space photovoltaics
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria
1995-01-01
Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.
The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksyuk, Anastasia A.; Leiman, Petr G.; Kurochkina, Lidia P.
2009-07-22
The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of themore » tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.« less
Physics-based parametrization of the surface impedance for radio frequency sheaths
Myra, J. R.
2017-07-07
The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less
Physics-based parametrization of the surface impedance for radio frequency sheaths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myra, J. R.
The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less
Compensation of the sheath effects in cylindrical floating probes
NASA Astrophysics Data System (ADS)
Park, Ji-Hwan; Chung, Chin-Wook
2018-05-01
In cylindrical floating probe measurements, the plasma density and electron temperature are overestimated due to sheath expansion and oscillation. To reduce these sheath effects, a compensation method based on well-developed floating sheath theories is proposed and applied to the floating harmonic method. The iterative calculation of the Allen-Boyd-Reynolds equation can derive the floating sheath thickness, which can be used to calculate the effective ion collection area; in this way, an accurate ion density is obtained. The Child-Langmuir law is used to calculate the ion harmonic currents caused by sheath oscillation of the alternating-voltage-biased probe tip. Accurate plasma parameters can be obtained by subtracting these ion harmonic currents from the total measured harmonic currents. Herein, the measurement principles and compensation method are discussed in detail and an experimental demonstration is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, Zubair; Bhaskar, Ankush; Raghav, Anil, E-mail: raghavanil1984@gmail.com
The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation ofmore » the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.« less
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Shioiri, T.; Kurihara, C.; Machida, T.; Inada, R.; Oota, A.
2008-09-01
The use of alloy sheath is effective to increase the strength of Ag-sheathed Bi2223 tapes. However, the Jc value of alloy sheathed tapes was not high enough since the undesired reaction to form impurity phases and the change in formation rate of Bi2223 were disturbed by the microstructure of the filaments . In this study, the effect of 2223 contents in precursor on the formation and property of Bi2223 tapes sheathed with Ag-Mg alloy was investigated. The conversion rate of Bi2223 from Bi2212 was increased by the addition of Bi2223 phase in precursor but the conversion rate in Ag-Mg alloy sheathed tapes was slower than that in the Ag-Cu alloy sheathed tapes. This reduction of conversion speed of Bi2223 may be attributed to the decrease in the growth rate of Bi2223 crystals in Ag-Mg alloy sheath. Since the tapes with small Bi2223 crystals after first sintering showed many outgrowths after final sintering, the formation of outgrowth would be caused in the case of small crystal size. The Jc value of 2.2 × 10 4 A/cm 2 was achieved in the samples using the precursor with 10 wt.% 2223. The high Jc value can be achieved by the proper control of precursor condition including the contents of Bi2223 and corresponding heat treatment pattern in Ag-Mg alloy sheathed tapes.
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
Zhang, Steven S. -L.; Heinonen, Olle
2018-04-02
In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Heinonen, Olle
In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Heinonen, Olle
2018-04-01
We study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does the TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004), 10.1103/PhysRevLett.93.096806]. We derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Moore, T. J.
1979-01-01
A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
Hertwig's Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars.
Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio
2015-06-29
To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis.
Hertwig’s Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars
Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio
2015-01-01
To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis. PMID:26160988
Morphogenesis of the fibrous sheath in the marsupial spermatozoon
Ricci, M; Breed, WG
2005-01-01
The spermatozoon fibrous sheath contains longitudinal columns and circumferential ribs. It surrounds the axoneme of the principal piece of the mammalian sperm tail, and may be important in sperm stability and motility. Here we describe its assembly during spermiogenesis in a marsupial, the brush-tail possum, and compare its structural organization with that of eutherian mammals, birds and reptiles. Transmission electron microscopy showed that possum fibrous sheath assembly is a multistep process extending in a distal-to-proximal direction along the axoneme from steps 4 to 14 of spermiogenesis. For the most part, assembly of the longitudinal columns occurs before that of the circumferential ribs. Immunohistochemical and immunogold labelling showed that fibrous sheath proteins are first present in the spermatid cytoplasm; at least some of the proteins of the sheath precursors differ from those in the mature fibrous sheath. That immunoreactivity develops after initiation of chromatin condensation suggests that fibrous sheath proteins, or their mRNAs, are stored within the spermatid cytoplasmic lobule prior to their assembly along the axoneme. These findings are similar to those in laboratory rats, and thus suggests that the mode of fibrous sheath assembly evolved in a common ancestor over 125 million years ago, prior to the divergence of marsupial and eutherian lineages. PMID:16050902
Jo-Velasco, Margarita; Corrales-Rodríguez, Araceli; Francés-Rodríguez, Laura; Alegría-Landa, Victoria; Eraña-Tomás, Itziar; Rütten, Arno; Requena, Luis
2018-02-01
Pilar sheath acanthoma is an uncommon, benign follicular neoplasm that frequently presents as a solitary lesion. This neoplasm usually appears on the skin around the upper lip of elderly patients. Histopathologically, the neoplasm usually shows a cystic configuration with epithelial lobules resembling to those of the outer root sheath of the hair follicle at the level of the isthmus emanating radially from the cyst wall. We present 3 peculiar cases of a pilar sheath acanthoma showing a plaque-like architecture because the lesions exhibited a horizontal configuration. To our knowledge, there are no previously reported examples of plaque-like pilar sheath acanthoma.
A STRUCTURAL ANALYSIS OF THE MYELIN SHEATH IN THE CENTRAL NERVOUS SYSTEM
Hirano, Asao; Dembitzer, Herbert M.
1967-01-01
The cerebral white matter of rats subjected to a variety of noxious experimental conditions was examined in the electron microscope. Several unusual configurations of the myelin sheath are identified in addition to the usual configuration. These variations include the presence of (a) formed organelles within the inner and outer loops, (b) isolated islands of cytoplasm in unfused portions of the major dense lines, (c) apparently unconnected cell processes between the sheath and the axon, and (d) concentric, double myelin sheaths. A generalized model of the myelin sheath based on a hypothetical unrolling of the sheath is described. It consists of a shovel-shaped myelin sheet surrounded by a continuous thickened rim of cytoplasm. Most of the unusual myelin configurations are explained as simple variations on this basic theme. With the help of this model, an explanation of the formation of the myelin sheath is offered. This explanation involves the concept that myelin formation can occur at all cytoplasmic areas adjacent to the myelin proper and that adjacent myelin lamellae can move in relation to each other. PMID:6035645
NASA Astrophysics Data System (ADS)
Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe
2017-06-01
After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, H. C.; Research and Development Division, SK Hynix Semiconductor Inc., Icheon 467-701; Jung, S. Y.
2014-03-15
The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50 eV.
An Everting Ureteral Access Sheath: Concepts and In Vitro Testing
NASA Astrophysics Data System (ADS)
Lee, Keith L.; Stoller, Marshall L.
2007-04-01
Ureteral access sheaths have been a recent innovation in facilitating ureteral stone surgery. Once properly placed, access sheaths allow the movement of ureteroscopes and other instruments through the ureter with minimal injury to the urothelium. However, there are shortcomings of the current device designs. Initial sheath placement requires significant force, and shear stress can injure the ureter. In addition, inadvertent advancement of the outer sheath without the inner introducer stylet can tear and avulse the ureter. A novel eversion design incorporating a lubricous film provides marked improvement over current access sheaths. In bench top and animal models, the eversion shealths require less force during advancement, cause less injury to the urothelial tissue, and have a lower potential of introducing extraneous materials (e.g., microbes) into a simulated urinary tract. While, the everting design provides important advantages over traditional non-everting designs, further preclinical and clinical trials are required.
MAVEN Observations of Partially Developed Kelvin-Helmholtz Vortices at Mars.
NASA Technical Reports Server (NTRS)
Ruhunusiri, Suranga; Halekas, J. S.; McFadden, J. P.; Connerney, J. E. P.; Espley, J. R.; Harada, Y.; Livi, R.; Seki, C.; Mazelle, C.; Brain, D.
2016-01-01
We present preliminary results and interpretations for Mars Atmospheric and Volatile EvolutioN,(MAVEN) observations of magnetosheath-ionospheric boundary oscillations at Mars. Using centrifugal force arguments, we first predict that a signature of fully rolled up Kelvin-Helmholtz vortices at Mars is sheath ions that have a bulk motion toward the Sun. The sheath ions adjacent to a vortex should also accelerate to speeds higher than the mean sheath velocity. We also predict that while the ionospheric ions that are in the vortex accelerate antisunward, they never attain speeds exceeding that of the sheath ions, in stark contrast to KH vortices that arise at the Earths magnetopause. We observe accelerated sheath and ionospheric ions, but we do not observe sheath ions that have a bulk motion toward the Sun. Thus, we interpret these observations as KH vortices that have not fully rolled up.
Spine Patterning Is Guided by Segmentation of the Notochord Sheath.
Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D; Dickson, Amy L; Huitema, Leonie F A; Poss, Kenneth D; Schulte-Merker, Stefan; Bagnat, Michel
2018-02-20
The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Easy, L., E-mail: le590@york.ac.uk; CCFE, Culham Science Centre, Abingdon OX14 3DB; Militello, F.
2016-01-15
The propagation of filaments in the Scrape Off Layer (SOL) of tokamaks largely determines the plasma profiles in the region. In a conduction limited SOL, parallel temperature gradients are expected, such that the resistance to parallel currents is greater at the target than further upstream. Since the perpendicular motion of an isolated filament is largely determined by balance of currents that flow through it, this may be expected to affect filament transport. 3D simulations have thus been used to study the influence of enhanced parallel resistivity on the dynamics of filaments. Filaments with the smallest perpendicular length scales, which weremore » inertially limited at low resistivity (meaning that polarization rather than parallel currents determines their radial velocities), were unaffected by resistivity. For larger filaments, faster velocities were produced at higher resistivities due to two mechanisms. First parallel currents were reduced and polarization currents were enhanced, meaning that the inertial regime extended to larger filaments, and second, a potential difference formed along the parallel direction so that higher potentials were produced in the region of the filament for the same amount of current to flow into the sheath. These results indicate that broader SOL profiles could be produced at higher resistivities.« less
Wise, Michael J; Rausher, Mark D
2013-06-01
Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Analytical model for the radio-frequency sheath
NASA Astrophysics Data System (ADS)
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
Analytical model for the radio-frequency sheath.
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
A salivary sheath protein essential for the interaction of the brown planthopper with rice plants.
Huang, Hai-Jian; Liu, Cheng-Wen; Cai, Ye-Fang; Zhang, Min-Zhu; Bao, Yan-Yuan; Zhang, Chuan-Xi
2015-11-01
Salivary secretions, including gel saliva and watery saliva, play crucial roles in the interaction between the insect and plant during feeding. In this study, we identified a salivary gland-specific gene encoding a salivary sheath protein (NlShp) in Nilaparvata lugens. NlShp has two alternative splicing variants; both are expressed at high levels during the nymph and adult stages. Immunohistochemical staining showed that the NlShp were synthesized in the principal gland cells of the salivary gland. LC-MS/MS and western blot analysis confirmed that NlShp was one of the components of the salivary sheath. Simultaneously knocking down the two NlShp variants by RNA interference inhibited both salivary flange and salivary sheath formation and resulted in a lethal phenotype within four days for the brown planthopper (BPH) feeding on rice plants, indicating that the salivary sheath and salivary flanges were essential for plant-associated feeding. Despite the salivary sheath deficiency, no obvious phenotype was observed in the NlShp-knockdown BPHs fed on artificial diet. The electrical penetration graph (EPG) results showed that salivary sheath-deficient BPHs exhibited a prolonged nonpenetration period, scarce sap period, and increased stylet movement on rice plants and eventually starved to death. Our results provided evidence that the interaction between the salivary sheath and host plant might be a critical step in successful BPH feeding. According to present research, we propose a salivary sheath required feeding model for piercing-sucking insects and provide a potential target for rice planthopper management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biosorption of metal elements by exopolymer nanofibrils excreted from Leptothrix cells.
Kunoh, Tatsuki; Nakanishi, Makoto; Kusano, Yoshihiro; Itadani, Atsushi; Ando, Kota; Matsumoto, Syuji; Tamura, Katsunori; Kunoh, Hitoshi; Takada, Jun
2017-10-01
Leptothrix species, aquatic Fe-oxidizing bacteria, excrete nano-scaled exopolymer fibrils. Once excreted, the fibrils weave together and coalesce to form extracellular, microtubular, immature sheaths encasing catenulate cells of Leptothrix. The immature sheaths, composed of aggregated nanofibrils with a homogeneous-looking matrix, attract and bind aqueous-phase inorganics, especially Fe, P, and Si, to form seemingly solid, mature sheaths of a hybrid organic-inorganic nature. To verify our assumption that the organic skeleton of the sheaths might sorb a broad range of other metallic and nonmetallic elements, we examined the sorption potential of chemically and enzymatically prepared protein-free organic sheath remnants for 47 available elements. The sheath remnants were found by XRF to sorb each of the 47 elements, although their sorption degree varied among the elements: >35% atomic percentages for Ti, Y, Zr, Ru, Rh, Ag, and Au. Electron microscopy, energy dispersive x-ray spectroscopy, electron and x-ray diffractions, and Fourier transform infrared spectroscopy analyses of sheath remnants that had sorbed Ag, Cu, and Pt revealed that (i) the sheath remnants comprised a 5-10 nm thick aggregation of fibrils, (ii) the test elements were distributed almost homogeneously throughout the fibrillar aggregate, (iii) the nanofibril matrix sorbing the elements was nearly amorphous, and (iv) these elements plausibly were bound to the matrix by ionic binding, especially via OH. The present results show that the constitutive protein-free exopolymer nanofibrils of the sheaths can contribute to creating novel filtering materials for recovering and recycling useful and/or hazardous elements from the environment. Copyright © 2017. Published by Elsevier Ltd.
Can using a peel-away sheath in shunt implantation prevent ventricular catheter obstruction?
Camlar, Mahmut; Ersahin, Yusuf; Ozer, Fusun Demirçivi; Sen, Fatih; Orman, Mehmet
2011-02-01
Shunt obstruction is the most common shunt complication. In 2003, Kehler et al. used peel-away sheath while implanting the ventricular catheter in 20 patients. They found less revision rate in the peel-away sheath group. We aimed to test the efficacy of this technique in cadavers. We used 100 fresh brains obtained from medicolegal autopsies. Posterior parietal and frontal approaches were used to puncture the lateral ventricle in each cerebral hemisphere. The ventricle is punctured with a peel-away sheath system. After the ventricle is reached, the mandarin is retracted and the ventricular catheter is introduced through the opening. The ventricular catheter was removed from the ventricle, the opening at the tip of the ventricular catheter was checked out for obstruction, and the number of patent and plugged openings was recorded. This procedure was repeated four times for each location with and without using peel-away sheath. The control group consisted of the procedures done without using peel-away sheath. The number of the plugged openings in the peel-away sheath group was significantly smaller than the control group. There was no significant difference between the two groups in terms of gender and left and right cerebral hemispheres. The obstruction rate was significantly lower in the posterior parietal approach. Pearson's correlation showed that increasing age was associated with less obstruction rate. Peel-away sheath decreases the number of plugged openings of the ventricular catheter. A clinical cooperative study is needed to prove that a peel-away sheath should be included in the ventricular shunt systems in the market.
Peters, Shannon E; Laxer, Ronald M; Connolly, Bairbre L; Parra, Dimitri A
2017-04-11
The aims of this study were to: (a) Identify tendon sheaths most commonly treated with steroid injections in a pediatric patient population with Juvenile Idiopathic Arthritis (JIA); (b) Describe technical aspects of the procedure; (c) Characterize sonographic appearance of tenosynovitis in JIA; (d) Assess agreement between clinical request and sites injected. This was a 10 year single-center retrospective study (May 2006-April 2016) of patients with JIA referred by Rheumatology for ultrasound-guided tendon sheath injections. Patient demographics, clinical referral information, sonographic appearance of the tendon sheaths and technical aspects of the procedure were analyzed. There were 308 procedures of 244 patients (75% female, mean age 9.6 years) who underwent a total of 926 tendon sheath injections. Ankle tendons were most commonly injected (84.9%), specifically the tendon sheaths of tibialis posterior (22.3%), peroneus longus (20%) and brevis (19.7%). The majority of treated sites (91.9%) showed peritendinous fluid and sheath thickening on ultrasound. There were 2 minor intra-procedure complications without sequelae. A good agreement between clinical request and sites injected was observed. Ultrasound-guided tendon sheath injections with steroids are used frequently to treat patients with JIA. It is a safe intervention with a high technical success rate. The ankle region, specifically the medial compartment, is the site most commonly injected in this group of patients. The most common sonographic finding is peritendinous fluid and sheath thickening. These findings might assist clinicians and radiologists to characterize and more effectively manage tenosynovitis in patients with JIA.
Hacker, Robert I.; Garcia, Lorena De Marco; Chawla, Ankur; Panetta, Thomas F.
