Sample records for sheet erosion

  1. Rainfall and sheet power equation for interrill erosion on steep hillslope

    USDA-ARS?s Scientific Manuscript database

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equa...

  2. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    PubMed

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within watersheds using publicly available information. This method can quickly identify discrete locations with relatively precise spatial boundaries (approximately 80 meter resolution) that have a high sheet erosion potential as well as areas where management interventions might be appropriate to prevent or ameliorate erosion.

  3. Depth and areal extent of sheet and rill erosion based on radionuclides in soils and suspended sediment

    NASA Astrophysics Data System (ADS)

    Whiting, Peter J.; Bonniwell, E. Chris; Matisoff, Gerald

    2001-12-01

    Sheetwash and rilling are two important mechanisms of soil erosion by runoff. The relative contribution of each mechanism has been a vexing question because measuring thin sheet erosion is difficult. Fortuitously, various fallout radionuclides have distinct distributions in the soil column; thus, different depths of erosion produce suspended sediment with unique radionuclide signatures. Those signatures can be used to estimate the depth and areal extent of sheet and rill erosion. We developed a model to execute multiple mass balances on soil and radionuclides to quantify these erosion mechanisms. Radionuclide activities (7Be, 137Cs, 210Pb) in the soil of a 6.03 ha agricultural field near Treynor, Iowa, and in suspended sediment washed off the field during thunderstorm runoff were determined by gamma spectroscopy. Using the model, we examined 15.5 million possible combinations of the depth and areal extent of rill and sheet erosion. The best solution to the mass balances corresponded to rills eroding 0.38% of the basin to a depth of 35 mm and sheetwash eroding 37% of the basin to a depth of 0.012 mm. Rill erosion produced 29 times more sediment than sheet erosion.

  4. Modelling sheet erosion on steep slopes in the loess region of China

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Wang, Zhanli; Zhang, Qingwei; Shen, Nan; Liu, June

    2017-10-01

    The relationship of sheet erosion rate (SE), slope gradient (S) and rainfall intensity (I), and hydraulic parameters, such as flow velocity (V), shear stress (τ), stream power (Ω) and unit stream power (P), was investigated to derive an accurate experimental model. The experiment was conducted at slopes of 12.23%, 17.63%, 26.8%, 36.4%, 40.4% and 46.63% under I of 48, 60, 90, 120, 138 and 150 mm h-1, respectively, using simulated rainfall. Results showed that sheet erosion rate increased as a power function with rainfall intensity and slope gradient with R2 = 0.95 and Nash-Sutcliffe model efficiency (NSE) = 0.87. Sheet erosion rate was more sensitive to rainfall intensity than to slope gradient. It increased as a power function with flow velocity, which was satisfactory for predicting sheet erosion rate with R2 = 0.95 and NSE = 0.81. Shear stress and stream power could be used to predict sheet erosion rate accurately with a linear function equation. Stream power (R2 = 0.97, NSE = 0.97) was a better predictor of sheet erosion rather than shear stress (R2 = 0.90, NSE = 0.89). However, a prediction based on unit stream power was poor. The new equation (i.e. SE = 7.5 ×1012S1.43I3.04 and SE = 0.06 Ω - 0.0003 and SE = 0.011 τ - 0.01) would improve water erosion estimation on loess hillslopes of China.

  5. Rainfall and Sheet Power Equation for Interrill Erosion on Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Shin, S.; Park, S.; Pierson, F. B.; Al-Hamdan, O. Z.; Williams, C. J.

    2012-12-01

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equations that combine the influence of both rainfall and runoff have been proposed by several researchers. However most approaches to modeling interrill erosion have been based on statistical relationships given the inherent complexity in derivation of broadly-applicable physically-based erosion parameters. In this study, a rainfall and sheet power equation to evaluate interrill sediment yields (Qs) was derived from the sum of rainfall power and sheet power expressed by rainfall intensity: Qs=a(cosθ/L){α sinθ ∑ I(t)^(11/9)+β tanθ^(1/2) ∑ (1-fr(t))^(5/3) I(t)^(5/3)}^b, where I(t) is rainfall intensity, θ is slope angle, fr(t) is infiltration rate, a, b, α, and β are coefficients, sinθ I(t)^(11/9) is the rainfall power term, and tanθ^(1/2) (1-fr(t))^(5/3) I(t)^(5/3) is the sheet power term. The rainfall power ratio and sheet power ratio decreased and increased with increased rainfall intensity, respectively. The sheet power term depended greatly on infiltration rate controlled by rainfall intensity, vegetation cover, and soil condition. The rainfall and sheet power equation assuming that α and β is 0 was evaluated using field data from plots on steep hillslopes and showed the better correlation with sediment yields than rainfall kinetic energy, runoff discharge, or interrill equations based on rainfall intensity and runoff discharge founded in the literature. This equation successfully explained physical processes for soil erosion that rainfall power is dominant under low rainfall and sheet power is dominant under heavy rainfall. Additional experimental data is needed to assess coefficients of the power equation to determine the relative quantities of rainfall power and sheet power and to evaluate the erosion efficiency of interactions between raindrop impact and sheet flow and soil erodibility. Acknowledgements: This work was supported by a grant (Code#'08 RTIP B-01) from Regional Technology Innovation Program funded by Ministry of Land, Transport and Maritime Affairs of Korean government.;

  6. Advances in modeling soil erosion after disturbance on rangelands

    USDA-ARS?s Scientific Manuscript database

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  7. Changes in micro-relief during different water erosive stages of purple soil under simulated rainfall.

    PubMed

    Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin

    2018-02-22

    This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.

  8. [Sediment transport characteristics at different erosion stages for non-hardened roads of the Shenfu Coalfield, west China].

    PubMed

    Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting

    2015-02-01

    Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport rate for all the tests was linearly related to runoff rate and sediment concentration.

  9. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  10. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  11. Fuels planning: science synthesis and integration; environmental consequences fact sheet 08: Evaluating sedimentation risks associated with fuel management

    Treesearch

    William Elliot; Pete Robichaud

    2005-01-01

    This fact sheet describes the sources of sediment in upland forest watersheds in the context of fuel management activities. It presents the dominant forest soil erosion processes, and the principles behind the new sediment delivery interface developed to aid in erosion analysis of fuel management projects.

  12. Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bierman, Paul R.; Corbett, Lee B.; Graly, Joseph A.; Neumann, Thomas Allen; Lini, Andrea; Crosby, Benjamin T.; Rood, Dylan H.

    2014-01-01

    Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets

  13. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    NASA Astrophysics Data System (ADS)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent with the steady state deforming till model of Cuffey and Alley (1997). Therefore, we hypothesize that the erosional system beneath the WAIS, which has overridden a thick layer of erodible, Tertiary marine sediments (Studinger et al., in press), is 'transport limited' and that the horizontal gradients in ice velocity and till flux have the predominant control over spatial patterns of subglacial erosion and deposition rates. In contrast, past studies of erosional systems have concentrated on mountain glaciers that derive their debris through erosion of hard bedrock. In those cases, the erosional system may be 'production limited' because erosion rates scale with dissipation of gravitational energy, represented by the velocity-times-constant equation. Thus, this concept of a 'transport limited' system represents a deviation from past thinking regarding the dynamics of bed erosion, and may be unique to marine-based ice sheets. Using this concept as a base, we will construct more accurately parameterized models to better define the relationship between the dynamics of ice streams and the character of the sub glacial bed.

  14. Vertical motions of passive margins of Greenland: influence of ice sheet, glacial erosion, and sediment transport

    NASA Astrophysics Data System (ADS)

    Souche, A.; Medvedev, S.; Hartz, E. H.

    2009-04-01

    The sub-ice topography of Greenland is characterized by a central depression below the sea level and by elevated (in some places significantly) margins. Whereas the central depression may be explained by significant load of the Greenland ice sheet, the origin of the peripheral relief remains unclear. We analyze the influence of formation of the ice sheet and carving by glacial erosion on the evolution of topography along the margins of Greenland. Our analysis shows that: (1) The heavy ice loading in the central part of Greenland and consecutive peripheral bulging has a negligible effect on amplitude of the uplifted Greenland margins. (2) First order estimates of uplift due to isostatic readjustment caused by glacial erosion and unloading in the fjord systems is up to 1.1 km. (3) The increase of accuracy of topographic data (comparing several data sets of resolution with grid size from 5 km to 50 m) results in increase of the isostatic response in the model. (4) The analysis of mass redistribution during erosion-sedimentation process and data on age of offshore sediments allows us to estimate the timing of erosion along the margins of Greenland. This ongoing analysis, however, requires careful account for the link between sources (localized glacial erosion) and sinks (offshore sedimentary basins around Greenland).

  15. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  16. Parameterization of erodibility in the Rangeland Hydrology and Erosion Model

    USDA-ARS?s Scientific Manuscript database

    The magnitude of erosion from a hillslope is governed by the availability of sediment and connectivity of runoff and erosion processes. For undisturbed rangelands, sediment is primarily detached and transported by rainsplash and sheetflow (splash-sheet) processes in isolated bare batches, but sedime...

  17. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Treesearch

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  18. Ephemeral Gully Erosion – A Natural Resource Concern

    USDA-ARS?s Scientific Manuscript database

    Recent studies indicate that ephemeral gully erosion may be a significant form of erosion and source of sediment on cropland in the U.S. (averaging around 40% of the sediment delivered to the edge of the field in some documented studies). USDA-NRCS has developed support practices for sheet an...

  19. Modelling soil erosion in a head catchment of Jemma Basin on the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Cama, Mariaelena; Schillaci, Calogero; Kropáček, Jan; Hochschild, Volker; Maerker, Michael

    2017-04-01

    Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality especially in developing countries such as Ethiopia where rapid population growth and climatic changes affect wide mountainous areas. The catchment of Andit-Tid is a head catchment of Jemma Basin draining to the Blue Nile (Central Ethiopia). It is located in an extremely variable topographical environment and it is exposed to high degradation dynamics especially in the lower part of the catchment. The increasing agricultural activity and grazing, lead to an intense use of the steep slopes which altered the soil structure. As a consequence, water erosion processes accelerated leading to the evolution of sheet erosion, gullies and badlands. This study is aimed at a geomorphological assessment of soil erosion susceptibility. First, a geomorphological map is generated using high resolution digital elevation model (DEM) derived from high resolution stereoscopic satellite data, multispectral imagery from Rapid Eye satellite system . The map was then validated by a detailed field survey. The final maps contains three inventories of landforms: i) sheet, ii) gully erosion and iii) badlands. The water erosion susceptibility is calculated with a Maximum Entropy approach. In particular, three different models are built using the three inventories as dependent variables and a set of spatial attributes describing the lithology, terrain, vegetation and land cover from remote sensing data and DEMs as independent variables. The single susceptibility maps for sheet, gully erosion as well as badlands showed good to excellent predictive performances. Moreover, we reveal and discuss the importance of different sets of variables among the three models. In order to explore the mutual overlap of the three susceptibility maps we generated a combined map as color composite whereas each color represents one component of water erosion. The latter map yield a useful information for land use managers and planning purposes.

  20. Integrated process-based hydrologic and ephemeral gully modeling for better assessment of soil erosion in small watersheds

    NASA Astrophysics Data System (ADS)

    Sheshukov, A. Y.; Karimov, V. R.

    2017-12-01

    Excessive soil erosion in agriculturally dominated watersheds causes degradation of arable land and affects agricultural productivity. Structural and soil-quality best management practices can be beneficial in reducing sheet and rill erosion, however, larger rills, ephemeral gullies, and concentrated flow channels still remain to be significant sources of sediment. A better understanding of channelized soil erosion, underlying physical processes, and ways to mitigate the problem is needed to develop innovative approaches for evaluation of soil losses from various sediment sources. The goal of this study was to develop a novel integrated process-based catchment-scale model for sheet, rill, and ephemeral gully erosion and assess soil erosion mitigation practices. Geospatially, a catchment was divided into ephemeral channels and contributing hillslopes. Surface runoff hydrograph and sheet-rill erosion rates from contributing hillslopes were calculated based on the Water Erosion Prediction Project (WEPP) model. For ephemeral channels, a dynamic ephemeral gully erosion model was developed. Each channel was divided into segments, and channel flow was routed according to the kinematic wave equation. Reshaping of the channel profile in each segment (sediment deposition, soil detachment) was simulated at each time-step according to acting shear stress distribution along the channel boundary and excess shear stress equation. The approach assumed physically-consistent channel shape reconfiguration representing channel walls failure and deposition in the bottom of the channel. Soil erodibility and critical shear stress parameters were dynamically adjusted due to seepage/drainage forces based on computed infiltration gradients. The model was validated on the data obtained from the field study by Karimov et al. (2014) yielding agreement with NSE coefficient of 0.72. The developed model allowed to compute ephemeral gully erosion while accounting for antecedent soil moisture conditions. Results showed significant differences in performance of management practices for initially dry and wet soils. Application of no-till and conversion to grassland significantly reduced the erosion rates compared to conventional tillage for small runoff events, while the efficiency was reduced for large events.

  1. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert

    USGS Publications Warehouse

    Whitney, John W.; Breit, George N.; Buckingham, S.E.; Reynolds, Richard L.; Bogle, Rian C.; Luo, Lifeng; Goldstein, Harland L.; Vogel, John M.

    2015-01-01

    The erosion and deposition of sediments by wind from 1901 to 2013 have created large changes in surface features of Mesquite Lake playa in the Mojave Desert. The decadal scale recurrence of sand-sheet development, migration, and merging with older dunes appears related to decadal climatic changes of drought and wetness as recorded in the precipitation history of the Mojave Desert, complemented by modeled soil-moisture index values. Historical aerial photographs, repeat land photographs, and satellite images document the presence and northward migration of a mid-20th century sand sheet that formed during a severe regional drought that coincided with a multi-decadal cool phase of the Pacific Decadal Oscillation (PDO). The sand sheet slowly eroded during the wetter conditions of the subsequent PDO warm phase (1977–1998) due to a lack of added sediment. Sand cohesion gradually increased in the sand sheet by seasonal additions of salt and clay and by re-precipitation of gypsum, which resulted in the wind-carving of yardangs in the receding sand sheet. Smaller yardangs were aerodynamically shaped from coppice dunes with salt-clay crusts, and larger yardangs were carved along the walls and floor of trough blowouts. Evidence of a 19th century cycle of sand-sheet formation and erosion is indicated by remnants of yardangs, photographed in 1901 and 1916, that were found buried in the mid-20th century sand sheet. Three years of erosion measurements on the playa, yardangs, and sand sheets document relatively rapid wind erosion. The playa has lowered 20 to 40 cm since the mid-20th century and a shallow deflation basin has developed since 1999. Annually, 5–10 cm of surface sediment was removed from yardang flanks by a combination of wind abrasion, deflation, and mass movement. The most effective erosional processes are wind stripping of thin crusts that form on the yardang surfaces after rain events and the slumping of sediment blocks from yardang flanks. These wind-eroded landforms persist several decades to a century before eroding away or being buried by younger sands. On Mesquite Lake playa the climatic history of alternating PDO phases of multi-decadal drought and wetness is recorded twice by the presence of yardangs formed nearly a century apart.

  2. Trend of Soil Erosion Processes within the Southern Half of the Russian Plain for the Last Decades

    NASA Astrophysics Data System (ADS)

    Golosov, V. N.; Yermolaev, O. P.; Safina, G. R.; Maltsev, K. A.; Gusarov, A. V.; Rysin, I. I.

    2018-01-01

    Complex approach is applied for assessment of recent trends of sheet, rill and gully erosion in different landscape zones of study area. Investigation is undertaken in 6 selected sectors (area of each transect is about 6-10 thousand km2), uniformly distributed over the area of the Russian Plain. Changes of the different factors, including some meteorological and hydrological parameters, land use change, USLE C-factor, were determined for the period 1980-2015. A set of field methods was used for quantification of sediment redistribution rates for the key small catchments. It was found that erosion rate decreased in forest and forest-steppe zone. Gully density decreases considerably in all landscape zones. The reduction of surface runoff from cultivated slope during snow-melting is the main reason of decreasing of sheet, rill and gully erosion rates in the forest, forest steppe and the north of steppe landscape zones. Increasing the proportion of perennial grasses in crop-rotation is the other factor of serious reduction of erosion processes in the forest zone.

  3. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Cook, Carys P.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Iwai, Masao; Kobayashi, Munemasa; Jimenez-Espejo, Francisco J.; Escutia, Carlota; González, Jhon Jairo; Khim, Boo-Keun; McKay, Robert M.; Passchier, Sandra; Bohaty, Steven M.; Riesselman, Christina R.; Tauxe, Lisa; Sugisaki, Saiko; Galindo, Alberto Lopez; Patterson, Molly O.; Sangiorgi, Francesca; Pierce, Elizabeth L.; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Bendle, James A. P.; Bijl, Peter K.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, José Abel; Hayden, Travis G.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Olney, Matthew P.; Pekar, Stephen F.; Pross, Jörg; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash K.; Stickley, Catherine E.; Tuo, Shouting; Welsh, Kevin; Yamane, Masako

    2013-09-01

    Warm intervals within the Pliocene epoch (5.33-2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century and atmospheric CO2 concentrations similar to today. Estimates for global sea level highstands during these times imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adélie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.

  4. Estimation of Annual Average Soil Loss, Based on Rusle Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul

    2015-10-01

    Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  5. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  6. A proposed origin of the Olympus Mons escarpment. [Martian volcanic feature

    NASA Technical Reports Server (NTRS)

    King, J. S.; Riehle, J. R.

    1974-01-01

    Olympus Mons (Nix Olympica) on Mars is delimited by a unique steep, nearly circular scarp. A pyroclastic model is proposed for the construct's origin. It is postulated that the Olympus Mons plateau is constructed predominantly of numerous ash-flow tuffs which were erupted from central sources over an extended period of time. Lava flows may be intercalated with the tuffs. A schematic radial profile incorporating the inferred compaction zones for an ash sheet is proposed. Following emplacement, eolian (and possibly fluvial) erosion and abrasion during dust storms would act on the ash sheets. Interior portions of the sheets would spall and slump following eolian erosion, generating steep, relatively smooth boundary scarps. The scarp would be circular due to symmetrical distribution of compaction zones. The model implies further that the Olympus Mons plateau rests on a more resistant rock substrate.

  7. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.

    2017-11-01

    Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.

  8. The Rangeland Hydrology and Erosion Model

    NASA Astrophysics Data System (ADS)

    Nearing, M. A.

    2016-12-01

    The Rangeland Hydrology and Erosion Model (RHEM) is a process-based model that was designed to address rangelands conditions. RHEM is designed for government agencies, land managers and conservationists who need sound, science-based technology to model, assess, and predict runoff and erosion rates on rangelands and to assist in evaluating rangeland conservation practices effects. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of as single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions. Moreover, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant community by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. A dynamic partial differential sediment continuity equation is used to model the total detachment rate of concentrated flow and rain splash and sheet flow. RHEM is also designed to be used as a calculator, or "engine", within other watershed scale models. From the research perspective RHEM acts as a vehicle for incorporating new scientific findings from rangeland infiltration, runoff, and erosion studies. Current applications of the model include: 1) a web site for general use (conservation planning, research, etc.), 2) National Resource Inventory reports to Congress, 3) as a computational engine within watershed scale models (e.g., KINEROS, HEC), 4) Ecological Site & State and Transition Descriptions, 5) proposed in 2015 to become part of the NRCS Desktop applications for field offices.

  9. Fire-induced water repellency: An erosional factor in wildland environments

    Treesearch

    Leonard F. DeBano

    2000-01-01

    Watershed managers and scientists throughout the world have been aware of fire-induced water-repellent soils for over three decades. Water repellency affects many hydrologic processes, including infiltration, overland flow, and surface erosion (rill and sheet erosion). This paper describes; the formation of fire-induced water-repellent soils, the effect of soil water...

  10. Channel and hillslope processes in a semiarid area, New Mexico

    USGS Publications Warehouse

    Leopold, Luna Bergere; Emmett, William W.; Myrick, Robert M.

    1966-01-01

    Ephemeral washes having drainage areas from a few acres to 5 square miles are shown by actual measurement to be accumulating sediment on the streambed. This aggradation is not apparent to the eye but is clearly shown in 7 years of annual remeasurement.A similar aggradation was in progress in the same area some 3000 years ago as evidenced by an alluvial terrace later dissected by the present channel system. At that time as well as at present, aggradation occurred even in tributary areas draining a few acres. Colluvial accumulations merge with channel deposits and blanket the valleys and tributary basins even up to a few hundred feet of the drainage divides. The present study concerned the amounts of sediment produced by different erosion processes in various physiographic positions in the drainage basins. Measurements show that by far the largest sediment source is sheet erosion operating on the small percentage of basin area near the basin divides. Mass movement, gully head extension, and channel enlargement are presently small contributors of sediment compared with sheet erosion on unrilled slopes. As in previous studies, not all of the erosion products could be accounted for by accumulations on colluvial slopes and on beds of channels. The discrepancies are attributed primarily to sediment carried completely out of the basins studied and presumably deposited somewhere downstream.Aggradation of alluvial valleys of 5 square miles area and smaller both in the present epicycle, and in prehistorical but post-glacial times in this locality, cannot be attributed to gullying or rill extension in the headwater tributaries but to sheet erosion of the most upstream margins of the basins.Studies of rainfall characteristics of the 7 years of measurement compared with previous years in the 100-year record do not provide a clear-out difference which would account for the presently observed aggradation of channels. Longer period of measurement of erosion and sedimentation will be necessary to identify what precipitation parameters govern whether the channels aggrade or degrade.

  11. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the erosional potential of the degraded landscape remains significant.

  12. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  13. Predicting orogenic wedge styles as a function of analogue erosion law and material softening

    NASA Astrophysics Data System (ADS)

    Mary, Baptiste C. L.; Maillot, Bertrand; Leroy, Yves M.

    2013-10-01

    The evolution of a compressive frictional wedge on a weak, frictional and planar décollement, subjected to frontal accretion, is predicted with a two step method called sequential limit analysis. The first step consists in finding, with the kinematic approach of limit analysis, the length of the active décollement and the dips of the emerging ramp and of the conjugate shear plane composing the emerging thrust fold. The second step leads to a modification of the geometry, first, because of the thrust fold development due to compression and, second, because of erosion. Erosion consists in removing periodically any material above a fictitious line at a selected slope, as done in analogue experiments. This application of sequential limit analysis generalizes the critical Coulomb wedge theory since it follows the internal deformation development. With constant frictional properties, the deformation is mostly diffuse, a succession of thrust folds being activated so that the topographic slope reaches exactly the theoretical, critical value. Frictional weakening on the ramps results in a deformation style composed of thrust sheets and horses. Applying an erosion slope at the critical topographic value leads to exhumation in the frontal, central, or rear region of the wedge depending on the erosion period and the weakening. Erosion at slopes slightly above or below the critical value results in exhumation toward the foreland or the hinterland, respectively, regardless of the erosion period. Exhumation is associated with duplexes, imbricate fans, antiformal stacks, and major backthrusting. Comparisons with sandbox experiments confirm that the thickness, dips, vergence, and exhumation of thrust sheets can be reproduced with friction and erosion parameters within realistic ranges of values.

  14. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion.

    PubMed

    Aitken, A R A; Roberts, J L; van Ommen, T D; Young, D A; Golledge, N R; Greenbaum, J S; Blankenship, D D; Siegert, M J

    2016-05-19

    Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion-enough to expose basement rocks-has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today's grounding line; and deep within the Sabrina Subglacial Basin, 350-550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the 'modern-scale' ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200-250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat-advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.

  15. Development of a Cavitation Erosion Resistant Advanced Material System

    DTIC Science & Technology

    2005-11-01

    Sheet EPD M results .............................................................................. 47 Figure 5.11 - EPDM rubber samples, sheet (left...Testing The long test times of EPDM rubber and other durable elastomer samples created a need for overnight testing capability. In the original test setup...seals, adhesives and molded flexible parts. Common examples of elastomers include natural and synthetic rubber , silicone, neoprene, EPDM , polyurethane

  16. Using erosion associated with glaciovolcanic features to document the existence of pre-LGM ice-sheets: examples from the Kawdy Plateau, northern British Columbia

    NASA Astrophysics Data System (ADS)

    Dunnington, Gwen; Edwards, Benjamin R.; Ryane, Chanone; Russell, James K.; Lasher, Gregory K.

    2010-05-01

    One of the most significant difficulties with understanding terrestrial Pleistocene climate change is that the depositional record of ancient ice sheets is frequently destroyed by successive glaciations. Given their resistance to erosion, glaciovolcanic features provide unique opportunities at which to look for evidence of multiple glaciations. Evidence from the Kawdy Plateau (KP) region of northern British Columbia is consistent with the presence of multiple ice sheets covering the Canadian Cordillera over the past 2 Ma and derives from two sources: features interpreted as having formed by glacial scouring of bedrock, and the state of preservation for six glaciovolcanic edifices (Kawdy Mountain, Tutsingale Mountain, Nuthinaw Mountain, Meehaz Mountain, Tanker tuya, Horseshoe tuya) located on the plateau. Detailed measurements of glacial mega-grooves/striations on bedrock in the eastern part of the plateau, along with similar features on two different edifices (Tutsingale Mountain and Tanker tuya), are consistent with ice movement in three distinctly different azimuths: 21-59 degrees; 60-88 degrees; 88-92 degrees. The scours may indicate the presence of at least three separate glaciers flowing in different directions over the KP, separated by enough time to allow the previous glacier to melt entirely and expose the plateau floor to continued erosion. Cross-cutting relationships and quality of preservation indicate that the group trending between 88-92° across the plateau and tuyas is the oldest, the group trending 21-59° is younger than that, and a group trending 60-88° is the youngest, presumably related to ice flow during the Last Glacial Maximum (LGM). Drumlinoid features on the plateau floor and on top of Horseshoe Tuya indicate that despite this 71° variation in orientation direction of scours across the entire area, the general direction of ice movement across the plateau has always been in an east-to-west or northeast-to-southwest direction. The states of erosion for all six of the KP glaciovolcanic edifices are consistent with extensive glaciation. Besides the glacial features noted above, at least three of the edifices (Kawdy Mountain, Tanker tuya, Horseshoe tuya) show evidence for extensive morphological modification. Although the core of Kawdy Mountain is made of erosion-resistant palagonitized volcanic breccia and intrusions, its core has been eviscerated and now has a long, northeasterly trending cirque-like valley. Horseshoe tuya appears to have lost almost half of its original volume into a north-facing, cirque-like feature. The aerial footprint of Tanker tuya is consistent with erosion of more than half of the original edifice, and its lower stratigraphy may contain at least one pre-LGM glacial diamicton. We believe that these observations indicate that the Cordilleran Ice Sheet (CIS) did not remain constant and intact during the Pleistocene, but fluctuated between periods of thick, low-elevation ice cover and more sparse, high-elevation cover. Evidence for multi-stage continental glaciation has important implications for the reconstruction of the history of the Cordilleran ice sheet, correlation with the marine Pleistocene climate record, and constraints on the paleoclimate factors which influenced terrestrial ice sheet development.

  17. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  18. Participatory assessment of soil erosion severity and performance of mitigation measured using stakeholders' workshops in Koga catchment, Ethiopia

    NASA Astrophysics Data System (ADS)

    Lakew, Walle; Baartman, Jantiene; Ritsema, Coen

    2016-04-01

    There has been little effort to systematically document the experiences and perceptions of farmers on soil erosion and soil and water conservation (SWC) even though a wealth of SWC knowledge and information exists, and there is a great demand to access it. Sustainable Land Management (SLM) has largely evolved through local traditional practices than being adopted on basis of scientific evidence. This research aimed to document the experiences of farmers on soil erosion and conservation, and to increase awareness and participation of the local community in SWC. Participatory stakeholders' workshops were undertaken at local level focused on experiences and perceptions of farmers. The workshops included group discussion and field monitoring of sheet erosion indicators, profiles of rills and gullies and impacts of SWC strategies. Systematic descriptions of the status of soil erosion, soil fertility and yield were used to assess the performances of SWC strategies. Results show that farmers were aware of the harmful effects of ongoing soil erosion and impacts of mitigation strategies on their farms. Sheet erosion was found to be the most damaging form of erosion while rill damage was critical on cereal cultivated farms on steep slopes. Farmers perceived that the desired impacts of SWC practices were attained in general: runoff and soil loss rates decreased, while soil fertility and production increased. The performance of SWC measures were found to be highly affected by the design quality and management strategies on the farm. Comparatively graded stone-faced soil bunds revealed maximum desired impacts and were liked by farmers whereas all level bunds caused water logging and traditional ditches begun incising and affected production of cereals. Bund maintenance practices were low and also distracted the stability of bunds. This calls for further improvement of design of SWC technologies and their maintenance. Further research should integrate the local knowledge for assessment of soil erosion and SWC strategies.