2012-01-01
Fibrin sheaths are a heterogeneous matrix of cells and debris that form around catheters and are a known cause of central venous stenosis and catheter failure. A total of 50 cases of central venous catheter fibrin sheath angioplasty (FSA) after catheter removal or exchange are presented. A retrospective review of an outpatient office database identified 70 eligible patients over a 19-month period. After informed consent was obtained, the dialysis catheter exiting the skin was clamped, amputated, and a wire was inserted. The catheter was then removed and a 9-French sheath was inserted into the superior vena cava, a venogram was performed. If a fibrin sheath was present, angioplasty was performed using an 8 × 4 or 10 × 4 balloon along the entire length of the fibrin sheath. A completion venogram was performed to document obliteration of the sheath. During the study, 50 patients were diagnosed with a fibrin sheath, and 43 had no pre-existing central venous stenosis. After FSA, 39 of the 43 patient's (91%) central systems remained patent without the need for subsequent interventions; 3 patients (7%) developed subclavian stenoses requiring repeat angioplasty and stenting; 1 patent (2.3%) developed an occlusion requiring a reintervention. Seven patients with prior central stenosis required multiple angioplasties; five required stenting of their central lesions. Every patient had follow-up fistulograms to document long-term patency. We propose that FSA is a prudent and safe procedure that may help reduce the risk of central venous stenosis from fibrin sheaths due to central venous catheters. PMID:23997555
Buzón-Durán, Laura; Capita, Rosa; Alonso-Calleja, Carlos
2018-06-01
Methicillin-resistant staphylococci (MRS) are a major concern to public and animal health. Thirty MRS (Staphylococcus aureus, S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. lentus, S. lugdunensis, S. sciuri, and S. xylosus) isolates from meat and poultry preparations were tested for antimicrobial susceptibility to 11 antimicrobials (belonging to seven different categories) of clinical significance using both the standard agar disc diffusion method and a commercially available miniaturized system (Sensi Test Gram-positive). It is worth stressing that 16 isolates (53.33%) exhibited an extensively drug-resistant phenotype (XDR). The average number of resistances per strain was 4.67. These results suggest that retail meat and poultry preparations are a likely vehicle for the transmission of multi-drug resistant MRS. Resistance to erythromycin was the commonest finding (76.67% of strains), followed by tobramycin, ceftazidime (66.67%), ciprofloxacin (56.67%) and fosfomycin (53.33%). An agreement (kappa coefficient) of 0.64 was found between the two testing methods. Using the agar disc diffusion as the reference method, the sensitivity, specificity and accuracy of the miniaturized test were 98.44%, 69.44% and 83.33%, respectively. Most discrepancies between the two methods were due to isolates that were susceptible according to the disc diffusion method but resistant according to the miniaturized test (false positives). Copyright © 2017. Published by Elsevier Ltd.
Nelwan, Erni J; Indrasanti, Evi; Sinto, Robert; Nurchaida, Farida; Sosrosumihardjo, Rustadi
2016-01-01
to evaluate the performance of Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patients. a comparison study to evaluate Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patient was done. Categorical agreement between manual disc diffusion and Vitek2 machine was calculated using predefined criteria. Time to susceptibility result for automated and manual methods were measured. there were 137 Candida isolates comprising eight Candida species with C.albicans and C. glabrata as the first (56.2%) and second (15.3%) most common species, respectively. For fluconazole drug, among the C. albicans, 2.6% was found resistant on manual disc diffusion methods and no resistant was determined by Vitek2 machine; whereas 100% C. krusei was identified as resistant on both methods. Resistant patterns for C. glabrata to fluconazole, voriconazole and amphotericin B were 52.4%, 23.8%, 23.8% vs. 9.5%, 9.5%, 4.8% respectively between manual diffusion disc methods and Vitek2 machine. Time to susceptibility result for automated methods compared to Vitex2 machine was shorter for all Candida species. there is a good categorical agreement between manual disc diffusion and Vitek2 machine, except for C. glabrata for measuring the antifungal resistant. Time to susceptibility result for automated methods is shorter for all Candida species.
Manninen, R; Huovinen, P; Nissinen, A
1998-04-01
The performance of disk diffusion testing of Haemophilus influenzae was evaluated in 20 laboratories. Thirteen disk-medium-breakpoint-inoculum modifications were used in Finnish clinical microbiology laboratories. The performance of various methods was evaluated by testing a susceptible control strain and one with non-beta-lactamase-mediated ampicillin resistance 10 times in 16 laboratories. Gaps in millimeters were measured between these two groups of results. The strains were separated by a gap of at least 5 mm in 8/16 laboratories testing ampicillin, in 7/15 laboratories testing cefaclor, in 5/ 16 laboratories testing cefuroxime, and in 15/16 laboratories testing trimethoprim-sulfa. Detection of ampicillin resistance was better with 2.5 microg tablets than with 10 microg disks or 33 microg tablets. For MIC-determinations, 785 isolates and their disk diffusion results were collected. None of the 12 clinical isolates with non-beta-lactamase-mediated ampicillin resistance was detected as resistant in the participating laboratories. The ampicillin and cefaclor results of the isolates were no better even when a laboratory was able to separate the control strains. Cefaclor results were unreliable because of poor disk diffusion-MIC correspondence and incoherent breakpoint references. Interlaboratory variation of the zone diameters caused false intermediate results of cefuroxime-susceptible strains. When ampicillin, cefaclor and cefuroxime were tested, the discrimination of laboratories using disks and tablets was equal, whereas the laboratories using paper disks were better able to detect trimethoprim-sulfa resistance.
A Semianalytical Ion Current Model for Radio Frequency Driven Collisionless Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)
2001-01-01
We propose a semianalytical ion dynamics model for a collisionless radio frequency biased sheath. The model uses bulk plasma conditions and electrode boundary condition to predict ion impact energy distribution and electrical properties of the sheath. The proposed model accounts for ion inertia and ion current modulation at bias frequencies that are of the same order of magnitude as the ion plasma frequency. A relaxation equation for ion current oscillations is derived which is coupled with a damped potential equation in order to model ion inertia effects. We find that inclusion of ion current modulation in the sheath model shows marked improvements in the predictions of sheath electrical properties and ion energy distribution function.
Post, C; Guerrero, T; Ohlerth, S; Hässig, M; Voss, K; Montavon, P M
2008-01-01
This study describes the appearance of 'joint mice' in the sheath of the deep digital flexor muscle tendon (DDFT) due to osteochondritis dissecans (OCD) lesions in the talocrural joint of 12 dogs. Surgical excision of all free fragments in the DDFT sheath was performed in five dogs, and their clinical progression was documented. The excision of free fragments from the DDFT sheath, but not arthro-tomy, proved clinically beneficial despite the presence of degenerative joint disease. The anatomical communication between the talocrural joint and the DDFT sheath and its dimensions are further illustrated with the use of contrast media and dissection of cadaver limbs.
Development of a core sheath process for production of oxide fibers
NASA Technical Reports Server (NTRS)
Freske, S.
1972-01-01
Improvements were sought in an oxide fiber of a core sheath configuration intended for structural applications at 2000 F (1093 C). Discontinuities in the core were eliminated by using core materials other than pure alumina, and continuous core sheath fibers were produced. In the case of some core materials, the continuous sections were sufficiently long for applications in short fiber composites. Creep at 2000 F (1093 C) was found to be due, in most cases, to breaks in the core, allowing the glass sheath to creep. Evidence was obtained indicating that a closer match between the thermal expansion coefficient of the sheath and the core would greatly improve the strength.
[Ultrasound-guided rectus sheath block for upper abdominal surgery].
Osaka, Yoshimune; Kashiwagi, Masanori; Nagatsuka, Yukio; Oosaku, Masayoshi; Hirose, Chikako
2010-08-01
Upper abdominal surgery leads to severe postoperative pain. Insufficient postoperative analgesia accompanies a high incidence of complications. Therefore, postoperative analgesia is very important. The epidural analgesia has many advantages. However it has a high risk of epidural hematoma in anticoagulated patients. Rectus sheath block provided safer and more reliable analgesia in recent years, by the development of ultrasound tools. We experienced two cases of the rectus sheath block in upper abdominal surgery under ultrasound guidance. Ultrasound guided rectus sheath block can reduce the risk of peritoneal puncture, bleeding, and other complications. Rectus sheath block is very effective to reduce postoperative pain in upper abdominal surgery as an alternative method to epidural anesthesia in anticoagulated patients.
Shuai, Yao; Ou, Xin; Luo, Wenbo; Mücklich, Arndt; Bürger, Danilo; Zhou, Shengqiang; Wu, Chuangui; Chen, Yuanfu; Zhang, Wanli; Helm, Manfred; Mikolajick, Thomas; Schmidt, Oliver G.; Schmidt, Heidemarie
2013-01-01
This work reports the effect of Ti diffusion on the bipolar resistive switching in Au/BiFeO3/Pt/Ti capacitor-like structures. Polycrystalline BiFeO3 thin films are deposited by pulsed laser deposition at different temperatures on Pt/Ti/SiO2/Si substrates. From the energy filtered transmission electron microscopy and Rutherford backscattering spectrometry it is observed that Ti diffusion occurs if the deposition temperature is above 600°C. The current-voltage (I–V) curves indicate that resistive switching can only be achieved in Au/BiFeO3/Pt/Ti capacitor-like structures where this Ti diffusion occurs. The effect of Ti diffusion is confirmed by the BiFeO3 thin films deposited on Pt/sapphire and Pt/Ti/sapphire substrates. The resistive switching needs no electroforming process, and is incorporated with rectifying properties which is potentially useful to suppress the sneak current in a crossbar architecture. Those specific features open a promising alternative concept for nonvolatile memory devices as well as for other memristive devices like synapses in neuromorphic circuits. PMID:23860408
Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process
NASA Astrophysics Data System (ADS)
Levy, Galit Katarivas; Aghion, Eli
Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.
2007-05-01
Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis
Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS
NASA Astrophysics Data System (ADS)
Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai
2017-12-01
To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.
NASA Astrophysics Data System (ADS)
Cornish, Sam; Searle, Mike
2017-08-01
The Wadi Mayh sheath fold in north-eastern Oman is one of the largest and best-exposed sheath folds known, and presents a unique opportunity to better understand this somewhat enigmatic style of deformation. We undertook high-resolution photographic surveying along Wadi Mayh to document the sheath fold in 61 georeferenced panoramic photomerges. Here we present ten such images that provide a structural interpretation of the sheath fold and surrounding structure. We resolve this structure in a simplified three-dimensional model and in two orthogonal cross sections, and propose a kinematic evolution to explain the geometry. The Wadi Mayh sheath fold is the most prominent example within what we suggest is a composite sequence of sheath folds, which is itself enclosed within a SSW-closing recumbent syncline at the base of the major Saih Hatat nappe. Sheath folding is accommodated within Permian Saiq Formation limestones showing carpholite assemblages (6-8 kbar; 275-375 °C). A major discontinuity separates this sequence from enveloping older rock units. The sequence formed during progressive top-to-north, ductile shearing as the overlying nappe migrated northwards with respect to the underthrusting Hulw unit. This process occurred during SSW-directed exhumation of partially subducted continental crust in NE Oman, approximately 15 Ma after obduction of the Oman ophiolite initiated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrailh, P.; LAPLACE, CNRS, F-31062 Toulouse; Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09
2009-09-01
During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion inmore » this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.« less
NASA Astrophysics Data System (ADS)
Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.
2009-09-01
During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.
Bhatt, Puneet; Tandel, Kundan; Singh, Alina; Kumar, M; Grover, Naveen; Sahni, A K
2016-12-01
Methicillin-resistant Coagulase-negative Staphylococci (MR-CoNS) have emerged as an important cause of nosocomial infections especially in patients with prosthetic devices and implants. This study was conducted with an aim to determine the prevalence of methicillin resistance among CoNS isolates at a tertiary care center by both phenotypic and genotypic methods. This cross sectional study was carried out from September 2011 to February 2014 in which 150 non-repetitive clinical isolates of CoNS were identified at the species level by conventional phenotypic methods. Cefoxitin disk (30 μg) diffusion testing was used to determine methicillin resistance and confirmed by detection of mec A gene by polymerase chain reaction (PCR). Out of 150 CoNS isolates, 51 were methicillin resistant by cefoxitin disk diffusion method. Out of these 51 isolates, mec A gene was detected only in 45 isolates. Moreover, mec A gene was also detected in 4 isolates, which were cefoxitin sensitive. Thus, the prevalence of methicillin resistance among CoNS was found to be 32.7% by PCR. The prevalence of methicillin resistance among Coagulase-negative Staphylococci (CoNS) was 32.7% by PCR detection of mec A gene. The sensitivity and specificity of cefoxitin disk diffusion method against mec A gene detection by PCR were found to be more than 90%. It can be concluded from this study that cefoxitin disk diffusion test can be used as a useful screening method to detect methicillin resistance among CoNS isolates. However, detection of mec A gene by PCR remains a more accurate method of detecting methicillin resistance among CoNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706; Stewart, Derek A., E-mail: derek.stewart@hgst.com
Metal oxide resistive memory devices based on Ta{sub 2}O{sub 5} have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta{sub 2}O{sub 5} is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta{sub 2}O{sub 5}. Identified diffusion paths are associated with collective motion of neighboringmore » atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta{sub 2}O{sub 5} is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta{sub 2}O{sub 5} based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.« less
Mass transfer resistance in ASFF reactors for waste water treatment.
Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M
1996-01-01
Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.
Electromagnetic effects on dynamics of high-beta filamentary structures
Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; ...
2015-01-12
The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation,more » it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.« less
Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation
NASA Astrophysics Data System (ADS)
Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.
2006-11-01
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
Comparison of 2 Kinds of Methods for the Treatment of Bladder Calculi.
Jia, Qilei; Jin, Tao; Wang, Kunjie; Zheng, ZeGui; Deng, Jiafu; Wang, Haibo
2018-04-01
To evaluate the safety and efficacy of sheath (JQL sheath) in the treatment of bladder calculi. We used the novel sheath that we have invented. The water sealing cap can only be passed through the ureteroscope without water leakage, and the diameters of the side hole and the sheath are sufficiently large. The clinical data of the 2 groups of patients include 45 cases of the novel sheath group and 41 cases in the control group. The overall success rate of the 2 groups was 94.79%. The success rate of the new stone sheath group was 97.78% and that of the control group was 90.24%. The operation times were 25.8 ± 12.5 and 46.6 ± 26.3 minutes for the new stone sheath and control groups, respectively. The stones were divided into 3 groups according to their sizes: less than 1.5, 1.5-2.5, and greater than 2.5 cm. The durations of the novel sheath groups were 12.5 ± 6.5, 24.5 ± 9.5, and 37.5 ± 11.5 minutes, whereas those of the control groups were 17.6 ± 6.5, 39.5 ± 18.5, and 49.5 ± 20.5 minutes. Five patients with unsuccessful endovascular treatment were treated with open surgery. Among the 5 cases, 1 case belongs to the novel sheath group and 4 cases to the control group. The novel sheath, whose production is simple and low cost, improves the efficiency of transurethral treatment of bladder calculi and shortens the operation time; furthermore, it involves skills that can be easily mastered and presents clinical application value. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric
2017-02-01
We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF + DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.
NASA Astrophysics Data System (ADS)
Gyergyek, T.; Kovačič, J.
2016-06-01
Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .
Protective sheath for a continuous measurement thermocouple
Phillippi, R.M.
1991-12-03
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.
Protective sheath for a continuous measurement thermocouple
Phillippi, R. Michael
1991-01-01
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.
Current sheath behavior and its velocity enhancement in a low energy Mather-type plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamir, F. M.; Behbahani, R. A.
The dynamics of the plasma sheath layer and its velocity enhancement have been studied in a low energy (4.9 kJ) Mather-type plasma focus device. Experiments were performed to study the effect of the Lorentz force variation on the current sheath expansion and movement, as well as the existence of traction between all parts of the sheath layer. Two different shape of anodes (cylindrical and step) along with an axial magnetic probe were used to investigate the effects of various experimental conditions, namely different charging voltages and gas pressures. In order to explore the upper limit of the current sheath velocity,more » a comparison has been made between the experimental data gathered by the probe and the Lee's computational model. The limitations governing the enhancement of the current sheath velocity that can lead to the deterioration of a good focusing phenomenon were also investigated. The increase of the current sheath velocity due to the usage of the step anode on ion generation and hard x-ray emissions have been demonstrated by means of an ion collector and a hard x-ray detector.« less
Modeling RF-induced Plasma-Surface Interactions with VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.
Theory of ion-matrix-sheath dynamics
NASA Astrophysics Data System (ADS)
Kos, L.; Tskhakaya, D. D.
2018-01-01
The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.
The in-process control of PVC sheath of a double core cable
NASA Astrophysics Data System (ADS)
Galeeva, N. S.; Redko, V. V.; Redko, L. A.
2018-01-01
In this work the possibility of the sheath hermiticity testing by measuring of the cable capacity per unit length variation during spark testing is considered. The research object is 2×0.75 HO3VVH2-F cable. According to the physical modelling it is proved that such defect of sheath as pinhole through the whole thickness of sheath can be registered for the test length 10 cm with test voltage frequencies 1kHz and 10kHz.
Side-welded fast response sheathed thermocouple
Carr, K.R.
A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4 to 5 times faster and the thermal shock and cycling capabilities are substantially improved.
Kinetic model for the collisionless sheath of a collisional plasma
Tang, Xian-Zhu; Guo, Zehua
2016-08-04
Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. Finally, these predictions are contrasted in this paper with direct kinetic simulations, showing good agreement.
Side-welded fast response sheathed thermocouple
Carr, Kenneth R.
1981-01-01
A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.
Hamed, Engy A; AbdelRahman, Mona A A; Shalaby, Azhar G; Morsy, Mai M; Nasef, Soad A
2016-05-01
Thirty-three isolates of Campylobacter coli and three isolates of Campylobacter jejuni were recovered from 150 1-day-old ducklings. All isolates were sensitive to chloramphenicol and amikacin, but resistant to sulfamethoxazole-trimethoprim (SXT) by the disc diffusion method. Most isolates were susceptible to tetracycline and erythromycin, but resistant to ofloxacin and ciprofloxacin. Of the 33 C. coli isolates, nine were positive for the tetracycline resistance gene tet(O), although only two of these were resistant to tetracycline in the disc diffusion test. None of the isolates possessed mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene infrequently linked to FQ-resistance. The finding indicated that ducklings may be a source of antibiotic resistant Campylobacter spp. with potential poultry and public health hazard. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimum DMOS cell doping profiles for high-voltage discrete and integrated device technologies
NASA Astrophysics Data System (ADS)
Shenai, Krishna
1992-05-01
It is shown that the implantation and activation sequences of B and As result in significant variations in the contact resistance and p-base sheet resistance beneath the n+-source diffusion of a DMOSFET cell. For identical process parameters, the contact resistance of As-doped n+ silicon was significantly improved when high-dose B was implanted due to higher As surface concentration. The SUPREM III process modeling results were found to be in qualitative agreement with the measured spreading resistance profiles and the discrepancies could be attributed to larger high-temperature diffusion constants used in SUPREM III and the coupled As-B diffusion/activation effects that are not accounted for in process modeling. The experimental results are discussed within the framework of fabricating high-performance DMOSFET cells and CMOS high-voltage devices on the same chip for discrete and smart-power applications.
Resistivity bound for hydrodynamic bad metals
Lucas, Andrew; Hartnoll, Sean A.
2017-01-01
We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ∼T2 in a Fermi liquid and the crossover to ρ∼T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity. PMID:29073054
Posterior rectus sheath hernia causing intermittent small bowel obstruction.
Lenobel, Scott; Lenobel, Robert; Yu, Joseph
2014-09-01
A posterior rectus sheath hernia is an abdominal wall hernia that is rarely encountered. Owing to its rarity, it can be easily overlooked in the setting of a patient presenting with abdominal pain. We report a case of a posterior rectus sheath hernia that caused intermittent small bowel obstruction. The unusual aspects of this case are that the defect was large, measuring 6 cm in the transverse diameter, and that it contained small bowel within a large portion of the rectus sheath. Because the defect was large and affected nearly the entire posterior rectus sheath, it was difficult to discern on computed tomography until a small bowel obstruction developed. In this case, a limited awareness of this clinical entity contributed to the delay in diagnosis.
Impact resistance of spar-shell composite fan blades
NASA Technical Reports Server (NTRS)
Graff, J.; Stoltze, L.; Varholak, E. M.
1973-01-01
Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.
Development of braided fiber seals for engine applications
NASA Technical Reports Server (NTRS)
Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Du, Guang-Wu; Steinetz, Bruce M.
1993-01-01
A new type of braided fiber seal was developed for high temperature engine applications. Development work performed includes seal design, fabrication, leakage flow testing, and flow resistance modeling. This new type of seal utilizes the high flow resistance of tightly packed fibers and the conformability of textile structures. The seal contains a core part with aligned fibers, and a sheath with braided fiber layers. Seal samples are made by using the conventional braiding process. Leakage flow measurements are then performed. Mass flow rate versus the simulated engine pressure and preload pressure is recorded. The flow resistance of the seal is analyzed using the Ergun equation for flow through porous media, including both laminar and turbulent effects. The two constants in the Ergun equation are evaluated for the seal structures. Leakage flow of the seal under the test condition is found to be in the transition flow region. The analysis is used to predict the leakage flow performance of the seal with the determined design parameters.
Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei
2012-02-21
Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all ofmore » these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.« less
Namekawa, Takeshi; Utsumi, Takanobu; Imamoto, Takashi; Kawamura, Koji; Oide, Takashi; Tanaka, Tomoaki; Nihei, Naoki; Suzuki, Hiroyoshi; Nakatani, Yukio; Ichikawa, Tomohiko
2016-07-01
Adrenal tumors with more than one cellular component are uncommon. Furthermore, an adrenal tumor composed of a pheochromocytoma and a malignant peripheral nerve sheath tumor is extremely rare. A composite pheochromocytoma with malignant peripheral nerve sheath tumor in a 42-year-old man is reported here. After adequate preoperative control, left adrenalectomy was performed simultaneously with resection of the ipsilateral kidney for spontaneous rupture of the left adrenal tumor. Pathological findings demonstrated pheochromocytoma and malignant peripheral nerve sheath tumor in a ruptured adrenal tumor. To date, there have been only four reported cases of composite pheochromocytoma with malignant peripheral nerve sheath tumor, so the present case is only the fifth case in the world. Despite the very poor prognosis of patients with pheochromocytoma and malignant peripheral nerve sheath tumors reported in the literature, the patient remains well without evidence of recurrence or new metastatic lesions at 36 months postoperatively. Copyright © 2012. Published by Elsevier Taiwan.
Ripley, Edward B [Knoxville, TN
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
RF Models for Plasma-Surface Interactions in VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.
ERIC Educational Resources Information Center
Shlyonsky, Vadim
2013-01-01
In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…
NASA Astrophysics Data System (ADS)
Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje
2014-11-01
A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.
Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+/V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmicmore » resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.« less
30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...
30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...
Wei, Zhe; Hu, Wei; Lin, Qishan; Cheng, Xiaoyan; Tong, Mengjie; Zhu, Lili; Chen, Rongzhi; He, Guangcun
2009-05-01
Engineering and breeding resistant plant varieties are the most effective and environmentally friendly ways to control agricultural pests and improve crop performance. However, the mechanism of plant resistance to pests is poorly understood. Here we used a quantitative mass-spectrometry-based proteomic approach for comparative analysis of expression profiles of proteins in rice leaf sheaths in responses to infestation by the brown planthopper (Nilaparvata lugens Stål, BPH), which is a serious rice crop pest. Proteins involved in multiple pathways showed significant changes in expression in response to BPH feeding, including jasmonic acid synthesis proteins, oxidative stress response proteins, beta-glucanases, protein; kinases, clathrin protein, glycine cleavage system protein, photosynthesis proteins and aquaporins. The corresponding genes of eight important proteins were further analyzed by quantitative RT-PCR. Proteomic and transcript responses that were related to wounding, oxidative and pathogen stress overlapped considerably between BPH-resistant (carrying the resistance gene BPH15) and susceptible rice lines. In contrast, proteins and genes related to callose metabolism remained unchanged and glycine cleavage system protein was up-regulated in the BPH-resistant lines, indicating that they have an efficient and specific defense mechanism. Our results provide new information about the interaction between rice and the BPH.
Ohta, M; Marceau, N; French, S W
1988-07-01
The architectural framework of the pericanalicular sheath composed of cytokeratin intermediate filaments (IFs) was examined after phalloidin treatment, bile duct ligation, and alcoholic fatty liver in rats to assess the role of IFs in experimental cholestasis. Electron microscopy examination of whole mount unembedded extracted liver slices was employed to visualize the cytoskeleton. Immunofluorescence staining and immunoelectron microscopy of the sheath were also performed using monoclonal antibodies to rat hepatocyte cytokeratins CK49 and CK55. The thickness of the wall and the diameter of the lumens were measured. In the phalloidin-treated rats, the pericanalicular sheath was markedly dilated and thickened. Immunofluorescence staining showed that the CK49 and CK55 IFs were localized in the pericanalicular region, particularly in the pericentral area. Immunoelectron microscopy documented that the IFs at the thickened pericanalicular sheath consisted of both CK49 and CK55, which means that the thickening of the bile canaliculus was in part due to an increase of IFs and not just due to an increase in actin filaments. In the livers where the bile duct was ligated, the pericanalicular sheath was irregularly dilated and some parts of the sheath appeared thinned out or missing. The belt desmosome also appeared absent focally in the pericanalicular sheath. Immunofluorescence studies showed that the staining for CK49 and CK55 was reduced focally in the pericanalicular region. The CK55 antibody stained the cytoplasm of hepatocytes in the periportal area more intensely when compared with the controls. These results indicated that the pericanalicular sheath and the belt desmosome were focally disrupted in response to extrahepatic bile duct obstruction. In the ethanol-fed rats, the pericanalicular sheath was dilated, thickened and tortuous, and appeared focally flattened by large fat droplets. IFs in the cytoplasm were pushed to the cell periphery and were compressed against each other by the fat droplets. CK55 and CK49 appeared increased as indicated by the observed immunofluorescence at the pericanalicular region. Immunoelectron microscopy showed that IFs of the thickened pericanalicular sheath were composed of CK55 and CK49. It is suggested that the pericanalicular sheath functions to mechanically provide a scaffolding for the bile canaliculus which is vulnerable to the different forces involved in cholestasis of different pathogenesis such as focal compression and distortion by fat, hypertrophy in response to increased F actin and focal destruction by increased intracanalicular pressure.
ICME-driven sheath regions deplete the outer radiation belt electrons
NASA Astrophysics Data System (ADS)
Hietala, H.; Kilpua, E. K.; Turner, D. L.
2013-12-01
It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward or southward IMF. The main controlling factors of the loss seem to be the dynamic pressure jump at the shock and the level of solar wind dynamic pressure ULF fluctuations within the sheath. We also discuss the superposed epoch time series of the Dst index and the stand-off distance of the magnetopause during these intervals. Based on our results we suggest that the separation of the effects from different parts of the ICME (sheath, MC) will be crucial for understanding how radiation belt electrons react to the CME impact.
Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu
2014-06-01
A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.
Development and pilot line production of lithium doped silicon solar cells
NASA Technical Reports Server (NTRS)
Payne, P. A.
1972-01-01
Scaling up the BCl3 without O2 diffusion beyond 30 to 40 cells was investigated by using a 100 cell capacity diffusion boat which held the cells vertically. Sheet resistances and I-V curves were uniform with 10 to 20 cells spaced along the entire boat, so the quantity was increased to 40 and then 60 cells per diffusion. There was no change in cell output and uniformity going from 20 to 40 cells per diffusion; however only half the lithium cells fabricated from slices diffused in the 60 cell diffusion had efficiencies of 11% or better. Although uniform sheet resistances and I-V characteristic curves were obtained with up to 60 cells in the BCl3 with O2 diffusion, the short circuit currents were approximately 15% lower than the anticipated 135 to 140 mA. Consequently, work on this diffusion process has been aimed solely at increasing the short circuit current. The diffusion temperature was lowered from 1055 to 1000 and 950 C, and at each of these temperatures variations in diffusion time were investigated. At 1000 C short circuit currents were approximately 10 mA higher, 130 rather than 120 mA average.
Plasma-Sheath-Surface Dynamics
1990-09-01
Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. IJ. Morey and C.K. Birdsall, "Traveling Wave-Tube Simulation...Theilhaber, "Analytic Solutions and Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. S.E. Parker, and C.K
Electric/magnetic field sensor
Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV
2009-01-27
A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.
Kim, Sunghoon
2015-12-01
A tunneled central line catheter placement using a subclavian vein approach can be complicated by an occurrence of peel-away sheath kink which prevents the advancement of the catheter through the sheath. The kink is created due to the angular junction of subclavian and brachiocephalic veins which meet at 90 degree angle. A technique is described which corrects the peel-away sheath kink by extending the subclavian/brachiocephalic vein angle to greater than 90 degrees by abducting the patient's arm. Copyright © 2015 Elsevier Inc. All rights reserved.
Porous protective solid phase micro-extractor sheath
Andresen, Brian D.; Randich, Erik
2005-03-29
A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.
Posterior Rectus Sheath Hernia Causing Intermittent Small Bowel Obstruction
Lenobel, Scott; Lenobel, Robert; Yu, Joseph
2014-01-01
A posterior rectus sheath hernia is an abdominal wall hernia that is rarely encountered. Owing to its rarity, it can be easily overlooked in the setting of a patient presenting with abdominal pain. We report a case of a posterior rectus sheath hernia that caused intermittent small bowel obstruction. The unusual aspects of this case are that the defect was large, measuring 6 cm in the transverse diameter, and that it contained small bowel within a large portion of the rectus sheath. Because the defect was large and affected nearly the entire posterior rectus sheath, it was difficult to discern on computed tomography until a small bowel obstruction developed. In this case, a limited awareness of this clinical entity contributed to the delay in diagnosis. PMID:25426248
NASA Astrophysics Data System (ADS)
Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da
2017-03-01
Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.
Experimental study on the fire protection properties of PVC sheath for old and new cables.
Xie, Qiyuan; Zhang, Heping; Tong, Lin
2010-07-15
The objective of the present study is to analyze the fire protection properties of old and new cables through TG, FTIR and MCC experiments. The results show that the mass loss of old cable sheath is clearly larger than the new one when the temperature is higher than 550 K in air or nitrogen atmosphere. It suggests that the old cable sheath starts to pyrolyze generally at the same temperature based on the analysis of the onset temperatures of mass loss. The results also show that there is a main peak DTG for the old and new cable sheath under each condition. However, the main peak DTG of old cable sheath is larger than that of the new cable sheath, especially in air atmosphere. The FTIR experiments show that the HCl is released by the new cable later but more quickly than the old cable. The MCC experiments suggest that compared with the new one, the peak heat release rate is larger for the old cable. It illustrates that the old cable sheath generally pyrolyzes and combusts more strongly and completely than the new one. Namely, the fire protection properties of the old cable in old buildings are relatively weak. 2010 Elsevier B.V. All rights reserved.
Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa.
Salih, Osman; He, Shaoda; Planamente, Sara; Stach, Lasse; MacDonald, James T; Manoli, Eleni; Scheres, Sjors H W; Filloux, Alain; Freemont, Paul S
2018-02-06
Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Eckhoff, Kerstin; Wedel, Thilo; Both, Marcus; Bas, Kayhan; Maass, Nicolai; Alkatout, Ibrahim
2016-10-19
Rectus sheath hematoma is a rare clinical diagnosis, particularly in pregnancy. Due to unspecific symptoms, misdiagnosis is likely and could potentially endanger a patient as well as her fetus. A 26-year-old white woman presented with mild right-sided abdominal pain, which increased during palpation and movement, at 26 + 3 weeks' gestational age. Ultrasound imaging initially showed a round and well-demarcated structure, which appeared to be in contact with her uterine wall, leading to a suspected diagnosis of an infarcted leiomyoma. However, she reported increasing levels of pain and laboratory tests showed a significant drop in her initially normal hemoglobin level. A magnetic resonance imaging scan finally revealed a large type III rectus sheath hematoma on the right side. Because of progressive blood loss into her rectus sheath under conservative therapy, with a significant further decrease in her hemoglobin levels, surgical treatment via right-sided paramedian laparotomy was initiated. During the operation the arterial bleed could be ligated. She eventually achieved complete convalescence and delivered a healthy newborn spontaneously after 40 weeks of gestation. This case report highlights the clinical and diagnostic features of rectus sheath hematoma and shows the anatomical aspects of the rectus sheath, simplifying early and correct diagnosis.
Novel everting urologic access sheath: decreased axial forces during insertion.
Rubenstein, Jonathan N; Garcia, Maurice; Camargo, Affonso H L A; Joel, Andrew B; Stoller, Marshall L
2005-12-01
Advancement of urologic instruments through the genitourinary tract is associated with significant axial forces that likely contribute to patient discomfort, even after injection of a local anesthetic, and may lead to mucosal trauma, postprocedural dysuria and hematuria, and increased susceptibility to infection and strictures. Placing an everting urethral sheath prior to instrumentation may decrease these problems. Two 7-cm-long, 5-mm diameter urethral luminal models were created, one with and one without an artificial stricture. We measured the forces generated during advancement of a novel everting access sheath (Cystoglide; Percutaneous Systems, Mountain View, CA) through the models in comparison with a representative cystoscope and a urologic dilator simulating a traditional access sheath. The mean force generated during advancement of the everting sheath was significantly less than that of both the representative cystoscope (P<0.01) and the traditional access sheath (P<0.01). This held true for the urethral models both with and without an artificial stricture (P<0.01) and with and without lubrication (P<0.01). This novel introduction sheath markedly decreased the axial forces applied to an artificial urethral luminal wall. It is possible that the clinical use of this technology will decrease the discomfort and potential complications associated with lower urinary-tract endoscopy.
Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2017-10-01
Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.
Laser Diagnostic Method for Plasma Sheath Potential Mapping
NASA Astrophysics Data System (ADS)
Walsh, Sean P.