  19. Initial Insights into the Quaternary Evolution of the Laurentide Ice Sheet on Southeastern Baffin Island

    NASA Astrophysics Data System (ADS)

    Pendleton, S.; Anderson, R. S.; Miller, G. H.; Refsnider, K. A.

    2015-12-01

    Increasing Arctic summer temperatures in recent decades and shrinking cold-based ice caps on Cumberland Peninsula, Baffin Island, are exposing ancient landscapes complete with uneroded bedrock surfaces. Previous work has indicated that these upland surfaces covered with cold-based ice experience negligible erosion compared with the valleys and fjords systems that contain fast-flowing ice. Given the appearance of highly weathered bedrock, it is argued that these landscapes have remained largely unchanged since at least the last interglaciation (~120 ka), and have likely experienced multiple cycles of ice expansion and retraction with little erosion throughout the Quaternary. To explore this hypothesis, we use multiple cosmogenic radionuclides (26Al and 10Be) to investigate and provide insight into longer-term cryosphere activity and landscape evolution. 26Al/10Be in surfaces recently exposed exhibit a wide range of exposure-burial histories. Total exposure-burial times range from ~0.3 - 1.5 My and estimated erosion rates from 0.5 - 6.2 m Ma-1. The upland surfaces of the Penny Ice cap generally experienced higher erosion rates (~0.45 cm ka-1) than those covered by smaller ice caps (~0.2 cm ka-1). The cumulative burial/exposure histories in high, fjord-edge locations indicate that significant erosion north of the Penny Ice Cap ceased between ~600 and 800 ka, suggesting that Laurentide Ice Sheet (LIS) organization and fjord inception was underway by at least this time. Additionally, 26Al/10Be ratios near production values despite high inventories from a coastal summit 50 km east of the Penny Ice Cape suggest that that area has not experienced appreciable burial by ice, suggesting that it was never inundated by the LIS. Moreover, these initial data suggest a variable and dynamic cryosphere in the region and provide insight into how large ice sheets evolved and organized themselves during the Quaternary.

  20. Sedimentological and GPR studies of subglacial deposits in the Joux Valley (Vaud, Switzerland): backset accretion in an esker followed by an erosive jokulhlaup

    USGS Publications Warehouse

    Fiore, J.; Pugin, A.; Beres, N.

    2002-01-01

    During the Wu??rmian glaciation, the Jura ice sheet covered the Joux Valley (Vaud, Switzerland). A geomorphological study reveals many drumlins in this valley. Some are composed of gravels and sand, others of till. Outcrops show that the surface of the sandy-gravel drumlins is a major and sharp erosion surface. Given the lack of shearing structures in sediments below this erosion level, its origin cannot be linked to ice action of the glacier. Very high-energy subglacial meltwater floods (jo??kulhlaups), probably due to the drainage of subglacial or supraglacial lakes, are the more likely cause of the erosion. Results of a ground penetrating radar (GPR) survey show the internal structure of one of these sandy-gravel drumlins to depth of 15 m. These GPR data, together with sedimentological observations, indicate that prior to erosion, subglacial sedimentation occurred in closed conduits (eskers) with strong and rapid flow variations. The sediments contain large chute-and-pool structures (high flow energy backset accretion) with dimensions comparable to the conduit width. Therefore, we interpret these sandy-gravel drumlins as portions of eskers, their present drumlin shape being the result of erosion by one or many jo??kulhlaups. The good preservation of the subglacial meltwater deposits is the result of the closed-basin geometry of the Joux Valley, which limited movement at the base of the glacier. This new contribution to the interpretation of the Joux Valley glacial features underlines the importance of meltwater in sedimentological processes under the Jura ice sheet.

  1. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  2. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  3. Cove Mines Fact Sheets

    EPA Pesticide Factsheets

    This factsheet contains information about planned construction activities to mitigate surface erosion at the former transfer area located in the Cove/Red Valley Chapter of the Navajo Nation in eastern Arizona.

  4. Soil erosion and causative factors at Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  5. 7 CFR 1469.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... grazing are used, with little or no chemicals or fertilizer being applied. Grasslands, savannas, prairie... soil organic matter content through soil disturbance or by sheet, rill, and wind erosion, and the...

  6. Maple River Subbasin, Red River of the North Reconnaissance Report.

    DTIC Science & Technology

    1980-12-01

    slopes are steepest, sheet and gully erosion occurs. This sometimes causes drainage fills and, in some cases, covering of crops . Damages from...which covers all natural disasters including floods. However, actual crop damages could be reduced only to the extent that intensive farming practices...within the subbasin. 8. The potentiality for land treatment measures (e.g., erosion control measures such as cover crops , green belts, reduction in

  7. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    NASA Astrophysics Data System (ADS)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  8. Methods for Tier 1 Modeling within the Training Range Environmental Evaluation and Characterization System

    DTIC Science & Technology

    2009-08-01

    properties, part b. USLE K-Factor by Organic Matter Content Soil -Texture Classification Dry Bulk Density, g/cm3 Field Capacity, % Available...Universal Soil Loss Equation ( USLE ) can be used to estimate annual average sheet and rill erosion, A (tons/acre-yr), from the equation A R K L S...erodibility factors, K, for various soil classifications and percent organic matter content ( USLE Fact Sheet 2008). Textural Class Average Less than 2

  9. Glacial isostatic uplift of the European Alps

    PubMed Central

    Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.

    2016-01-01

    Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth’s viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions. PMID:27830704

  10. Glacial isostatic uplift of the European Alps.

    PubMed

    Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R

    2016-11-10

    Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.

  11. Intensification of citrus production and soil loss in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; González Peñaloza, F. A.; Burguet, M.; Giménez Morera, A.

    2012-04-01

    After land abandonment for five decades (Arnáez et al., 2010; Belmonte Serrato et al., 1999) as a widespread process in Spain, agriculture intensification is taken place. This is changing the nature of the soil erosion processes as they were known (Cerdà, 1997; Cammeraat and Imeson, 1999; Ruiz Sinoga et al., 2010; Zavala et al., 2010). Citrus production are being reallocated on slopes due to the new irrigation systems (drip-irrigation), the thermic inversion on the bottom of the valley and then the frost affecting the plantations, the high prices of the bottom valley lands and the investment in agriculture from other economic sectors such as tourism and industry. Those new plantations are based on intense pesticides and herbicides use, and erosion processes are triggered due to the sloping surface developed (Cerdà et al., 2010). Five study sites were selected in the Montesa Municipality research zone, where an increase in the orange and clementines plantations were found during the last 20 years. Measurements were perfomed by a simple method, which consist in measuring the surface characteristics: stoniness, crust, herbs, bare soil, sheet flow, rills and gullies. One thousand meters were monitored at each of the study sites and measurements were done in January and August with a precision of 1 cm. The results show that the erosion rates are controlled by the sheet erosion (78,4 %), although rill and gullies exist (< 1 %) and they are active and contribute to high erosion rates. Stones and vegetation cover was found to by low. The infiltration rates of the soils were measured by means of rainfall simulation experiments and cylinder infiltrometer. The results show that the new citrus plantations results in low infiltration rates, and high erosion rates. This is contributing to a non-sustainable agriculture production due to the high erosion rates. And also a lack in soil services as the surface runoff and then the soil erosion is enhanced; and soil infiltration reduce. The economical value of the land and water lost is making this new intense chemically managed new citrus plantation non sustainable. The intensification of agriculture is triggering new soil erosion processes to be added to the traditional ones (García Ruiz and López Bermúdez, 2009). This research study is being supported by the the research project CGL2008-02879/BTE

  12. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island

    USGS Publications Warehouse

    McCall, R.T.; Van Theil de Vries, J. S. M.; Plant, N.G.; Van Dongeren, A. R.; Roelvink, J.A.; Thompson, D.M.; Reniers, A.J.H.M.

    2010-01-01

    A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias - 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response.

  13. Soil erosion modelling for NSW coastal catchments using RUSLE in a GIS environment

    NASA Astrophysics Data System (ADS)

    Yang, Xihua; Chapman, Greg

    2006-10-01

    In this study, hillslope erosion risk has been estimated for all eastern New South Wales (NSW) catchments, Australia using Revised Universal Soil Loss Equation (RUSLE) in a geographic information system (GIS) environment. Rainfall-runoff erosivity (R) factor was interpolated from NSW rainfall-erosivity contour (isoerodent) data. Soil erodibility (K) factor was based on the soil regolith stability and sediment yield classification. The classification was derived from soil landscape and related soil map data. The slope length and steepness (LS) factor was derived from high resolution digital elevation model (DEM). A fully-automated program using Arc Macro Language (AML) produced RUSLE-based LS factor grids for all coastal catchments. The outputs are comparable to the range of LS values summarised in the literature. Cover and management (C) factor and conservation support-practices (P) factor were set to one. They are intended to be allocated according to land use, ground cover and erosion control provisions for particular land management actions. The resulting erosion risk map, with pixel size of 25-m, provides unprecedented resolution of relative expected sheet and rill erosion across all NSW costal catchments and can be adapted for a range of erosion control purposes such as bushfire hazard reduction and comprehensive costal assessment.

  14. National Program for Inspection of Non-Federal Dams. Congamond Lakes North Dike (MA 00072), Connecticut River Basin, Southwick, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-08-01

    erosion resistant surface should be designed and con - structed on the downstream face after trees and trash have been removed. The owner should also...made by the Division of Waterways to con - struct a drop inlet spillway at North Dike in order to provide a more constant iake level. Plans (12 sheets...provide a more constant lake level. Plans (12 sheets) for this pro - * posal were prepared for the Division of Waterways by Robert G. Brown & Associ

  15. DHSEM Home

    Science.gov Websites

    Facebook YouTube logo YouTube News & Announcements New FY 18 Nonprofit Security Grant Program (NSGP ) - Applications DUE June 11, 2018 6:00pm New Press Release - Newtok Awarded HMGP Grant for Erosion Threatened Homes Hazard Mitigation Grant Program (HMGP) Funds Availability Announcement Fact Sheet - Preparing for

  16. Physical erosion modelling of complex morphodynamics in the upper Val d'Orcia: a combination of EROSION 3D, UAV, SFM and CANUPO

    NASA Astrophysics Data System (ADS)

    Buchholz, Arno; Kaiser, Andreas; Neugirg, Fabian; Schindewolf, Marcus; Schmidt, Jürgen

    2017-04-01

    Throughout the Mediterranean Basin soil erosion is both a widely spread and a landscape shaping process. In order to increase the understanding of morphodynamics inside large Italian badland areas, so called Calanchi, the process based erosion model EROSION 3D was parameterized by artificial rainfall simulations, soil sampling and an UAV based high resolution digital elevation model. Vegetation structures were removed with the CANUPO-classifier in CloudCompare. The rainfall experiments proved to be a convenient but costly tool for deriving the model input parameters. While building up the model, different composition of the inhomogeneous soil surface was considered. A diverse behavior against erosion by water was observed. The results showed that the deposition surfaces of rotational or translational slides, besides calanco depth contour, tend to degrade. Although these deposits present a comparatively low bulk density, they reduce the infiltration due to soil surface clogging and cause less erosion resistances. The differential consideration of erosion sub-processes turns out as particularly challenging. The simulation of a reference year showed an annual soil export from the catchment of 43 t/ha, which corresponds to an average surface lowering of 3 mm. Sheet erosion represents an amount of about 5% of the total erosion of badlands. Furthermore, infiltration depth, amount of runoff, sediment concentration, and grain size composition of the deposits were calculated. This study makes a contribution to the understanding of denudation processes in Calanchi badlands. The presented process-based modeling of badlands is contributing a new aspect to erosion research.

  17. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    PubMed

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  18. Application of ERTS-1 imagery to detecting and mapping modern erosion features and to monitoring erosional changes, in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Cooley, M. E.

    1973-01-01

    The author has identified the following significant results. The chief results during the reporting period were three 1:1,000,000 scale maps made from one ERTS-1 frame (1085-17330, 16 October 1972) showing: (1) the three most important types of materials in terms of the modern erosion problem: the readily erodible soils, gravel piedmonts and basin-fill areas, and consolidated rocks; (2) alluvial fans (dissected and relatively undissected); and (3) (as an additional bonus) linear structural features. Eight key areas (small parts of the whole study area) were selected for detailed study, and mapping was started in two of them, by interpretation of ultrahigh (U-2 and RB-57) airphotos, supplemented by field studies. In these areas detailed mapping was done not only on the modern erosion phenomena (arroyos, gullies, modern flood plains and terraces, and areas of sheet erosion and deposition), but also other features pertinent to the erosion problem, such as slope-local relief, landforms rock units, soil particle size and erodibility, and classes of vegetative cover.

  19. The development of novel and non-invasive germplasm selections native to Arkansas for highway re-vegetation projects.

    DOT National Transportation Integrated Search

    2012-03-01

    "Re-vegetation strategies and programs for highway rights of way in both rural and urban areas are an importatn component of any : highway construction project. Vegetation is ued to stabilize soils to prevent sheet and gully erosion and to help in so...

  20. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This mechanism may be as important as changes in hydrological flow pathways within the peat in mobilising aged carbon from the systems.

  1. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China.

    PubMed

    Wu, Xinliang; Wei, Yujie; Wang, Junguang; Xia, Jinwen; Cai, Chongfa; Wei, Zhiyuan

    2018-04-15

    Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh -1 ) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R 2 >88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1-0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R 2 =96%, p<0.01). These results allow to better understand the climate effect on erosion processes at the spatial-temporal scale from the perspective of soil properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ice-sheet dynamics through the Quaternary on the mid-Norwegian continental margin inferred from 3D seismic data.

    PubMed

    Montelli, A; Dowdeswell, J A; Ottesen, D; Johansen, S E

    2017-02-01

    Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  3. Deposition, erosion, and bathymetric change in South San Francisco Bay: 1858-1983

    USGS Publications Warehouse

    Foxgrover, Amy C.; Higgins, Shawn A.; Ingraca, Melissa K.; Jaffe, Bruce E.; Smith, Richard E.

    2004-01-01

    Since the California Gold Rush of 1849, sediment deposition, erosion, and the bathymetry of South San Francisco Bay have been altered by both natural processes and human activities. Historical hydrographic surveys can be used to assess how this system has evolved over the past 150 years. The National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS), collected five hydrographic surveys of South San Francisco Bay from 1858 to 1983. Analysis of these surveys enables us to reconstruct the surface of the bay floor for each time period and quantify spatial and temporal changes in deposition, erosion, and bathymetry. The creation of accurate bathymetric models involves many steps. Sounding data was obtained from the original USCGS and NOS hydrographic sheets and were supplemented with hand drawn depth contours. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings and shorelines were entered into a Geographic Information System (GIS), and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 50 m were developed for each of the five hydrographic surveys. Prior to conducting analyses of sediment deposition and erosion, we converted all of the grids to a common vertical datum and made adjustments to correct for land subsidence that occurred from 1934 to 1967. Deposition and erosion that occurred during consecutive periods was then computed by differencing the corrected grids. From these maps of deposition and erosion, we calculated volumes and rates of net sediment change in the bay. South San Francisco Bay has lost approximately 90 x 106 m3 of sediment from 1858 to 1983; however within this timeframe there have been periods of both deposition and erosion. During the most recent period, from 1956 to 1983, sediment loss approached 3 x 106 m3/yr. One of the most striking changes that occurred from 1858 to 1983 was the conversion of more than 80% of the tidal marsh to salt ponds, agricultural, and urban areas. In addition, there has been a decline of approximately 40% in intertidal mud flat area. Restoration of these features will require a detailed understanding of the morphology and sediment sources of this complex system.

  4. Gully erosion in Moldova: evolution, importance and control

    NASA Astrophysics Data System (ADS)

    Leah, Tamara

    2017-04-01

    Soil erosion and landslides are major environmental problems in the Republic of Moldova, resulting in long-term impacts on land productivity and sustainable development of rural areas. Soil erosion occurs on about 1.5 million hectares of agricultural land. Erosion possible limits on agricultural land range from 3 t/ha to 180 t/ha. The weighted average in the country is 18.5 t/ ha/year. But once in 50-100 years the mentioned limits may be exceeded. Combination the physical-geographical complicate conditions with intensive agricultural activities on the slopes led to the development of linear (depth) erosion, from initial sheet and rills to entire systems of gullies and ravines. Depth erosion affects most powerful the slope land (60%) of southern steppe and central silvo-steppe zones of Moldova. Gullies refers to erosion forms named "agrierosional", which forms most often on slopes with a length of 500 m and inclination greater than 3°, pants occupied with vineyards and orchards. Annually on these slopes are formed 700-800 new gullies, with length of 50-70 km and an area of 300 hectares. As a result of the inadequate soil cultivation the gullies parameters are increased, that concentrates water runoff, intensifies soil erosion, forming corrugation on the soil surface and increase land and environment degradation. The first gullies inventory in Moldova was carried out in 1911, the following in 1965 and 1982. After this period their area was annual included in the land cadastral sheet. If in the 1911 the total number of gullies made up 9543 with an area of 14434 hectares, in 1965 was increased on average by 3.5 times and in the southern areas more than 10 times. Gullies density of the republic made up in 1911 - 0.42 unites/km2, in 1965 increased by 3 times and in some districts by 5-6 times. After 1965, a part of the land affected by gullies was gradually transformed from farmland into forest resources. This measure contributed to significant changes in agricultural land by reducing sudden decrease to the 1982 the index by gullies affection. The study of gullies intensity growth was achieved from 1966 in the main regions of Moldova. From 256 objects (gullies): 30% constitute those with weak growth (up to 0.3 m per year); 25% - with moderate growth (0.3-0.5 m) and 45% - with strong growth (0.5-1.5 m). There is no gully where would deprive their expansion process. Multiannual average growths of gullies are in large ranges - from 0.53 m on the Dniester Plateau to 1.48 m on the South Moldavian Plain. On the 1 January 2016 in the Republic of Moldova was registered 12031 hectares with gullies. Following active growth of depth erosion their total area annually increases with 300 hectares and the total destroyed land with 450-500 hectares. Linear and volume growth forecast of ravines (gullies) in different natural conditions of Moldova will be taken into consideration in designing of hydro-technical antierosion constructions and schemes to combat gullies erosion. Consequently, there is a need for erosion monitoring, special researches, experimental and modelling studies of gullies as a basis for predicting the effects of environmental change on gully erosion rates, implementation of measures to combat soil depth erosion in Moldova. Keywords: Agriculture activities, Erosion control, Gully erosion, Slope, Republic of Moldova

  5. Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana

    NASA Astrophysics Data System (ADS)

    Skipp, Betty

    1987-03-01

    The Clearwater orogenic zone in central Idaho and western Montana contains at least two major northeast-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the western continental margin produced a younger northern Bitterroot lobe of the Idaho batholith relative to an older southern Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.

  6. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar.

    PubMed

    Htwe, Thin Nwe; Brinkmann, Katja; Buerkert, Andreas

    2015-10-01

    Myanmar is one of Southeast Asia's climatically most diverse countries, where sheet, rill, and gully erosion affect crop yields and subsequently livelihood strategies of many people. In the unique wetland ecosystem of Inle Lake, soil erosion in surrounding uplands lead to sedimentation and pollution of the water body. The current study uses the Revised Universal Soil Loss Equation (RUSLE) to identify soil erosion risks of the Inle Lake region in space and time and to assess the relationship between soil erosion and degradation for different agricultural zones and cropping systems. Altogether, 85% of soil losses occurred on barren land along the steep slopes. The hotspot of soil erosion risk is situated in the western uplands characterized by unsustainable land use practices combined with a steep topography. The estimated average soil losses amounted to 19.9, 10.1, and 26.2 t ha(-1) yr(-1) in 1989, 2000, and 2009, respectively. These fluctuations were mainly the results of changes in precipitation and land cover (deforestation (-19%) and expansion of annual cropland (+35%) from 1989 to 2009). Most farmers in the study area have not yet adopted effective soil protection measures to mitigate the effects of soil erosion such as land degradation and water pollution of the lake reservoir. This urgently needs to be addressed by policy makers and extension services.

  7. Geoologic controls on the architecture of the Antarctic Ice Sheet's basal interface: New results from West and East Antarctica from long range geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Blankenship, D. D.; Greenbaum, J. S.; Richter, T.; Aitken, A.; Siegert, M. J.; Roberts, J. L.

    2013-12-01

    The ice-rock interface underlying the Antarctic Ice Sheet was shaped by interactions between underlying gondwanan geology and the overlying ice sheet. The ice sheet now preserves from sedimentary infill an incredibly rugged terrain which now plays a critical role in shaping subglacial hydrology, and thus shape ice sheet behavior. This terrain can by imaged through aerogeophysical means, in particular through ice penetrating radar, while airborne potential fields measurements provide insight into the geological framework that controlled erosion. Over the post IPY era, the density of airborne coverage is only now reaching the point where small scale structure can be identified and placed in context. Of particular importance is understanding the formation of focused erosional valleys, 30-50 km wide, representing now buried subglacial fjords. After initial data from the GIMBLE project in West Antarctica, and five years of sustained long range ICECAP surveys over East Antarctica , we now have a better view of the diversity of these features. The local erosion of these valleys, often cutting through significant topographic barriers, irregularly samples the underlying geology, provided a complex story in the sediment to the Antarctic margin. These valleys now provide the subglacial conduits for significant ice sheet catchments, in particular for subglacial water, including the inland catchments of DeVicq, Thwaites, and Pine Island Glaciers in West Antarctica, and Denman Glacier, Totten Glacier, Byrd Glacier and Cook Ice Shelf in East Antarctica. We find that these features, now sometimes hundreds of kilometers inland of the modern grounding line, often nucleate on or are aligned with structure inherited from the assembly of the Antarctic continent. While many of these features currently host active outlet glaciers or their tributaries, some do not, implying avenues for ice sheet change. In West Antarctica, we find a new deep connection between the coast and interior basin running through the heart of the Marie Byrd Land subglacial massif, with associated deep erosional scars with implications for the history of the West Antarctic ice sheet. In eastern Wilkes Land, deep, comparably recently active eroding troughs dominate the hydrology of the Wilkes Subglacial Basin. In western Wilkes Land in East Antarctica, (as noted by other presentations in this session) fjord systems nucleating on continental suture zones indicate the extent of paleoice sheet margins, and act as switches for modern subglacial hydrology.

  8. Sediment traps for measuring onslope surface sediment movement

    Treesearch

    Wade G. Wells; Peter M. Wohlgemuth

    1987-01-01

    Two types of small (30-cm aperture) sheet metal sediment traps were developed to monitor onslope surface sediment transport. Traditionally, sediment traps and erosion pins have been used to measure the onslope movement of surficial soil material. While pins may be appropriate for documenting landscape denudation, traps are more suitable for monitoring downslope...

  9. Ice-load induced tectonics controlled tunnel valley evolution - instances from the southwestern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Al Hseinat, M.; Hübscher, C.

    2014-08-01

    Advancing ice sheets have a strong impact on the earth's topography. For example, they leave behind an erosional unconformity, bulldozer the underlying strata and form tunnel valleys, primarily by subglacial melt-water erosion and secondarily by direct glacial erosion. The conceptual models of the reactivation of faults within the upper crust, due to the ice sheets' load, are also established. However, this phenomenon is also rather under-explored. Here, we propose a causal link between ice-load induced tectonics, the generation of near-vertical faults in the upper crust above an inherited deep-rooted fault and the evolution of tunnel valleys. The Kossau tunnel valley in the southeastern Bay of Kiel has been surveyed by means of high-resolution multi-channel seismic and echosounder data. It strikes almost south to north and can be mapped over a distance of ca 50 km. It is 1200-8000 m wide with a valley of up to 200 m deep. Quaternary deposits fill the valley and cover the adjacent glaciogenic unconformity. A near-vertical fault system with an apparent dip angle of >80°, which reaches from the top Zechstein upwards into the Quaternary, underlies the valley. The fault partially pierces the seafloor and growth is observed within the uppermost Quaternary strata only. Consequently, the fault evolved in the Late Quaternary. The fault is associated with an anticline that is between 700 and 3000 m wide and about 20-40 m high. The fault-anticline assemblage neither resembles any typical extensional, compressional or strike-slip deformation pattern, nor is it related to salt tectonics. Based on the observed position and deformation pattern of the fault-anticline assemblage, we suggest that these structures formed as a consequence of the differential ice-load induced tectonics above an inherited deep-rooted sub-salt fault related to the Glückstadt Graben. Lateral variations in the ice-load during the ice sheet's advance caused differential subsidence, thus rejuvenating the deep-rooted fault. As a result, the inherited fault propagated upwards across the Zechstein and post-Permian overburden and further grew during the ice sheet's retreat. The developing fault and anticline system under the ice sheet created a weakness zone that facilitated erosion by pressurized glacial and subglacial melt-water, as well as by the glaciers themselves. Near-vertical faults cutting through the post-Permian are abundant in the southwestern Baltic realm, which implies that the ice-load induced tectonic activity described above was not an isolated incident.

  10. Long-term Glacial History of the West Antarctic Ice Sheet from Cosmogenic Nuclides in a Subglacial Bedrock Core

    NASA Astrophysics Data System (ADS)

    Spector, P. E.; Stone, J.; Hillebrand, T.; Gombiner, J. H.

    2017-12-01

    To investigate the response of the West Antarctic Ice Sheet (WAIS) to climatic conditions warmer than present, we are analyzing cosmogenic nuclides in a bedrock core from beneath 150 m of ice at a site near the Pirrit Hills. Our aim is to determine whether the WAIS has thinned in the past, exposing bedrock at this site, and if so, when. This will help to determine the vulnerability of the ice sheet to future warming, and identify climatic thresholds capable of inducing WAIS collapse. We selected a site where the ice-sheet surface lies at 1300 m, approximately halfway from the ice-sheet divide to the grounding line. We expect ice thickness at the site to reflect WAIS dynamics, rather than local meteorology or topography. Ice flow speeds are moderate and ice above the core site is thin enough to remain cold-based, limiting the possibility of subglacial erosion which would compromise the cosmogenic nuclide record. We targeted a subglacial ridge adjacent to an exposed granite nunatak. This lithology provides minerals suitable for analysis of multiple cosmogenic nuclides with different half-lives. Although we aimed to collect two cores from different depths to compare exposure histories, hydrofracture of the basal ice prevented us from reaching the bed at the first drill site. The second hole produced 5.5 m of discontinuous ice core above 8 m of bedrock core. Initial analyses of quartz from the bedrock show low levels of Be-10. Further analyses of Be-10, Al-26, Cl-36 and Ne-21 from the full length of the core will be required to determine whether this is because the surface has never been exposed, or because the cosmogenic nuclide profile has been truncated by glacial erosion. We will present comprehensive cosmogenic nuclide data, and discuss implications for WAIS deglaciation history, at the meeting. Supported by US National Science Foundation awards ANT-1142162 and PLR-1341728.