Electric propulsion systems are gaining popularity in the aerospace field as a viable option for long term positioning and thrusting applications. In particular, Hall thrusters have shown promise as the primary propulsion engine for space probes during interplanetary journeys. However, the interaction between propellant xenon ions and the ceramic channel wall continues to remain a complex issue. The most significant source of power loss in Hall thrusters is due to electron and ion currents through the sheath to the channel wall. A sheath is a region of high electric field that separates a plasma from a wall or surface in contact. Plasma electrons with enough energy to penetrate the sheath may result emission of a secondary electron from the wall. With significant secondary electron emission (SEE), the sheath voltage is reduced and so too is the electron retarding electric field. Therefore, a lower sheath voltage further increases the particle loss to the wall of a Hall thruster and leads to plasma cooling and lower efficiency. To further understand sheath dynamics, laser-induced fluorescence is employed to provide a non-invasive, in situ, and spatially resolved technique for measuring xenon ion velocity. By scanning the laser wavelength over an electronic transition of singly ionized xenon and collecting the resulting fluorescence, one can determine the ion velocity from the Doppler shifted absorption. Knowing the velocity at multiple points in the sheath, it can be converted to a relative electric potential profile which can reveal a lot about the plasma-wall interaction and the severity of SEE. The challenge of adequately measuring sheath potential profiles is optimizing the experiment to maximize the signal-to-noise ratio. A strong signal with low noise, enables high resolution measurements and increases the depth of measurement in the sheath, where the signal strength is lowest. Many improvements were made to reduce the background luminosity, increase the fluorescence intensity and collection efficiency, and optimize the signal processing equipment. Doing so has allowed for a spatial resolution of 60 microns and a maximum depth of measurement of 2 mm depending on conditions. Sheaths surrounding common Hall thruster ceramics at various plasma conditions were measured in an attempt to determine the effect of SEE and a numerical analysis of the plasma-wall interactions was conducted to further understand the phenomena and compare against obtained data.
Uchinami, Yuka; Sakuraya, Fumika; Tanaka, Nobuhiro; Hoshino, Koji; Mikami, Eri; Ishikawa, Taro; Fujii, Hitomi; Ishikawa, Takehiko; Morimoto, Yuji
2017-05-01
Ultrasound-guided rectus sheath block and local anesthetic infiltration are the standard options to improve postoperative pain for children undergoing surgery with a midline incision. However, there is no study comparing the effect of ultrasound-guided rectus sheath block with local anesthetic infiltration for children undergoing laparoscopic surgery. The aim of this trial was to compare the onset of ultrasound-guided rectus sheath block with that of local anesthetic infiltration for laparoscopic percutaneous extraperitoneal closure in children. We performed an observer-blinded, randomized, prospective trial. Enrolled patients were assigned to either an ultrasound-guided rectus sheath block group or a local anesthetic infiltration group. The ultrasound-guided rectus sheath block group (n = 17) received ultrasound-guided rectus sheath block with 0.2 ml·kg -1 of 0.375% ropivacaine per side in the posterior rectus sheath compartment. The local anesthetic infiltration group (n = 17) received local anesthetic infiltration with 0.2 ml·kg -1 of 0.75% ropivacaine. The Face, Legs, Activity, Cry, and Consolability (FLACC) pain scores were recorded at 0, 30, 60 min after arrival at the postanesthesia care unit. Of the 37 patients enrolled in this study, 34 completed the study protocol. A significant difference in the pain scale between the ultrasound-guided rectus sheath block group and local anesthetic infiltration group was found at 0 min (median: 0, interquartile range [IQR]: 0-1.5, vs median: 1, IQR 0-5, confidence interval of median [95% CI]: 0-3, P = 0.048), but no significant difference was found at 30 min (median: 1, IQR: 0-4 vs median: 6, IQR: 0-7, 95% CI: 0-5, P = 0.061), or 60 min (median: 0, IQR: 0-2 vs median: 1, IQR: 0-3, 95% CI: -1 to 1, P = 0.310). No significant difference was found in anesthesia time between the ultrasound-guided rectus sheath block and local anesthetic infiltration groups. No procedure-related complications were observed in either group. Ultrasound-guided rectus sheath block is a quicker way to control postoperative pain for pediatric patients undergoing laparoscopic extraperitoneal closure than local anesthetic infiltration, and thus may provide a clinical benefit. © 2017 John Wiley & Sons Ltd.
Markova, Maya Dyankova
2004-10-01
The extraction for nuclear matrix and intermediate filaments (NM-IF) is used to reveal, isolate and study these highly resistant structures in different cell types. We applied for the first time this chemical dissection to human spermatozoa and observed them as whole-mounts by unembedded electron microscopy. The general appearance of NM-IF extracted sperm cells was preserved, showing the intermediate filament-like properties of their cytoskeletal components. In most heads, a network was observed in subacrosomal position, consisting of hubs interconnected by filaments. It seemed to be overlaid on another, finer network. The neck retained its integrity, allowing observations of the three-dimensional structure of the segmented columns. More distally, axoneme and outer dense fibres were covered by submitochondrial cytoskeleton in the middle piece and fibrous sheath in the principal piece, with the annulus usually detached from the fibrous sheath. End piece microtubules were retained in most cells and showed a tendency of cohesion, remaining in a parallel bundle or forming flat sheets. In conclusion, our results provided additional structural details of human sperm cytoskeleton and demonstrated the advantages of combining different methodological approaches in ultrastructural research.
Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode
NASA Astrophysics Data System (ADS)
Takeuchi, Nozomi; Ishibashi, Naoto
2018-04-01
The production mechanism of liquid-phase H2O2 in dc driven plasma in O2 and Ar with a water electrode was investigated. When a water anode was used, the concentration of H2O2 increased linearly with the treatment time. The production rate was proportional to the discharge current, and there was no dependence on the gap distance. On the other hand, the production rate was much smaller with a water anode. We concluded that the production of gas-phase H2O2 in the cathode sheath just above a water cathode and diffusion of this H2O2 into the water constitute the key mechanism in the production of liquid-phase H2O2.
González-Ruiz, Víctor; Codesido, Santiago; Rudaz, Serge; Schappler, Julie
2018-03-01
Although several interfaces for CE-MS hyphenation are commercially available, the development of new versatile, simple and yet efficient and sensitive alternatives remains an important field of research. In a previous work, a simple low sheath-flow interface was developed from inexpensive parts. This interface features a design easy to build, maintain, and adapt to particular needs. The present work introduces an improved design of the previous interface. By reducing the diameter of the separation capillary and the emitter, a smaller Taylor cone is spontaneously formed, minimizing the zone dispersion while the analytes go through the interface and leading to less peak broadening associated to the ESI process. Numerical modeling allowed studying the mixing and diffusion processes taking place in the Taylor cone. The analytical performance of this new interface was tested with pharmaceutically relevant molecules and endogenous metabolites. The interface was eventually applied to the analysis of neural cell culture samples, allowing the identification of a panel of neurotransmission-related molecules. An excellent migration time repeatability was obtained (intra-day RSD <0.5% for most compounds, and <3.0% for inter-day precision). Most metabolites showed S/N ratios >10 with an injected volume of 6.7 nL of biological extract. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Christopher G. Hunt; Steven Lacher; Kolby Hirth; Linda Lorenz; Kenneth E. Hammel
2017-01-01
The mechanisms by which chemical modifications, specifically acetylation, improve the decay resistance of wood are a topic of active research. In the early stages of decay, fungi secrete lowmolecular- weight oxidants or oxidant precursors. These oxidants diffuse through the wet wood cell wall and oxidize cell wall polymers, which enable the decay process to proceed....
Diffusional falsification of kinetic constants on Lineweaver-Burk plots.
Ghim, Y S; Chang, H N
1983-11-07
The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.; Allison, J. F.; Arndt, R. A.
1980-01-01
A space solar cell concept which combines high cell output with low diffusion length damage coefficients is presented for the purpose of reducing solar cell susceptibility to degradation from the radiation environment. High resistivity n-i-p silicon solar cells ranging from upward of 83 micron-cm were exposed to AM0 ultraviolet illumination. It is shown that high resistivity cells act as extrinsic devices under dark conditions and as intrinsic devices under AM0 illumination. Resistive losses in thin n-i-p cells are found to be comparable to those in low resistivity cells. Present voltage limitations appear to be due to generation and recombination in the diffused regions.
Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU
Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Al-Haddad, N.; Kilpua, E. K. J.; Riley, P.
2018-01-01
We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward Bz. Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of −88 nT, pushes the subsolar magnetopause location to 6.3 RE, i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of −1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth’s radiation belts. PMID:29629250
Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU.
Lugaz, N; Farrugia, C J; Winslow, R M; Al-Haddad, N; Kilpua, E K J; Riley, P
2016-11-01
We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward B z . Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of -88 nT, pushes the subsolar magnetopause location to 6.3 R E , i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of -1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth's radiation belts.
Theory and Simulation of Electron Sheaths and Anode Spots in Low Pressure Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Scheiner, Brett Stanford
Electrodes in low pressure laboratory plasmas have a multitude of possible sheath structures when biased at a large positive potential. When the size of the electrode is small enough the electrode bias can be above the plasma potential. When this occurs an electron-rich sheath called an electron sheath is present at the electrode. Electron sheaths are most commonly found near Langmuir probes and other electrodes collecting the electron saturation current. Such electrodes have applications in the control of plasma parameters, dust confinement and circulation, control of scrape off layer plasmas, RF plasmas, and in plasma contactors and tethered space probes. The electron sheaths in these various systems most directly influence the plasma by determining how electron current is lost from the system. An understanding of how the electron sheath interfaces with the bulk plasma is necessary for understanding the behavior induced by positively biased electrodes in these plasmas. This thesis provides a dedicated theory of electron sheaths. Motivated by electron velocity distribution functions (EVDFs) observed in particle-in-cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the presheath model, an electron pressure gradient accelerates electrons to near the electron thermal speed by the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. Using PIC simulations, the form of a sheath near a small electrode with bias near the plasma potential is also studied. When the electrode is biased near the plasma potential, the EVDFs exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, instead the plasma remains quasineutral up to the electrode. Once the bias exceeds the plasma potential an electron sheath is present. In this case, 2D EVDFs indicate that the flow moment has comparable contributions from the flow shift and loss-cone truncation. The case of an electrode at large positive bias relative to the plasma potential is also studied. Here, the rate of electron impact ionization of neutrals increases near the electrode. If this ionization rate is great enough a double layer forms. This double layer can move outward separating a high potential plasma at the electrode surface from the bulk plasma. This phenomenon is known as an anode spot. Informed by observations from the first PIC simulations of an anode spot, a model has been developed describing the onset in which ionization leads to the buildup of positive space charge and the formation of a potential well that traps electrons near the electrode surface. A model for steady-state properties based on current loss, power, and particle balance of the anode spot plasma is also presented.
Theoretical and computational studies of the sheath of a planar wall
NASA Astrophysics Data System (ADS)
Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni
2012-03-01
We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).
NASA Technical Reports Server (NTRS)
Anderson, John R.; Wilbur, Paul J.
1989-01-01
The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.
Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed
2016-01-01
We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.
The fibrous flexor sheaths of the fingers.
Jones, M M; Amis, A A
1988-01-01
The structure of the digital fibrous flexor sheath was examined by dissection and histology. The presence of a specific system of named fibrous tissue bands, forming annular and cruciate pulleys, was noted confirming details which are well established in the surgical literature although not detailed by the anatomical texts. These pulleys were linked by thin parts of the sheath. When the inner aspect of the sheath was examined, it was found that it was not a continuous smooth surface, as depicted in both anatomical and surgical texts. The thin parts of the sheath often overlapped the free edges of the pulleys before attaching to their superficial aspects, so that the pulleys possessed free edges within the sheath. Forty eight cadaveric fingers were examined in order to determine the frequency of occurrence and sizes of these overlaps. The largest and most frequent overlap was found at the distal end of the A2 pulley (which attaches to the proximal phalanx). Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 (cont.) Fig. 7 Fig. 8 Fig. 9 PMID:3417546
Choi, Kyung-Suk; Harfe, Brian D.
2011-01-01
The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a “wrapper” around the notochord to constrain these cells along the vertebral column. PMID:21606373
Choi, Kyung-Suk; Harfe, Brian D
2011-06-07
The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.
NASA Astrophysics Data System (ADS)
Naggary, Schabnam; Brinkmann, Ralf Peter
2015-09-01
The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1991-01-01
This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.
Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.
Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan
2016-07-01
In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discontinuous model with semi analytical sheath interface for radio frequency plasma
NASA Astrophysics Data System (ADS)
Miyashita, Masaru
2016-09-01
Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.
The structure and development of the starch sheath in pea epicotyls
NASA Technical Reports Server (NTRS)
Sack, D. F.
1985-01-01
Graviperception in plant stems is thought to occur in endodermal cells differentiated as a starch sheath, but little is known about the ultrastructure of these cells in dicots. The structure of the pea starch sheath was studied with respect to gravity and to development in order to determine whether symplastic or apoplastic blockages exist and to describe any intracellular polarity. Amyloplasts increase in size towards the base of the epicotyl hook but are not consistently sedimented until the cells enter the zone exhibiting gravicurvature below the hook. The starch sheath cells are connected to each other and to cells of the cortex and the stele by plasmodesmata. A casparian strip exists in older endodermal cells but not at the stage that the endodermis is differentiated as a starch sheath. Amyloplasts were frequently observed in apparent contact with endoplasmic reticulum.
Rectus sheath hematoma: three case reports
Kapan, Selin; Turhan, Ahmet N; Alis, Halil; Kalayci, Mustafa U; Hatipoglu, Sinan; Yigitbas, Hakan; Aygun, Ersan
2008-01-01
Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management. PMID:18221529
Iverson, Brian D; Blendell, John E; Garimella, Suresh V
2010-03-01
Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.
A new diffusion-inhibited oxidation-resistant coating for superalloys
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Glasgow, T. K.; Levine, S. R.
1981-01-01
A concept for enhanced protection of superalloys consists of adding an oxidation- and diffusion-resistant cermet layer between the superalloy and the outer oxidation-resistant metallic alloy coating. Such a duplex coating was compared with a physical-vapor-deposited (PVD) NiCrAlY coating in cyclic oxidation at 1150 C. The substrate alloy was MA 754 - an oxide-dispersion-strengthened superalloy that is difficult to coat. The duplex coating, applied by plasma spraying, outperformed the PVD coating on the basis of weight change and both macroscopic and metallographic observations.
Self-consistent simulation of high-frequency driven plasma sheaths
NASA Astrophysics Data System (ADS)
Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf
2011-10-01
Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.
Influence of post exposure bake time on EUV photoresist RLS trade-off
NASA Astrophysics Data System (ADS)
Vesters, Yannick; De Simone, Danilo; De Gendt, Stefan
2017-03-01
To achieve high volume manufacturing, EUV photoresists need to push back the "RLS trade-off" by simultaneously improving Resolution, Line-Width Roughness and Sensitivity (exposure dose). Acid diffusion in chemically amplified resist is known to impact these performances. This work studies the diffusion of acid in chemically amplified resist by varying the post exposure bake duration while monitoring the evolution of CD and LWR for 6 chemically amplified EUV photoresists (CAR). We observed a first regime where both CD and LWR quickly decrease during the first 30s of post exposure bake (PEB). This can be related to the deprotection reaction taking place in the exposed part of the resist. After 60s the decrease in CD and LWR slows down significantly, likely related to a regime of acid diffusion from exposed to unexposed region, and acid-quencher neutralization at the interface of these two regions. We tested two resists with different protecting group and the one having lower activation energy shows a faster CD change in the second regime, resulting in a worsening of LWR for longer PEB time. On the contrary, a resist with a high quencher loading shows reduced net diffusion of acid towards the unexposed region and controls the resist edge profile. In other words longer PEB does not degrade LWR, but as it reduces the line CD, sensitivity is impacted. With an appropriate ratio selection of quencher to PAG, an EUV dose reduction of up to 12% can be achieved with a change from a standard 60 second to a 240 second PEB time, while keeping LWR and resolution constant and therefore pushing the RLS performances. Finally, we confirmed that the observations on positive tone development (PTD) resist could be applied to negative tone development (NTD) resist: with a high quencher NTD resist we observed a dose reduction of 8% for longer PEB time, keeping LWR and resolution constant.
Edwards, Gerald E.; Black, Clanton C.
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571
Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis
NASA Astrophysics Data System (ADS)
Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.
2015-09-01
Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.
NASA Astrophysics Data System (ADS)
Lisovskiy, Valeriy; Krol, Hennadii; Osmayev, Ruslan; Yegorenkov, Vladimir
2016-09-01
This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO2. To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions- one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in carbon oxide have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. The inter-electrode distance has been chosen such that the discharge consists only of the cathode sheath and a small portion of the negative glow, i.e. the experiments have been performed in short tubes. In this case the voltage drop across the cathode sheath is equal approximately to the voltage drop across the electrodes. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility. The reason for this phenomenon may be related with a significant conversion of carbon dioxide molecules.