  11. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    The advantages of replacing metals in aircraft turbine engines with high-temperature polymer matrix composites (PMC's) include weight savings accompanied by strength improvements, reduced part count, and lower manufacturing costs. Successfully integrating high-temperature PMC's into turbine engines requires several long-term characteristics. Resistance to surface erosion is one rarely reported property of PMC's in engine applications because PMC's are generally softer than metals and their erosion resistance suffers. Airflow rates in stationary turbine engine components typically exceed 2.3 kg/sec at elevated temperatures and pressures. In engine applications, as shown in the following photos, the survivability of PMC components is clearly a concern, especially when engine and component life-cycle requirements become longer. Although very few publications regarding the performance of erosion coatings on PMC's are available particularly in high-temperature applications the use of erosion-resistant coatings to significantly reduce wear on metallic substrates is well documented. In this study initiated by the NASA Glenn Research Center at Lewis Field, a low-cost (less than $140/kg) graphite-fiber-reinforced T650 35/PMR 15 sheet-molding compound was investigated with various coatings. This sheet-molding compound has been compression molded into many structurally complicated components, such as shrouds for gas turbine inlet housings and gearboxes. Erosion coatings developed for PMC s in this study consisted of a two-layered system: a bondcoat sprayed onto a cleaned PMC surface, followed by an erosion-resistant, hard topcoat sprayed onto the bondcoat as shown in following photomicrograph. Six erosion coating systems were evaluated for their ability to withstand harsh thermal cycles, erosion resistance (ASTM G76 83 "Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets") using Al2O3, and adhesion to the graphite fiber polyimide composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  12. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?

    NASA Astrophysics Data System (ADS)

    Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C. L.; Lejeune, P.; Colinet, G.; Degré, A.

    2017-03-01

    Erosion and deposition modelling should rely on field data. Currently these data are seldom available at large spatial scales and/or at high spatial resolution. In addition, conventional erosion monitoring approaches are labour intensive and costly. This calls for the development of new approaches for field erosion data acquisition. As a result of rapid technological developments and low cost, unmanned aerial vehicles (UAV) have recently become an attractive means of generating high resolution digital elevation models (DEMs). The use of UAV to observe and quantify gully erosion is now widely established. However, in some agro-pedological contexts, soil erosion results from multiple processes, including sheet and rill erosion, tillage erosion and erosion due to harvest of root crops. These diffuse erosion processes often represent a particular challenge because of the limited elevation changes they induce. In this study, we propose to assess the reliability and development perspectives of UAV to locate and quantify erosion and deposition in a context of an agricultural watershed with silt loam soils and a smooth relief. Erosion and deposition rates derived from high resolution DEM time series are compared to field measurements. The UAV technique demonstrates a high level of flexibility and can be used, for instance, after a major erosive event. It delivers a very high resolution DEM (pixel size: 6 cm) which allows us to compute high resolution runoff pathways. This could enable us to precisely locate runoff management practices such as fascines. Furthermore, the DEMs can be used diachronically to extract elevation differences before and after a strongly erosive rainfall and be validated by field measurements. While the analysis for this study was carried out over 2 years, we observed a tendency along the slope from erosion to deposition. Erosion and deposition patterns detected at the watershed scale are also promising. Nevertheless, further development in the processing workflow of UAV data is required in order to make this technique accurate and robust enough for detecting sediment movements in an agricultural watershed affected by diffuse erosion. This area of investigation holds much potential as the images processing is relatively new and expanding.

  13. Holocene history of North Ice Cap, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.

    2013-12-01

    Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above the sands are 14,940 and 14,560 cal yr BP (medians of two-sigma ranges). Our results thus far suggest that the Nunatarssuaq region preserves a long and complex glacial history, including glaciation by the Greenland Ice Sheet and potentially North Ice Cap, as well as glaciation by both erosive and non-erosive ice. Based on the basal ages from Delta Sø and the youngest boulder 10Be age, recession at the end of the most recent glacial period likely occurred by ~15 ka. This is considerably earlier than most other terrestrial margins of Greenland that did not become ice free until ~10 ka. Our ongoing research is developing proxy and further chronological data from sediment cores from Delta Sø and nearby ice-marginal lakes to constrain the Holocene fluctuations of North Ice Cap.

  14. Coupling surface and mantle dynamics: A novel experimental approach

    NASA Astrophysics Data System (ADS)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea

    2015-05-01

    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.

  15. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena

    2017-04-01

    Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.

  16. Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana ( USA).

    USGS Publications Warehouse

    Skipp, B.

    1987-01-01

    The Clearwater orogenic zone in central Idaho and W Montana contains at least 2 major NE-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the W continental margin produced a younger N Bitterroot lobe of the Idaho batholith relative to an older S Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.-Author

  17. Landscape evolution by subglacial quarrying

    NASA Astrophysics Data System (ADS)

    Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.

    2014-05-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a standard erosion rule, where erosion rate scales with basal sliding, the quarrying model produces valleys that are wider and have more flattened valley floors with several shallow overdeepenings. The overdeepenings are stabilized by hydrology because of the strong influence of effective pressure on quarrying rate. For melt water to escape the overdeepening, the average water pressure must rise as the overdeepening grows, and this keeps the effective pressure low and prevents the overdeepening from growing infinitely. In addition, the strong influence of effective pressure indicates that erosion rate depends strongly on ice thickness. This could associate to sudden jumps in erosion rate and fjord formation along margins that experienced periodic ice sheet configurations in the Quaternary. Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)

  18. Participatory assessment of soil erosion severity and performance of mitigation measures using stakeholder workshops in Koga catchment, Ethiopia.

    PubMed

    Jemberu, Walle; Baartman, Jantiene E M; Fleskens, Luuk; Ritsema, Coen J

    2018-02-01

    Farmers possess a wealth of knowledge regarding soil erosion and soil and water conservation (SWC), and there is a great demand to access it. However, there has been little effort to systematically document farmers' experiences and perceptions of SWC measures. Sustainable Land Management (SLM) has largely evolved through local traditional practices rather than adoption based on scientific evidence. This research aimed to assess soil erosion and performance of different SWC measures from the farmers' perspective by documenting their perceptions and experiences in Koga catchment, Ethiopia. To this aim, workshops were organised in three sub-catchments differing in slopes and SWC measures. Workshops included group discussions and field monitoring of erosion indicators and systematically describing the status of soil erosion, soil fertility and yield to assess the performance of SWC measures. Results show that farmers are aware of the harmful effects of ongoing soil erosion and of the impacts of mitigation measures on their farms. Sheet erosion was found to be the most widespread form of erosion while rill damage was critical on plots cultivated to cereals on steep slopes. The average rill erosion rates were 24.2 and 47.3 t/ha/y in treated and untreated farmlands, respectively. SWC reduced rill erosion on average by more than 48%. However, the impacts of SWC measures varied significantly between sub-watersheds, and farmers believed that SWC measures did not prevent erosion completely. Comparatively, graded stone-faced soil bunds revealed maximum desired impacts and were most appreciated by farmers, whereas level bunds caused water logging. Most traditional ditches were highly graded and begun incising and affected production of cereals. Despite the semi-quantitative nature of the methodology, using farmers' perceptions and experiences to document land degradation and the impacts of SWC measures is crucial as they are the daily users of the land and therefore directly affecting the success or failure of SWC measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent

    NASA Astrophysics Data System (ADS)

    Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.

    2018-05-01

    East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.

  20. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat

    PubMed Central

    Scherer, Reed P.; DeConto, Robert M.; Pollard, David; Alley, Richard B.

    2016-01-01

    Marine diatoms in tillites along the Transantarctic Mountains (TAMs) have been used to suggest a diminished East Antarctic Ice Sheet (EAIS) during Pliocene warm periods. Updated ice-sheet modelling shows significant Pliocene EAIS retreat, creating marine embayments into the Wilkes and Aurora basins that were conducive to high diatom productivity and rapid accumulation of diatomaceous sediments. Here we show that subsequent isostatic uplift exposed accumulated unconsolidated marine deposits to wind erosion. We report new atmospheric modelling utilizing Pliocene climate and derived Antarctic landscapes indicating that prevailing mid-altitude winds transported diatoms towards the TAMs, dominantly from extensive emerged coastal deposits of the Aurora Basin. This result unifies leading ideas from competing sides of a contentious debate about the origin of the diatoms in the TAMs and their link to EAIS history, supporting the view that parts of the EAIS are vulnerable to relatively modest warming, with possible implications for future sea-level rise. PMID:27649516

  1. Thrust Breakdown Characteristics of Conventional Propellers

    DTIC Science & Technology

    2007-09-01

    extends beyond the trailing edge of the blade . These sheets violently collapse as the blade moves out of the wake deficit produced by the hull. This...thrust breakdown, vibration, noise , erosion and blade damage. Propellers operating with enough cavitation to cause thrust breakdown can experience...7 Figure 5. Sensitivity of thrust reduction to harmonic content in wake (Prop 5491) .................. 8 Figure 6. Comparison of

  2. Generation and fate of glacial sediments in the central Transantarctic Mountains based on radiogenic isotopes and implications for reconstructing past ice dynamics

    NASA Astrophysics Data System (ADS)

    Farmer, G. Lang; Licht, Kathy J.

    2016-10-01

    The Nd, Sr and Pb isotopic compositions of glacial tills from the Byrd and Nimrod Glaciers in the central Transantarctic Mountains (TAM) in East Antarctica were obtained to assess the sources of detritus transported by these ice masses. Tills from lateral moraines along the entire extent of both glaciers have isotopic compositions consistent with their derivation predominately from erosion of adjacent bedrock. Fine- (<63μ) and coarser-grained (0.5 mm-2 mm) sediment from these tills have identical isotopic characteristics, indicating that fine-grained detritus is the product of further comminution of coarser sediments. Comparison of present-day till isotopic data to existing data from fine-grained LGM tills in the central Ross Sea confirm that these were deposited from East Antarctic ice that expanded through the TAM and indicates that the LGM sediments are mixtures of detritus eroded along the entire path of ice transiting the TAM. If specific lithologies were preferentially eroded as ice passed through the TAM, it is not clearly evident in the Ross Sea till isotopic compositions. Our data do demonstrate, however, that glacial tills generated from erosion of inboard regions of the mountain belt yield sediment with a larger component of 560 Ma to 600 Ma detrital zircons and lower average εNd(0) values (<-5) than that produced further downstream. As a result, past retreat of ice grounding-lines up the narrow valleys of the TAM resulting in active erosion of inboard region should recognizable in glacial sediments deposited in the Ross Sea and so provide a means to identify times when the East Antarctic ice sheet was smaller than today. This study highlights both the value and necessity of utilizing multiple provenance methods in evaluating glacial erosion and transport when reconstructing past ice sheet dynamics.

  3. Sediment Deposition, Erosion, and Bathymetric Change in Central San Francisco Bay: 1855-1979

    USGS Publications Warehouse

    Fregoso, Theresa A.; Foxgrover, Amy C.; Jaffe, Bruce E.

    2008-01-01

    Central San Francisco Bay is the hub of a dynamic estuarine system connecting the San Joaquin and Sacramento River Deltas, Suisun Bay, and San Pablo Bay to the Pacific Ocean and South San Francisco Bay. To understand the role that Central San Francisco Bay plays in sediment transport throughout the system, it is necessary to first determine historical changes in patterns of sediment deposition and erosion from both natural and anthropogenic forces. The first extensive hydrographic survey of Central San Francisco Bay was conducted in 1853 by the National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS)). From 1894 to 1979, four additional surveys, composed of a total of approximately 700,000 bathymetric soundings, were collected within Central San Francisco Bay. Converting these soundings into accurate bathymetric models involved many steps. The soundings were either hand digitized directly from the original USCGS and NOS hydrographic sheets (H-sheets) or obtained digitally from the National Geophysical Data Center's (NGDC) Geophysical Data System (GEODAS) (National Geophysical Data Center, 1996). Soundings were supplemented with contours that were either taken directly from the H-sheets or added in by hand. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings, depth contours, shorelines, and marsh areas were entered into a geographic information system (GIS) and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 25 m were developed for each of the five hydrographic surveys. Before analyses of sediment deposition and erosion were conducted, interpolation bias was removed and all of the grids were converted to a common vertical datum. These bathymetric grids were then used to develop bathymetric change maps for subsequent survey periods and to determine long-term changes in deposition and erosion by calculating volumes and rates of net sediment change. Central San Francisco Bay experienced periods of both deposition and erosion, but overall experienced a net gain in sediment from 1855 to 1979 of approximately 42x106 m3 (0.33x106 m3 / yr). Over this same time period, 92 percent of the tidal marsh and 69 percent of the intertidal mudflats were lost as human activity increased and the shorefront was developed. During the first time period, from 1855 to 1895, Central San Francisco Bay was erosional, losing roughly 2x106 m3 / yr of sediment. The next time period was depositional, with a net gain of approximately 3x106 m3 / yr of sediment from 1895 to 1947. The last time period, from 1947 to 1979, was erosional again, losing roughly 2x106 m3 / yr of sediment. Sedimentation patterns also varied spatially. The northern part of Central San Francisco Bay was depositional during all change periods while the eastern region alternated between erosional and depositional. Central San Francisco Bay sedimentation patterns have also been strongly impacted by anthropogenic activities, such as dredging and dredge disposal, borrow pits, and sand mining. For example, bathymetric change at a borrow pit created near Bay Farm Island sometime between the 1947 and 1979 surveys indicates roughly 25x106 m3 of sediment was removed from the system.

  4. Predicting risk of rill initiation in a sub-catchment of Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Hausner, C.; Sisák, I.

    2009-04-01

    Rill erosion is an accelerated form of soil degradation. It removes much more soil and nutrients from the agricultural land than sheet erosion. Soils in the southern sub-watershed of Lake Balaton are especially prone to rill erosion and they contribute to siltation of ditches, to muddy floods and to eutrofication of the lake. The parent material in this region is mainly (sandy) loess and the soils are already moderately or strongly eroded thus, the low tolerance of loess against erosion determines erodibility. Identification of soils with high risk of rill erosion is crucial to plan mitigation measures. Soil erodibility has been investigated in this study in the catchment of Tetves stream. The USLE soil erodibility factor and soil slaking are widely accepted indicators for soil erosion. Both of them are published for all soil texture classes in handbooks of soil mapping. We have found that erodibility derived from our physical model has a close linear correlation with the product of the USLE soil erodibility factor and soil slaking grade thus, USLE could be directly used to assess parameters for physical based models. Rill erosion is highly probable if the product of KUSLE X slaking grade is above 2. Digital maps were produced to delineate soils with high potential for rill erosion. The basic data for the soil properties were drawn from the 1:10,000 soil map. Soil texture classes were used to assign KUSLE and slaking grade to the soil units. Beyond soil properties, other factors also influence rill formation: slope, surface cover, rainfall intensity. However, identifying soil properties, which make soils prone to rill erosion, is an important initial step for the reduction of diffuse agricultural loads to Lake Balaton. It might be the objective of River Basin Management Plans in the Water Framework Directive to prevent rill erosion and our study provides scientific evidence for targeting this policy.

  5. Runoff and initial erosion assessment in fruit tree crops and improved forage pastures in the slopes of the Irazu Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; González-Rodrigo, Beatriz

    2017-04-01

    Costa Rica is located in the Central American tropical isthmus. It presents high precipitations (ranging from 1400-8500 mm) and protection levels (27% of national territory). However, intensive land use and increasing population in headwaters are major threats for water resource management in this country. Birrís Basin is a 4800 hectares sub-watershed of the River Reventazón Basin, the major hydroelectric source in Costa Rica. Birrís Basin was selected for its high estimated erosion rates and its potential for demonstrative projects (ICE, 1999). Some pilot projects have been developed in this watershed starting from 1999, when major Costa Rican energy producer, Instituto Costarricense de Electricidad, began with a long term watershed management program for the Reventazón Basin. This study aims at measuring runoff and initial splash and sheet erosion to assess the hydrological response of two pilot land use projects. Erosion and runoff plots were established and monitored in a one year period for two pilot projects (fruit trees and forage pastures) and their respective traditional land uses (vegetable crops and extensive pastures). Improved forage pastures showed reduced runoff by 73% and split erosion by 55% compared to prior extensive pastures. Conversion of vegetable crop lands into fruit tree plantations (apricot and avocado) made possible a 97% reduction of soil initial erosion. Land use pilot projects have succeeded in runoff and soil erosion reduction. Now it is time for a wider technology transfer program to expand improved land uses within Birrís Basin.

  6. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.

  7. Quantifying coastal erosion rates using anatomical change in exposed tree roots at Porquerolles Island (Var, France).

    NASA Astrophysics Data System (ADS)

    Morel, Pauline; Corona, Christophe; Lopez-Saez, Jérôme; Rovéra, Georges; Dewez, Thomas; Stoffel, Markus; Berger, Frédéric

    2017-04-01

    Rocky coasts are the most common type of ocean-land contacts and can be found in all types of morphogenetic environments. Most work on rocky environments focused on the impacts of modern sea level rise on cliff stability derived from sequential surveys, direct measurements or erosional features in anthropogenic structures. Studies mainly focused on rapid erosion so that little is known about erosion rates of the French Mediterranean coastal area. Using anatomical reactions in roots, has been successfully used in various environments in the past to quantify continuous denudation rates, mostly in relation with gullying processes (Vandekerckhove, 2001; Malik, 2008), aerial (or sheet) (Bodoque et al., 2005; Lopez Saez et al., 2011; Lucia et al., 2011), river bank (Malik, 2006; Hitz et al., 2008a; Stoffel et al., 2012), or lake shore (Fantucci, 2007) erosion, but never so far on coastal cliffs environment. This study aims at exploring the potential of dendrogeomorphic approach to quantify multidecadal changes in coastal environments on Porquerolles Island (Var, France). We sampled 56 discs from Pinus halepensis Mill. roots on former alluvial deposits eroded by present day sea level (escarpments of a few meter in height) and on sandy-gravelly cliffs. We were able to dates erosion pulses as well as changes in cliff geometry with annual resolution over 30-40 years showing an average erosion rate of 2.1 cm yr-1. Our results are consistent with those found in the study of Giuliano (2015) on Mediterranean coastal environment. This contribution therefore demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and are a powerful tool for the quantification of multidecadal cliff retreats rates in areas where measurements of past erosion is lacking. References: Bodoque J, Díez-Herrero A, Martín-Duque J, Rubiales J, Godfrey A, Pedraza J, Carrasco R, Sanz M. 2005. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from central Spain. Catena 64 : 81-102. Fantucci R. 2007. Dendrogeomorphological analysis of shore erosion along Bolsena lake (central Italy). Dendrochronologia 24 : 130-140. Giuliano J. Érosion des falaises de la région Provence-Alpes-Côte d'Azur : évolution et origine de la morphologie côtière en Méditerranée : télédétection, géochronologie, géomorphologie. Sciences de la Terre. Université Nice Sophia Antipolis, 2015. Français. . Hitz O, Gärtner H, Heinrich I, Monbaron M, 2008a. Application of ash (Fraxinus excelsior l.) roots to determine erosion rates in mountain torrents. Catena 72 : 248-258. Lopez Saez J, Corona C, Stoffel M, Rovéra G, Astrade L, Berger F. 2011. Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data. Earth Surface Processes and Landforms 36 : 1162-1171. Lucía, A., Laronne, J. B., & Martín-Duque, J. F. (2011). Geodynamic processes on sandy slope gullies in central Spain field observations, methods and measurements in a singular system. Geodinámica acta, 24(2), 61-79. Malik I. 2008. Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland). Geomorphology 93 : 421-436.
 Malik I. 2006. Gully erosion dating by means of anatomical changes in exposed roots (Proboszczowicka plateau, Southern Poland). Geochronometria 25 : 57-66. Stoffel M, Casteller A, Luckman B H, Villalba R, 2012. Spatiotemporal analysis of channel wall erosion in ephemeral torrents using tree roots - An example from the Patagonian Andes. Geology40 : 247-250. Vandekerckhove L. 2001. Short-term bank gully retreat rates in Mediterranean environments. Catena 44 : 133-161.

  8. A water-budget approach to restoring a sedge fen affected by diking and ditching

    USGS Publications Warehouse

    Wilcox, Douglas A.; Sweat, Michael J.; Carlson, Martha L.; Kowalski, Kurt P.

    2006-01-01

    A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities. Refuge managers subsequently used these results to guide restoration efforts, including construction of earthen dams in Walsh Ditch upslope from the pool to stop surface flow, installation of new water-control structures to redirect surface water to sheet flow and natural creek channels, planning seasonal releases from C-3 Pool to avoid erosion in natural channels, stopping flow in downslope Walsh Ditch to reduce erosion, and using constructed earthen dams and natural beaver dams to flood the ditch channel below C-3 Pool. Interactions between ground water and surface water are critical for maintaining ecosystem processes in many wetlands, and management actions directed at restoring either ground- or surface-water flow patterns often affect both of these components of the water budget. This approach could thus prove useful in guiding restoration efforts in many hydrologically altered and managed wetlands worldwide.

  9. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers

    NASA Astrophysics Data System (ADS)

    Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher

    2012-05-01

    The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.

  10. Late cenozoic fluvial stratigraphy of the New Jersey piedmont: A record of glacioeustasy, planation, and incision on a low-relief passive margin

    USGS Publications Warehouse

    Stanford, S.D.; Ashley, G.M.; Brenner, G.J.

    2001-01-01

    Late Cenozoic fluvial deposits and erosional landforms in the New Jersey Piedmont record two episodes of valley incision, one in the Late Miocene and one in the Early Pleistocene, separated by periods of planation and fluvial deposition. The upland erosion surface and a fluvial gravel are the remnants of a low-relief Late Miocene landscape. Late Miocene incision was followed by deposition of a fluvial plain and cutting of straths in the Pliocene. Early Pleistocene incision produced the present valleys, which contain Middle to Late Pleistocene fluvial deposits. The two incisions correspond to permanent glacioeustatic lowering during expansion of the Antarctic ice sheet in the Middle to Late Miocene and development of Northern Hemisphere ice sheets in the Late Pliocene. Bordering Coastal Plain marine deposits indicate that the upland erosion surface was formed during a rising sea-level trend between the Late Oligocene and Middle Miocene. The Pliocene plain and straths formed during a period of rising sea level in the Early Pliocene. The stratigraphic record indicates that the oldest preserved landforms are no older than Late Miocene, that landscape planation in coastal regions of low-relief passive margins can be achieved in <20 m.yr., and that these surfaces can be incised and dissected in <5 m.yr.

  11. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and short-term post-fire recovery years for steeply-sloped sagebrush sites with fine-textured soils. The study results also serve to inform development and enhancement of the Rangeland Hydrology and Erosion Model for predicting runoff and erosion responses from disturbed and undisturbed sagebrush rangelands.

  12. Does Temperature (Rather than Precipitation) Dictate the Geomorphic Legacy of Glacial Intervals in Unglaciated Mid-Latitude Terrains?

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Roering, J. J.; Bartlein, P. J.; Praskievicz, S. J.; Gavin, D. G.; Hales, T. C.; Granger, D. E.

    2014-12-01

    Whereas glaciated landscapes record increased erosional efficiency through moraines and U-shaped valleys, unglaciated hillslopes and rivers lack a mechanistic theory for climate controls on their dynamics and form. Changes in precipitation and associated aggradation due to vegetation loss or incision due to increased river discharge are commonly invoked when considering the effect of glacial intervals on unglaciated terrains, but there is scant evidence supporting or discounting these hypotheses. Surprisingly, there is little consideration that temperature, rather than precipitation, may dictate the frequency, magnitude, or style of erosion in unglaciated landscapes during glacial intervals. Here, we present results combining a mechanistic frost-cracking model with downscaled general circulation model output to predict the extent and intensity of sediment production via frost processes across the unglaciated Oregon Coast Range (OCR) during the Last Glacial Maximum (LGM). Our results show that in this mid-latitude region, well south of the Cordilleran ice sheet, frost-driven processes likely shaped 90% of the present-day landmass during the LGM. A suite of geomorphic and vegetation data from a 50-ky sediment core from a paleo landslide-dammed lake in the OCR support our model results. Our study site, Little Lake, is located in the central portion of the OCR, over 400 m south of the maximum extent of the Cordilleran ice sheet. Based on 10Be-derived erosion rates, present-day catchment erosion rates average 0.07 ± 0.03 mm/yr (mean ± sd), while LGM erosion rates remained constant around 0.19 ± 0.01 mm/yr. These LGM values are nearly 3X greater than present-day erosion rates and coincide with high frost cracking intensity predicted by our model. We also observe a transition from finely laminated lacustrine clays and sands to coarse lacustrine blue-grey sands at ~ 28 ka, during the transition to the LGM. The presence of Picea sitchensis (Sitka spruce) and Abies lasiocarpa (subalpine fir) in the core during the LGM imply mean annual temperatures of ~ 1 °C and January mean temperatures of ~ -7 °C. Our results suggest that broad swaths of continental landscapes likely experienced accelerated sediment production via frost processes rather than via changes in precipitation during glacial intervals.

  13. Opportunities provided by UAVs to monitor erosion processes in agricultural catchments: a case study from Northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; De Wit, Bart; De Wulf, Alain; Salvador, Pierre-Gil; Nyssen, Jan

    2014-05-01

    In erosion studies, accurate spatio-temporal data are required to fully understand the processes involved and their relationship with environmental controls. With cameras being mounted on Unmanned Aerial Vehicles (UAVs), the latter allow to collect low-altitude aerial photographs over small catchments in a cost-effective and rapid way. From large data sets of overlapping aerial photographs, Structure from Motion - Multi View Stereo workflows, integrated in various software such as PhotoScan used here, allow to produced detailed Digital Surface Models (DSMs) and ortho-mosaics. In this study we present the results from a survey carried out in a small agricultural catchment near Hallines, in Northern France. A DSM and ortho-mosaic was produced of the catchment using photographs taken from a low-cost radio-controlled microdrone (DroneFlyer Hexacopter). Photographs were taken with a Sony Nex 5 (16.1 M pixels) camera having a fixed normal lens of 50 mm. In the field, Ground Control Points were materialized by unambiguously determinable targets, measured with a 1'' total station (Leica TS15i). Cross-sections of rills and ephemeral gullies were also quantified from total station measurements and from terrestrial image-based 3D modelling. These data allowed to define the accuracy of the DSM and the representation of the erosion features in it. The feasibility of UAVs photographic surveys to improve our understanding on water-erosion processes such as sheet, rill and gully erosion is discussed. Keywords: Ephemeral gully, Erosion study, Image-based 3D modelling, Microdrone, Rill, UAVs.

  14. 4 years of high-resolution LiDAR erosion monitoring of an elementary gully in the badlands of SE France (Draix)

    NASA Astrophysics Data System (ADS)

    Rudaz, Benjamin; Carrea, Dario; Antonio, Abellan; Jaboyedoff, Michel; Klotz, Sébastien

    2016-04-01

    The black marls outcrops of Draix (SE France) are an ideal site to study multiple erosional processes such as rain splashing, sheet erosion, concentrated flow erosion and micro-landslides. Their erosion constitute an important contribution to the bedload and suspended load of the Durance river basin, which can affect human infrastructure such as hydroelectric dams, irrigation systems and in general river maintenance. The badlands response to climatic events is thus crucial for long term management of those human endeavours. The topographical changes resulting from those different processes can be quantified and localized in both space and time, with repeated LiDAR acquisitions of high-resolution topography (up to 10 pts per cm2). To avoid shadowing induced vy vegetation or topography's curvature, an instrumented individual gully (named Roubinette) is equipped with a 4 m high scanning tower. It is small enough (400 m2) that the LiDAR can acquire it with no shadowing and in one scan, reducing merging and alignment errors. Seasonal acquisitions have been carried out since 2011, constituting a comprehensive dataset of the gully's evolution. The aligned scans are then converted to square grids and compared vertically to obtain DEMs of differences (DoD). Concentrated flow erosion, volume remobilization inside the secondary gullies and micro-landslides are easily detected by the DoD. Diffuse erosion is detected using a space-time filter to improve detection level accuracy. Combined with local meteorological data, photographic monitoring and sediment trap content data, a sequence of events can be reconstituted between each acquisition.

  15. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, C.; Opher, M.; Kornbleuth, M., E-mail: ckay@bu.edu

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg'smore » strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.« less

  16. Highly erodible terrain in agriculture land against chipped pruned branches. Or how to stop the soil erosion with low investment

    NASA Astrophysics Data System (ADS)

    Cerdà, A.

    2009-04-01

    The session on "Soil erosion and sediment control with vegetation and bioengineering on severely eroded terrain" pays special attention to the severe soil erosion suffered on steep slopes and erodible parent materials and soils. Within the last 20 years, in the Mediterranean lands, the citrus orchards were reallocated on steep slopes due to the urban development and better climatic and management conditions of the new plantations. The lack of vegetation cover on the new slope plantations of citrus resulted in high erosion rates. Those non-sustainable soil losses were measured by means of rainfall simulation experiments, Gerlach collectors, geomorphological transect and topographical measurements. The October 2007 and October 2008 rainy periods resulted in sheet, rill and gully erosion. Some recently planted orchards (2005) had the first pruning season in 2008. The pruned chipped branches reduced the soil losses to 50 % of the expected, although the litter (pruned branches) covered 4.67 % of the soil. This is why a research was developed by means of simulated rainfall experiments to determine the vegetation cover (litter, mainly leaves) to protect the soil to reach a sustainable erosion rate. Rainfall simulation experiments at 43 mm h-1 where performed on 1 m2 plots covered with 0, 3, 7, 15, 30, 45, 60, 80 and 100 % litter cover (pruned chipped branches) to determine the sustainable litter cover to avoid the soil losses. The results show that more that 45 % litter cover almost reduces the soil losses to negligible rates. The results confirm that 4 % of vegetation cover reduces the soil losses to 50 %. Key words: Agriculture land, erodible terrain, land management, citrus, erosion, Spain, Valencia, herbicides. Acknowledgements, We thanks the financial support of the Ministerio de Ciencia e Innovación by means of the project CGL2008-02879/BTE, "PERDIDA DE SUELO EN NUEVAS EXPLOTACIONES CITRICOLAS EN PENDIENTE. ESTRATEGIAS PARA EL CONTROL DE LA EROSION HIDRICA"

  17. Gully evolution and geomorphic adjustments of badlands to recent afforestation

    NASA Astrophysics Data System (ADS)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Francisco Martín-Duque, Jose; Corona, Christophe; Lucia, Ana; María Bodoque, Jose

    2016-04-01

    Badlands and gullied areas are among the geomorphic environments with the highest erosion rates worldwide, however records on their evolution are very scarce and often limited to presumed initial conditions and the known present state. In this communication, we present a unique and very dense and annual record and outstanding example of erosion processes in a Mediterranean environment in Central Spain, where badland and gullying processes on sandy slopes of a set of mesas have been presumably triggered by quarrying activities since Medieval times. The gully channel evolution here analyzed provides an exceptional example of a larger setting of geomorphic. Besides the analysis of geomorphic adjustments to historical land-use changes induced by historical quarrying and gullying dynamics, we also quantified the impact of current geomorphic adjustments to 20th century afforestation by combining multiproxy such as aerial photography, historical archives, and large dataset of exposed roots to date, quantify, and reconstruct the morphology of a rapidly evolving channel in a gullied catchment. In this analysis, more than 150 exposed roots were analyzed to quantify and report channel incision; widening and gully retreatment rates during the last decades, as well as to quantify sheet erosion on different soil units. Our results suggest that, rather than stabilizing gully evolution, the afforestation carried out during 1960s has played an important role in water-sediment balance and connectivity and would have triggered the initiation of channel incision processes in the 1980s. Therefore, we observe that the channel incision match with a significant increase of the vegetation cover, which leads a significant decrease in sheet erosion rates. Based on our long-term annual gully reconstruction, we observed that sediment delivery does not correlate with the estimated intensity of precipitation (Fourier index). Instead, we observe abrupt morphological changes in the gully are presumably related with changes in connectivity after a specific intense event. Consequently, we hypothesize that the gullying process-vegetation interactions are subsidiary of the geomorphic adjustments and connectivity states of the system; and speculate that this understanding is essential for suitable restoration and management plans.

  18. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by comparing with other soil erosion models. The model performed well when the average soil particle size is relatively large. The performance of the soil erosion model has been further validated by comparing with selected experimental datasets from the literature.

  19. Geological and geomorphological insights into Antarctic ice sheet evolution.

    PubMed

    Sugden, David E; Bentley, Michael J; O Cofaigh, Colm

    2006-07-15

    Technical advances in the study of ice-free parts of Antarctica can provide quantitative records that are useful for constraining and refining models of ice sheet evolution and behaviour. Such records improve our understanding of system trajectory, influence the questions we ask about system stability and help to define the ice-sheet processes that are relevant on different time-scales. Here, we illustrate the contribution of cosmogenic isotope analysis of exposed bedrock surfaces and marine geophysical surveying to the understanding of Antarctic ice sheet evolution on a range of time-scales. In the Dry Valleys of East Antarctica, 3He dating of subglacial flood deposits that are now exposed on mountain summits provide evidence of an expanded and thicker Mid-Miocene ice sheet. The survival of surface boulders for approximately 14Myr, the oldest yet measured, demonstrates exceptionally low rates of subsequent erosion and points to the persistence and stability of the dry polar desert climate since that time. Increasingly, there are constraints on West Antarctic ice sheet fluctuations during Quaternary glacial cycles. In the Sarnoff Mountains of Marie Byrd Land in West Antarctica, 10Be and 26Al cosmogenic isotope analysis of glacial erratics and bedrock reveal steady thinning of the ice sheet from 10400 years ago to the present, probably as a result of grounding line retreat. In the Antarctic Peninsula, offshore analysis reveals an extensive ice sheet at the last glacial maximum. Based on radiocarbon dating, deglaciation began by 17000cal yr BP and was complete by 9500cal yr BP. Deglaciation of the west and east sides of the Antarctic Peninsula ice sheet occurred at different times and rates, but was largely complete by the Early Holocene. At that time ice shelves were less extensive on the west side of the Antarctic Peninsula than they are today. The message from the past is that individual glacier drainage basins in Antarctica respond in different and distinctive ways to global climate change, depending on the link between regional topography and climate setting.

  20. Sediment Volume Record of Paleogene-Neogene Transantarctic Mountains Erosion and Landscape Modification, McMurdo Sound Region, Antarctica

    NASA Astrophysics Data System (ADS)

    Hall, T.; Wilson, T. J.; Henrys, S.; Speece, M. A.

    2016-12-01

    The interplay of tectonics and climate is recorded in the sedimentary strata within Victoria Land Basin, McMurdo Sound, Antarctica. Patterns of Cenozoic sedimentation are documented from interpretation of seismic reflection profiles calibrated by drillhole data in McMurdo Sound, and these patterns provide enhanced constraints on the evolution of the coupled Transantarctic Mountains-West Antarctic Rift System and on ice sheet advance/retreat through multiple climate cycles. The research focuses on shifts from warm based to cold based ice sheets through the variable climate and ice sheet conditions that characterized the early to middle Miocene. The study seeks to test the view that cold based ice sheets in arid, polar deserts minimally erode the landscape by calculating sediment volumes for critical climatic intervals. Revised seismic mapping through McMurdo Sound has been completed, utilizing the seismic stratigraphic framework first established by Fielding et al. (2006) and new reflectors marking unconformities identified from the AND-2A core (Levy et al., 2016). Reflector age constraints are derived by tying surfaces to the Cape Roberts Project, CIROS-1, and AND-2A drillholes. Seismic facies coupled with AND-2A core provenance information provides insight into depositional mechanisms and ice sheet behavior. Seismic facies transitions occur across the major unconformity surfaces in the AND-2A core. Sediment volume calculations for subareas within McMurdo Sound where reflectors are most continuous indicate substantial decreases in preserved sediment volume between the Oligocene and Early Miocene sequences, and between the early and mid-Miocene sequences. Sediment volumes, used in combination with an ice sheet model in a backstacking procedure, provide constraints on landscape modification and further understanding of how landscapes erode under warm and cold based ice sheet regimes.

  1. Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications

    NASA Astrophysics Data System (ADS)

    Licht, Kathy J.; Hemming, Sidney R.

    2017-05-01

    The number of provenance studies of glacigenic sediments in Antarctica has increased dramatically over the past decade, providing an enhanced understanding of ice sheet history and dynamics, along with the broader geologic history. Such data have been used to assess glacial erosion patterns at the catchment scale, flow path reconstructions over a wide range of scales, and ice sheet fluctuations indicated by iceberg rafted debris in circumantarctic glacial marine sediments. It is notable that even though most of the bedrock of the continent is ice covered and inaccessible, provenance data can provide such valuable information about Antarctic ice and can even be used to infer buried rock types along with their geo- and thermochronologic history. Glacigenic sediments provide a broader array of provenance analysis opportunities than any other sediment type because of their wide range of grain sizes, and in this paper we review methods and examples from all size fractions that have been applied to the Antarctic glacigenic sedimentary record. Interpretations of these records must take careful consideration of the choice of analytical methods, uneven patterns of erosion, and spatial variability in sediment transport and rock types, which all may lead to a preferential identification of different elements of sources in the provenance analyses. Because of this, we advocate a multi-proxy approach and highlight studies that demonstrate the value of selecting complementary provenance methods.

  2. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO 2

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; Archer, David; Pollard, David; Blum, Joel D.; Rial, Jose A.; Brovkin, Victor; Mix, Alan C.; Pisias, Nicklas G.; Roy, Martin

    2006-12-01

    The emergence of low-frequency, high-amplitude, quasi-periodic (˜100-kyr) glacial variability during the middle Pleistocene in the absence of any significant change in orbital forcing indicates a fundamental change internal to the climate system. This middle Pleistocene transition (MPT) began 1250 ka and was complete by 700 ka. Its onset was accompanied by decreases in sea surface temperatures (SSTs) in the North Atlantic and tropical-ocean upwelling regions and by an increase in African and Asian aridity and monsoonal intensity. During the MPT, long-term average ice volume gradually increased by ˜50 m sea-level equivalent, whereas low-frequency ice-volume variability experienced a 100-kyr lull centered on 1000 ka followed by its reappearance ˜900 ka, although as a broad band of power rather than a narrow, persistent 100-kyr cycle. Additional changes at 900 ka indicate this to be an important time during the MPT, beginning with an 80-kyr event of extreme SST cooling followed by the partial recovery and subsequent stabilization of long-term North Atlantic and tropical ocean SSTs, increasing Southern Ocean SST variability primarily associated with warmer interglacials, the loss of permanent subpolar sea-ice cover, and the emergence of low-frequency variability in Pacific SSTs and global deep-ocean circulation. Since 900 ka, ice sheets have been the only component of the climate system to exhibit consistent low-frequency variability. With the exception of a near-universal organization of low-frequency power associated with marine isotope stages 11 and 12, all other components show an inconsistent distribution of power in frequency-time space, suggesting a highly nonlinear system response to orbital and ice-sheet forcing. Most hypotheses for the origin of the MPT invoke a response to a long-term cooling, possibly induced by decreasing atmospheric pCO 2. None of these hypotheses, however, accounts for the geological constraint that the earliest Northern Hemisphere ice sheets covered a similar or larger area than those that followed the MPT. Given that the MPT was associated with an increase in ice volume, this constraint requires that post-MPT ice sheets were substantially thicker than pre-MPT ice sheets, indicating a change in subglacial conditions that influence ice dynamics. We review evidence in support of the hypothesis that such an increase in ice thickness occurred as crystalline Precambrian Shield bedrock became exposed by glacial erosion of a thick mantle of regolith. This exposure of a high-friction substrate caused thicker ice sheets, with an attendant change in their response to the orbital forcing. Marine carbon isotope data indicate a rapid transfer of organic carbon to inorganic carbon in the ocean system during the MPT. If this carbon came from terrigenous sources, an increase in atmospheric pCO 2 would be likely, which is inconsistent with evidence for widespread cooling, Apparently rapid carbon transfer from terrestrial sources is difficult to reconcile with gradual erosion of regolith. A more likely source of organic carbon and nutrients (which would mitigate pCO 2 rise) is from shelf and upper slope marine sediments, which were fully exposed for the first time in millions of years in response to thickening ice sheets and falling sealevels during the MPT. Modeling indicates that regolith erosion and resulting exposure of crystalline bedrock would cause an increase in long-term silicate weathering rates, in good agreement with marine Sr and Os isotopic records. We use a carbon cycle model to show that a post-MPT increase in silicate weathering rates would lower atmospheric pCO 2 by 7-12 ppm, suggesting that the attendant cooling may have been an important feedback in causing the MPT.

  3. Badlands in humid regions - redbed desertification in Nanxiong Basin, China

    NASA Astrophysics Data System (ADS)

    Yan, Luobin; Hua, Peng; Simonson, Scott

    2016-04-01

    The redbed badlands in Nanxiong City, China, well represent badlands in humid regions. The erosion rate in humid regions is much higher than that in arid regions and can reach 1 cm per month during the summer. The purpose of this study is to introduce the research of badlands in China, which have not been extensively studied so far, and to compare the badlands between arid and humid regions. Furthermore, the aim is to study the impact of mineralogical and chemical composition on the disintegration of soft rock in Nanxiong Basin badlands. For the purpose of this study field observations, sampling, and digging profiles were done. The mineralogical and chemical compositions of the Nanxiong Basin badland lithologies were determined by XRD, XRF and thin sections. Weathering resistance, process of weathering, and disintegration features were studied by weathering experiments under natural conditions. Weathering profiles can be easily divided into four layers: regolith, a strongly weathered layer, a poorly weathered layer, and an unweathered sediment. The depth of the weathering profile is influenced by the weathering resistance of the soft rock. Weathering resistance affects the erosion rate and evolution of landforms in badlands by influencing the rate from unweathered rock to regolith. Analyzed sediments have high content of illite and illite-smectite interstratifications. This composition of clay minerals together with poor sediment consolidation jointly leads to weathering prone sediment. The weathering and disintegration of soft rock in Nanxiong Basin badlands has a close relationship with rainfall. Sheet erosion, a kind of solid-liquid phase flow, formed in the regolith of the badland during rainfall events and can be the most instrumental to erosion. The mineral composition and liquidity plasticity index were also analyzed, and the results show that the regolith are low liquid limit silts with liquid limit of 21%-25%, plastic limit of 13%-18% and plasticity index of 6.5%-11%. Sheet erosion will occur when rainfall splash destroys the original structure of the badland slopes with the impermeable siltstone underneath and with the high porosity regolith. In China, the badlands in redbed areas have been called the extreme "redbed desertification". Our preliminary research concerning Nanxiong Basin badlands puts forward the concepts of "redbed deserts" and "redbed desertification". Based on the field work, the mechanism of redbed desertification depends on the lithological features, natural impacts, and human activities. The trigger for formation of the redbed badlands desertification are complex, but mainly influenced by activities such as severe reclamation, forest fires, tree planting disturbances, dry-land degradation, acquirement of topsoil, etc.

  4. Time resolved PIV and flow visualization of 3D sheet cavitation

    NASA Astrophysics Data System (ADS)

    Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.

    2006-04-01

    Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.

  5. Late Wisconsinan glaciation and postglacial relative sea-level change on western Banks Island, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Lakeman, Thomas R.; England, John H.

    2013-07-01

    The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.

  6. Erosion in Mediterranean landscapes: Changes and future challenges

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; Nadal-Romero, Estela; Lana-Renault, Noemí; Beguería, Santiago

    2013-09-01

    Intense erosion processes are widespread in the Mediterranean region, and include sheet wash erosion, rilling, gullying, shallow landsliding, and the development of large and active badlands in both subhumid and semi-arid areas. This review analyses the main environmental and human features related to soil erosion processes, and the main factors that explain the extreme variability of factors influencing soil erosion, particularly recent land use changes. The importance of erosion in the Mediterranean is related to the long history of human activity in a region characterized by low levels of annual precipitation, the occurrence of intense rainstorms and long-lasting droughts, high evapotranspiration, the presence of steep slopes and the occurrence of recent tectonic activity, together with the recurrent use of fire, overgrazing and farming. These factors have resulted in a complex landscape in which intensification and abandonment, wealth and poverty can co-exist. The changing conditions of national and international markets and the evolution of population pressure are now the main drivers explaining land use changes, including farmland abandonment in mountain areas, the expansion of some subsidized crops to marginal lands, and the development of new terraces affected by landslides and intense soil erosion during extreme rainstorm events. The occurrence of human-related forest fires affecting thousands of hectares each year is a significant problem in both the northern and southern areas of the Mediterranean basin. Here, we highlight the rise of new scientific challenges in controlling the negative consequences of soil erosion in the Mediterranean region: 1) to reduce the effects and extent of forest fires, and restructure the spatial organization of abandoned landscapes; 2) to provide guidance for making the EU agricultural policy more adapted to the complexity and fragility of Mediterranean environments; 3) to develop field methods and models to improve the identification of runoff and sediment contributing areas; 4) to contribute to the conservation of landscapes (i.e. bench-terraced fields) having high cultural and productivity values; 5) to improve knowledge of the hydrological and geomorphological functioning of badlands, with the aim of reducing sediment yield and accessibility; 6) to better understand the effect of climate change on soil erosion in the Mediterranean region; and 7) to improve quantitative information on long-term soil erosion.

  7. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 2: A comparison of different models to convert 239+240Pu inventories into soil redistribution rates at unploughed sites.

    PubMed

    Arata, Laura; Alewell, Christine; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Meusburger, Katrin

    2016-10-01

    Sheet erosion is one of the major threats to alpine soils. To quantify its role and impact in the degradation processes of alpine grasslands, the application of Fallout Radionuclides (FRN) showed very promising results. The specific characteristics of plutonium 239 + 240 ( 239+240 Pu), such as the homogeneous fallout distribution, the long half-life and the cost and time effective measurements make this tracer application for investigating soil degradation in Alpine grasslands more suitable than any other FRN (e.g. 137 Cs). However, the conversion of 239+240 Pu inventories into soil erosion rates remains a challenge. Currently available conversion models have been developed mainly for 137 Cs with later adaptation to other FRN (e.g. Excess 210 Pb, and 7 Be), each model being defined for specific land use (ploughed and/or unploughed) and processes (erosion or deposition). As such, they may fail in describing correctly the distribution of Pu isotopes in the soil. A new conversion model, MODERN, with an adaptable algorithm to estimate erosion and deposition rates from any FRN inventory changes was recently proposed (Arata et al., 2016). In this complementary contribution, the authors compare the application of MODERN to other available conversion models. The results show a good agreement between soil redistribution rates obtained from MODERN and from the models currently used by the FRN scientific community (i.e. the Inventory Method). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Erosion of Edge of the South Polar Layered Deposits

    NASA Image and Video Library

    2017-05-23

    This image from NASA's Mars Reconnaissance Orbiter shows small ripples, about 10 meters apart, located in Her Desher Vallis. Her Desher is a small channel that shows evidence of phyllosilicates -- silicates with a sheet-like structure, such as clay minerals. Much larger images of this area show that Her Desher Vallis appears isolated, with no obvious connections to craters or larger valleys. Her Desher, the ancient Egyptian name for Mars, translates to "the Red One." https://photojournal.jpl.nasa.gov/catalog/PIA21639

  9. A simple graphical approach to quantitative monitoring of rangelands

    USGS Publications Warehouse

    Riginos, C.; Herrick, J.E.; Sundaresan, S.R.; Farley, C.; Belnap, J.

    2011-01-01

    The article reviews graphical interpretation of the four monitoring methods that can be used to generate a variety of indicators of rangeland ecosystem function. Data for all four of the monitoring methods can be recorded on a single data sheet that is designed to be usable by somebody with minimal literacy. Indicators of plant and ground cover are central to most long-term monitoring systems. Plant and ground-cover data inform managers about forage availability, plant community composition and structure, and risk of runoff and erosion. The spatial arrangement of plants at a site in addition to the percent of the ground that is covered by plants is an important determinant of erosion potential. Vertical vegetation structure can be monitored by capturing data on maximum plant height at each stick location. Plant density method can provide an early indicator of future changes in plant cover, forage, quality, and habitat structure.

  10. Origin of a classic cratonic sheet sandstone: Stratigraphy across the Sauk II-Sauk III boundary in the Upper Mississippi Valley

    USGS Publications Warehouse

    Runkel, Anthony C.; McKay, R.M.; Palmer, A.R.

    1998-01-01

    The origin of cratonic sheet sandstones of Proterozoic and early Paleozoic age has been a long-standing problem for sedimentologists. Lower Paleozoic strata in the Upper Mississippi Valley are best known for several such sandstone bodies, the regional depositional histories of which are poorly understood. We have combined outcrop and subsurface data from six states to place the Upper Cambrian Wonewoc (Ironton and Galesville) Sandstone in a well-constrained stratigraphic framework across thousands of square kilometers. This framework makes it possible for the first time to construct a regional-scale depositional model that explains the origin of this and other cratonic sheet sandstones. The Wonewoc Sandstone, although mapped as a single contiguous sheet, is a stratigraphically complex unit that was deposited during three distinct conditions of relative sea level that span parts of four trilobite zones. During a relative highstand of sea level in Crepicephalus Zone time, quartzose sandstone lithofacies aggraded more or less vertically in nearshore-marine and terrestrial environments across much of the present-day out-crop belt around the Wisconsin arch. At the same time, finer grained, feldspathic sandstone, siltstone, and shale aggraded in deeper water immediately seaward of the quartzose sand, and shale and carbonate sediment accumulated in the most distal areas. During Aphelaspis and Dunderbergia Zones time a relative fall in sea level led to the dispersal of quartzose sand into a basinward-tapering, sheet-like body across much of the Upper Mississippi Valley. During early Elvinia Zone time a major transgression led to deposition of a second sheet sandstone that is generally similar to the underlying regressive sheet. The results of this investigation also demonstrate how subtle sequence-bounding unconformities may be recognized in mature, cratonic siliciclastics. We place the Sauk II-Sauk III subsequence boundary at the base of the coarsest bed in the Wonewoc Sandstone, a lag developed through erosion that occurred during the regional regressive-transgressive event that spanned Aphelaspis to early Elvinia Zones time. Such sequence-bounding unconformities are difficult to recognize where they are contained within coarse siliciclastics of the Upper Mississippi Valley, because they separate strata that are texturally and mineralogically similar, and because erosion occurred on a loose, sandy substrate along a low, uniform gradient, and in a nonvegetated terrestrial environment. Furthermore, the ultramature mineral composition of the exposed substrate is resistant to the development of a recognizable weathering profile. The well-known sheet geometry of the Wonewoc and other units of lower Paleozoic sandstone of this area is not dependent on atypical terrestrial depositional conditions conducive to the widespread distribution of sand, as commonly believed. Sand was spread into a sheet dominantly within the marine realm in a manner similar to that inferred for many better-known sandstone bodies deposited in the North American Cretaceous Western Interior seaway and Tertiary Gulf of Mexico. The laterally extensive, thin character of the Upper Mississippi Valley sandstone bodies compared to these other sandstone bodies simply reflects deposition of a continuously abundant supply of sand on a relatively stable, nearly flat basin of slow, uniform subsidence during changes in sea level. The dearth of shale in this and other cratonic sandstones can be indirectly attributed to the same controls, which led to an uncommonly low preservation potential for fairweather deposits on the shoreface.

  11. Gully evolution and geomorphic adjustments of badlands to reforestation

    PubMed Central

    Ballesteros Cánovas, J. A.; Stoffel, M.; Martín-Duque, J. F.; Corona, C.; Lucía, A.; Bodoque, J. M.; Montgomery, D. R.

    2017-01-01

    Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18th century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision. PMID:28327591

  12. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu

  13. Reorganization of Ice Sheet Flow Patterns in Arctic Canada Prior to the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2010-12-01

    The Foxe sector of the Laurentide Ice Sheet (LIS) experienced a complex and dynamic interplay between cold-based, non-erosive ice on uplands, fast-moving outlet glaciers that carved deep fiords through the Arctic Cordillera, and even more erosive ice streams that occupied larger straits and sounds, transporting ice from the Foxe Dome to calving margins in Baffin Bay and the Labrador Sea. The high topography of Baffin Island forms a broad barrier to the flow of ice to these calving margins and gradually has been dissected since the onset of Northern Hemisphere glaciation. However, evidence for the evolution of LIS erosion and basal thermal regime patterns during successive glaciations is poorly preserved in the geologic record. We use a new approach utilizing published till geochemistry and cosmogenic radionuclide (CRN) data to constrain the development of the fiorded coastline and the distribution of cold-based ice across central Baffin Island in both spatial and temporal domains over many glacial-interglacial cycles. The combination of till geochemistry data, which is used to characterize till weathering, and modeled CRN burial-exposure histories provides strong evidence for a shift in basal thermal regimes across the interior plateaux of Baffin Island between 1.9 and 1.2 Ma. While it may be coincidence that this time interval abuts the onset of the mid-Pleistocene transition (MPT), it has been hypothesized that changes in subglacial conditions were potentially an important mechanism in altering LIS dynamics across the MPT. Prior to this time, ice was likely wet-based and erosive across the majority of the Baffin Island interior, but by 1.9-1.2 Ma, some parts of the landscape became perpetually covered by cold-based ice during glaciations, a pattern that persisted through the last glacial cycle. The modern fiord system also must have developed by this time, and preferential channeling of ice flow into major fiords may have been sufficient to effectively shut off ice flow across the landscape between outlet glaciers. These results imply that there was a major shift in the basal thermal regime across the northeastern LIS, and the subsequent expansion of cold-based ice and the concentration of ice flow in fewer outlet systems across this region may help explain the cause of the MPT from 41- to 100-kyr glacial cycles.

  14. (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment.

    PubMed

    Matisoff, Gerald

    2014-12-01

    Although (137)Cs has been used extensively to study soil erosion and particle transport in the terrestrial environment, there has been much less work using excess or unsupported (210)Pb ((210)Pbxs) to study the same processes. Furthermore, since (137)Cs activities in soils are decreasing because of radioactive decay, some locations have an added complication due to the addition of Chernobyl-derived (137)Cs, and the activities of (137)Cs in the southern hemisphere are low, there is a need to develop techniques that use (210)Pbxs to provide estimates of rates of soil erosion and particle transport. This paper reviews the current status of (210)Pbxs methods to quantify soil erosion rates, to identify and partition suspended sediment source areas, and to determine the transport rates of particles in the terrestrial landscape. Soil erosion rates determined using (210)Pbxs are based on the unsupported (210)Pb ((210)Pbxs) inventory in the soil, the depth distribution of (210)Pbxs, and a mass balance calibration ('conversion model') that relates the soil inventory to the erosion rate using a 'reference site' at which neither soil erosion nor soil deposition has occurred. In this paper several different models are presented to illustrate the effects of different model assumptions such as the timing, depth and rates of the surface soil mixing on the calculated erosion rates. The suitability of model assumptions, including estimates of the depositional flux of (210)Pbxs to the soil surface and the post-depositional mobility of (210)Pb are also discussed. (210)Pb can be used as one tracer to permit sediment source area identification. This sediment 'fingerprinting' has been extended far beyond using (210)Pb as a single radioisotope to include numerous radioactive and stable tracers and has been applied to identifying the source areas of suspended sediment based on underlying rock type, land use (roads, stream banks, channel beds, cultivated or uncultivated lands, pasture lands, forested lands, construction sites, undisturbed lands) or style of erosion (sheet wash, rills, bank). The transport time of particles in the terrestrial system can be estimated using (7)Be/(210)Pbxs radionuclide ratios and from mass balance models of (210)Pbxs and/or (7)Be in streams. Watershed residence times can be calculated from the radionuclide inventory and the erosional loss rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S. Midwest agricultural fields

    USGS Publications Warehouse

    Young, Claudia J.; Liu, Shuguang; Schumacher, Joseph A.; Schumacher, Thomas E.; Kaspar, Thomas C.; McCarty, Gregory W.; Napton, Darrell; Jaynes, Dan B.