Marwah, Sanjay; Marwah, Nisha; Singh, Mandeep; Kapoor, Ajay; Karwasra, Rajender Kumar
2005-02-01
The incidence of fascial dehiscence and incisional hernia after two methods for abdominal wound closure (rectus sheath relaxation incisions and conventional mass closure) was studied in a randomized prospective clinical trial in a consecutive series of 100 patients undergoing midline laparotomy for peritonitis. The two groups were well matched for etiologies of peritonitis, the surgical procedures performed, and the presence of known risk factors for fascial dehiscence. Fifty patients each were randomized either to the conventional continuous mass closure procedure or the rectus sheath relaxation incision technique (designed to increase wound elasticity and decrease tension in the suture line) using identical polypropylene sutures. The incidence of postoperative complications such as duration of ileus, chest infection, and wound infection were not statistically different between the two groups. The intensity of postoperative pain in the rectus sheath relaxation incision group was significantly less. The incidence of wound hematoma was significantly increased in the rectus sheath relaxation incision group. The incidences of fascial dehiscence (16% vs,28%; p < 0.05) and incisional hernia (18% vs, 30%; p < 0.05) were significantly lower after rectus sheath relaxation incisions compared to conventional mass closure. Closure of the midline laparotomy wound in cases of peritonitis using the rectus sheath relaxation technique is safe and less painful, provides increased wound elasticity and decreased tension on the suture line, and significantly decreases the incidence of wound dehiscence.
Edwards, G E; Black, C C
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.
Using dust as probes to determine sheath extent and structure
NASA Astrophysics Data System (ADS)
Douglass, Angela; Land, V.; Qiao, K.; Matthews, L.; Hyde, T.
2016-08-01
Two in situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a radio frequency (RF) plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma towards the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that the particles exhibiting a levitation height that is independent of RF voltage indicate the sheath edge - the boundary between the quasineutral bulk plasma and the sheath. Therefore, both of these simple and inexpensive, yet effective, methods can be applied across a wide range of experimental parameters in any ground-based RF plasma chamber to gain useful information regarding the sheath, which is needed for interpretation of dusty plasma experiments.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
Various aspects of a sensitivity analysis, in particular, the impact of variations in metal sheet resistivity, metal line width, diffused layer sheet resistance, junction depth, base layer lifetime, optical coating thickness and optical coating refractive index and on process reproducibility for A's diffusion from a polymer dopant source and on module fabrication were studied. Model calculations show that acceptable process windows exist for each of these parameters.
Titanium aluminide intermetallic alloys with improved wear resistance
Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.
2014-07-08
The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.
Investigation of LRS dependence on the retention of HRS in CBRAM
NASA Astrophysics Data System (ADS)
Xu, Xiaoxin; Lv, Hangbing; Liu, Hongtao; Luo, Qing; Gong, Tiancheng; Wang, Ming; Wang, Guoming; Zhang, Meiyun; Li, Yang; Liu, Qi; Long, Shibing; Liu, Ming
2015-02-01
The insufficient retention prevents the resistive random access memory from intended application, such as code storage, FPGA, encryption, and others. The retention characteristics of high resistance state (HRS) switching from different low resistance state (LRS) were investigated in a 1-kb array with one transistor and one resistor configuration. The HRS degradation was found strongly dependent on the LRS: the lower the resistance of the LRS ( R LRS) is, the worse HRS retention will be. According to the quantum point contact model, the HRS corresponds to a tiny tunnel gap or neck bridge with atomic size in the filament. The degradation of HRS is due to the filling or widening of the neck point by the diffusion of copper species from the residual filament. As the residual filament is stronger in case of the lower R LRS, the active area around the neck point for copper species diffusion is larger, resulting in higher diffusion probability and faster degradation of HRS during the temperature-accelerated retention measurement.
FUEL ELEMENT AND METHOD OF PREPARATION
Kingston, W.E.
1961-04-25
A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.
Giske, Christian G.; Haldorsen, Bjørg; Matuschek, Erika; Schønning, Kristian; Leegaard, Truls M.; Kahlmeter, Gunnar
2014-01-01
Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n = 28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n = 12) and Enterococcus faecium (n = 18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n = 5), Norwegian (n = 13), and Swedish (n = 10) laboratories using the EUCAST disk diffusion method (n = 28) and the CLSI agar screen (n = 18) or the Vitek 2 system (bioMérieux) (n = 5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P = 0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P < 0.0001) or Merck Mueller-Hinton (MH) agar (P = 0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P = 0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges. PMID:24599985
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.
Ultrasound-guided rectus sheath block in children with umbilical hernia: Case series.
Alsaeed, Abdul Hamid; Thallaj, Ahmed; Khalil, Nancy; Almutaq, Nada; Aljazaeri, Ayman
2013-10-01
Umbilical hernia repair, a common day-case surgery procedure in children, is associated with a significant postoperative pain. The most popular peripheral nerve blocks used in umbilical hernia repair are rectus sheath infiltration and caudal block. The rectus sheath block may offer improved pain relief following umbilical hernia repair with no undesired effects such as lower limb motor weakness or urinary retention seen with caudal block which might delay discharge from the hospital. Ultrasound guidance of peripheral nerve blocks has reduced the number of complications and improved the quality of blocks. The aim of this case series is to assess the post rectus sheath block pain relief in pediatric patients coming for umbilical surgery. Twenty two (22) children (age range: 1.5-8 years) scheduled for umbilical hernia repair were included in the study. Following the induction of general anesthesia, the ultrasonographic anatomy of the umbilical region was studied with a 5-16 MHz 50 mm linear probe. An ultrasound-guided posterior rectus sheath block of both rectus abdominis muscles (RMs) was performed (total of 44 punctures). An in-plain technique using Stimuplex A insulated facet tip needle 22G 50mm. Surgical conditions, intraoperative hemodynamic parameters, and postoperative analgesia by means of the modified CHEOPS scale were evaluated. ultrasonograghic visualization of the posterior sheath was possible in all patients. The ultrasound guided rectus sheath blockade provided sufficient analgesia in all children with no need for additional analgesia except for one patient who postoperatively required morphine 0.1 mg/kg intravenously. There were no complications. Ultrasound guidance enables performances of an effective rectus sheath block for umbilical hernia. Use of the Stimuplex A insulated facet tip needle 22G 50mm provides easy, less traumatic skin and rectus muscle penetration and satisfactory needle visualiza.
A radio-frequency sheath model for complex waveforms
NASA Astrophysics Data System (ADS)
Turner, M. M.; Chabert, P.
2014-04-01
Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.
Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grin, A.; Lstiburek, J.
The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues weremore » discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.« less
Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P
1985-10-01
Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.
Benign Peripheral Nerve Sheath Tumor in a Wild Toco Toucan ( Ramphastos toco ).
Carvalho, Marcelo P N; Fernandes, Natalia C C A; Nemer, Viviane C; Neto, Ramiro N Dias; Teixeira, Rodrigo H F; Miranda, Bruna S; Mamprim, Maria J; Catão-Dias, José L; Réssio, Rodrigo A
2016-09-01
Peripheral nerve sheath tumors are a heterogeneous group of neoplasms that comprise neurofibromas, schwannomas, neurilemmomas, and perineuromas. In animals, peripheral nerve sheath neoplasms are most commonly diagnosed in dogs and cattle, followed by horses, goats, and cats, but their occurrence is uncommon in birds. An adult, free-living, male toco (common) toucan ( Ramphastos toco ) was admitted to the zoo animal clinic with weight loss, dehydration, and presence of a soft nodule adhered to the medial portion of the left pectoral muscle. Clinical, cytologic, and computed tomography scan results were indicative of a neoplasm. The toucan died during surgical resection of the mass. Necropsy, histopathologic, and immunohistochemical findings confirmed the diagnosis of benign peripheral nerve sheath tumor. To our knowledge, benign peripheral nerve sheath tumor has not previously been reported in a toucan or any other species in the order Piciformes.
Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980
NASA Technical Reports Server (NTRS)
Aston, G.
1980-01-01
An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
The endomembrane sheath: a key structure for understanding the plant cell?
NASA Technical Reports Server (NTRS)
Reuzeau, C.; McNally, J. G.; Pickard, B. G.
1997-01-01
Recent evidence suggests that integrin is abundant in endomembranes of plant cells, and the endomembranes are clad by a sheath of cytoskeleton including F-actin. A role for endomembrane integrin and the endomembrane sheath is proposed: this system might orchestrate metabolic regulation by providing and modulating loci for channelling, and might accelerate channeling as needed by dragging the endoplasmic reticulum (ER) and organelles through the cytoplasm. To accomplish this "streaming", F-actin might lever against the rest of the endomembrane sheath and the ER might also lever against adhesion sites (i.e., plasmodesmata and plasmalemmal control centers). As an important agent in the control of cellular activities, according to this model, the endomembrane sheath would play a major part in responses to diverse signals and stresses, and under extreme stress cell survival would depend on the ability of the system to maintain enough integrity to direct critical syntheses and degradations.
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.
2008-06-01
We have newly developed a numerical tool for the analysis of antenna impedance in plasma environment by making use of electromagnetic Particle-In-Cell (PIC) plasma simulations. To validate the developed tool, we first examined the antenna impedance in a homogeneous kinetic plasma and confirmed that the obtained results basically agree with the conventional theories. We next applied the tool to examine an ion-sheathed dipole antenna. The results confirmed that the inclusion of the ion-sheath effects reduces the capacitance below the electron plasma frequency. The results also revealed that the signature of impedance resonance observed at the plasma frequency is modified by the presence of the sheath. Since the sheath dynamics can be solved by the PIC scheme throughout the antenna analysis in a self-consistent manner, the developed tool has feasibility to perform more practical and complicated antenna analyses that will be necessary in real space missions.
NASA Astrophysics Data System (ADS)
Wilczek, Sebastian; Trieschmann, Jan; Schulze, Julian; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Derzsi, Aranka; Korolov, Ihor; Donkó, Zoltan
2013-09-01
The electron heating in capacitive discharges at very low pressures (~1 Pa) is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. By varying the driving frequency or the gap size of the discharge, energetic electrons reach the sheath edge at different temporal phases, i.e., the collapsing or expanding phase, or the moment of minimum sheath width. This work reports numerical experiments based on Particle-In-Cell simulations which show that at certain frequencies the discharge switches abruptly from a low density mode in a high density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This behavior is explained by the complex interaction of the bulk and the sheath. This work is supported by the German Research Foundation in the frame of TRR 87.
Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model
Imase, Masato; Watanabe, Keiji; Aoyagi, Hideki; Tanaka, Hideo
2008-01-01
Chlorella sorokiniana IAM C-212 produces a polysaccharide gel, termed a sheath, under photoautotrophic conditions. The C. sorokiniana sheath is a suitable habitat for several symbiotic microorganisms because it ensures close proximity between the C. sorokiniana and symbionts. In this study, we established a method for increasing the volume of the sheath produced by C. sorokiniana, and proposed a method for constructing artificial communities of Chlorella and symbiotic microorganisms. The C. sorokiniana sheath was increased by addition of calcium chloride solution. The sheath resulted in coflocculation of C. sorokiniana and the associated symbiotic bacteria, thus strengthening the bacterial–Chlorella symbiotic association. An application of this technique was demonstrated by constructing a complex of C. sorokiniana and a propionate-degrading bacterium (PDS1). Although propionate inhibited the growth of axenic C. sorokiniana, the C. sorokiniana–PDS1 complex showed good growth in a medium containing a high concentration of propionate. PMID:18269632
Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation.
Cui, Jiaolong; Tkachenko, Olga; Gogel, Hannah; Kipman, Maia; Preer, Lily A; Weber, Mareen; Divatia, Shreya C; Demers, Lauren A; Olson, Elizabeth A; Buchholz, Jennifer L; Bark, John S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S
2015-02-01
Sleep deprivation (SD) can degrade cognitive functioning, but growing evidence suggests that there are large individual differences in the vulnerability to this effect. Some evidence suggests that baseline differences in the responsiveness of a fronto-parietal attention system that is activated during working memory (WM) tasks may be associated with the ability to sustain vigilance during sleep deprivation. However, the neurocircuitry underlying this network remains virtually unexplored. In this study, we employed diffusion tensor imaging (DTI) to investigate the association between the microstructure of the axonal pathway connecting the frontal and parietal regions--i.e., the superior longitudinal fasciculus (SLF)--and individual resistance to SD. Thirty healthy participants (15 males) aged 20-43 years underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) at rested wakefulness prior to a 28-hour period of SD. Task-related fronto-parietal fMRI activation clusters during a Sternberg WM Task were localized and used as seed regions for probabilistic fiber tractography. DTI metrics, including fractional anisotropy, mean diffusivity, axial and radial diffusivity were measured in the SLF. The psychomotor vigilance test (PVT) was used to evaluate resistance to SD. We found that activation in the left inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) positively correlated with resistance. Higher fractional anisotropy of the left SLF comprising the primary axons connecting IPL and DLPFC was also associated with better resistance. These findings suggest that individual differences in resistance to SD are associated with the functional responsiveness of a fronto-parietal attention system and the microstructural properties of the axonal interconnections. Copyright © 2014 Elsevier Inc. All rights reserved.
Manipulation and simulations of thermal field profiles in laser heat-mode lithography
NASA Astrophysics Data System (ADS)
Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long
2017-12-01
Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.
Lefferts, W K; Hughes, W E; Heffernan, K S
2015-12-01
Exertional hypertension associated with acute high-intensity resistance exercise (RE) increases both intravascular and intracranial pressure (ICP), maintaining cerebrovascular transmural pressure. Carotid intravascular pressure pulsatility remains elevated after RE. Whether ICP also remains elevated after acute RE in an attempt to maintain the vessel wall transmural pressure is unknown. Optic nerve sheath diameter (ONSD), a valid proxy of ICP, was measured in 20 participants (6 female; 24 ± 4 yr, 24.2 ± 3.9 kg m(-)(2)) at rest (baseline), following a time-control condition, and following RE (5 sets, 5 repetition maximum bench press, 5 sets 10 repetition maximum biceps curls) using ultrasound. Additionally, intracranial hemodynamic pulsatility index (PI) was assessed in the ophthalmic artery (OA) by using Doppler. Aortic pulse wave velocity (PWV) was obtained from synthesized aortic pressure waveforms obtained via a brachial oscillometric cuff and carotid pulse pressure was measured by using applanation tonometry. Aortic PWV (5.2 ± 0.5-6.0 ± 0.7 m s(-1), P < 0.05) and carotid pulse pressure (45 ± 17-59 ± 19 mm Hg, P < 0.05) were significantly elevated post RE compared with baseline. There were no significant changes in ONSD (5.09 ± 0.7-5.09 ± 0.7 mm, P > 0.05) or OA flow PI (1.35 ± 0.2-1.38 ± 0.3, P > 0.05) following acute RE. In conclusion, during recovery from acute high-intensity RE, there are increases in aortic stiffness and extracranial pressure pulsatility in the absence of changes in ICP and flow pulsatility. These findings may have implications for alterations in cerebral transmural pressure and cerebral aneurysmal wall stress following RE.
NASA Astrophysics Data System (ADS)
Calvin, Mark; Punjabi, Alkesh
1996-11-01
We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.
Technology Solutions Case Study: Cladding Attachment Over Thick Exterior Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. Insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. Although the approach has proven effective, there is resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the verticalmore » displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly. In this project, researchers from Building Science Corporation, a Building America team, investigated these issues to better understand the mechanics behind this method of cladding attachment« less
Evaluation of different methods to detect methicillin resistance in Staphylococcus aureus (MRSA).
Alipour, Farzad; Ahmadi, Malahat; Javadi, Shahram
2014-01-01
The studies suggest that dogs living with human are potential risk of becoming MRSA carrier and increased risk of infections caused by MRSA. Phenotypic methods to detect methicillin resistance in Staphylococcus aureus (MRSA) are inadequate. The objective of the present study was to determine methicillin resistance in S. aureus by phenotypic susceptibility test (oxacillin disk diffusion, cefoxitin disk diffusion, oxacillin screen agar) and molecular methods (PCR as a gold standard) and the latex agglutination test for the detection of PBP2a and to evaluate the results of these tests for its sensitivity and specificity. A total of 100 swab samples were taken from muzzle site, in more contact with human, of dogs and MRSA were isolated. Oxacillin (1 μg), cefoxitin (30 μg) disk diffusion and oxacillin screen agar method were used. The isolates were also subjected to latex agglutination test for detection of PBP2a and PCR to detect mecA gene. By PCR 37% of isolates show the presence of mecA. Latex agglutination was found to be the most sensitive (97.29%) and cefoxitin disk diffusion to be the most specific (96.82%) tests for detection of MRSA. Our finding showed that combining oxacillin screen agar or cefoxitin disk diffusion with latex agglutination improves sensitivity and specificity to detect methicillin resistance S. aureus (MRSA) isolates. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Giner, Ana; Pascual, Laura; Bourgeois, Michael; Gyetvai, Gabor; Rios, Pablo; Picó, Belén; Troadec, Christelle; Bendahmane, Abdel; Garcia-Mas, Jordi; Martín-Hernández, Ana Montserrat
2017-09-05
In the melon exotic accession PI 161375, the gene cmv1, confers recessive resistance to Cucumber mosaic virus (CMV) strains of subgroup II. cmv1 prevents the systemic infection by restricting the virus to the bundle sheath cells and impeding viral loading to the phloem. Here we report the fine mapping and cloning of cmv1. Screening of an F2 population reduced the cmv1 region to a 132 Kb interval that includes a Vacuolar Protein Sorting 41 gene. CmVPS41 is conserved among plants, animals and yeast and is required for post-Golgi vesicle trafficking towards the vacuole. We have validated CmVPS41 as the gene responsible for the resistance, both by generating CMV susceptible transgenic melon plants, expressing the susceptible allele in the resistant cultivar and by characterizing CmVPS41 TILLING mutants with reduced susceptibility to CMV. Finally, a core collection of 52 melon accessions allowed us to identify a single amino acid substitution (L348R) as the only polymorphism associated with the resistant phenotype. CmVPS41 is the first natural recessive resistance gene found to be involved in viral transport and its cellular function suggests that CMV might use CmVPS41 for its own transport towards the phloem.