    2014-01-01

    Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic exponents (m = 1.0–1.6 and n = 1.0–1.3) using soil redistribution rates from 137Cs measurements. The results showed that the aggregated 24-m DEM, m = 1.4 and n = 1.0 for rill erosion, and m = 1.0 and n = 1.0 for sheet erosion, provided the best fit with the observation data at both sites. Moreover, estimated average SOC redistributions were 1.3 ± 9.8 g C m− 2 yr− 1 in field site 1 and 3.6 ± 14.3 g C m− 2 yr− 1 in field site 2. Spatial distribution patterns showed SOC loss (negative values) in the eroded areas and SOC gain (positive value) in the deposition areas. This study demonstrated the importance of the spatial resolution and the topographic exponents to estimate and map soil redistribution and the SOC dynamics throughout the landscape, helping to identify places where erosion and deposition from water and tillage are occurring at high rates. Additional research is needed to improve the application of the model framework for use in local and regional studies where rainfall erosivity and cover management factors vary. Therefore, using this model framework can help to improve the information about the spatial distribution of soil erosion across agricultural landscapes and to gain a better understanding of SOC dynamics within eroding and previously eroded fields.

  16. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    USGS Publications Warehouse

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  17. Modelling the bathymetry of the Antarctic continental shelf

    USGS Publications Warehouse

    ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.

    1992-01-01

    Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.

  18. East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    USGS Publications Warehouse

    Ferraccioli, F.; Finn, Carol A.; Jordan, Tom A.; Bell, Robin E.; Anderson, Lester M.; Damaske, Detlef

    2011-01-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  19. Application of ERTS-1 imagery to detecting and mapping modern erosion features, and to monitoring erosional changes, in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Cooley, M. E.

    1973-01-01

    The author has identified the following significant results. The red MSS band 5 gives the sharpest definition of modern arroyos. On the best images, modern arroy0s can be distinguished as narrow as 150 to 200 feet in reaches where their contrast with adjacent areas is only moderate, and as narrow as 60 to 75 feet where their contrast is high. Both the red and infrared bands show differences is soils and vegetation. In the late fall and winter imagery, band 7 generally is the most useful for mapping the areas of the more erodible soils. A map at 1:1,000,000 scale has been prepared that shows all the arroyos within the 17,000 square mile study area that have been identified from ERTS-1 images. Also, from U-2 color infrared airphotos, a 1:125,000 scale map has been made of a 50 mile reach along San Simon Wash, in southeastern Arizona. This map shows not only the arroyo channels and narrow flood plains that have developed since 1890, but also areas within a few miles of the wash that are severely guilled, severely sheet-eroded, and moderately sheet-eroded. Two important effects of the third largest recorded flood of the upper Gila River also have been determined from the ERTS-1 images. The inundated area is best displayed on band 7, and the areas of severe sand/gravel erosion/deposition show best on band 5.

  20. Glacial Ordovician new evidence in the Pakhuis Formation, South Africa : sedimentological investigation and palaeo-environnemental reconstruction

    NASA Astrophysics Data System (ADS)

    Portier, E.; Buoncristiani, Jf.; Deronzier, Jf.

    2009-04-01

    During the Late Ordovician (Hirnantian) an ice sheet covered a great part of the Gondwana. In Africa, several studies present the stratigraphy and the complexity of these glacial records. The different glacial landsystems correspond to several glacial cycles, related to rapid ice front oscillations and are grouped into two major ice-sheet advances, separated by a major ice sheet recession. The study was performed on three well outcropping Late Ordovician sections in South Africa. The Ordovician IV is described as the Pakhuis Rm, and is divided into three different lithological members (known as Sneekop, Oskop and Sternbras Mb) that could be related to two major glacial cycles. In the first cycle (pool the two first Mb), facies association indicate continental environment, with : massive sandy tillites with facetted and striated erratics, subaerial outwash plain to glaciolacustrine cross bedded sands and laminated silts. Near Clanwilliam, the outcrops exhibit a high lateral variability in facies and thickness, ranging from a few meters to several tens of meters. The second cycle is dominated by clear marine sedimentation and may be interpreted as a transgressive sequence, quite different from what occurred in North Gondwana. Typical facies define shoreface environment, and periglacial evidence such as dropstones at base are encountered, passing progressively to a clear offshore environment at top of the series, likely Silurian aged, and known as Cederberg fm. Two glacial pavements were also described. The most spectacular one was firstly described by Visser et al. 1974 and should be interpreted as an intra-formational glacial pavement, with striae indicating a flow from East to West. This pavement is overlying a newly discovered glacial floor which exhibits grooves, crescents marks, en echelon fractures, with the same E-W general orientation, and shaped as ‘roches moutonnées', which are typical evidences of glacial erosion on indurated substratum. Reconstructing paleoenvironment suggests a clear structural paleo-topography controlling the erosion and distribution of paelo-valleys, lakes and glacial lobes. The glaciogenic Ordovician deposits constitute a proven oil and gas bearing reservoir on the North Gondwana margin, also known for their sharp and rapid facies changes. Also, such a study provides an excellent opportunity to understand and appraise the complex architecture and geometries of the sands bodies, the structural control of the glacial erosion and infill of this promising play. Visser, 1974 J.N.J. Visser, The Table Mountain Group: a study in the deposition of quartz arenites on a stable shelf, Trans. Geol. Soc. S. Afr. 77 (1974), pp. 229-237.

  1. Modeling the erosion of tropical volcanic ocean islands : The Tahiti island case (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Ye, F.; Sichoix, L.; Barriot, J.; Dumas, P.

    2009-12-01

    In this study, we are interested in modeling the erosion of the Tahiti island, with two main objectives: risk assessment (erodibility of terrains with rainfall, catastrophic runoffs) and estimation of subsidence rate. The Tahiti island created around 1.4 Myears ago by an intraplate hotspot (aerial radiometric dating), is divided into two geological units: the main island Tahiti-Nui to northwest (end of volcanism 200,000 years ago) and the subsidiary Tahiti-Iti to the southeast (end of volcanism 380,000 years ago). It is now volcanically inactive and is deeply dissected by erosion. Tahiti Nui is around 30 km in diameter, and Tahiti Iti around 15 km. Both are linked through the isthmus of Taravao. The highest elevation is 2241 m. The two sub-islands are basaltic edifices, with an overwhelming presence of oxisols (down to tens of meters in some places). Slopes can be divided into three classes: 15° for the global slope of the shield volcanoes, 47° for the incision valleys and 2° for the seashore rim. Rainfalls range from 8,000 mm/year on the East side of Tahiti (trade winds) to 2,000 mm/year on the West side, the humid season of a year is summer. This study is conducted to validate the Unit Stream Power Erosion and Deposition (USPED) model, an enrichment to the Universal Soil Loss Equation (USLE) to calculate average annual soil loss per unit land area resulting from rill and sheet erosion. The USPED model differs from other USLE models on how it handles the influence of topography on the erosion process, because USLE consider erosion only along the flow line without the influence of flow convergence/divergence. As the result, the USPED model predicts both erosion and deposition, while most other USLE-based models are limited to predictions of erosion only. The USLE, USPED equation can be written as A=R*K*LS*C*P where A is the soil loss, R the rainfall-runoff erosivity factor, K a soil erodibility factor, L a slope-length factor, S a slope steepness factor, C a cover-management factor and P a supporting practice factor. However, USPED adds a dimensionless index of sediment transport capacity and a topographic index, representing the change in transport capacity in the flow direction, to estimate the spatial distribution of both erosion and deposition. As an application, we show how this approach permits a better modeling of the soil losses in Tahiti with respect to the basic USLE-only approach, with both societal and risk-assessment benefits. Keywords: erosion, volcano, modeling, USLE, USPED

  2. Did the Laurentide ice sheet survive through Marine Isotope Stage 9?

    NASA Astrophysics Data System (ADS)

    Carlson, A. E.; Tarasov, L.; Ullman, D. J.

    2016-12-01

    Looking at the global benthic oxygen isotope stack, only marine oxygen isotope stage (MIS) 7 stands out as an anomalous interglaciation with a higher oxygen isotope value than other interglaciations of the last half million years. However, benthic oxygen isotopes are an integrator of global ice volume plus temperature, and records of local ice-sheet change are needed to partition the sources of the global signal. Here we use the Laurentide ice-sheet (LIS) proximal record of IODP Site U1302/1303 off of Orphan Knoll to test LIS presence/absence on the eastern Canadian shield. Ice-sheet model calibrated Si relative to Sr is low in most interglaciations of the last 500 ka reflecting the removal of the LIS and its erosive power from the Canadian Shield. However, like MIS 7, MIS 9 has continued elevated inputs of Si. Furthermore, planktic oxygen isotopes do not decrease to full interglacial levels like in MIS 1, 5e and 11. MIS 9 had a similar orbital forcing as MIS 5e, but a much shorter period of elevated interglacial carbon dioxide concentration. Based on climate model simulations of LIS stability, we suggest that the reduced period of elevated atmospheric carbon dioxide allowed the LIS to survive through MIS 9 (like MIS 7), providing important constraints for the climatic thresholds necessary for a full interglaciation.

  3. Validation of Erosion 3D in Lower Saxony - Comparison between modelled soil erosion events and results of a long term monitoring project

    NASA Astrophysics Data System (ADS)

    Bug, Jan; Mosimann, Thomas

    2013-04-01

    Since 2000 water erosion has been surveyed on 400 ha arable land in three different regions of Lower Saxony (Mosimann et al. 2009). The results of this long-term survey are used for the validation of the soil erosion models such as USLE and Erosion 3D. The validation of the physically-based model Erosion 3D (Schmidt & Werner 2000) is possible because the survey analyses the effects (soil loss, sediment yield, deposition on site) of single thunder storm events and also maps major factors of soil erosion (soil, crop, tillage). A 12.5 m Raster DEM was used to model the soil erosion events.Rainfalldata was acquired from climate stations. Soil and landuse parameters were derived from the "Parameterkatalog Sachsen"(Michael et al. 1996). During thirteen years of monitoring, high intensity storms fell less frequently than expected. High intensity rainfalls with a return period of five or ten years usually occurred during periods of maximum plant cover.Winter events were ruled out because dataon snow melt and rainfallwere not measured. The validation is therefore restricted to 80 events. The validation consists of three parts. The first part compares the spatial distribution of the mapped soil erosion with the model results. The second part calculates the difference in the amount of redistributed soil. The third part analyses off-site effects such as sediment yield and pollution of water bodies. The validation shows that the overall result of erosion 3D is quite good. Spatial hotspots of soil erosion and of off-site effects are predicted correctly in most cases. However, quantitative comparison is more problematic, because the mapping allows only the quantification of rillerosion and not of sheet erosion. So as a rule,the predicted soil loss is higher than the mapped. The prediction of rill development is also problematic. While the model is capable of predicting rills in thalwegs, the modelling of erosion in tractor tracks and headlands is more complicated. In order to obtain better results, the DEM needs a higher resolution, and soil and landuse parameters have to been optimized in tractor tracks and headlands (higher bulk density, less coverage). Other models like LINERO (Bug &Mosimann 2012) can help to get an overview over the location of erosion forms and the soil loss due to rill erosion. References: Bug J., & T. Mosimann (2012): Modellierung der linearen Bodenerosion. Entwicklung eines entscheidungsbasierten Modells zur flächenhaften Prognose der linearen Erosionsaktivität, Geosynthesis 15, Hannover, 105 S. Michael, A., Schmidt, J. & W. A. Schmidt (1996): EROSION 2D/3D - Ein Computermodell zur Simulation der Bodenerosion durch Wasser. Parameterkatalog Sachsen, Freiberg. Mosimann, T., Bug, J. Sanders, S. & F. Beisiegel (2009): Bodenerosionsdauerbeobachtung in Niedersachsen 2000-2008. Methodik, Erosionsgeschehen, Bodenabträge und Anwendung der Ergebnisse, Geosynthesis 14, Hannover, 101 S. Schmidt, J., & M. v. Werner (2000): Modeling sediment and heavy metal yields of drinking water reservoirs in the Osterzgebirge region of Saxony (Germany). In: Schmidt, J. (Ed.), Soil Erosion—Application of Physically Based Models. Springer, Berlin, Heidelberg, New York, pp. 93- 108.

  4. Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England

    NASA Astrophysics Data System (ADS)

    Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.

    2017-12-01

    Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.

  5. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    A. Hesp, Patrick

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, ‘tree islands' and ‘bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to ‘restore' some perceived loss of ecosystem or dune functioning.

  6. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

  7. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.

  8. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  9. Developing an Erosion Rate Map for Myanmar Using USLE, GIS and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Emtehani, Sobhan; Rutten, Martine

    2017-04-01

    Predicting erosion and estimating sediment loads in rivers are of major tasks in water resources system planning and management. In Myanmar erosion and collapse of river banks is common during the rainy season and riverine communities are frequently forced to relocate as their homes are dangerously close to the disintegrating river banks (Mann 2013). Myanmar is one of climatically most diverse countries located in Southeast Asia, where sheet, rill, and gully erosion affect crop yields as well as livelihood strategies of many people (Htwe, Brinkmann et al. 2015). In Myanmar, soil erosion measurement and monitoring approaches are increasingly important for land management planning to effectively avoid erosion and soil degradation, but such monitoring is limited by the availability of data and budgetary constraints. Therefore, spatial modeling approaches using GIS and remote sensing techniques play an important role for rapid risk assessments (Htwe 2016). In this study ''Model Builder'' tool in ArcGIS was used to create a model which generates an erosion rate map using Universal Soil Loss Equation (USLE). USLE is the product of five factors: rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), crop management factor (C), and support practice factor (P). Input data files for this model were acquired from online open source databases. Precipitation data was downloaded from Tropical Rainfall Measuring Mission (TRMM) for calculation of R factor. The resolution of TRMM data is very coarse (0.25 degree × 0.25 degree), therefore it was spatially downscaled by developing a relation between TRMM and Normalized Difference Vegetation Index (NDVI) using regression analysis method. Soil maps depicting percentages of sand, clay and silt were obtained from soilgrids website for calculation of K factor. Digital Elevation Model (DEM) with resolution of 90 meters was taken from Shuttle Radar Topography Mission (SRTM) for calculation of LS factor; and the satellite images from Landsat 8 were used for calculation of C factor. Due to lack of spatial distributed data, the P factor was set to 1. This procedure provides a good estimate of erosion rates, but certainly field verification is required. This methodology can be used in regions where there is low density of weather stations. It can be used by policy makers to identify the areas with high risk of erosion and to mitigate the erosion effects. Htwe, T. N. (2016). Changes of traditional farming systems and their effects on land degradation and socio-economic conditions in the Inle Lake region, Myanmar, Kassel, Univ., Diss., 2015. Htwe, T. N., et al. (2015). "Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar." Environmental monitoring and assessment 187(10): 1-14. Mann, Z. (2013). "River Bank Erosion Forces Hundreds of Families to Relocate." from http://www.irrawaddy.com/news/burma/first-japanese-newspaper-becomes-available-in-rangoon.html.

  10. Wind erosion in the alpine zone - a case study at Latschuelfurgga (Davos, Switzerland)

    NASA Astrophysics Data System (ADS)

    Graf, F.; Gromke, Ch.

    2012-04-01

    Protection against wind erosive processes ranks among the most important challenges in natural hazard mitigation, worldwide. Today, it is generally accepted that the (re-)establishment of a protective vegetation cover is the most promising and efficient measure in restoring degraded land in the long term. Sustainable protection against wind erosion requires adequate information about suitable plant species regarding ecological aspects as well as with respect to their proper contribution to wind erosion control. The latter, however, is widely lacking. Within a broader conceptual framework, wind tunnel studies have been performed using naturally grown vegetation covers. The use of live plants aimed at simulating the behaviour of natural canopies as accurately as possible compared to previous studies using artificial objects. The goals of the presented field study are to record reliable data on windblown erosion rates under natural alpine conditions on the one hand and, on the other hand, to interrelate the findings with the results of the wind tunnel experiments with live plants. The wind erosion test field was established at 2409 m a.s.l. on a small saddle like pass in an alpine meadow and includes two east-west orientated test tracks of the dimension 2x10 m2. One track is left as is, representing the naturally alpine vegetated soil (15-20% plant cover). The other track is equipped with a plastic covering sheet, mimicking desertified soil (0% plant cover) and serving as control plot as well as providing a direct link to the wind tunnel experiments. Blue and red quartz sand (grain size: 0.2-0.6 mm) was spread on the vegetated and sheet-covered track, respectively, to visualise and measure the effect of vegetation on wind erosion control. During summer and fall 2010 field experiments were performed of which experiment no. 4 is presented here as a case study as well as compared with and discussed in relation to a wind tunnel run with medium-density configuration (16% plant cover). The measuring equipment consists of three climate stations recording wind direction and wind speed at 50, 100, and 200 cm, air temperature and humidity, incoming and reflected short- and long wave radiation, as well as precipitation. Leeward of the two test tracks, panels and ground-plates were installed equipped with sticky foils to trap and quantify vertical and horizontal particle transport. Compared to the desertified soil (0% plant cover) it was found that only small amounts of sand from the vegetated plot (15-20% plant cover) were transported, even during heavy wind events. Overall the ratio varied from 1:50 to 1:175 depending on the position of the panels and ground plates. Qualitatively similar findings, however quantitatively less pronounced, resulted from the wind tunnel experiments (ratio = 1:15). The difference between the field study and the wind tunnel results is quite remarkable and implies that the sheltering effect of vegetation under natural conditions is 3 to 12 times higher than found for the medium-density experiment in the wind tunnel (16% plant cover). However, this conclusion needs careful reflection. After all, the two studies differ in several aspects of their set-up. Correspondingly, the data are speculatively discussed, particularly with respect to meteorological parameters (wind speed, turbulence intensity, humidity, temperature), ecological aspects, and hydrological processes.

  11. Application of experimental soil erosion models (USLE, RUSLE) in Jordan: A review

    NASA Astrophysics Data System (ADS)

    Ramzi, A. A.; Ayu, A. W.; Mohm, A. A.; Fahmi, R. M.; Ibrahim, O. M.

    2017-09-01

    In most of the existing models designed for the soil erosion experiment are moderately simplistic, which consistently, have been extensively practiced in many parts of the world. In reality, within the content of this study, the practical occurrences of the Universal Soil Loss Equation (USLE) and that of the Revised Universal Soil Loss Equation (RUSLE) in Jordan were explored. This is obvious as RUSLE portrayed a product adaptation of a significantly enhanced USLE. In Jordan, various research accomplishments were made to decide the nearby values of the USLE components, demonstrating its, potential for use outside its birthplace nation. Entirely, this study found the soil experimental models stand to be mere demonstrating procedures or structures, instead of being the punctual robotic portrayals of the framework, and that perhaps; make no claim of universal comprehensiveness. In any case, with these identified weaknesses, sub-models were found to be utilized in order to give the best practical gauges of the disintegration of the sheet erosion within the Jordanian context. Most often, the spatial index circulation of the soil misfortune of the USLE is viewed as a valuable model that separate regions of high and low disintegration of the erosion potential. In this case, USLE is more generally known and utilized soil erosion condition on the planet. However, no specific model is ever, generally actualized. Although, the USLE model ended to be a promising instrument, as it gives a dynamic way to deal with foreseeing the misfortune of the soil erosion. This study, notwithstanding, perceives there is still a need to further enhanced a check of the RUSLE and USLE outcomes in Jordan. This study sees, by the virtues of hypothetical assessment and affectability in terms of the investigation performed have obviously demonstrated the benefit of the most adaptable and element structure of RUSLE against the strict exact structures of the USLE. Albeit, an exact model could be required to be utilised essentially as screening devices in coordinated reviews, arrive asset appraisals would request expanded precision in the measurement of disintegration rates in a spatial and fleeting setting. On the off chance, the necessities can be propose, for instance the Water Erosion Prediction Project (WEPP) can be required to discover expanded application in delivering quantitative appraisals of soil erosion and residue yield in Jordan.

  12. Gravimetric determination of the Thickness of Taku Glacier: Impact of Glacier Thickness on Subglacial Hydrology and Potential Erosion

    NASA Astrophysics Data System (ADS)

    Hamm, T. G.; Borthwick, L.; Jarrin, D.; Miller, M.; Wall, R.; Beem, L.; Riverman, K. L.

    2016-12-01

    High resolution measurements of spatial ice thickness variability on the Juneau Icefield are critical to an understanding of current glacial dynamics in the Coast Mountains of Southeast Alaska. In particular, such data are lacking on the Taku Glacier, a tidewater glacier in the Juneau region whose unique advance has slowed in recent years. Significantly, such information is necessary to develop an accurate description of ice dynamics as well as sub-surface hydrology and bedrock erosion. Utilizing relative gravimetry, we sought to modify existing parameterized models of ice thickness with field measurements taken along the centerline of the Taku. Here we present a three-dimensional representation of ice thickness for the Taku, based on in situ observations from July 2016. As the glacier approaches a potential period of rapid terminal retreat, this data gives refined physical information prior to this potential juncture in the tidewater cycle-an observation that may yield insight into marine ice sheet instabilities more broadly.

  13. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H.J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  14. Importance of flexure in response to sedimentation and erosion along the US Atlantic passive margin in reconciling sea level change and paleoshorelines

    NASA Astrophysics Data System (ADS)

    Moucha, R.; Ruetenik, G.; de Boer, B.

    2017-12-01

    Reconciling elevations of paleoshorelines along the US Atlantic passive margin with estimates of eustatic sea level have long posed to be a challenge. Discrepancies between shoreline elevation and sea level have been attributed to combinations of tectonics, glacial isostatic adjustment, mantle convection, gravitation and/or errors, for example, in the inference of eustatic sea level from the marine 18O record. Herein we present a numerical model of landscape evolution combined with sea level change and solid Earth deformations to demonstrate the importance of flexural effects in response to erosion and sedimentation along the US Atlantic passive margin. We quantify these effects using two different temporal models. One reconciles the Orangeburg scarp, a well-documented 3.5 million-year-old mid-Pliocene shoreline, with a 15 m mid-Pliocene sea level above present-day (Moucha and Ruetenik, 2017). The other model focuses on the evolution of the South Carolina and northern Georgia margin since MIS 11 ( 400 Ka) using a fully coupled ice sheet, sea level and solid Earth model (de Boer et al, 2014) while relating our results to a series of enigmatic sea level high stand markers. de Boer, B., Stocci, P., and van de Wal, R. (2014). A fully coupled 3-d ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development, 7:2141-2156. Moucha, R. and Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149: 72-78

  15. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    NASA Astrophysics Data System (ADS)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice-sheet cover and/or wave base erosion during sea level low stands. The prevalence and range of glacial landforms around HIMI suggest extensive past glaciation, and that glaciers have exerted a major influence on submarine geomorphology.

  16. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    USGS Publications Warehouse

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    Beginning roughly 2.6 million years ago, global climate entered a cooling phase known as the Pleistocene Epoch. As snow in northern latitudes compacted into ice several kilometers thick, it flowed as glaciers southward across the North American continent. These glaciers extended across the northern United States, dramatically altering the landscape they covered. East of the Rocky Mountains, the ice coalesced into continental glaciers (called the Laurentide Ice Sheet) that at times blanketed much of the north-central and northeastern United States. To the west of the Laurentide Ice Sheet, glaciers formed in the mountains of western Canada and the United States and coalesced into the Cordilleran ice sheet; this relatively smaller ice mass extended into the conterminous United States in the northernmost areas of western Montana, Idaho, and Washington. Throughout the Pleistocene, landscape alteration occurred by (1) glacial erosion of the rocks and sediments; (2) redeposition of the eroded earth materials in a form substantially different from their source rocks, in terms of texture and overall character; and (3) disruption of preexisting drainage patterns by the newly deposited sediments. In many cases, pre-glacial drainage systems (including, for example, the Mississippi River) were rerouted because their older drainage courses became blocked with glacial sediment.The continental glaciers advanced and retreated many times across those areas. During each ice advance, or glaciation, erosion and deposition occurred, and the landscape was again altered. Through successive glaciations, the landscape and the bedrock surface gradually came to resemble their present configurations. As continental ice sheets receded and the Pleistocene ended, erosion and deposition of sediment (for example in stream valleys) continued to shape the landscape up to the present day (albeit to a lesser extent than during glaciation). The interval of time since the last recession of the glaciers is called the Holocene and, together with the Pleistocene, constitutes the Quaternary Period of geologic time; this publication characterizes the three-dimensional geometry of the Quaternary sediments and the bedrock surface that lies beneath.The pre-glacial landscape was underlain mostly by weathered bedrock generally similar in nature to that found in many areas of the non-glaciated United States. Glacial erosion and redeposition of earth materials produced a young, mineral-rich soil that formed the basis for the highly productive agricultural economy in the U.S. midcontinent. Extensive buried sands and gravels within the glacial deposits also provided a stimulus to other economic sectors by serving as high-quality aquifers supplying groundwater to the region’s industry and cities. An understanding of the three-dimensional distribution of these glacial sediments has direct utility for addressing various societal issues including groundwater quality and supply, and landscape and soil response to earthquake-induced shaking.The Quaternary sediment thickness map and bedrock topographic map shown here provide a regional overview and are intended to supplement the more detailed work on which they are based. Detailed mapping is particularly useful in populated areas for site-specific planning. In contrast, regional maps such as these serve to place local, detailed mapping in context; to permit the extrapolation of data into unmapped areas; and to depict large-scale regional geologic features and patterns that are beyond the scope of local, detailed mapping. They also can enhance the reader’s general understanding of the region’s landscape and geologic history and provide a source of information for regional decision making that could benefit by improved predictability of bedrock depth beneath the unconsolidated Quaternary sediments. To enable these maps to be analyzed in conjunction with other types of information, this publication also includes the map data in GIS compatible format.

  17. Mapping Shoreline Change Using Digital Orthophotogrammetry on Maui, Hawaii

    USGS Publications Warehouse

    Fletcher, C.; Rooney, J.; Barbee, M.; Lim, S.-C.; Richmond, B.

    2003-01-01

    Digital, aerial orthophotomosaics with 0.5-3.0 m horizontal accuracy, used with NOAA topographic maps (T-sheets), document past shoreline positions on Maui Island, Hawaii. Outliers in the shoreline position database are determined using a least median of squares regression. Least squares linear regression of the reweighted data (outliers excluded) is used to determine a shoreline trend termed the reweighted linear squares (RLS). To determine the annual erosion hazard rate (AEHR) for use by shoreline managers the RLS data is smoothed in the longshore direction using a weighted moving average five transects wide with the smoothed rate applied to the center transect. Weightings within each five transect group are 1,3,5,3,1. AEHR's (smoothed RLS values) are plotted on a 1:3000 map series for use by shoreline managers and planners. These maps are displayed on the web for public reference at http://www.co.maui.hi.us/ departments/Planning/erosion.htm. An end-point rate of change is also calculated using the earliest T-sheet and the latest collected shoreline (1997 or 2002). The resulting database consists of 3565 separate erosion rates spaced every 20 m along 90 km of sandy shoreline. Three regions are analyzed: Kihei, West Maui, and North Shore coasts. The Kihei Coast has an average AEHR of about 0.3 m/yr, an end point rate (EPR) of 0.2 m/yr, 2.8 km of beach loss and 19 percent beach narrowing in the period 1949-1997. Over the same period the West Maui coast has an average AEHR of about 0.2 m/yr, an average EPR of about 0.2 m/yr, about 4.5 km of beach loss and 25 percent beach narrowing. The North Shore has an average AEHR of about 0.4 m/yr, an average EPR of about 0.3 m/yr, 0.8 km of beach loss and 15 percent beach narrowing. The mean, island-wide EPR of eroding shorelines is 0.24 m/yr and the average AEHR of eroding shorelines is about 0.3 m/yr. The overall shoreline change rate, erosion and accretion included, as measured using the unsmoothed RLS technique is 0.21 m/yr. Island wide changes in beach width show a 19 percent decrease over the period 1949/ 1950 to 1997/2002. Island-wide, about 8 km of dry beach has been lost since 1949 (i.e., high water against hard engineering structures and natural rock substrate).

  18. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.

    2016-12-01

    The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.

  19. Thrusting and back-thrusting as post-emplacement kinematics of the Almora klippe: Insights from Low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Patel, R. C.; Singh, Paramjeet; Lal, Nand

    2015-06-01

    Crystalline klippen over the Lesser Himalayan Sequence (LHS) in the Kumaon and Garhwal regions of NW-Himalaya, are the representative of southern portion of the Main Central Thrust (MCT) hanging wall. These were tectonically transported over the juxtaposed thrust sheets (Berinag, Tons and Ramgarh) of the LHS zone along the MCT. These klippen comprise of NW-SE trending synformal folded thrust sheet bounded by thrusts in the south and north. In the present study, the exhumation histories of two well-known klippen namely Almora and Baijnath, and the Ramgarh thrust sheet, in the Kumaon and Garhwal regions vis-a-vis Himalayan orogeny have been investigated using Apatite Fission Track (AFT) ages. Along a ~ 60 km long orogen perpendicular transect across the Almora klippe and the Ramgarh thrust sheet, 16 AFT cooling ages from the Almora klippe and 2 from the Ramgarh thrust sheet have been found to range from 3.7 ± 0.8 to 13.2 ± 2.7 Ma, and 6.3 ± 0.8 to 7.2 ± 1.0 Ma respectively. From LHS meta-sedimentary rocks only a single AFT age of 3.6 ± 0.8 Ma could be obtained. Three AFT ages from the Baijnath klippe range between 4.7 ± 0.5 and 6.6 ± 0.8 Ma. AFT ages and exhumation rates of different klippen show a dynamic coupling between tectonic and erosion processes in the Kumaon and Garhwal regions of NW-Himalaya. However, the tectonic processes play a dominant role in controlling the exhumation. Thrusting and back thrusting within the Almora klippe and Ramgarh thrust sheet are the post-emplacement kinematics that controlled the exhumation of the Almora klippe. Combining these results with the already published AFT ages from the crystalline klippen and the Higher Himalayan Crystalline (HHC), the kinematics of emplacement of the klippen over the LHS and exhumation pattern across the MCT in the Kumaon and Garhwal regions of NW-Himalaya have been investigated.

  20. Ice Elevation Changes in the Ellsworth Mountains, Antarctica Using Multiple Cosmogenic Nuclides

    NASA Astrophysics Data System (ADS)

    Marrero, S.; Hein, A.; Sugden, D.; Woodward, J.; Dunning, S.; Reid, K.

    2014-12-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Initial surface exposure ages (10Be, 26Al, 21Ne, and 36Cl ) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to 1.1 Ma in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  1. Using Multiple Cosmogenic Nuclides to Investigate Ice Elevation Changes in the Ellsworth Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Marrero, Shasta; Hein, Andy; Sugden, David; Woodward, John; Dunning, Stuart; Freeman, Stewart; Shanks, Richard

    2015-04-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Surface exposure ages (10Be, 26Al, 21Ne, and 36Cl) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to more than 1 million years in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  2. The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea.

    PubMed

    Bart, Philip J; Krogmeier, Benjamin J; Bart, Manon P; Tulaczyk, Slawek

    2017-04-28

    Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

  3. Geochemistry of glacial sediments in the area of the Bend massive sulfide deposit, north-central Wisconsin

    USGS Publications Warehouse

    Woodruff, L.G.; Attig, J.W.; Cannon, W.F.

    2004-01-01

    Geochemical exploration in northern Wisconsin has been problematic because of thick glacial overburden and complex stratigraphic record of glacial history. To assess till geochemical exploration in an area of thick glacial cover and complex stratigraphy samples of glacial materials were collected from cores from five rotasonic boreholes near a known massive sulfide deposit, the Bend deposit in north-central Wisconsin. Diamond drilling in the Bend area has defined a long, thin zone of mineralization at least partly intersected at the bedrock surface beneath 30-40 m of unconsolidated glacial sediments. The bedrock surface has remnant regolith and saprolite resulting from pre-Pleistocene weathering. Massive sulfide and mineralized rock collected from diamond drill core from the deposit contain high (10s to 10,000s ppm) concentrations of Ag, As, Au, Bi, Cu, Hg, Se, Te, and Tl. Geochemical properties of the glacial stratigraphic units helped clarify the sequence and source areas of several glacial ice advances preserved in the section. At least two till sheets are recognized. Over the zone of mineralization, saprolite and preglacial alluvial and lacustrine samples are preserved on the bedrock surface in a paleoriver valley. The overlying till sheet is a gray, silty carbonate till with a source hundreds of kilometers to the northwest of the study area. This gray till is overlain by red, sandy till with a source to the north in Proterozoic rocks of the Lake Superior area. The complex glacial stratigraphy confounds down-ice geochemical till exploration. The presence of remnant saprolite, preglacial sediment, and far-traveled carbonate till minimized glacial erosion of mineralized material. As a result, little evidence of down-ice glacial dispersion of lithologic or mineralogic indicators of Bend massive sulfide mineralization was found in the samples from the rotasonic cores. This study points out the importance of determining glacial stratigraphy and history, and identifying favorable lithologies required for geochemical exploration. Drift prospecting in Wisconsin and other areas near the outer limits of the Pleistocene ice sheets may not be unsuccessful, in part, because of complex stratigraphic sequences of multiple glaciations where deposition dominates over erosion. ?? 2004 Elsevier B.V. All rights reserved.

  4. Coastal changes in the Sendai area from the impact of the 2011 Tōhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations

    NASA Astrophysics Data System (ADS)

    Tappin, David R.; Evans, Hannah M.; Jordan, Colm J.; Richmond, Bruce; Sugawara, Daisuke; Goto, Kazuhisa

    2012-12-01

    A combination of time-series satellite imagery, helicopter-borne video footage and field observation is used to identify the impact of a major tsunami on a low-lying coastal zone located in eastern Japan. A comparison is made between the coast protected by armoured 'engineered' sea walls and the coast without. Changes are mapped from before and after imagery, and sedimentary processes identified from the video footage. The results are validated by field observations. The impact along a 'natural' coast, with minimal defences, is erosion focussed on the back beach. Along coasts with hard engineered protection constructed to defend against erosion, the presence of three to six metre high concrete-faced embankments results in severe erosion on their landward faces. The erosion is due to the tsunami wave accelerating through a hydraulic jump as it passes over the embankment, resulting in the formation of a ditch into which the foundations collapse. Engineered coastal defences are thus found to be small defence against highly energetic tsunami waves that overtop them. There is little erosion (or sedimentation) of the whole beach, and where active, it mainly forms V-shaped channels. These channels are probably initiated during tsunami inflow and then further developed during tsunami backflow. Tsunami backflow on such a low lying area takes place energetically as sheet flow immediately after tsunami flooding has ceased. Subsequently, when the water level landward of the coastal dune ridges falls below their elevation, flow becomes confined to rivers and breaches in the coast formed during tsunami inflow. Enigmatic, short lived, 'strand lines' are attributed to the slow fall of sea level after such a major tsunami. Immediately after the tsunami coastal reconstruction begins, sourced from the sediment recently flushed into the sea by tsunami backflow.

  5. Evaluation of compost/mulch as highway embankment erosion control in Louisiana at the plot-scale

    NASA Astrophysics Data System (ADS)

    Bakr, Noura; Weindorf, David C.; Zhu, Yuanda; Arceneaux, Allen E.; Selim, H. M.

    2012-10-01

    SummaryTotal suspended solids (TSS) and associated turbidity in runoff water are considered the most problematic nonpoint source pollutant of Louisiana surface waters. With high precipitation in Louisiana, attention should be given to controlling highway right-of-way erosion. The use of compost/mulch for erosion control enhances soil conservation and substantially reduces erosion. The main objective of this study was to assess the effect of compost/mulch placement on runoff water quality on roadsides. Our hypothesis was that the use of compost/mulch would significantly reduce TSS and turbidity in runoff from highway right-of-ways in Louisiana. Two locations constituting four sites and eight individual plots were chosen; one in an active highway construction area and another in an established area plagued by continual rill and sheet erosion. Thicknesses of compost/mulch (5 and 10 cm), slope inclination (10-34%), and tillage practices (till vs. no-till) were evaluated. Runoff, triggered by storm water events, was collected using ISCO auto-samplers from June 2010 to August 2011 and the samples were analyzed for TSS, turbidity, biochemical oxygen demand, electrical conductivity, and pH. The results of factor analysis showed that the compost/mulch thickness was the most influential variable affecting water quality. Two samples t-test results indicated that TSS and turbidity were significantly different across all comparative variables; construction activities, compost/mulch applications, and tillage practices. The results confirmed the effectiveness of compost/mulch cover as a successful best management practice. Specifically decreases in TSS of 70% and 74% were achieved for the 5 cm and 10 cm compost/mulch application when compared to no compost/mulch, respectively. Light tillage application increased TSS as much as 67%. Therefore, light tillage is not recommended since it decreased the effectiveness of compost/mulch in reducing runoff and sediment losses.

  6. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Arvidson, R. E.; Bell, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A.

    2005-11-01

    Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a "wetting-upward" succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes. The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/s. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters. Mineralogical and elemental data indicate that the eolian sandstones of the lower and middle units, as well as the subaqueous and eolian deposits of the Burns upper unit, were derived from an evaporitic source. This indirectly points to a temporally equivalent playa where lacustrine evaporites or ground-water-generated efflorescent crusts were deflated to provide a source of sand-sized particles that were entrained to form eolian dunes and sand sheets. This process is responsible for the development of sulfate eolianites at White Sands, New Mexico, and could have provided a prolific flux of sulfate sediment at Meridiani. Though evidence for surface water in the Burns formation is mostly limited to the upper unit, the associated sulfate eolianites provide strong evidence for the critical role of groundwater in controlling sediment production and stratigraphic architecture throughout the formation.

  7. Effects of Sediment Loading in Northern Europe During the Last Glacial

    NASA Astrophysics Data System (ADS)

    van der Wal, W.; IJpelaar, M.

    2014-12-01

    Over the years the framework of GIA modelling has been subject to continuous improvements, e.g. the addition of time dependent coastal margins and rotational feedback. The latest addition to this framework is the incorporation of sediment as a time-varying surface load while accounting for sea-level variations associated with the sediment transport (Dalca et al., GJI 2013). The effects of sediment loading during a glacial cycle have not been extensively investigated even though it is known that large sediment transport took place, for example in the Barents Sea region and Fennoscandia. This study investigates the effect of sediment transport on relative sea level change and present-day rates of gravity and vertical deformation in those regions. While the ice sheet history during the last glacial period has been modelled extensively there are no full-scale models of paleo-erosion and -deposition rates for regions such as Fennoscandia. Here we create end-member paleo-sedimentary models by combining geological observations of continuous erosion and deposition and large scale failure events. These models, in combination with the ICE-5G ice sheet history, serve as an input for a GIA model for a spherically symmetric incompressible Earth with the full sea-level equation. The results from this model, i.e. (rates of) relative sea level change and crustal deformation, are obtained for different viscosity models fitting best with the local rheology of Fennoscandia. By comparing GPS measurements, GRACE observations and relative sea level records with these modelled predictions the effects of sedimentary isostasy in the Fennoscandian region are studied. The sediment load does not significantly affect the modelled relative sea level curves, nor vertical deformation rates at the location of GPS measurements. However, gravity rates over the Barents Sea region are influenced significantly

  8. Late quaternary geologic framework, north-central Gulf of Mexico

    USGS Publications Warehouse

    Kindinger, Jack G.; Penland, Shea; Williams, S. Jeffress; Brooks, Gregg R.; Suter, John R.; McBride, Randolph A.

    1991-01-01

    The geologic framework of the north-central Gulf of Mexico shelf is composed of multiple, stacked, delta systems. Shelf and nearshore sedimentary facies were deposited by deltaic progradation, followed by shoreface erosion and submergence. A variety of sedimentary facies has been identified, including prodelta, delta fringe, distributary, lagoonal, barrier island, and shelf sand sheet. This study is based on the interpretation and the synthesis of > 6,700 km of high-resolution seismic profiles, 75 grab samples, and 77 vibracores. The nearshore morphology, shallow stratigraphy, and sediment distribution of the eastern Louisiana shelf are the products of transgressive sedimentary processes reworking the abandoned St. Bernard delta complex. Relatively recent Mississippi delta lobe consists primarily of fine sand, silt, and clay. In the southern portion of the St. Bernard delta complex, asymmetrical sand ridges (>5 m relief) have formed as the result of marine reworking of distributary mouth-bar sands. Silty sediments from the modern Mississippi Birdsfoot delta onlap the St. Bernard delta complex along the southern edge. The distal margin of the St. Bernard complex is distinct and has a sharp contact on the north near the Mississippi Sound barrier island coastline and a late Wisconsinan delta to the south. The Chandeleur Islands and the barrier islands of Mississippi Sound have been formed by a combination of Holocene and Pleistocene fluvial processes, shoreface erosion, and ravinement of the exposed shelf. Sediments underlying the relatively thin Holocene sediment cover are relict fluvial sands, deposited during the late Wisconsinan lowstand. Subsequent relative sea-level rise allowed marine processes to rework and redistribute sediments that formed the nearshore fine-grained facies and the shelf sand sheet.

  9. Impacts of the 2011 Tohoku-oki tsunami along the Sendai coast protected by hard and soft seawalls; interpretations of satellite images, helicopter-borne video footage and field studies

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; Jordan, H. M.; Jordan, C. J.; Richmond, B. M.; Sugawara, D.; Goto, K.

    2012-12-01

    A combination of time-series satellite imagery, helicopter-borne video footage and field observation is used to identify the impact of a major tsunami on a low-lying coastal zone located in eastern Japan. A comparison is made between the coast protected by hard sea walls and the coast without. Changes to the coast are mapped from before and after imagery, and sedimentary processes identified from the video footage. The results are validated by field observations. The impact along a 'natural' coast, with minimal defences, is erosion focussed on the back beach. There is little erosion (or sedimentation) of the whole beach, and where active, erosion mainly forms V-shaped channels that are initiated during the tsunami flood and then further developed during backwash. Enigmatic, short lived, 'strand lines' are attributed to the slow fall of sea level after such a major tsunami. Backwash on such a low lying area takes place as sheet flood immediately after tsunami flooding has ceased, and then subsequently, when the water level landward of coastal ridges falls below their elevation, becomes confined to channels formed on the coastal margin by the initial tsunami impact. Immediately after the tsunami coastal reconstruction begins, sourced from the sediment recently flushed into the sea by tsunami backwash. Hard engineering structures are found to be small defence against highly energetic tsunami waves that overtop them. The main cause of damage is scouring at the landward base of concrete-faced embankments constructed to defend the coast from erosion, that results in foundation-weakening and collapse.

  10. Age-erosion constraints on an Early Pleistocene paleosol in Yukon, Canada, with profiles of 10Be and 26Al: Evidence for a significant loess cover effect on cosmogenic nuclide production rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidy, Alan J.; Gosse, John C.; Sanborn, Paul

    We report that Wounded Moose type paleosols developed on remnant deposits of Late Pliocene to Early Pleistocene [pre-Reid] Cordilleran Ice Sheet [CIS] glaciations in central Yukon, Canada. It is an important regional soil-geomorphic marker at the boundary between early CIS advances and the non-glaciated regions of Yukon and Alaska. Yet, at present, its age is poorly constrained between the Reid [0.2 Ma] and earliest [2.84 Ma] CIS advances. Here, we apply depth profiles of in situ-produced cosmogenic 26Al and 10Be to obtain both a minimum exposure age [1.12 +0.44/ -0.36 Ma, 2σ] and maximum erosion rate [1.1 +0.9/ -0.5 mmore » Myr -1] for the Wounded Moose paleosol. Here, our results show that this soil formed under exceptionally stable conditions [max erosion rate similar to polar bedrock erosion rates] and that it pre-dates the emergence of the 100 ka [eccentricity] climate cycle. Contrasting our results from single- and joint-nuclide depth profile models reveals a significant discrepancy between calculated and effective 10Be and 26Al production rates [40–65% of expected values]. We interpret this discrepancy as the result of intermittent loess cover—with a time-averaged depth between 60 and 110 cm—which significantly reduced apparent exposure ages obtained from the single–nuclide model. The observation of such a significant loess-cover effect on cosmogenic nuclide production has implications for exposure dating in glacial and periglacial environments; a multi-nuclide sampling strategy is required to quantify this effect.« less

  11. Coupling landscapes to solid-Earth deformation over the ice-age

    NASA Astrophysics Data System (ADS)

    Pico, T.; Mitrovica, J. X.; Ferrier, K.; Braun, J.

    2016-12-01

    We present initial results of a coupled ice-age sea level - landscape evolution code. Deformation of the solid Earth in response to the growth and ablation of continental ice sheets produces spatially-variable patterns of sea-level change. Recent modeling has considered the impact of sedimentation and erosion on sea level predictions across the last glacial cycle, but these studies have imposed, a-priori, a record of sediment flux and erosion, rather than computing them from a physics-based model of landscape evolution in the presence of sea-level (topography) changes. These topography changes range from 1-10 m/kyr in the near and intermediate field of the Late Pleistocene ice cover, and are thus comparable to (or exceed) tectonic rates in such regions. Our simulations aim to address the following question: how does solid-Earth deformation influence the evolution of landscapes over glacial periods? To address this issue, we couple a highly-efficient landscape evolution code, Fastscape (Braun & Willett, 2013), to a global, gravitationally-self consistent sea-level theory. Fastscape adopts standard geomorphic laws governing incision and marine deposition, and the sea-level model is based on the canonical work of Farrell & Clark (1976), with extensions to include the effects of rotation and time varying shoreline geometries (Kendall et al., 2005), and sediment erosion and deposition (Dalca et al, 2013). We will present global results and focus on a few regional case studies where deposition rates from a dataset of sedimentary cores can be used as a check on the simulations. These predictions quantify the influence of sea-level change (including that associated with sedimentation and erosion) on geomorphic drivers of landscape evolution, and in turn, the solid Earth deformation caused by these surface processes over an ice age.

  12. Age-erosion constraints on an Early Pleistocene paleosol in Yukon, Canada, with profiles of 10Be and 26Al: Evidence for a significant loess cover effect on cosmogenic nuclide production rates

    DOE PAGES

    Hidy, Alan J.; Gosse, John C.; Sanborn, Paul; ...

    2018-02-16

    We report that Wounded Moose type paleosols developed on remnant deposits of Late Pliocene to Early Pleistocene [pre-Reid] Cordilleran Ice Sheet [CIS] glaciations in central Yukon, Canada. It is an important regional soil-geomorphic marker at the boundary between early CIS advances and the non-glaciated regions of Yukon and Alaska. Yet, at present, its age is poorly constrained between the Reid [0.2 Ma] and earliest [2.84 Ma] CIS advances. Here, we apply depth profiles of in situ-produced cosmogenic 26Al and 10Be to obtain both a minimum exposure age [1.12 +0.44/ -0.36 Ma, 2σ] and maximum erosion rate [1.1 +0.9/ -0.5 mmore » Myr -1] for the Wounded Moose paleosol. Here, our results show that this soil formed under exceptionally stable conditions [max erosion rate similar to polar bedrock erosion rates] and that it pre-dates the emergence of the 100 ka [eccentricity] climate cycle. Contrasting our results from single- and joint-nuclide depth profile models reveals a significant discrepancy between calculated and effective 10Be and 26Al production rates [40–65% of expected values]. We interpret this discrepancy as the result of intermittent loess cover—with a time-averaged depth between 60 and 110 cm—which significantly reduced apparent exposure ages obtained from the single–nuclide model. The observation of such a significant loess-cover effect on cosmogenic nuclide production has implications for exposure dating in glacial and periglacial environments; a multi-nuclide sampling strategy is required to quantify this effect.« less

  13. The role of impoundments in the sediment budget of the conterminous United States

    USGS Publications Warehouse

    Renwick, W.H.; Smith, S.V.; Bartley, J.D.; Buddemeier, R.W.

    2005-01-01

    Previous work on sediment budgets for U.S. agricultural regions has concluded that most sediment derived from accelerated erosion is still on the landscape, primarily in colluvial and alluvial deposits. Here we examine the role of small impoundments in the subcontinental sediment budget. A recent inventory based on a 30-m satellite imagery reveals approximately 2.6 million ponds, while extrapolation from a sample of 1:24,000 topographic quadrangles suggests the total may be as large as 8-9 million. These ponds capture an estimated 21% of the total drainage area of the conterminous U.S., representing 25% of total sheet and rill erosion. We estimate the total sedimentation in these small impoundments using three different methods; these estimates range from 0.43 to 1.78 ?? 109 m3 yr-1. Total sedimentation in ???43,000 reservoirs from the National Inventory of Dams is estimated at 1.67 ?? 109 m3 yr-1. Total USLE erosion in 1992 was 2.4 ?? 109 m3 yr-1, and export to coastal areas is estimated at 0.6 ?? 109 m3 yr-1. Total sedimentation in impoundments is large in relation to upland erosion, in apparent contradiction to previous studies that have identified colluvial and alluvial deposition as the primary sinks. Several alternative hypotheses that could help explain this result are proposed. Regardless of which of these alternatives may prove to be the most significant in any given setting, it is clear that most sedimentation is now taking place in subaqueous rather than subaerial environments, and that small impoundments are a major sediment sink. ?? 2005 Elsevier B.V. All rights reserved.

  14. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly affected by gully erosion, rill or sheet erosion have been delineated. Furthermore, the measurement of radionuclide content in suspended sediment after the snowmelt suggests that most of this sediment consists in resuspended material rather than on newly eroded soil. In the Mexican watershed, a different contribution of andisols and acrisols to erosion is suspected. Overall, the bulk of erosion is generated by rather small areas within the watershed. In this region characterised by a succession of wet and dry seasons, the Be-7 content in rainfall and sediment has been measured at the scale of a 2.5 km2 sub-watershed in order to better understand the erosion transfer between hillslopes and rivers during the rainy season. This outlines the contribution of individual storms to seasonal erosion. Overall, this study brings important insights about sediment sources and fluxes within these watersheds located in contrasted environments. A further step consists in comparing experimental results with model outputs, and to evaluate the impact of on-going erosion mitigation measures.

  15. Influence of climate and land use changes on recent trend of soil erosion within the Russian Plain

    NASA Astrophysics Data System (ADS)

    Golosov, Valentin; Yermolaev, Oleg; Rysin, Ivan; Litvin, Leonid; Kiryukhina, Zoya; Safina, Guzel

    2016-04-01

    The Russian Plain is one of the largest plains with an area of 460 × 106 ha. Soil erosion during snow-melting and rainstorms occurs mostly on arable lands at the Russian Plain. The relative contribution of different types of soil erosion changes from the central part of the Russian Plain to the south. Sheet and rill soil erosion during snow-melting and rainfall are practically equal in the forest zone, while rainfall erosion prevails in the forest-steppe zone and the northern part of the steppe zone. Mostly rainfall erosion is observed in the southern part of the steppe zone. Mean annual soil losses from cultivated lands change in the range from 1 to 3 t ha-1 within lowlands to 6 to 8 t ha-1 at uplands with the maximum (10 t ha-1) observed near the Caucasus Mountains in the Stavropolskiy Krai. The intensity of gully erosion is relatively low during the last two decades. The collapse of the Soviet Union in 1991 caused a serious crisis in the agriculture because of financial problems and structural reorganization. As a result, the area of arable lands decreased in the southern half of the Russian Plain in 1991 - 2003. To a greater extent it was observed in the south of the forest zone because of the low productivity of its soils compared with chernozem. More than one third of the arable lands were abandoned in the dry steppe - semi-desert zones because these lands were irrigated during the Soviet period. The reduction of the arable land occurred in the forest-steppe and steppe zones mostly because of funding limitations during the 1990s. Recently the area of arable lands in the steppe zone was practically restored to its pre-1991 size. Simultaneously the last 25 years are characterized by unusual warm winters - in particular, in the southern half of the Russian Plain because of the global warming. As a result, the coefficient of surface snow-melting runoff considerably decreased for both cultivated fields and compacted fields after harvesting. Accordingly, spring flood levels decreased considerably - in particular, in small rivers. This is confirmed by a serious decrease of floodplain sedimentation rates since 1986 compared with the period from 1964 to 1986. As a result of both positive trend of extreme rainfall and negative trend of surface snow melting runoff, the proportion of sediments eroded from cultivated slopes and delivered by surface runoff to river channels decreased considerably during the last few decades in the southern part of the Russian Plain. Complex assessment of different erosion factors changes is undertaken for the different landscape zones of the Russian Plain. Given analysis allows evaluating of recent trend in erosion rates from cultivated lands. The other indicators of sediment redistribution dynamic (gully head retreat rate, floodplain sedimentation) are also used for assessment of soil erosion rate dynamic under land use and climate changes during last 25-30 years.

  16. Experimental Setup for Evaluation of the Protective Technical Measures Against the Slopes Degradation Along Linear Construction Sites

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Zumr, David; Neumann, Martin; Lidmila, Martin; Dufka, Dušan

    2017-04-01

    Soil erosion of the slopes along the linear construction sites, such as railroads, roads, pipelines or watercourses, is usually underestimated by the construction companies and controlling authorities. But under certain circumstances, when the construction site is not maintained and protected properly, a large amounts of soil may be transported from the sites to the surrounding environment during the intensive rainfall. Transported sediment, often carrying adsorbed pollutants, may reach watercourses and cause water recipient siltation and pollution. Within the applied research project we investigate ways of low cost, quick and easy technical measures that would help to protect the slopes against the splash erosion, rills development and sliding. The methodology is based on testing of various permeable covers, sheets, anchoring and patchy vegetation on a plot and hillslope scales. In this contribution we will present the experimental plot setup, consisting of large soil blocks encapsulated in the monitored steel containers and nozzle rainfall simulator. The presentation is funded by the Technological Agency of the Czech Republic (research project TH02030428) and an internal student CTU grant.

  17. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  18. Comparison of clast and matrix dispersal in till: Charlo-Atholville area, north-central New Brunswick

    USGS Publications Warehouse

    Dickson, M.L.; Broster, B.E.; Parkhill, M.A.

    2004-01-01

    Striations and dispersal patterns for till clasts and matrix geochemistry are used to define flow directions of glacial transport across an area of about 800km2 in the Charlo-Atholville area of north-central New Brunswick. A total of 170 clast samples and 328 till matrix samples collected for geochemical analysis across the region, were analyzed for a total of 39 elements. Major lithologic contacts used here to delineate till clast provenance were based on recent bedrock mapping. Eleven known mineral occurrences and a gossan are used to define point source targets for matrix geochemical dispersal trains and to estimate probable distance and direction of transport from unknown sources. Clast trains are traceable for distances of approximately 10 km, whereas till geochemical dispersal patterns are commonly lost within 5 km of transport. Most dispersal patterns reflect more than a single direction of glacial transport. These data indicate that a single till sheet, 1-4 m thick, was deposited as the dominant ice-flow direction fluctuated between southeastward, eastward, and northward over the study area. Directions of early flow represent changes in ice sheet dominance, first from the northwest and then from the west. Locally, eastward and northward flow represent the maximum erosive phases. The last directions of flow are likely due to late glacial ice sheet drawdown towards the valley outlet at Baie des Chaleurs.

  19. Bedrock morphology reveals drainage network in northeast Baffin Bay

    NASA Astrophysics Data System (ADS)

    Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Freire, Francis

    2018-02-01

    A subglacial drainage network underneath the paleo-ice sheet off West Greenland is revealed by a new compilation of high-resolution bathymetry data from Melville Bay, northeast Baffin Bay. This drainage network is an indicator for ice streaming and subglacial meltwater flow toward the outer shelf. Repeated ice sheet advances and retreats across the crystalline basement together with subglacial meltwater drainage had their impact in eroding overdeepened troughs along ice stream pathways. These overdeepenings indicate the location of a former ice sheet margin. The troughs inherit characteristics of glacial and subglacial meltwater erosion. Most of the troughs follow tectonic weakness zones such as faults and fractures in the crystalline bedrock. Many of these tectonic features correspond with the orientations of major fault axes in the Baffin Bay region. The troughs extend from the present (sub) glacial fjord systems at the Greenland coast and parallel modern outlet-glacier pathways. The fast flowing paleo-ice streams were likely accelerated from the meltwater flow as indicated by glacial landforms within and along the troughs. The ice streams flowed along narrow tributary troughs and merged to form large paleo-ice streams bedded in the major cross-shelf troughs of Melville Bay. Apart from the troughs, a rough seabed topography characterises the bedrock, and we see a sharp geomorphic transition where ice flowed onto sedimentary rock and deposits.