Origin of resistivity in reconnection
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.
2001-06-01
Resistivity is believed to play an important role in reconnection leading to the distinction between resistive and collisionless reconnection. The former is treated in the Sweet-Parker model of long current sheets, and the Petschek model of a small resistive region. Both models in spite of their different dynamics attribute to the violation of the frozen-in condition in their diffusion regions due to the action of resistivity. In collisionless reconnection there is little consensus about the processes breaking the frozen-in condition. The question is whether anomalous processes generate sufficient resistivity or whether other processes free the particles from slavery by the magnetic field. In the present paper we review processes that may cause anomalous resistivity in collisionless current sheets. Our general conclusion is that in space plasma boundaries accessible to in situ spacecraft, wave levels have always been found to be high enough to explain the existence of large enough local diffusivity for igniting local reconnection. However, other processes might take place as well. Non-resistive reconnection can be caused by inertia or diamagnetism.
Julie C. Weatherby; John C. Moser; Raymond J. Gagné; Huey N. Wallace
1989-01-01
The biology of a pine needle sheath midge, Contarinia acuta Gagné is described for a new host in Louisiana. This midge was found feeding within the needle sheath on elongating needles of loblolly pine, P. taeda L. Needle droop and partial defoliation were evident on heavily infested trees. Overwintering C. acuta...
An effective and practical fire-protection system. [for aircraft fuel storage and transport
NASA Technical Reports Server (NTRS)
Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.
1975-01-01
A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.
Laminated magnet field coil sheath
Skaritka, John R.
1987-12-01
a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.
Laminated magnet field coil sheath
Skaritka, J.R.
1987-05-15
A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.
NASA Astrophysics Data System (ADS)
Gradzki, Marek J.; Mizerski, Krzysztof A.
2018-03-01
Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here, we revisit a problem introduc`ed by Gilman: the short-wavelength linear stability of a plane layer of compressible isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height. In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero. We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength of the most unstable mode scaling as either λ /d∼ {{ \\mathcal U }}κ 3/5 or λ /d∼ {{ \\mathcal U }}κ 3/4 or λ /d∼ {{ \\mathcal U }}κ 1/3, where d is the layer thickness and {{ \\mathcal U }}κ is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong enough.
Blazar, P E; Floyd, E W; Earp, B E
2016-07-01
Controversy exists regarding intra-operative treatment of residual proximal interphalangeal joint contractures after Dupuytren's fasciectomy. We test the hypothesis that a simple release of the digital flexor sheath can correct residual fixed flexion contracture after subtotal fasciectomy. We prospectively enrolled 19 patients (22 digits) with Dupuytren's contracture of the proximal interphalangeal joint. The average pre-operative extension deficit of the proximal interphalangeal joints was 58° (range 30-90). The flexion contracture of the joint was corrected to an average of 28° after fasciectomy. In most digits (20 of 21), subsequent incision of the flexor sheath further corrected the contracture by an average of 23°, resulting in correction to an average flexion contracture of 4.7° (range 0-40). Our results support that contracture of the tendon sheath is a contributor to Dupuytren's contracture of the joint and that sheath release is a simple, low morbidity addition to correct Dupuytren's contractures of the proximal interphalangeal joint. Additional release of the proximal interphalangeal joint after fasciectomy, after release of the flexor sheath, is not necessary in many patients. IV (Case Series, Therapeutic). © The Author(s) 2015.
Mies, J.W.
1993-01-01
Remnant blocks of marble from the Moretti-Harrah dimension-stone quarry provide excellent exposure of meter-scale sheath folds. Tubular structures with elliptical cross-sections (4 ???Ryz ??? 5) are the most common expression of the folds. The tubes are elongate subparallel to stretching lineation and are defined by centimeter-scale layers of schist. Eccentrically nested elliptical patterns and opposing asymmetry of folds ('S' and 'Z') are consistent with the sheath-fold interpretation. Sheath folds are locally numerous in the Moretti-Harrah quarry but are not widely distributed in the Sylacauga Marble Group; reconnaissance in neighboring quarries provided no additional observations. The presence of sheath folds in part of the Talladega slate belt indicates a local history of plastic, non-coaxial deformation. Such a history of deformation is substantiated by petrographic study of an extracted hinge from the Moretti-Harrah quarry. The sheath folds are modeled as due to passive amplification of initial structures during simple shear, using both analytic geometry and graphic simulation. As indicated by these models, relatively large shear strains (y ??? 9) and longitudinal initial structures are required. The shear strain presumably relates to NW-directed displacement of overlying crystalline rocks during late Paleozoic orogeny. ?? 1993.
Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.
2012-10-01
Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.
Far-Field RF Sheaths due to Shear Alfvén Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Carter, Troy; D'Ippolito, Daniel A.; Myra, James R.
2013-10-01
Ion cyclotron resonance heating (ICRH) is an important tool in current fusion experiments and will be an essential heating component in ITER. ICRH could be limited by deleterious effects due to the formation of radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. in the divertor region). Far-field sheaths are thought to be caused by the direct launch of or mode conversion to a shear Alfvén wave with an electric field component parallel to the background magnetic field at the wall. In this experiment a limiter plate was inserted into a cylindrical plasma in the LAPD (ne ~ 1010-11 cm-3, Te ~ 5 eV, B0 = 1.2 kG) and RF sheaths were created by directly launching the shear Alfven wave. Plasma potential measurements were made with an emissive probe. DC plasma potential rectification was observed along field lines connected to the plate, serving as an indirect measure of RF sheath formation. 2-D maps of plasma properties and rectified plasma potential will be presented. This research is part of an ongoing campaign to study the formation and structure of RF sheaths.
NASA Technical Reports Server (NTRS)
Hash, David B.; Govindan, T. R.; Meyyappan, M.
2004-01-01
In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.
Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.
Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; liu, Ning
2018-01-01
Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator. PMID:29783675
Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; Liu, Ning
2018-05-18
Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator.
Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.
Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C
2010-09-30
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Use of metallic glasses for fabrication of structures with submicron dimensions
Wiley, John D.; Perepezko, John H.
1986-01-01
Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.
The diffusion of ions in unconsolidated sediments
Manheim, F.T.
1970-01-01
Diffusion in unconsolidated sediments generally proceeds at rates ranging from half to one twentieth of those applying to diffusion of ions and molecules in free solution. Diffusion rates are predictable with respect to porosity and path tortuosity in host sediments, and can be conveniently measured by determinations of electrical resistivity on bulk sediment samples. Net ion flux is further influenced by reactions of diffusing species with enclosing sediments, but such influences should not be confused with or lumped with diffusion processes. ?? 1970.
Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI.
Groeschel, Samuel; Hagberg, Gisela E; Schultz, Thomas; Balla, Dávid Z; Klose, Uwe; Hauser, Till-Karsten; Nägele, Thomas; Bieri, Oliver; Prasloski, Thomas; MacKay, Alex L; Krägeloh-Mann, Ingeborg; Scheffler, Klaus
2016-01-01
We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation. We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas. Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.
Ion sheath dynamics in a plasma for plasma-based ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatsuzuka, M.; Miki, S.; Azuma, K.
1999-07-01
Spatial and temporal growth and collapse of ion sheath around an electrode of a negative high-voltage pulse (voltage: {minus}10 kV, pulse duration: 10 {micro}s) have been studied in a plasma for plasma-based ion implantation. A spherical electrode of 1.9 cm in a diameter is immersed in a nitrogen plasma with the plasma density range of 10{sup 9} to 10{sup 10} cm{sup {minus}3}, the electron temperature of 1.4 eV and the gas pressure of 8x10{sup {minus}4} Torr. The transient sheath dynamics was observed by the measurement of electron saturation current to a Langmuir probe, where a depletion of electron saturation currentmore » indicates the arrival time of sheath edge at the probe position. The expanding speed of sheath edge is higher than the ion acoustic speed until the sheath length reaches the steady-state extent determined by Child-Langmuir law. In the region beyond the steady-state extent, the rarefying disturbance produced by sheath expansion continues to propagate into the plasma at the ion acoustic peed. After the pulse voltage is returned to zero (more exactly, the floating potential), the electron current begins to recover. When the pulse fall time is shorter than the plasma transit time, the electron saturation current overshoots the steady-state saturation current at once, resulting in an excess of plasma density which propagates like a tidal wave into the plasma at the ion acoustic speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, N. A.; Benilov, M. S.
A transformation of the ion momentum equation simplifies a mathematical description of the transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic point and weak effects come into play. For this reason, the passage of the ion fluid through the sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different scenarios of asymptotic matching in the plasma-sheathmore » transition is analyzed by means of simple mathematical examples, asymptotic estimates, and numerical calculations. In the case of a collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in the intermediate region between the sheath and the presheath. The value corresponding to this plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye length to the ion mean free path is of the order of 10{sup -3} or smaller. There is no such plateau if the sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.« less
Kunoh, Tatsuki; Matsumoto, Syuji; Nagaoka, Noriyuki; Kanashima, Shoko; Hino, Katsuhiko; Uchida, Tetsuya; Tamura, Katsunori; Kunoh, Hitoshi; Takada, Jun
2017-07-26
Leptothrix species produce microtubular organic-inorganic materials that encase the bacterial cells. The skeleton of an immature sheath, consisting of organic exopolymer fibrils of bacterial origin, is formed first, then the sheath becomes encrusted with inorganic material. Functional carboxyl groups of polysaccharides in these fibrils are considered to attract and bind metal cations, including Fe(III) and Fe(III)-mineral phases onto the fibrils, but the detailed mechanism remains elusive. Here we show that NH 2 of the amino-sugar-enriched exopolymer fibrils is involved in interactions with abiotically generated Fe(III) minerals. NH 2 -specific staining of L. cholodnii OUMS1 detected a terminal NH 2 on its sheath skeleton. Masking NH 2 with specific reagents abrogated deposition of Fe(III) minerals onto fibrils. Fe(III) minerals were adsorbed on chitosan and NH 2 -coated polystyrene beads but not on cellulose and beads coated with an acetamide group. X-ray photoelectron spectroscopy at the N1s edge revealed that the terminal NH 2 of OUMS1 sheaths, chitosan and NH 2 -coated beads binds to Fe(III)-mineral phases, indicating interaction between the Fe(III) minerals and terminal NH 2 . Thus, the terminal NH 2 in the exopolymer fibrils seems critical for Fe encrustation of Leptothrix sheaths. These insights should inform artificial synthesis of highly reactive NH 2 -rich polymers for use as absorbents, catalysts and so on.
Ren, Juansheng; Gao, Fangyuan; Wu, Xianting; Lu, Xianjun; Zeng, Lihua; Lv, Jianqun; Su, Xiangwen; Luo, Hong; Ren, Guangjun
2016-11-23
An urgent need exists to identify more brown planthopper (Nilaparvata lugens Stål, BPH) resistance genes, which will allow the development of rice varieties with resistance to BPH to counteract the increased incidence of this pest species. Here, using bioinformatics and DNA sequencing approaches, we identified a novel BPH resistance gene, LOC_Os06g03240 (MSU LOCUS ID), from the rice variety Ptb33 in the interval between the markers RM19291 and RM8072 on the short arm of chromosome 6, where a gene for resistance to BPH was mapped by Jirapong Jairin et al. and renamed as "Bph32". This gene encodes a unique short consensus repeat (SCR) domain protein. Sequence comparison revealed that the Bph32 gene shares 100% sequence identity with its allele in Oryza latifolia. The transgenic introgression of Bph32 into a susceptible rice variety significantly improved resistance to BPH. Expression analysis revealed that Bph32 was highly expressed in the leaf sheaths, where BPH primarily settles and feeds, at 2 and 24 h after BPH infestation, suggesting that Bph32 may inhibit feeding in BPH. Western blotting revealed the presence of Pph (Ptb33) and Tph (TN1) proteins using a Penta-His antibody, and both proteins were insoluble. This study provides information regarding a valuable gene for rice defence against insect pests.
Ren, Juansheng; Gao, Fangyuan; Wu, Xianting; Lu, Xianjun; Zeng, Lihua; Lv, Jianqun; Su, Xiangwen; Luo, Hong; Ren, Guangjun
2016-01-01
An urgent need exists to identify more brown planthopper (Nilaparvata lugens Stål, BPH) resistance genes, which will allow the development of rice varieties with resistance to BPH to counteract the increased incidence of this pest species. Here, using bioinformatics and DNA sequencing approaches, we identified a novel BPH resistance gene, LOC_Os06g03240 (MSU LOCUS ID), from the rice variety Ptb33 in the interval between the markers RM19291 and RM8072 on the short arm of chromosome 6, where a gene for resistance to BPH was mapped by Jirapong Jairin et al. and renamed as “Bph32”. This gene encodes a unique short consensus repeat (SCR) domain protein. Sequence comparison revealed that the Bph32 gene shares 100% sequence identity with its allele in Oryza latifolia. The transgenic introgression of Bph32 into a susceptible rice variety significantly improved resistance to BPH. Expression analysis revealed that Bph32 was highly expressed in the leaf sheaths, where BPH primarily settles and feeds, at 2 and 24 h after BPH infestation, suggesting that Bph32 may inhibit feeding in BPH. Western blotting revealed the presence of Pph (Ptb33) and Tph (TN1) proteins using a Penta-His antibody, and both proteins were insoluble. This study provides information regarding a valuable gene for rice defence against insect pests. PMID:27876888
Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens.
Zhang, Jin; Luo, Ting; Wang, Wanwan; Cao, Tiantian; Li, Ran; Lou, Yonggen
2017-10-01
DELLA proteins, negative regulators of the gibberellin (GA) pathway, play important roles in plant growth, development and pathogen resistance by regulating multiple phytohormone signals. Yet, whether and how they regulate plant herbivore resistance remain unknown. We found that the expression of the rice DELLA gene OsSLR1 was down-regulated by an infestation of female adults of the brown planthopper (BPH) Nilaparvata lugens. On one hand, OsSLR1 positively regulated BPH-induced levels of two mitogen-activated protein kinase and four WRKY transcripts, and of jasmonic acid, ethylene and H 2 O 2 . On the other hand, silencing OsSLR1 enhanced constitutive levels of defence-related compounds, phenolic acids, lignin and cellulose, as well as the resistance of rice to BPH in the laboratory and in the field. The increased resistance in rice with silencing of OsSLR1 is probably due to impaired JA and ethylene pathways, and, at least in part, to the increased lignin level and mechanical hardness of rice leaf sheaths. Our findings illustrate that OsSLR1, acting as an early negative regulator, plays an important role in regulating the resistance of rice to BPH by activating appropriate defence-related signalling pathways and compounds. Moreover, our data also provide new insights into relationships between plant growth and defence. © 2017 John Wiley & Sons Ltd.
Tatineni, Satyanarayana; Wosula, Everlyne N; Bartels, Melissa; Hein, Gary L; Graybosch, Robert A
2016-09-01
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein-tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.
Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu
2014-04-22
Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.
Exogenous superoxide dismutase may lose its antidotal ability on rice leaves
USDA-ARS?s Scientific Manuscript database
Leaf diffusates of the resistant rice cultivars suppressed spore germination of blast fungus (Magnaporthe grisea). Bovine Cu-Zn superoxide dismutase (SOD) added to the diffusate abolished its toxicity. However, the enzyme added to the inoculum did not affect the toxicity of the diffusate. Even the s...
NASA Astrophysics Data System (ADS)
Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag
2012-11-01
A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the study of Tausanovic et al. (2010).
Sahara, Naruhiko; Perez, Pablo D.; Lin, Wen-Lang; Dickson, Dennis W.; Ren, Yan; Zeng, Huadong; Lewis, Jada; Febo, Marcelo
2016-01-01
Elevated expression of human hyperphosphorylated tau is associated with neuronal loss and white matter (WM) pathology in Alzheimer’s disease (AD) and related neurodegenerative disorders. Using in vivo diffusion tensor magnetic resonance imaging (DT-MRI) at 11.1 Tesla we measured age-related alterations in WM diffusion anisotropy indices in a mouse model of human tauopathy (rTg4510) and nontransgenic (nonTg) control mice at the age of 2.5, 4.5, and 8 months. Similar to previous DT-MRI studies in AD subjects, 8-month-old rTg4510 mice showed lower fractional anisotropy (FA) values in WM structures than nonTg. The low WM FA in rTg4510 mice was observed in the genu and splenium of the corpus callosum, anterior commissure, fimbria, and internal capsule and was associated with a higher radial diffusivity than nonTg. Interestingly, rTg4510 mice showed lower estimates for the mode of anisotropy than controls at 2.5 months suggesting that changes in this diffusivity metric are detectable at an early stage preceding severe tauopathy. Immunogold electron microscopy partly supports our diffusion tensor imaging findings. At the age of 4 months, rTg4510 mice show axonal tau inclusions and unmyelinated processes. At later ages (12 months and 14 months) we observed inclusions in myelin sheath, axons, and unmyelinated processes, and a “disorganized” pattern of myelinated fiber arrangement with enlarged inter-axonal spaces in rTg4510 but not in nonTg mice. Our data support a role for the progression of tau pathology in reduced WM integrity measured by DT-MRI. Further in vivo DT-MRI studies in the rTg4510 mouse should help better discern the detailed mechanisms of reduced FA and anisotropy mode, and the specific role of tau during neurodegeneration. PMID:24411290
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. J. Palmer; DC Haggard; J. W. Herter
High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type Nmore » thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina insulation and molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple (HTIR-TC) based on molybdenum/niobium alloys, and developed at Idaho National Laboratory, was also tested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A. J.; Haggard, DC; Herter, J. W.