  20. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  1. Equatorward moving arcs and substorm onset

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2010-07-01

    Key observations of phenomena during the growth phase of a substorm are being reviewed with particular attention to the equatorward motion of the hydrogen and electron arcs. The dynamic role of the electron, the so-called growth phase arc, is analyzed. It is part of a current system of type II that is instrumental in changing the dominantly equatorward convection from the polar cap into a sunward convection along the auroral oval. A quantitative model of the arc and associated current system allows determining the energy required for the flow change. It is suggested that high-β plasma outflow from the central current sheet of the tail creates the current generator. Assessment of the energy supplied in this process proves its sufficiency for driving the arc system. The equatorward motion of the arcs is interpreted as a manifestation of the shrinkage of the near-Earth transition region (NETR) between the dipolar magnetosphere and the highly stretched tail. This shrinkage is caused by returning magnetic flux to the dayside magnetosphere as partial replacement of the flux eroded by frontside reconnection. As the erosion of the NETR is proceeding, more and more magnetic flux is demanded from the central current sheet of the near-Earth tail until highly accelerated plasma outflow causes the current sheet to collapse. Propagation of the collapse along the tail triggers reconnection and initiates the substorm.

  2. Triangular-shaped landforms reveal subglacial drainage routes in SW Finland

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Kajuutti, K.; Palmu, J.-P.; Ojala, A.; Ahokangas, E.

    2017-05-01

    The aim of this study is to present the first evidence of triangular-shaped till landforms and related erosional features indicative of subglacial drainage within the ice stream bed of the Scandinavian ice sheet in Finland. Previously unidentified grouped patterns of Quaternary deposits with triangular landforms can be recognized from LiDAR-based DEMs. The triangular landforms occur as segments within geomorphologically distinguishable routes that are associated with eskers. The morphological and sedimentological characteristics as well as the distribution of the triangular landforms are interpreted to involve the creep of saturated deforming till, flow and pressure fluctuations of subglacial meltwater associated with meltwater erosion. There are no existing models for the formation of this kind of large-scale drainage systems, but we claim that they represent an efficient drainage system for subglacial meltwater transfer under high pressure conditions. Our hypothesis is that the routed, large-scale subglacial drainage systems described herein form a continuum between channelized (eskers) and more widely spread small-scale distributed subglacial drainage. Moreover, the transition from the conduit dominated drainage to triangular-shaped subglacial landforms takes place about 50-60 km from the ice margin. We provide an important contribution towards a more realistic representation of ice sheet hydrological drainage systems that could be used to improve paleoglaciological models and to simulate likely responses of ice sheets to increased meltwater production.

  3. Regional stratigraphic cross sections of Cretaceous rocks from east-central Arizona to the Oklahoma Panhandle

    USGS Publications Warehouse

    Molenaar, C.M.; Cobban, W.A.; Merewether, E.A.; Pillmore, C.L.; Wolfe, D.G.; Holbrook, J.M.

    2002-01-01

    Sedimentary rocks of Cretaceous age along Transect DD'' in eastern Arizona, northern New Mexico, southern Colorado, and western Oklahoma consist mainly of sandstone, siltstone, shale, limestone, and bentonite. They accumulated as sediments in continental, nearshore marine, and offshore marine environments on the west side of a north-trending epicontinental sea. The rocks record intermittent deposition and erosion as well as regional and local subsidence and uplift possibly beginning in Aptian time (about 121-112 Ma) and occurring in Albian through Maastrichtian time (about 112-65.4 Ma). Most of the Lower Cretaceous (Berriasian through Aptian, 142-112 Ma) in this transect is represented by a basal unconformity. The Cretaceous rocks and unconformities along the transect are depicted on the attached lithostratigraphic cross sections (sheets 1 and 2); one extending from the Mogollon Rim in eastern Arizona to Pagosa Springs in southwestern Colorado and the other from Pagosa Springs, Colorado, to Kenton in western Oklahoma. The same rocks and unconformities are also represented on the attached chronostratigraphic profile (sheet 3), which was prepared mainly from surface and subsurface data shown on the lithostratigraphic cross sections.

  4. Evidence for glaciation in Elysium

    NASA Technical Reports Server (NTRS)

    Anderson, Duwayne M.

    1987-01-01

    Evidence for the existence of permafrost and the surface modification due to frost effects and the presence of ice on Mars dates from early observations. Later analysis of the Viking Orbiter imagery produced evidence suggesting the former presence of ice sheets that could have played a part in shaping the surface of Mars. Similarities were pointed out between a number of streamlined Martian channel features and similar streamlined landforms created by Antarctic ice sheet movement. A study of Viking Orbiter imagery of Granicus Valles and the surrounding terrain in Elysium has produced further evidence of glaciation on Mars. Volcanism has played an important role in developing the landscapes of the Elysium region. A possible explanation is that subsidence occurred during formation of the Martian moberg ridges due to the melting of ground ice near the eruption area while at a distance most of the ground ice in the permafrost is still present and the original elevation was preserved. Meltwater during and following eruptions might be suddenly released during subglacial volcanism into Granicus Valles in one case and into Hrad Valles in the other. Fluvial erosion thus could have played a role in shaping both.

  5. The role of surface-to-bed meltwater transfer events on the evolution of the Scandinavian Ice Sheet during the Weichselian

    NASA Astrophysics Data System (ADS)

    Clason, C.; Holmlund, P.; Applegate, P. J.; Strömberg, B.

    2012-12-01

    Inclusion of surface-to-bed meltwater transfer in the ice sheet model SICOPOLIS may help explain enigmatic erosional features, remnant of the last-glacial Scandinavian Ice Sheet (SIS), off Sweden's east coast. Modelling of ice sheets has largely neglected specific transfer of meltwater from the ice surface to the subglacial system, yet numerous studies on Greenland reveal dynamic response to surface meltwater generation and lake drainages, alluding to the importance of meltwater transfer for ice sheet response to climate change. Geologic evidence suggests the SIS experienced a number of oscillations during its evolution, characterised by variability in areas of fast flow, likely driven by changes in the thermal regime and fluctuating basal water pressure. SICOPOLIS accounts for polythermal conditions by applying a Weertman-type sliding law where basal ice is temperate. Furthermore, a first approximation of the surface meltwater effect on basal sliding is implemented within the SICOPOLIS Greenland domain, dependent on ice thickness and runoff. Field studies within the Swedish Archipelago have revealed numerous meltwater erosion features, including polished flutes. These flutes are deeper than the glacial striations in the area, and are both younger than and oriented differently to the youngest striae. Significant quantities of meltwater would have been necessary to erode such features, and large deposits of silt and clay in the surrounding area reinforce that meltwater was in good supply. Given the scattered distribution of polished fluting sites, access of meltwater to the bed through fracture penetration and lake drainage may have been instrumental in the localised nature of the sites. Driven by the geological evidence, SICOPOLIS is modified to include the surface meltwater effect within the Scandinavian domain. We aim to evaluate the role of meltwater transfer on the evolution of the SIS during the Weichselian, with particular focus on the area of the theorised Baltic Ice Stream.

  6. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice sheet instability in analogous future warm climates.

  7. Earth Observations

    NASA Image and Video Library

    2010-08-22

    ISS024-E-012425 (22 Aug. 2010) --- This photograph, featuring a landscape in the central Andes mountains near the Chile/Argentina border dominated by numerous volcanoes and associated landforms, was photographed by an Expedition 24 crew member on the International Space Station. Layers of older sedimentary rocks are visible to the southeast (upper right). Many of the volcanic cones show grooves eroded by water to form gullies. Such erosion has occurred since the host volcano was built up, indicating that most volcanoes in this view have been inactive for centuries or millennia. A few volcanoes exhibit much less erosion, and even show tongues of recent, dark lava flows (top left). According to scientists, two of these volcanoes, Cerro el Condor and Peinado have likely erupted within approximately the last 12,000 years (the Holocene Epoch). Also visible in the image is the world’s highest active volcano, Nevado Ojos del Salado, with a summit at 6,887 meters above sea level. The most recent confirmed eruption of this volcano has been dated to 700 (approximately 300 years), but minor eruptive activity may have occurred as recently as 1993. Stratovolcanoes such as Cerro el Condor, Peinado, and Nevado Ojos del Salado are formed partly by buildup of lava flows and partly by buildup of explosively vented material dropping back down onto the surface. One type of material associated with explosive eruptions is welded tuff, which is formed by molten and fragmented rock that accumulates on the ground and later solidifies. A large tuff sheet is visible at top left. Formed very rapidly, these sheets have been termed “instant landscapes.” So active has the Andean volcanic system been that the origin of many of the tuffs in the Andes cannot be pinpointed since source vents have been overprinted by subsequent volcanic events. The volcanic landscape also shows that the erosive work of rivers—and glaciers repeatedly in the recent past—is slower than the opposite processes of the upward building of the volcanoes. The bright blue, nearly 7-kilometer-long lake near the center of the image is known as Laguna Verde. This and other less obvious lakes indicate that water (snowmelt or direct precipitation) is unable to reach the sea, but is rather impounded in the depressions between the volcanic edifices.

  8. Erosion and Sedimentation from the Bagley Fire, Eastern Klamath Mountains, Northern CA

    NASA Astrophysics Data System (ADS)

    De La Fuente, J. A.; Bachmann, S.; Mai, C.; Mikulovsky, R.; Mondry, Z. J.; Rust, B.; Young, D.

    2014-12-01

    The Bagley Fire burned about 19,000 hectares on the Shasta-Trinity National Forest in the late summer of 2012, with soil burn severities of 11% high, 19% moderate and 48% low. Two strong storms in November and December followed the fire. The first storm had a recurrence interval of about 2 years, and generated runoff with a return interval of 10-25 years, causing many road stream crossing failures in parts of the fire. The second storm had a recurrence interval of 25-50 years, and initiated more severe erosion throughout the fire area. Erosional processes were dominated by sheet, rill and gully erosion, and landslides were uncommon. A model predicted high potential for debris flows, but few were documented, and though most stream channels exhibited fresh scour and deposition, residual deposits lacked boulder levees or other evidence of debris flow. Rather, deposits were stratified and friable, suggesting a sediment laden flood flow rather than debris flow origin. The resulting sediment was rich in gravel and finer particles, and poor in larger rock. Soil loss was estimated at 0.5-5.6 cm on most hillslopes. A high resolution DEM (LiDAR) was used to measure gullies, small landslides, and stream scour, and also to estimate sedimentation in Squaw Creek, and Shasta Lake. A soil erosion model was used to estimate surface erosion. Total erosion in the Squaw Creek watershed was estimated at 2.24 million metric tons, which equates to 260 metric tons/hectare. Of this, about 0.89 million metric tons were delivered to the stream system (103 metric tons/hectare). Nearly half of this sediment, 0.41 million metric tons, was temporarily stored in the Squaw Creek channel, and around 0.33 million metric tons of fine sediment were carried into Shasta Lake. Squaw Creek also delivered about 0.17 million metric tons of sand, gravel and cobbles to the lake. This estimate is very tenuous, and was made by measuring the volume of a delta in Shasta Lake from a tributary to Squaw Creek and extrapolating to the entire watershed. LidAR measurements of gully and landslide volume were considered the most reliable values, followed by estimates of channel scour and deposition in Squaw Creek and tributaries. The soil erosion model outputs were calibrated with data from a small debris basin. The most uncertain estimates were those for Shasta Lake sedimentation.

  9. Extremely low glacial headwall retreat rates quantified using debris-covered glaciers in the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Mackay, S. L.; Marchant, D. R.

    2017-12-01

    The McMurdo Dry Valleys (MDV) region of Antarctica is considered to be one of the most geomorphically stable regions on Earth. The extreme landscape stability is attributed primarily to persistent cold-polar desert conditions, and has enabled the multi-million-year preservation of near-surface terrestrial archives that are critical to our understanding of Antarctic ice sheet dynamics and climate change over at least the last 14 Ma. Correct interpretation of these archives requires well-constrained estimates of the rate of landscape alteration and erosion. Previous studies using tephrochronology of in situ ash deposits and terrestrial cosmogenic nuclides from bedrock and regolith on ridge crests, valley bottoms, and other low-angled, sub-horizontal surfaces have yielded inferred erosion rates of 5×10-5 to 9×10-4mm a-1 . However, estimates for erosion of cliff faces in topographically complex terrain that dominates the upland region of the MDV are largely unknown. Here we measure, for the first time in the MDV, the average rate of erosion and headwall-retreat for near-vertical glaciated cirques. To accomplish this, we analyze the sediment flux through the Mullins and Friedman glaciers; these are cold-based, topographically constrained, and slow-moving debris-covered alpine glaciers that collect and transport debris sourced entirely from rockfall at the headwall cirque. Using data from 15 km of ground penetrating radar profiles, 12 shallow ice cores, and 180 shallow surface excavations, we compile an estimated total sediment load for each glacier. We then combine this sediment load with measurements of the debris source area and a glacial chronology based on cosmogenic nuclide dating and measured ice flow velocities. Results indicate average headwall erosion rates of 1×10-3-5×10-3 mm a-1 and slope-adjusted headwall retreat rates of 9×10-4-4×10-3 mm a-1 over the past 225 ka. These values are the lowest yet reported and are several orders of magnitude lower than most headwall retreat rates in temperate, sub-arctic, and arctic mountain regions. Extrapolating this average erosion rate beyond the measured time period implies that less than 100 m of headwall retreat has occurred since the Middle Miocene and supports interpretations of the upland MDV region as a nearly static landscape.

  10. Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar

    USGS Publications Warehouse

    McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R.

    1982-01-01

    The shuttle imaging radar (SIR-A) carried on the space shuttle Columbia in November 1981 penetrated the extremely dry Selima Sand Sheet, dunes, and drift sand of the eastern Sahara, revealing previously unknown buried valleys, geologic structures, and possible Stone Age occupation sites. Radar responses from bedrock and gravel surfaces beneath windblown sand several centimeters to possibly meters thick delineate sand- and alluvium-filled valleys, some nearly as wide as the Nile Valley and perhaps as old as middle Tertiary. The nov-vanished maijor river systems that carved these large valleys probably accomplished most of the erosional stripping of this extraordinarily flat, hyperarid region. Underfit and incised dry wadis, many superimposed on the large valleys, represent erosion by intermittent running water, probably during Quaternary pluvials. Stone Age artifacts associated with soils in the alluvium suggest that areas near the wadis may have been sites of early human occupation. The presence of old drainage networks beneath the sand sheet provides a geologic explanation for the locations of many playas and present-day oases which have been centers of episodic human habitation. Radar penetration of dry sand and soils varies with the wavelength of the incident signals (24 centimeters for the SIR-A system), incidence angle, and the electrical properties of the materials, which are largely determined by moisture content. The calculated depth of radar penetration of dry sand and granules, based on laboratory measurements of the electrical properties of samples from the Selima Sand Sheet, is at least 5 meters. Recent (September 1982) field studies in Egypt verified SIR-A signal penetration depths of at least 1 meter in the Selima Sand Sheet and in drift sand and 2 or more meters in sand dunes. Copyright ?? 1982 AAAS.

  11. Glacial-interglacial cycles in detrital sediment supply to the Amundsen Sea: Implications for West Antarctic Ice Sheet dynamics during the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Simoes Pereira, P.; van de Flierdt, T.; Hillenbrand, C. D.; Hemming, S. R.; Kuhn, G.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) plays a key role in the global climate system and its collapse could contribute up to 4.3 m of sea-level rise. Mass loss of this marine-based ice sheet is largely caused by ocean-driven melting of ice shelves. This is confimed by modern observational data which show significant glacier thinning and retreat of grounding lines, particularly in the Amundsen Sea area. We here apply an integrated approach to determine provenance of marine sediments, which enables us to trace erosion of different bedrock lithologies, ultimately tied to the location of the eroding ice through time. We present provenance analysis on detrital Holocene seafloor sediments from the Amundsen Sea Embayment as well as from two marine cores PS58/254 (69°19´S, 108°27´W) and PC493 (71°09´S, 119°57´W), located on the continental rise of the Amundsen Sea and covering glacial-interglacial cycles of the past 800 kyrs. We use strontium (Sr) and neodymium (Nd) isotopic compositions of fine terrigenous grains (<63μm), and 40Ar/39Ar ages on ice-rafted (>150μm) hornblende and biotite grains. Our Holocene mapping results reveal drainage pathways with distinct signatures in the eastern and western Amundsen Sea Embayment. The western embayment records a homogenous provenance signature, pointing to a local source area in the hinterland, while the eastern embayment shows a range of compositions indicating erosion of the eastern coastal margin and a distinct, but unexposed source lithology under Pine Island Glacier and/or its drainage basin. Systematic isotope variations are detected between glacial and interglacial stages in both downcore records. Core PS58/254 exhibits a radiogenic fingerprint throughout the Late Pleistocene and systematic glacial-interglacial fluctuations in the order of three ɛNd units. They correlate with physical properties of the sediments (i.e. magnetic susceptibility) and trend towards lower values during interglacials, notably during Marine Isotope Stage (MIS) 5 and MIS 7. Core PC493 exhibits similar radiogenic Nd isotope composition, but a slightly reduced magnitude of glacial-interglacial changes. Detailed analysis of our results will offer a framework for interpreting sediment records from the area, including those from a recent MeBo expedition (PS104) and upcoming IODP expedition 379.

  12. Depositional architecture and evolution of the Late Miocene slope channel-fan-system in the northeastern shelf-margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Lin, Changsong; Zhang, Zhongtao; Tian, Hongxun; Tao, Ze; Liu, Hanyao

    2016-04-01

    The Upper Miocene in the Pearl River Mouth Basin of northwestern shelf-margin of South China Sea Basin contains a series of slope channel - fan systems. Their depositional architecture and evolution are documented in this investigation based on an integrated analysis of cores, logs, and seismic data. Four depositional-palaeogeomorphological elements have been identified in the slope channel-fan systems as follows: broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; deeply incised and confined unidirectionally migrating slope channels; broad or U-shaped, unconfined erosional-depositional channels; frontal splays-lobes and nonchannelized sheets. The slope channels are mostly oriented NW-SE, which migrated unidirectionally northeastwards and intensively eroded almost the whole shelf-slope zone. The channel infillings are mainly mudstones, interbedded with siltstones. They might be formed by gravity flow erosion as bypassing channels. They were filled with limited gravity flow sediments at the base and mostly filled with lateral accretionary packages of bottom current deposits. At the end of the channels, a series of small-scale slope fans developed and coalesced into fan aprons along the base of the slope. The unconfined erosional-depositional channels at the upper parts of the fan-apron-systems display compound infill patterns, and commonly have concave erosional bases and convex tops. The frontal splays-lobes representing middle to distal deposits of fan-apron-systems have flat-mounded or gull-wing geometries, and the internal architectures include bidirectional downlap, progradation, and chaotic infillings. The distal nonchannelized turbidite sheets are characterized by thin-bedded, parallel to sub-parallel sheet-like geometries. Three major unconformities or obvious erosional surfaces in the channel-fan systems of the Upper Miocene are recognized, and indicate the falling of sea-level. The depositional architecture of sequences varies from the upper slope to the slope base transitional to basin plain. The basal erosion and the unidirectionally migrating characters of the slope channels were supposed to be the result of the interaction of bottom currents and gravity flows. The intensive development of the channel-fan systems over the shelf slope might be related to the Dongsha Tectonic uplift which may resulted in stepped slope and concomitantly intensified gravity flow in the study area in Late Miocene.

  13. Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels

    NASA Astrophysics Data System (ADS)

    Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero

    2018-04-01

    Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide quantitative and qualitative descriptions of subglacial channels that revisit well-established field identification guidelines. Distinguishing subglacial channels in topographic data is critical for understanding the emergence, geometry, and extent of channelized meltwater systems and their role in ice sheet drainage. The final aim of this study is to facilitate the identification of subglacial channel networks throughout the globe by using remote sensing techniques, which will improve the detection of these systems and help to build understanding of the underlying mechanics of subglacial channelized drainage.

  14. Denudation of the continental shelf between Britain and France at the glacial–interglacial timescale

    PubMed Central

    Mellett, Claire L.; Hodgson, David M.; Plater, Andrew J.; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-01-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial–interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian–Eemian–early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial–interglacial period. PMID:24748702

  15. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    DOE PAGES

    McCorkle, Emma P.; Berhe, Asmeret Asefaw; Hunsaker, Carolyn T.; ...

    2016-04-29

    Here, soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance levels of the stable and radioactive isotopes of C ( 13C and 14C) and stable isotope of nitrogen ( 15N) to elucidate the origins of SOM eroded from low-order catchments along the western slopes of the Sierra Nevada of California, USA. Our work was conducted in two relatively undisturbed catchmentsmore » (low elevation = 1800 m, and high elevation = 2300 m) of the Kings River Experimental Watersheds (KREW) in the Sierra National Forest. Sediment captured in basins at the outlet of each gauged watershed were compared to possible source materials, which included: upland surficial organic horizons (i.e., forest floor) and mineral soils (0–0.6 m) from three landform positions (i.e., crest, backslope, and toeslope), stream bank soils (0–0.6 m), and stream-bed materials (0–0.05 m). We found that most of the organic matter (OM) in the captured sediments was composed of O-horizon material that had high C concentrations. Radiocarbon analyses also showed that the captured OM is composed of modern (post-1950) C, with fraction modern values at or above 1.0. Our results suggest that surface (sheet) erosion, as opposed to channeling through established streams and episodic mass wasting events, is likely the largest source of sediment exported out of these minimally disturbed, headwater catchments. The erosional export of sediment with a high concentration of C, especially in the form of relatively undecomposed litter from the O horizon, suggests that a large fraction of the exported C is likely to be decomposed during or after erosion; hence, it is unlikely that soil erosion acts as a significant net sink for atmospheric CO 2 in these low-order, temperate forest catchments.« less

  16. A laboratory experiment simulating the dynamics of topographic relief: methodology and results

    NASA Astrophysics Data System (ADS)

    Crave, A.; Lague, D.; Davy, P.; Bonnet, S.; Laguionie, P.

    2002-12-01

    Theoretical analysis and numerical models of landscape evolution have advanced several scenarios for the long-term evolution of terrestrial topography. These scenarios require quantitative evaluation. Analyses of topography, sediment fluxes, and the physical mechanisms of erosion and sediment transport can provide some constraints on the range of plausible models. But in natural systems the boundary conditions (tectonic uplift, climate, base level) are often not well constrained and the spatial heterogeneity of substrate, climate, vegetation, and prevalent processes commonly confounds attempts at extrapolation of observations to longer timescales. In the laboratory, boundary conditions are known and heterogeneity and complexity can be controlled. An experimental approach can thus provide valuable constraints on the dynamics of geomorphic systems, provided that (1) the elementary processes are well calibrated and (2) the topography and sediment fluxes are sufficiently well documented. We have built an experimental setup of decimeter scale that is designed to develop a complete drainage network by the growth and propagation of erosion instabilities in response to tectonic and climatic perturbations. Uplift and precipitation rates can be changed over an order of magnitude. Telemetric lasers and 3D stereo-photography allow the precise quantification of the topographic evolution of the experimental surface. In order to calibrate the principal processes of erosion and transport we have used three approaches: (1) theoretical derivation of erosion laws deduced from the geometrical properties of experimental surfaces at steady-state under different rates of tectonic uplift; (2) comparison of the experimental transient dynamics with a numerical simulation model to test the validity of the predicted erosion laws; and (3) detailed analysis of particle detachment and transport in a millimeter sheet flow on a two-meter long flume under precisely controlled water discharge, slope and flow width. The analogy with real geomorphic systems is limited by the imperfect downscaling in both time and space of the experiments. However, these simple experiments have allowed us to probe (1) the importance of a threshold for particle mobilization to the relationship between steady-state elevation and uplift rate, (2) the role of initial drainage network organization in the transient dynamics of tectonically perturbed systems and (3) the sediment flux dynamics of climatically perturbed systems.

  17. Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale.

    PubMed

    Mellett, Claire L; Hodgson, David M; Plater, Andrew J; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-12-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14 C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial-interglacial period.

  18. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorkle, Emma P.; Berhe, Asmeret Asefaw; Hunsaker, Carolyn T.

    Here, soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance levels of the stable and radioactive isotopes of C ( 13C and 14C) and stable isotope of nitrogen ( 15N) to elucidate the origins of SOM eroded from low-order catchments along the western slopes of the Sierra Nevada of California, USA. Our work was conducted in two relatively undisturbed catchmentsmore » (low elevation = 1800 m, and high elevation = 2300 m) of the Kings River Experimental Watersheds (KREW) in the Sierra National Forest. Sediment captured in basins at the outlet of each gauged watershed were compared to possible source materials, which included: upland surficial organic horizons (i.e., forest floor) and mineral soils (0–0.6 m) from three landform positions (i.e., crest, backslope, and toeslope), stream bank soils (0–0.6 m), and stream-bed materials (0–0.05 m). We found that most of the organic matter (OM) in the captured sediments was composed of O-horizon material that had high C concentrations. Radiocarbon analyses also showed that the captured OM is composed of modern (post-1950) C, with fraction modern values at or above 1.0. Our results suggest that surface (sheet) erosion, as opposed to channeling through established streams and episodic mass wasting events, is likely the largest source of sediment exported out of these minimally disturbed, headwater catchments. The erosional export of sediment with a high concentration of C, especially in the form of relatively undecomposed litter from the O horizon, suggests that a large fraction of the exported C is likely to be decomposed during or after erosion; hence, it is unlikely that soil erosion acts as a significant net sink for atmospheric CO 2 in these low-order, temperate forest catchments.« less

  19. Exposed subsurface ice sheets in the Martian mid-latitudes

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W.

    2018-01-01

    Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars’ high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.

  20. Epiguruk: a late Quaternary environmental record from northwestern Alaska

    USGS Publications Warehouse

    Hamilton, T.D.; Ashley, G.M.

    1993-01-01

    Epiguruk, a prominent bluff along the Kobuk River in northwestern Alaska, exposes a rich depositional record of Quaternary eolian and fluvial sand, with associated loess, paleosols, and periglacial features. Three major complexes of alluvial and eolian deposits are separated by two conspicuous organic-rich paleosols which formed during cool-moist interstadial intervals. Sediments between the two paleosols include eolian, channel, and floodplain deposits that formed during alluviation of the Kobuk River to a height of about 12m above the present level. The youngest depositional complex, which overlies the upper paleosol, is divisible into late Wisconsinan and Holocene components and into fluvial-channel, flood-plain, eolian-dune, sand-sheet, loess, and pond facies. Eolian sand from the active Kobuk sand sea overloaded the river during late Wisconsinan time, causing it to alluviate to about 13m above its modern level. The Holocene record reflects erosion and deposition by a small southern Tributary to the Kobuk River, downcutting by the Kobuk River toward its modern level, and subsequent erosion across a meander belt nearly 8km wide. 66 radiocarbon ages, many from rooted shrubs, provide a firm chronology for the past 35 k.y. at Epiguruk. -from Authors

  1. Geologic effects and coastal vulnerability to sea-level rise, erosion, and storms

    USGS Publications Warehouse

    Williams, S.J.; Gutierrez, B.T.; Thieler, E.R.; Pendleton, E.