High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to bemore » only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard-fired alumina insulation and a molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple, based on molybdenum/niobium alloys and developed at Idaho National Laboratory, was also tested. (authors)« less
NASA Astrophysics Data System (ADS)
Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki
2016-09-01
The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
2017-06-01
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
NASA Astrophysics Data System (ADS)
Chen, Wencong; Zhang, Xi; Diao, Dongfeng
2018-05-01
We propose a fast semi-analytical method to predict ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas, which are difficult to measure in commercial plasma reactors. In the intermediate frequency regime, the ion density within the sheath is strongly modulated by the low-frequency sheath electric field, making the time-independent ion density assumption employed in conventional models invalid. Our results are in a good agreement with experimental measurements and computer simulations. The application of this method will facilitate the understanding of ion–material interaction mechanisms and development of new-generation plasma etching devices.
NASA Astrophysics Data System (ADS)
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
Rectus sheath hematoma of the abdomen. Case report.
Villena-Tovar, José Francisco
2010-01-01
Rectus sheath hematoma in the vast number of cases is due to an inferior epigastric artery tear occasionally due to trauma (not considered serious) or alterations in coagulation or use of anticoagulant therapy. It is an unlikely and difficult to diagnose pathology. We present the case of a 61-year-old female patient. The patient presented in emergency service with sudden abdominal pain caused by coughing as a result of an upper respiratory tract infection. The culmination was a spontaneous rectus sheath hematoma. Rectus sheath hematoma is a diagnosis to consider in a previously asymptomatic patient who presents with clinical features of acute pain and appearance of increase of volume in the abdominal wall involving the rectus muscles.
Rectus sheath haematoma: a rare masquerader for abdominal pain.
Changal, Khalid Hamid; Saleem, Saad; Ghous, Ghulam
2017-04-13
Rectus sheath haematoma is a rare cause of abdominal pain. It can be easily confused for other causes of acute abdomen and may even lead to unnecessary laparotomies. Our patient has the rectus sheath haematoma because of violent coughing and on presentation had no obvious clinical sign pointing to the same. Diagnosis was made by a CT scan of the abdomen, and patient was treated conservatively. Rectus sheath haematomas are usually present on the posterior aspect of the rectus muscles and thus may not be clinically appreciable. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wada, Morito; Kitayama, Masato; Hashimoto, Hiroshi; Kudo, Tsuyoshi; Kudo, Mihoko; Takada, Norikazu; Hirota, Kazuyoshi
2012-01-01
A rectus sheath block can provide postoperative analgesia for midline incisions. However, information regarding the pharmacokinetics of local anesthetics used in this block is lacking. In this study, we detail the time course of ropivacaine concentrations after this block. Thirty-nine patients undergoing elective lower abdominal surgery were assigned to 3 groups receiving rectus sheath block with 20 mL of different concentrations of ropivacaine. Peak plasma concentrations were dose dependent, and there were no significant differences in the times to peak plasma concentrations. The present data also suggested a slower absorption kinetics profile for ropivacaine after rectus sheath block than other compartment blocks.
NASA Technical Reports Server (NTRS)
Aston, G.; Wilbur, P. J.
1981-01-01
The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
Fabrication of (Ba,K)Fe2As2 tapes by ex situ PIT process using Ag-Sn alloy single sheath
NASA Astrophysics Data System (ADS)
Togano, K.; Gao, Z.; Matsumoto, A.; Kikuchi, A.; Kumakura, H.
2017-01-01
Instead of ordinal pure Ag, Ag-based Sn binary alloys (up to 7.5 at%Sn) with higher mechanical strength are used for the sheath material of ex situ powder-in-tube (PIT)-processed (Ba,K)Fe2As2(Ba-122) tapes. We found that the use of the Ag-Sn alloy enhances the densification and texturing of the Ba-122 core, resulting in higher transport, J c. Moreover, the optimum heat treatment temperature for a high J c can be lowered by around 100 °C due to the higher packing density of the Ba-122 core prior to the final heat treatment. We also found that the smoothness of the interface between the sheath and Ba-122 core is significantly improved by using the Ag-Sn binary alloy sheaths. These results show that the Ag-Sn alloy is promising as a sheath material in PIT-processed Ba-122 superconducting wires.
Effects of a reentry plasma sheath on the beam pointing properties of an array antenna
NASA Astrophysics Data System (ADS)
Bai, Bowen; Liu, Yanming; Lin, Xiaofang; Li, Xiaoping
2018-03-01
The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry "blackout" problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM) waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.
Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko
2008-04-01
Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.
Shapira, Or; Khadka, Sudha; Israeli, Yair; Shani, Uri; Schwartz, Amnon
2009-05-01
Typical salt stress symptoms appear in banana (Musa sp., cv. 'Grand Nain' AAA) only along the leaf margins. Mineral analysis of the dry matter of plants treated with increasing concentrations of KCl or NaCl revealed significant accumulation of Na+, but not of K+ or Cl(-), in the affected leaf margins. The differential distribution of the three ions suggests that water and ion movement out of the xylem is mostly symplastic and, in contrast to K+ and Cl(-), there exists considerable resistance to the flow of Na+ from the xylem to the adjacent mesophyll and epidermis. The parallel veins of the lamina are enclosed by several layers of bundle sheath parenchyma; in contrast, the large vascular bundle that encircles the entire lamina, and into which the parallel veins merge, lacks a complete bundle sheath. Xylem sap containing a high concentration of Na+ is 'pulled' by water tension from the marginal vein back into the adjacent mesophyll without having to cross a layer of parenchyma tissue. When the marginal vein was dissected from the lamina, the pattern of Na+ distribution in the margins changed markedly. The distinct anatomy of the marginal vein plays a major role in the accumulation of Na+ in the margins, with the latter serving as a 'dumping site' for toxic molecules.
2012-09-01
TITLE: Convection-Enhanced Delivery ( CED ) in an Animal Model of Malignant Peripheral Nerve Sheath ( MPNST ) Tumors and Plexiform Neurofibromas (PN...within the sciatic nerve. 15. SUBJECT TERMS Convection-Enhanced Delivery ( CED ), Malignant Peripheral Nerve Sheath ( MPNST ), Plexiform Neurofibromas...determine the distribution of macromolecules delivered to intraneural PNs and MPNST via CED . Design: Orthotopic xenograft models of sciatic intraneural
Method for forming a thermocouple
Metz, Hugh J.
1979-01-01
A method is provided for producing a fast response, insulated junction thermocouple having a uniform diameter outer sheath in the region of the measuring junction. One step is added to the usual thermocouple fabrication process that consists in expanding the thermocouple sheath following the insulation removal step. This makes it possible to swage the sheath back to the original diameter and compact the insulation to the desired high density in the final fabrication step.
An Analysis of Quality in the Modular Housing Industry.
1991-12-01
finishing, Station 5, installs rough plumbing and applies the first coat of drywall joint compound . The unit continues to ceiling/roof setting, Station...with I joint compound and drywall or plywood plates. 3 14. Rigid waferboard, oriented strand board, or plywood is used for exterior wall sheathing to...completed and tested, the second coat of joint compound is placed, and windows and doors are set. Insulation, exterior sheathing, roof sheathing
Rectus sheath hematoma with low molecular weight heparin administration: a case series.
Sullivan, Laura E J; Wortham, Dale C; Litton, Kayleigh M
2014-09-01
Rectus sheath hematoma is an uncommon but potentially serious bleeding complication that can occur spontaneously or as a result of anticoagulation administration. Case number one: A 62 year old chronically ill Caucasian female develops a rectus sheath hematoma seven days after hospital discharge. The previous hospitalization included low molecular weight heparin administration for deep vein thrombosis prophylaxis. The patient ultimately chooses comfort care and expires due to sepsis and respiratory failure. Case number two: A 79 year old Caucasian male develops a rectus sheath hematoma during hospital admission where LMWH is used for deep vein thrombosis prophylaxis. He is managed conservatively; however, his hematocrit drops from 46 to 25.8%. Case number three: A 44 year old chronically ill Caucasian female is treated with therapeutic low molecular weight heparin for recent deep vein thrombosis during a hospital admission. She develops a large rectus sheath hematoma requiring embolization as well as blood transfusion. We believe this reflects an underreported significant cause of morbidity and mortality with low molecular weight heparin administration. We review the pathophysiology of rectus sheath hematoma as well as its presentation, diagnosis, and treatment. We identify at-risk populations and proposed contributing factors. We also discuss factors leading to underreporting as well as preventive strategies implemented at our institution.
Coronal mass ejections and their sheath regions in interplanetary space
NASA Astrophysics Data System (ADS)
Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.
2017-11-01
Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.
NASA Astrophysics Data System (ADS)
Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming
2018-01-01
The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.
Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression
NASA Astrophysics Data System (ADS)
Nishiyama, S.; Monma, M.; Sasaki, K.
2016-09-01
Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.
Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.
Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less
Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng
2016-01-01
The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Space plasma contactor research, 1987
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.
NASA Technical Reports Server (NTRS)
Brock, T. G.; Kaufman, P. B.
1991-01-01
The leaf sheath base of the seedling of Avena sativa was characterized for growth response to hormones and sucrose. Six day old plants, raised under a 10:14 hr light:dark cycle, were excised at the coleoptilar node and 1 cm above the node for treatment. The growth of the leaf sheath base was promoted by gibberellic acid (GA3) and this response was dose dependent. The lag to response initiation was approximately 4 hr. Growth with or without GA3 (10 micromoles) was transient, diminishing appreciably after 48 hr. The addition of 10 mM sucrose greatly prolonged growth; the effect of GA3 and sucrose was additive. Neither indole-3-acetic acid (IAA) nor the cytokinin N6-benzyladenine (BA), alone or in combination, promoted the growth of leaf sheath bases. However, both significantly inhibited the action of GA3. The inhibitory effect of IAA was dose dependent and was not affected by the addition of BA or sucrose. These results indicate that the growth of leaf sheath bases of Avena sativa is promoted specifically by gibberellin, that this action depends on the availability of carbohydrates from outside of the leaf sheath base, and that the promotional effect of GA3 can be modified by either auxins or cytokinins.
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Shibata, Kazunari
2017-03-01
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.
Attic construction with sheathing-applied insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, W.B.
1995-12-31
Two years of study at a building research laboratory have been applied to cathedralized residential attic construction. Cathedralized attics are rafter-framed or truss-framed attics with flat ceilings in which the insulation is placed against the underside of the roof sheathing rather than on top of the ceiling drywall. The potential benefits of sheathing-applied insulation are considerable and are due to the fact that the attic space becomes part of the conditioned volume. Concern is often expressed that moisture damage may occur in the sheathing. The intent of the current study was to address those concerns. This study allowed an assessmentmore » of the performance of cathedralized ceilings, given the following construction variables: (1) ventilation vs. no ventilation, (2) continuous air chute construction vs. stuffed insulation construction, and (3) opens joints in exposed kraft facing vs. taped joints. The results were compared to a concurrent study of the performance of cathedral ceilings with sloped ceiling drywall. The results show that having an air chute that ensures an air gap between the sheathing and the top of the insulation is the critical factor. Ventilation and the taping of joints were minor determinants of the moisture performance of the sheathing. These results are consistent with the results of normal cathedral ceiling construction performance.« less
NASA Astrophysics Data System (ADS)
Sung, Yun Kyung; Ahn, Byung Wook; Kang, Tae Jin
2012-03-01
One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.
In vivo photoacoustic imaging of prostate brachytherapy seeds
NASA Astrophysics Data System (ADS)
Lediju Bell, Muyinatu A.; Kuo, Nathanael P.; Song, Danny Y.; Kang, Jin; Boctor, Emad M.
2014-03-01
We conducted an approved canine study to investigate the in vivo feasibility of photoacoustic imaging for intraoperative updates to brachytherapy treatment plans. Brachytherapy seeds coated with black ink were inserted into the canine prostate using methods similar to a human procedure. A transperineal, interstitial, fiber optic light delivery method, coupled to a 1064 nm laser, was utilized to irradiate the prostate and the resulting acoustic waves were detected with a transrectal ultrasound probe. The fiber was inserted into a high dose rate (HDR) brachytherapy needle that acted as a light-diffusing sheath, enabling radial light delivery from the tip of the fiber inside the sheath. The axis of the fiber was located at a distance of 4-9 mm from the long axis of the cylindrical seeds. Ultrasound images acquired with the transrectal probe and post-operative CT images of the implanted seeds were analyzed to confirm seed locations. In vivo limitations with insufficient light delivery within the ANSI laser safety limit (100 mJ/cm2) were overcome by utilizing a short-lag spatial coherence (SLSC) beamformer, which provided average seed contrasts of 20-30 dB for energy densities ranging 8-84 mJ/cm2. The average contrast was improved by up to 20 dB with SLSC beamforming compared to conventional delay-and-sum beamforming. There was excellent agreement between photoacoustic, ultrasound, and CT images. Challenges included visualization of photoacoustic artifacts that corresponded with locations of the optical fiber and hyperechoic tissue structures.
Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi
2017-01-01
In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737
Huston, Kyle J; Kiemen, Ashley; Larson, Ronald G
2018-06-12
Experiments have shown that relaxation of oil/water interfacial tension by adsorption of alkyl ethoxylate surfactants from water onto an oil droplet is delayed relative to diffusion-controlled adsorption. We examine possible causes of this delay, and we show that several are implausible. We find that re-dissolution of the surfactant in the oil droplet cannot explain the apparent interfacial resistance at short times, because the interface will preferentially fill before any such re-dissolution occurs. We also perform umbrella sampling with molecular dynamics simulation and do not find any evidence of a free energy barrier or low-diffusivity zone near the interface. Nor do we find evidence from simulation that pre-micellar aggregation slows diffusion enough to cause the observed resistance to interfacial adsorption. We are therefore unable to pinpoint the cause of the resistance, but we suggest that "dead time" associated with the experimental method could be responsible - specifically a local depletion of surfactant by the ejected droplet when creating the fresh interface between the oil and water.
Yang, X F; Luo, G H; Ding, Z H; Li, G X; Chen, X W; Zhong, S Z
2014-11-01
The study aimed to perform an anatomical observation on the inferomedial extension of the renal fascia (RF) to the pelvis and explore its relationship with the hypogastric nerves (HGNs). Gross anatomy was performed on 12 formalin-fixed and 12 fresh cadavers. Sectional anatomy was performed on four formalin-fixed cadavers. Different from the traditional concept, both the anterior and posterior RF included the outer and inner layer with different inferomedial extensions. The multiple layers of RF extended downward to form a sandwich-like and compound fascia sheath with potential and expandable spaces which was named as "the urogenital-hypogastric sheath." Below the level of the origin of the inferior mesenteric artery, the bilateral urogenital-hypogastric sheath communicated with the counterpart in front of the great vessels in the midline and the superior hypogastric plexus ran into the urogenital-hypogastric sheath which carried the HGNs, ureters, and genital vessels downward to their terminations in the pelvis. In the retrorectal space, the urogenital-hypogastric sheath surrounded the fascia propria of the rectum posterolaterally as a layer of coat containing HGNs. The multiple layers of RF with different extensions are the anatomical basis of the formation of the urogenital-hypogastric sheath. As a special fascial structure in the retroperitoneal space and the pelvis, emphasis on its formation and morphology may be helpful for not only unifying the controversies about the relationship between the pelvic fascia and HGNs but also improving the intraoperative preservation of the HGNs by dissecting in the correct surgical plane.
Izumo, Takehiro; Matsumoto, Yuji; Sasada, Shinji; Chavez, Christine; Nakai, Toshiyuki; Tsuchida, Takaaki
2017-03-01
The utility of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions is unclear. The aim of this study was to evaluate the role of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions. Consecutive patients who underwent endobronchial ultrasound with a guide sheath for the diagnosis of peripheral pulmonary lesions at our hospital between September 2012 and July 2014 were included in this retrospective study. Cytology slides were air-dried, and modified Giemsa (Diff-Quik) staining was used for rapid on-site evaluation. Additional smears were prepared for Papanicolaou staining and tissue samples were placed in formalin for histologic evaluation. The results of rapid on-site evaluation were compared with the final diagnoses of endobronchial ultrasound with a guide sheath. A total of 718 cases were included in the study population. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions was 88.6%, 65.9%, 81.2%, 77.7% and 80.1%, respectively. There were no procedure-related deaths. Rapid on-site evaluation during endobronchial ultrasound with a guide sheath had high sensitivity for peripheral pulmonary lesions. When carrying out rapid on-site evaluation of transbronchial biopsy samples from peripheral pulmonary lesions, careful interpretation and clinical correlation are necessary. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun
2016-05-01
The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.
Coronal Axis Measurement of the Optic Nerve Sheath Diameter Using a Linear Transducer.
Amini, Richard; Stolz, Lori A; Patanwala, Asad E; Adhikari, Srikar
2015-09-01
The true optic nerve sheath diameter cutoff value for detecting elevated intracranial pressure is variable. The variability may stem from the technique used to acquire sonographic measurements of the optic nerve sheath diameter as well as sonographic artifacts inherent to the technique. The purpose of this study was to compare the traditional visual axis technique to an infraorbital coronal axis technique for assessing the optic nerve sheath diameter using a high-frequency linear array transducer. We conducted a cross-sectional study at an academic medical center. Timed optic nerve sheath diameter measurements were obtained on both eyes of healthy adult volunteers with a 10-5-MHz broadband linear array transducer using both traditional visual axis and coronal axis techniques. Optic nerve sheath diameter measurements were obtained by 2 sonologists who graded the difficulty of each technique and were blinded to each other's measurements for each participant. A total of 42 volunteers were enrolled, yielding 84 optic nerve sheath diameter measurements. There were no significant differences in the measurements between the techniques on either eye (P = .23 [right]; P = .99 [left]). Additionally, there was no difference in the degree of difficulty obtaining the measurements between the techniques (P = .16). There was a statistically significant difference in the time required to obtain the measurements between the traditional and coronal techniques (P < .05). Infraorbital coronal axis measurements are similar to measurements obtained in the traditional visual axis. The infraorbital coronal axis technique is slightly faster to perform and is not technically challenging. © 2015 by the American Institute of Ultrasound in Medicine.
Förster, Andreas; Planamente, Sara; Manoli, Eleni; Lossi, Nadine S.; Freemont, Paul S.; Filloux, Alain
2014-01-01
The type VI secretion system (T6SS) is a bacterial nanomachine for the transport of effector molecules into prokaryotic and eukaryotic cells. It involves the assembly of a tubular structure composed of TssB and TssC that is similar to the tail sheath of bacteriophages. The sheath contracts to provide the energy needed for effector delivery. The AAA+ ATPase ClpV disassembles the contracted sheath, which resets the systems for reassembly of an extended sheath that is ready to fire again. This mechanism is crucial for T6SS function. In Vibrio cholerae, ClpV binds the N terminus of TssC within a hydrophobic groove. In this study, we resolved the crystal structure of the N-terminal domain of Pseudomonas aeruginosa ClpV1 and observed structural alterations in the hydrophobic groove. The modification in the ClpV1 groove is matched by a change in the N terminus of TssC, suggesting the existence of distinct T6SS classes. An accessory T6SS component, TagJ/HsiE, exists predominantly in one of the classes. Using bacterial two-hybrid approaches, we showed that the P. aeruginosa homolog HsiE1 interacts strongly with ClpV1. We then resolved the crystal structure of HsiE1 in complex with the N terminus of HsiB1, a TssB homolog and component of the contractile sheath. Phylogenetic analysis confirmed that these differences distinguish T6SS classes that resulted from a functional co-evolution between TssB, TssC, TagJ/HsiE, and ClpV. The interaction of TagJ/HsiE with the sheath as well as with ClpV suggests an alternative mode of disassembly in which HsiE recruits the ATPase to the sheath. PMID:25305017
Flat-plate solar array project process development area, process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.
Grain boundary engineering for control of tellurium diffusion in GH3535 alloy
NASA Astrophysics Data System (ADS)
Fu, Cai-Tao; Yinling, Wang; Chu, Xiang-Wei; Jiang, Li; Zhang, Wen-Zhu; Bai, Qin; Xia, Shuang; Leng, Bin; Li, Zhi-Jun; Ye, Xiang-Xi; Liu, Fang
2017-12-01
The effect of grain boundary engineering (GBE) on the Te diffusion along the surface grain boundaries was investigated in GH3535 alloy. It can be found that GBE treatment increases obviously the fraction of low-Σ coincidence site lattice (CSL) boundaries, especially the Σ3 ones, and introduces the large-size grain clusters. When the as-received (AR) and GBE-treated (GBET) specimens were exposed to Te vapor, only Σ3 boundaries were found to be resistant to Te diffusion. From the cross section and the surface, the fewer Te-attacked grain boundaries and the thinner corrosion layer can be observed in the GBET sample. The improvement of resistance to Te diffusion in the GBET sample can be attributed to the large size grain-clusters associated with high proportion of the Σ3n boundaries.
NASA Astrophysics Data System (ADS)
Roeser, H. P.; Bohr, A.; Haslam, D. T.; López, J. S.; Stepper, M.; Nikoghosyan, A. S.
2012-07-01
Optimum doping of high-temperature superconductors (HTSC) defines a superconducting unit volume for each HTSC. For a single-mode HTSC, e.g., a cuprate with one CuO2 plane, the volume is given by Vsc=cx2, where c is the unit cell height and x the doping distance. The experimental resistivity at Tc is connected to the structure by ρ(exp)≈c×h/(2e2). Combining this result with the classical definition of resistivity leads to an equation similar to Einstein's diffusion law x2/(2τ)=h/(2Meff)=D, where τ is the relaxation time, Meff=2me and D the diffusion constant. It has also been shown that the mean free path d=x. The Einstein-Smoluchowski diffusion relation D=μkBTc provides a connection to Tc.
Bounded diffusion impedance characterization of battery electrodes using fractional modeling
NASA Astrophysics Data System (ADS)
Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît
2017-06-01
This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.
Sandven, P; Bjørneklett, A; Maeland, A
1993-01-01
All Candida albicans isolates in Norwegian microbiological laboratories in 1991 judged clinically important (except vaginal isolates) were collected. The isolates were tested for susceptibility to fluconazole with an agar dilution test and a commercially available agar diffusion test. A total of 212 strains (95%) were susceptible to fluconazole, and MICs for most of the strains (92%) were < or = 1.56 micrograms/ml. The agar diffusion test using a 15-micrograms tablet and a 48-h incubation period separated resistant from susceptible strains with a wide margin. The only exception was a strain for which the MIC was 6.25 micrograms/ml. The difference in zone size between the resistant and the susceptible populations of strains was 11 mm. Accordingly, it appears that the agar diffusion test is an appropriate method for detecting fluconazole resistance. The 12 fluconazole-resistant isolates originated from eight AIDS patients with oral or esophageal Candida infections. Seven of the patients had been given fluconazole for 1 month or more, often as self medication. Four had infections that were clinically resistant to fluconazole; one additional patient responded only when the dose was increased. All isolates recovered from these patients were analyzed by multilocus enzyme electrophoresis. The 12 C. albicans isolates belonged to five electrophoretic types, but three of four patients attending one hospital had isolates belonging to one electrophoretic type. One possible explanation for this finding could be that a nosocomial spread of resistant strains has occurred. PMID:8285631
Test of electical resistivity and current diffusion modelling on MAST and JET
NASA Astrophysics Data System (ADS)
Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET
2018-01-01
Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.
NASA Astrophysics Data System (ADS)
Mason, Thomas J.; Millichamp, Jason; Neville, Tobias P.; El-kharouf, Ahmad; Pollet, Bruno G.; Brett, Daniel J. L.
2012-12-01
This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the 'displacement factor' are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles.
Electrostatic ion thruster optics calculations
NASA Technical Reports Server (NTRS)
Whealton, John H.; Kirkman, David A.; Raridon, R. J.
1992-01-01
Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.
Intramuscular Contact Lead Filled With Conductive Solution
NASA Technical Reports Server (NTRS)
Bamford, Robert M.; Hendrickson, James A.
1991-01-01
Proposed sheath for braided-wire intramuscular conductor preserves electrical continuity even if wire breaks. Plastic sheath surrounds conductive solution in which braided wire immersed. At end of cable, wire and sheath crimped together and press-fit in porous titanium electrode. Implanted surgically with aid of device resembling catheter. Used to deliver electrical stimuli to muscles in biomedical research on human and animal physiology, development of prostheses, regeneration of nerves and muscles, and artificial implants.
2008-05-01
DAMD17-03-1-0297 Title: Genomic and Expression Pr ofiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients...have determined the gene expression signature for benign and malignant peripheral nerve sheath tumors and found that the major trend in transformation...However, EGFR data in soft tissue neoplasms is limited. Using a variety of benign and malignant spindle cell neoplasms, we assessed EGFR status by
Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei
2018-06-01
The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.
Zhang, Lei; Wu, Hongxu; Wang, Guiqi
2017-01-01
Endobronchial ultrasonography using a guide sheath (EBUS-GS) is a novel method used for collecting peripheral pulmonary lesion (PPL) samples. EBUS-GS is performed by introducing a guide sheath-covered miniprobe into the target bronchus and then withdrawing the miniprobe after lesion detection, leaving the guide sheath in situ as a working channel for obtaining lesion samples. EBUS-GS can improve PPL diagnosis rates and be used for obtaining specimens for molecular analysis. In this review, we discuss the clinical applications of EBUS-GS, the factors that affect its diagnostic sensitivity, and potential complications. We also compare EBUS-GS with other available diagnostic techniques and discuss the strengths and limitations of this method. PMID:29063872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotiriadis, Charalampos; Hajdu, Steven David; Degrauwe, Sophie
With the increased use of implanted venous access devices (IVADs) for continuous long-term venous access, several techniques such as percutaneous endovascular fibrin sheath removal, have been described, to maintain catheter function. Most standard techniques do not capture the stripped fibrin sheath, which is subsequently released in the pulmonary circulation and may lead to symptomatic pulmonary embolism. The presented case describes an endovascular technique which includes stripping, capture, and removal of fibrin sheath using a novel filter device. A 64-year-old woman presented with IVAD dysfunction. Stripping was performed using a co-axial snare to the filter to capture the fibrin sheath. Themore » captured fragment was subsequently removed for visual and pathological verification. No immediate complication was observed and the patient was discharged the day of the procedure.« less
The Statistical Studies of 0.5-100 keV Electrons Near The ICME-drivens At 1 AU
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, W.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.
2017-12-01
We present a statistical survey of the 0.5 - 100 keV electrons near the ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 74 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, θBn, magnetic compression ratio rB, and magnetosonic Mach number Ms. After averaging the electron data in the 10-minute interval immediately after the shock to obtain the sheath electron fluxes, Jsheath, and in the 2-hour quiet-time interval before the shock to obtain the pre-event electron fluxes, Jpre-event, we calculate the flux ratio, α, of Jsheath over Jpre-event. We find that, in the 59 quasi-perpendicular shocks, both Jsheath and Jpre-event are positively correlated with Ms and α is positively correlated with rB. In the 15 quasi-parallel cases, α is positively correlated with Ms, while neither Jsheath nor Jpre-event has any correlation with the shock parameters. Furthermore, we find that both the pre-event and sheath electron fluxes generally fit well to a double power-law spectrum, . At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, and it becomes larger in the sheah than in the pre-event in nearly a half of the 74 cases and remains the same in the other half of the cases. At 2 - 100 keV, the fitted index β2 ranges from 1.9 to 3.4, similar to the spectral indexes of solar wind superhalo electrons at quiet times (Wang et al., 2015). And β2 becomes larger in the sheah than in the pre-event in over half of the cases. In addition, neither β1 nor β2 is consistent with the diffusive shock theoretical predication. These results suggest that the shock drift acceleration may play a more important role in electron acceleration than the diffusive shock acceleration near 1 AU, and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons.
Drift effects on the tokamak power scrape-off width
NASA Astrophysics Data System (ADS)
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu.; Voskoboynikov, S. P.
2015-11-01
Recent experimental analysis suggests that the scrape-off layer (SOL) heat flux width (λq) for ITER will be near 1 mm, sharply narrowing the planned operating window. In this work, motivated by the heuristic drift (HD) model, which predicts the observed inverse plasma current scaling, SOLPS-ITER is used to explore drift effects on λq. Modeling focuses on an H-mode DIII-D discharge. In initial results, target recycling is set to 90%, resulting in sheath-limited SOL conditions. SOL particle diffusivity (DSOL) is varied from 0.1 to 1 m2/s. When drifts are included, λq is insensitive to DSOL, consistent with the HD model, with λq near 3 mm; in no-drift cases, λq varies from 2 to 5 mm. Drift effects depress near-separatrix potential, generating a channel of strong electron heat convection that is insensitive to DSOL. Sensitivities to thermal diffusivities, plasma current, toroidal magnetic field, and device size are also assessed. These initial results will be discussed in detail, and progress toward modeling experimentally relevant high-recycling conditions will be reported. Supported by U.S. DOE Contract DE-SC0010434.
What sets the minimum tokamak scrape-off layer width?
NASA Astrophysics Data System (ADS)
Joseph, Ilon
2016-10-01
The heat flux width of the tokamak scrape-off layer is on the order of the poloidal ion gyroradius, but the ``heuristic drift'' physics model is still not completely understood. In the absence of anomalous transport, neoclassical transport sets the minimum width. For plateau collisionality, the ion temperature width is set by qρi , while the electron temperature width scales as the geometric mean q(ρeρi) 1 / 2 and is close to qρi in magnitude. The width is enhanced because electrons are confined by the sheath potential and have a much longer time to radially diffuse before escaping to the wall. In the Pfirsch-Schluter regime, collisional diffusion increases the width by the factor (qR / λ) 1 / 2 where qR is the connection length and λ is the mean free path. This qualitatively agrees with the observed transition in the scaling law for detached plasmas. The radial width of the SOL electric field is determined by Spitzer parallel and ``neoclassical'' radial electric conductivity and has a similar scaling to that for thermal transport. Prepared under US DOE contract DE-AC52-07NA27344.
Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress
O'Toole, John C.; Cruz, Rolando T.
1980-01-01
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X.; King, C.; DeVoto, D.
2014-08-01
With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less
Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng
2017-08-25
The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.
Sheath formation in low-pressure discharges, the Bohm criterion and the consequences of collisions
NASA Astrophysics Data System (ADS)
Valentini, H.-B.; Kaiser, D.
2014-02-01
The space charge density in low-pressure discharges results from the generation of charged particles, the momentum transfer from these particles to the neutral gas and the electric field. A simplified model is used to treat this process analytically and numerically across the whole plasma. The effect of the electric field alone can cause the formation of the space charge sheath if the ion drift velocity υi to the wall exceeds the modified Bohm velocity υC = υB × (ni/ne)1/2, where υB is the Bohm velocity and ni and ne are the number densities of the ions and the electrons, respectively. However, a domain with υi ⩾ υC can occur only if the effect of collisions is weak. This domain is very narrow and does not come up to the wall. Limits of the electric field strength determining the sheath formation are given. It is shown that the electric field strength cannot be set equal to zero at υi = υB or υC under collisional conditions. The sheath extends from the region near the wall towards the centre and a result of that is to lower υi with respect to υB as the collisionality rises. These results are used to take into consideration various sheath criteria. The Bohm criterion takes into account the effect of the electric field only and reveals a well-defined sheath edge at υi = υB. This criterion remains a useful approximation of the sheath edge in almost collisionless plasmas as well. Under collisional conditions the definition of the sheath edge becomes more difficult and a little arbitrary. This paper takes into account new sheath criteria modified for the case of finite collisionality. The divergence between the densities of the ions and the electrons, the gradients of the space charge density and of the generalized Bohm speed υC are studied as functions of υi or the distance from the wall. These criteria are compared with the collisionally modified Bohm criteria proposed by Godyak (1982 Phys. Lett. A 89 80), Valentini (1996 Phys. Plasmas 3 1459), Chen (1998 Phys. Plasmas 5 804) and Brinkmann (2011 J. Phys. D: Appl. Phys. 44 042002).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli
The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less
NASA Astrophysics Data System (ADS)
Breiding, Peter; Georganopoulos, Markos; Meyer, Eileen T.
2018-01-01
Recent multiwavelength work led by the Boston University blazar group (e.g., Marscher et al.) strongly suggests that a fraction of the blazar flares seen by the Fermi Large Area Telescope (LAT) take place a few to several pc away from the central engine. However, at such distances from the central engine, there is no adequate external photon field to provide the seed photons required for producing the observed GeV emission under leptonic inverse Compton (IC) models. A possible solution is a spine-sheath geometry for the emitting region (MacDonald et al., but see Nalewajko et al.). Here we use the current view of the molecular torus (e.g., Elitzur; Netzer), in which the torus extends a few pc beyond the dust sublimation radius with dust clouds distributed with a declining density for decreasing polar angle. We show that for a spine-sheath blazar jet embedded in the torus, the wide beaming pattern of the synchrotron radiation of the relatively slow sheath will heat molecular clouds with subsequent IR radiation that will be highly boosted in the spine comoving frame, and that under reasonable conditions this photon field can dominate over the sheath photons directly entering the spine. If the sheath is sufficiently luminous it will sublimate the dust, and if the sheath synchrotron radiation extends to optical-UV energies (as may happen during flares), this will illuminate the sublimated dust clouds to produce emission lines that will vary in unison with the optical-UV continuum, as has been very recently reported for blazar CTA 102 (Jorstad et al.).