    2008-01-01

    A combination of natural and human factors are driving coastal change and making coastal regions and populations increasingly vulnerable. Sea level, a major agent of coastal erosion, has varied greatly from -120 m below present during glacial period low-stands to + 4 to 6 m above present during interglacial warm periods. Geologic and tide gauge data show that global sea level has risen about 12 to 15 cm during the past century with satellite measurements indicating an acceleration since the early 1990s due to thermal expansion and ice-sheet melting. Land subsidence due to tectonic forces and sediment compaction in regions like the mid-Atlantic and Louisiana increase the rate of relative sea-level rise to 40 cm to 100 cm per century. Sea- level rise is predicted to accelerate significantly in the near future due to climate change, resulting in pervasive impacts to coastal regions and putting populations increasingly at risk. The full implications of climate change for coastal systems need to be understood better and long-term plans are needed to manage coasts in order to protect natural resources and mitigate the effects of sea-level rise and increased storms on human infrastructure. 

  2. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    NASA Astrophysics Data System (ADS)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (<63 μm). Coupled εNd and grain size analyses reveal a common erosion source for the Baltic Ice Stream sediments located near the Åland sill, more than 850 km upstream from the terminal moraines. This result is in agreement with both numerical modeling and geomorphological investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  3. Morphology and stratal geometry of the Antarctic continental shelf: Insights from models

    USGS Publications Warehouse

    Cooper, Alan K.; Barker, Peter F.; Brancolini, Giuliano

    1997-01-01

    Reconstruction of past ice-sheet fluctuations from the stratigraphy of glaciated continental shelves requires understanding of the relationships among the stratal geometry, glacial and marine sedimentary processes, and ice dynamics. We investigate the formation of the morphology and the broad stratal geometry of topsets on the Antarctic continental shelf with numerical models. Our models assume that the stratal geometry and morphology are principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the seaward edge of the grounded ice. The location of the grounding line varies with time almost randomly across the shelf. With these simple assumptions, the models can successfully mimic salient features of the morphology and the stratal geometry. The models suggest that the current shelf has gradually evolved to its present geometry by many glacial advances and retreats of the grounding line to different locations across the shelf. The locations of the grounding line do not appear to be linearly correlated with either fluctuations in the 5 l s O record (which presumably represents changes in the global ice volume) or with the global sea-level curve, suggesting that either a more complex relationship exists or local effects dominate. The models suggest that erosion of preglacial sediments is confined to the inner shelf, and erosion decreases and deposition increases toward the shelf edge. Some of the deposited glacial sediments must be derived from continental erosion. The sediments probably undergo extensive transport and reworking obliterating much of the evidence for their original depositional environment. The flexural rigidity and the tectonic subsidence of the underlying lithosphere modify the bathymetry of the shelf, but probably have little effect on the stratal geometry. Our models provide several guidelines for the interpretation of unconformities, the nature of preserved topset deposits, and the significance of progradation versus aggradation of shelf sediments.

  4. Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    NASA Astrophysics Data System (ADS)

    Paxman, G. J. G.; Watts, A. B.; Ferraccioli, F.; Jordan, T. A.; Bell, R. E.; Jamieson, S. S. R.; Finn, C. A.

    2016-10-01

    The relative roles of climate and tectonics in mountain building have been widely debated. Central to this debate is the process of flexural uplift in response to valley incision. Here we quantify this process in the Gamburtsev Subglacial Mountains, a paradoxical tectonic feature in cratonic East Antarctica. Previous studies indicate that rifting and strike-slip tectonics may have provided a key trigger for the initial uplift of the Gamburtsevs, but the contribution of more recent valley incision remains to be quantified. Inverse spectral (free-air admittance and Bouguer coherence) methods indicate that, unusually for continents, the coherence between free-air gravity anomalies and bedrock topography is high (>0.5) and that the elastic thickness of the lithosphere is anomalously low (<15 km), in contrast to previously reported values of up to ∼70 km. The isostatic effects of two different styles of erosion are quantified: dendritic fluvial incision overprinted by Alpine-style glacial erosion in the Gamburtsevs and outlet glacier-type selective linear erosion in the Lambert Rift, part of the East Antarctic Rift System. 3D flexural models indicate that valley incision has contributed ca. 500 m of peak uplift in the Gamburtsevs and up to 1.2 km in the Lambert Rift, which is consistent with the present-day elevation of Oligocene-Miocene glaciomarine sediments. Overall, we find that 17-25% of Gamburtsev peak uplift can be explained by erosional unloading. These relatively low values are typical of temperate mountain ranges, suggesting that most of the valley incision in the Gamburtsevs occurred prior to widespread glaciation at 34 Ma. The pre-incision topography of the Gamburtsevs lies at 2-2.5 km above sea-level, confirming that they were a key inception point for the development of the East Antarctic Ice Sheet. Tectonic and/or dynamic processes were therefore responsible for ca. 80% of the elevation of the modern Gamburtsev Subglacial Mountains.

  5. Formation of Microbial Streamers by Flow-Induced Shear and Their Hydrodynamic Effects

    NASA Astrophysics Data System (ADS)

    Gong, J.; Olsen, K. A.; Nguyen, T.; Tice, M. M.; 2012; 2013, G. C.

    2014-12-01

    Microbial streamers are productive elements of surface-attached microbial communities that paradoxically seem to roughen mats under rapid, high shear flows, potentially exposing the mat to greater risk of erosion. They are common features found in modern hot-spring outflow channels, yet their formation mechanisms and effects on mat erosion are poorly understood. We test a hypothesis that streamers are produced by shear-induced viscoelastic deformation, and that streamers grow to heal detached turbulent boundary layers. Laboratory flume experiments were conducted using Particle Image/Tracking Velocimetry (PIV/PTV) to gain quantitative insights into the behavior of flows around small projections constructed from 3D-printed plastics or hydrated EPS gels, as well as artificial streamers. The combined use of fabricated hard and viscoelastic shapes, tracer particles, sheet lasers and high speed cameras allowed visualization of flows and quantitative measurements. Results show that primary and secondary flows (backflow behind projections) combine to produce deformations that drive the elongation of the top and ultimately initiate streamer formation. With insufficient secondary flows, streamers are not able to rise up from the basal mat. This implies that a combination of sufficient topographic relief and flow strength is required for streamers to form. In addition, flow measurements indicate that the presence of artificial streamers made the surface hydraulically smoother, and in effect reducing bed shear at the base. These results suggest a novel set of feedbacks that could reduce net mat erosion in energetic flows, and could help guide the evaluation of biosignatures in sedimentary rocks deposited in the presence of microbial mats.

  6. Quaternary Sedimentary Processes and Budgets in Orphan Basin, Southwestern Labrador Sea

    NASA Astrophysics Data System (ADS)

    Hiscott, Richard N.; Aksu, Ali E.

    1996-03-01

    The continental slope in Orphan Basin, northeast of Newfoundland, is underlain by several seaward-thinning debris-flow wedges alternating with acoustically stratified, regionally extensive, mainly hemipelagic sediments. δ 18O stratigraphy and volcanic ash layers in a 11.67-m core indicate that the uppermost debris-flow wedge formed during the last of several sea-level lowstands in isotopic stages 2-4. Similarly, seismic reflection correlation of dated levels at DSDP Site 111 with the Orphan Basin succession suggests that two deeper debris-flow wedges were deposited during oxygen isotopic stages 6 and 8. The oldest of the debris-flow deposits in at least three of the wedges formed well into the corresponding glacial cycle, after ice sheets had reached the edge of the continental shelf. Slower deposition by hemipelagic processes and ice rafting formed the acoustically stratified units, including Heinrich layers. The youngest three debris-flow wedges each have volumes of 1300-1650 km 3. Approximately two-thirds of this material is attributed to glacial erosion of Mesozoic and Tertiary strata beneath the Northeast Newfoundland Shelf. The remainder is believed to have been derived by glacial erosion of older bedrock that now forms the island of Newfoundland. The observed sediment volumes and the inferred basal and upper ages of the debris-flow wedges imply an average glacial denudation rate of about 0.13 mm/yr for this older bedrock, and an average of about 60 m of glacial bedrock erosion since oxygen isotope stage 22. This denudation rate is similar to estimates from the Barents Sea region off Norway.

  7. Where's the Beaverhead beef?. [meteorite impact structure

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1992-01-01

    Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.

  8. Where's the Beaverhead beef?

    NASA Astrophysics Data System (ADS)

    Hargraves, R. B.

    Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.

  9. Impact of glaciations on the long-term erosion in Southern Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Simon-Labric, Thibaud; Herman, Frederic; Baumgartner, Lukas; Shuster, David L.; Braun, Jean; Reiners, Pete W.; Valla, Pierre G.; Leuthold, Julien

    2014-05-01

    The Southern Patagonian Andes are an ideal setting to study the impact of Late-Cenozoic climate cooling and onset of glaciations impact on the erosional history of mountain belts. The lack of tectonic activity during the last ~12 Myr makes the denudation history mainly controlled by surface processes, not by tectonics. Moreover, the glaciations history of Patagonia shows the best-preserved records within the southern hemisphere (with the exception of Antarctica). Indeed, the dry climate on the leeward side of Patagonia and the presence of lava flows interbedded with glacial deposits has allowed an exceptional preservation of late Cenozoic moraines with precise dating using K-Ar analyses on lava flow. The chronology of moraines reveals a long history covering all the Quaternary, Pliocene, and up to the Upper Miocene. The early growth of large glaciers flowing on eastern foothills started at ~7-6 Myr, while the maximum ice-sheet extent dates from approximately 1.1 Myr. In order to quantify the erosion history of the Southern Patagonian Andes and compare it to the glaciations sediment record, we collected samples along an age-elevation profile for low-temperature thermochronology in the eastern side of the mountain belt (Torres del Paine massif). The (U-Th)/He age-elevation relationship shows a clear convex shape providing an apparent long-term exhumation rate of ~0.2 km/Myr followed by an exhumation rate increase at ~6 Myr. Preliminary results of 4He/3He thermochronometry for a subset of samples complete the erosion history for the Plio-Pleistocene epoch. We used inverse procedure predicting 4He distributions within an apatite grain using a radiation-damage and annealing model to quantify He-diffusion kinetics in apatite. The model also allows quantifying the impact of potential U-Th zonation throughout each apatite crystal. Inversion results reveal a denudation history composed by a pulse of denudation at ~6 Ma, as suggested by the age-elevation relationship, followed by a decrease in denudation rate to very low value (<0.1 km/Myr) and late-stage exhumation phase at ~1 km/Myr for the last ~2 Myr. Our (U-Th)/He and 4He/3He data demonstrate a tight connection between the glaciation history from moraines record and long-term erosion rates derived from low-temperature thermochronology. These results highlight the high sensitivity of the Southern Patagonian Andes to the progressive Late-Cenozoic climate cooling and the strong glacial imprint on erosion history and landscape evolution since the Late Miocene. Indeed, we interpret the observed increase in erosion at ~6 Myr as the landscape response to the onset of the Patagonian ice cap, while the inferred recent increase in erosion rates may reflect the intensification of the climate cooling since the Plio-Pleistocene.

  10. The SfM-monitored rill experiment, a tool to detect decisive processes?

    NASA Astrophysics Data System (ADS)

    Remke, Alexander-André; Wirtz, Stefan; Brings, Christine; Gronz, Oliver; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    The initiation of rill erosion marks the transition from sheet to linear erosion. With this transition, the relevant processes change and therefore, the observation method needs to be changed too: from observing rainfall induced drop impacts to hydraulic observations. For us, the investigation of the decisive processes in eroding rills resulted in a constantly revised and updated rill erosion experiment, that has been used for several years. Within this experiment the sediment transport behavior of rills is simulated and examined. To make the experiment repeatable and replicable, several key-variables have to be kept constant, i.e. water quantity (1000 L), test duration (approx. 4 min.) and the length of the tested rill section (20 m). For each tested rill, the topographic background is determined i.e. catchment area, aspect, slope, position and height of existing knick-points and three cross-sections. After the initial assessment, the rill is flushed with water (250 L min -1) twice in order to determine the modifications of the rill caused by the flowing water. Within these approx. 4 minutes of "controlled destruction" the velocity of the turbulently flowing water at the beginning of the erosional event and after one and two minutes is determined and the corresponding water depth is recorded using three gauges at selected measuring points. At the end of the tested rill segment, the discharge is constantly monitored. Unfortunately, the results of this rill experiment do not directly show the modifications caused by the artificial waterflow. A way out of this knowledge gap is offered by combining this experimental measurement method with a technique already used in different scientific disciplines in more large-scale applications. Structure-from-Motion technology offers the opportunity to get a different, more detailed view inside the erosion rills. A static multi-camera-array and a dynamically moved digital video-frame camera are now used to obtain three-dimensional models of the rills before and after the experiment. These 3-D-models allow, in close connection with the time-controlled sampling, to point out the spatial and temporal distribution of erosion and accumulation hotspots. Furthermore it becomes possible to strike the erosion/accumulation-balance and get a glimpse at the hot-spots of side-wall-failure and rill bed-incision. The combination of both approaches - rill experiment and 3D modells - results in a more comprehensive insight: What happens in the rill? They allow for the detailed observation of the position, magnitude and furthermore the identification of the relevant erosion process. Eventually, the increased knowledge will assist to describe the processes accurately in a mathematical-physical way.

  11. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Stewart, Iain S.; Rose, James

    2000-01-01

    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  12. Ribbed moraine stratigraphy and formation in southern Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Sarala, Pertti

    2006-05-01

    Characteristics of ribbed moraines, the dominating moraine type in southern Finnish Lapland, have been studied in detail. The ridges are composed of several till units, of which the bottommost units consist of mature basal tills and the surficial parts are enriched with local, short-transport rock fragments and boulders in till and at the surface of ridges. As a result of this re-examination a two-step model of the formation process of ribbed moraines is presented. In the first stage, while cold-based conditions prevailed, both the bottommost part of the ice sheet and the frozen, substrate fractured under compressive ice flow. Following glacial transport of fractured blocks and formation of the transverse ridge morphology, erosion between the ridges continued owing to freeze-thaw process under variable pressure conditions. In the areas with a low pre-existing till sheet, the process caused quarrying of the bedrock surface and subsequent deposition of rock fragments and boulders under high pressure on the next ridge. The most suitable conditions for ribbed moraine formation existed during Late Weichselian deglaciation, after the Younger Dryas when the climate warmed very quickly, leading to an imbalance between a warm glacier surface and a cold base. Copyright

  13. Distribution of "Compound" and "Simple" Flows in the Deccan Traps (India)

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.

    2014-12-01

    The Deccan Traps are a dominantly mafic large igneous province (LIP) that, prior to erosion, covered ~1 million km2 of west-central India with lava flows. The type sections of the Western Ghats escarpment, where the Deccan lava pile reaches a maximum reconstructed stratigraphic thickness of ~3400 m, are subdivided into eleven formations defined on chemo-stratigraphic grounds. Earlier work recognized that emplacement of Deccan basalt flows primarily occurs following two main modes: as a stack of meter-sized pāhoehoe toes and lobes, termed "compound" flows; or as inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, previously termed "simple" flows. Initially, the distribution of small lobes and sheet lobes in the Deccan was thought to be controlled by distance from source, but later work suggested the distribution to be mainly controlled along stratigraphic, formational boundaries, with six of the lower formations being composed exclusively of compound flows, and the upper 4-5 formations being wholly built of sheet lobes. This simple stratigraphic subdivision of lava flow morphologies has also been documented in the volcanic architecture of other LIPs, e.g., the Etendeka, the Ethiopian Traps, and in the Faeroe Islands (North Atlantic LIP). Upon examination of eight sections carefully logged along the Western Ghats, this traditional view must be challenged. Where the lower Deccan formations crop out, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. This distribution in lava flow morphology does not seem to be noticeably affected by the inferred distance to the source (based on the location of similar-composition dikes for each formation). Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.

  14. Using a dynamic model to assess trends in land degradation by water erosion in Spanish Rangelands

    NASA Astrophysics Data System (ADS)

    Ibáñez, Javier; Francisco Lavado-Contador, Joaquín; Schnabel, Susanne; Pulido-Fernández, Manuel; Martínez Valderrama, Jaime

    2014-05-01

    This work presents a model aimed at evaluating land degradation by water erosion in dehesas and montados of the Iberian Peninsula, that constitute valuable rangelands in the area. A multidisciplinary dynamic model was built including weather, biophysical and economic variables that reflect the main causes and processes affecting sheet erosion on hillsides of the study areas. The model has two main and two derived purposes: Purpose 1: Assessing the risk of degradation that a land-use system is running. Derived purpose 1: Early warning about land-use systems that are particularly threatened by degradation. Purpose 2: Assessing the degree to which different factors would hasten degradation if they changed from the typical values they show at present. Derived purpose 2: Evaluating the role of human activities on degradation. Model variables and parameters have been calibrated for a typical open woodland rangeland (dehesa or montado) defined along 22 working units selected from 10 representative farms and distributed throughout the Spanish region of Extremadura. The model is the basis for a straightforward assessment methodology which is summarized by the three following points: i) The risk of losing a given amount of soil before a given number of years was specifically estimated as the percentage of 1000 simulations where such a loss occurs, being the simulations run under randomly-generated scenarios of rainfall amount and intensity and meat and supplemental feed market prices; ii) Statistics about the length of time that a given amount of soil takes to be lost were calculated over 1000 stochastic simulations run until year 1000, thereby ensuring that such amount of soil has been lost in all of the simulations, i.e. the total risk is 100%; iii) Exogenous factors potentially affecting degradation, mainly climatic and economic, were ranked in order of importance by means of a sensitivity analysis. Particularly remarkable in terms of model performance is the major role played in our case study by two positive feedback loops in which the erosion rate is involved. Those loops are responsible for erosion to accelerate over time, thereby outweighing the effect of negative feedbacks also involved in the erosion rate. The estimated lengths of time to loss the upper 5, 10, 15 and 20 cm of the soil (with and initial depth of 23.4 cm) corresponds to 138, 245, 317 and 360 years, respectively. The importance of climatic factors on soil removal considerably exceeds that of the economic ones, which showed low impacts on the final model results.

  15. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a uniformly thick sheet of semitransparent polymer such as Kapton H polyimide, then as atomic oxygen erodes the polymer, the short-circuit current from the photodiode will increase in an exponential manner with fluence. This nonlinear response with fluence results in a lack of sensitivity for measuring low atomic oxygen fluences. However, if one uses a variable-thickness polymer or carbon sample, which is configured as shown in the preceding figure, then a linear response can be achieved for opaque materials using a parabolic well for a circular geometry detector or a V-shaped well for a rectangular-geometry detector. Variable-thickness samples can be fabricated using many thin polymer layers. For semitransparent polymers such as Kapton H polyimide, there is an initial short-circuit current that is greater than zero. This current has a slightly nonlinear dependence on atomic oxygen fluence in comparison to opaque materials such as black Kapton as shown in the graph. For this graph figure, the total thickness of Kapton H was assumed to be 0.03 cm. The photodiode short-circuit current shown in the graph was generated on the basis of preliminary measurements-a total reflectance rho of 0.0424 and an optical absorption coefficient a of 146.5 cm(sup -1). In addition to obtaining on-orbit data, the advantage of this active erosion and erosion yield measurement technique is its simplicity and reliance upon well-characterized fluence witness materials as well as a nearly linear photodiode short-circuit current dependence upon atomic oxygen fluence. The optical technique is useful for measuring either atomic oxygen fluence or erosion, depending on the information desired. To measure the atomic oxygen erosion yield of a test material, one would need to have two photodiode sensors, one for the test material and one that uses a known erosion yield material (such as Kapton) to measure the atomic oxygen fluence.

  16. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Stap, Lennert B.; van de Wal, Roderik S. W.; de Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2017-09-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition (˜ 34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and greenhouse gas variations. Quantification of these feedbacks on long timescales has hitherto scarcely been undertaken. In this study, we use a zonally averaged energy balance climate model bidirectionally coupled to a one-dimensional ice sheet model, capturing the ice-albedo and surface-height-temperature feedbacks. Potentially important transient changes in topographic boundary conditions by tectonics and erosion are not taken into account but are briefly discussed. The relative simplicity of the coupled model allows us to perform integrations over the past 38 Myr in a fully transient fashion using a benthic oxygen isotope record as forcing to inversely simulate CO2. Firstly, we find that the results of the simulations over the past 5 Myr are dependent on whether the model run is started at 5 or 38 Myr ago. This is because the relation between CO2 and temperature is subject to hysteresis. When the climate cools from very high CO2 levels, as in the longer transient 38 Myr run, temperatures in the lower CO2 range of the past 5 Myr are higher than when the climate is initialised at low temperatures. Consequently, the modelled CO2 concentrations depend on the initial state. Taking the realistic warm initialisation into account, we come to a best estimate of CO2, temperature, ice-volume-equivalent sea level, and benthic δ18O over the past 38 Myr. Secondly, we study the influence of ice sheets on the evolution of global temperature and polar amplification by comparing runs with ice sheet-climate interaction switched on and off. By passing only albedo or surface height changes to the climate model, we can distinguish the separate effects of the ice-albedo and surface-height-temperature feedbacks. We find that ice volume variability has a strong enhancing effect on atmospheric temperature changes, particularly in the regions where the ice sheets are located. As a result, polar amplification in the Northern Hemisphere decreases towards warmer climates as there is little land ice left to melt. Conversely, decay of the Antarctic ice sheet increases polar amplification in the Southern Hemisphere in the high-CO2 regime. Our results also show that in cooler climates than the pre-industrial, the ice-albedo feedback predominates the surface-height-temperature feedback, while in warmer climates they are more equal in strength.

  17. Mega deposits and erosive features related to the glacial lake Nedre Glomsjø outburst flood, southeastern Norway

    NASA Astrophysics Data System (ADS)

    Høgaas, Fredrik; Longva, Oddvar

    2016-11-01

    In this paper we present a suite of erosional remnants, mega deposits and subtle bar morphology that we relate to the outburst flood from the glacial lake Nedre Glomsjø at the end of the last Ice Age. By using large datasets of airborne LiDAR data implemented in a geographic information system (GIS), we have mapped flood related features along the Glomma and Vrangselva rivers in southeastern Norway. The unprecedented overview of the valley reaches obtained by the vegetation-free LiDAR-derived digital elevation models (DEM) has revealed a set of hitherto undocumented landforms. Persisting erosive lines - indicators of the uppermost flooded level - are carved into surficial deposits in the hillsides and are found as high as 80-90 m above the modern valley floor. By using the indicators as an upper flood boundary, we have computed cross-sectional profiles showing that the flood in some reaches inundated more than 120 000 m2 of the valley. Large, streamlined bed forms, which we interpret as flood bars, drape sections of the valley floor, some several kilometers long. The most morphologically striking - pendant bars - are developed behind flood flow projections, such as bedrock knolls or in lee of a valley bend. Flood bars occur in the entire study area, but are more widespread in the north and generally decrease in size moving in a downstream direction. Kettle holes and ice-block obstacle marks from icebergs arrested during the flood are common. These features support the theory of a catastrophic drainage event, but also indicate a pattern of differential erosion and deposition that allowed us to interpret palaeoflow on individual bars. Vast aeolian dune fields in the region are interpreted as a secondary product of the flood, as deposits related to the event were mobilised by northerly winds momentarily after the flood waned. The dune fields cover an excess of 50 km2 and reveal that the region was a highly active periglacial desert after the flood. Our mapping highlights the outburst flood's role as a landscape-defining event. Morphological evidence determine the southern fringe of the Scandinavian ice sheet to c. 15 km north of Elverum at the time of the outburst flood. From calibrating existing 14C dates we postulate an age of c. 10-10.4 cal ka BP for the Nedre Glomsjø drainage event and the contemporaneous margin of the ice sheet.

  18. Depositional evolution of the Melville Bay trough-mouth fan, NW Greenland

    NASA Astrophysics Data System (ADS)

    Knutz, Paul; Gregersen, Ulrik

    2015-04-01

    The continental margin of NW Greenland bordering northern Baffin Bay is characterized by major sediment accumulations, known as Trough-Mouth Fans (TMF). The fan depocentres represent intense sediment dispersal at the terminus of ice streams that during cold climate periods provided major drainage routes of the northern Greenland Ice Sheet into Baffin Bay. The imprint of paleo-icestreams is seen by erosional troughs crossing a >250 km broad shelf region, which caps a series of sedimentary basins containing thick Mesozoic-Tertiary strata packages. This presentation provides an overview of the seismic stratigraphic division, depositional architecture and examples of seismic facies of the Melville Bay TMF using a 5-10 km grid of industry-quality 2D seismic data (TGS). The focus will primarily be on the inception and early stage of glacial fan development. Comparing the present-day topography with the regional geology shows that the paleo-icestreams exploited the Cenozoic infill of former rift basins that are more conducive to erosion than the adjoining ridges and structural highs. The TMF sequence is constructed by a series of progradational seismic units that represent successive steps in location of ice stream terminus and associated depocenters. The slope fronts of the prograding units show abundant signatures of sediment instability and mass-wasting but evidence of along-slope current-driven processes is also recognized presumably linked to interglacial sea level high-stands. The topset of each unit is characterized by planar erosion that merges landward into hummocky positive geometries with low internal reflectivity. These features are generally interpreted as subglacial landforms, e.g. terminal moraines and ice-contact deposits, associated with grounding zone wedges. Unlike the most recent TMF units deposited in front of the present trough, the oldest glacigenic units have built out from a Neogene sediment prism that forms the core of modern shallow-water banks. These topographic highs probably formed anchoring points facilitating the initial expansion of inland ice onto the shelf. The pre-glacial Neogene package displays typical contourite features concentrated along the mid-shelf region, while further basinward it is marked by intensive erosion and down-slope mass transport in the form of mega-slides. Our results suggests that shelf glaciation in these parts could have been facilitated by tectonic adjustments (e.g. relative fall in sea level) related to phases of tectonic uplift during latest Miocene and Pliocene/early Pleistocene. The present work contributes to a better understanding of the internal complexity of TMF systems as well as the underlying long-term mechanisms that evoked the Late Cenozoic development of the Greenland Ice Sheet.

  19. Amorphous-silicon module intercell corrosion

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Ross, R. G.

    1987-06-01

    Three non-electrochemical, moisture-induced a-Si module degradation modes have been observed and their mechanisms studied: (1) the formation and growth of pinholes in the thin-film layers; (2) the directional interfusion of pinholes along process scribe lines to form metallization-free regions that tend to open-circuit the module; and (3) worm-like filiform corrosion in the aluminum layer. The dependency on time-of-exposure to moist environments of the amount of material erosion in the module intercell zone has been quantified by two methods—directly by EDS analysis, and indirectly by sheet resistivity measurements on fully aluminized back surface modules. In addition, changes in maximum power output, series resistance, and open circuit voltage have been documented. Consequences for fielded modules are discussed.

  20. Stratigraphy of the Kasei Valles region, Mars

    NASA Technical Reports Server (NTRS)

    Robinson, Mark S.; Tanaka, Kenneth L.

    1987-01-01

    The thicknesses and geomorphology of the two principal stratigraphic units exposed in Kasei Valles to aid in interpreting the nature of crustal materials and the history of the channeling events in the area are identified and described. Previous studies of Kasei Valles have related the channel landforms to glacial flow, catastrophic flooding, and large-scale eolian erosion. The two units (an upper and a lower unit) form thick sheets, each having distinct geomorphologic features. Thicknesses of the unit were determined through preliminary stereogrammetric profiles taken across many sections of western Kasei Valles and shadow measurements taken of scarp heights from calibrated Viking images having sun angles less than 25 degrees; DN values were examined to confirm that true shadows were observed.

  1. Lattice Boltzmann method for rain-induced overland flow

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Liu, Haifei; Peng, Yong; Xing, Liming

    2018-07-01

    Complex rainfall situations can generate overland flow with complex hydrodynamic characteristics, affecting the surface configuration (i.e. sheet erosion) and environment to varying degrees. Reliable numerical simulations can provide a scientific method for the optimization of environmental management. A mesoscopic numerical method, the lattice Boltzmann method, was employed to simulate overland flows. To deal with complex rainfall, two schemes were introduced to improve the lattice Boltzmann equation and the local equilibrium function, respectively. Four typical cases with differences in rainfall, bed roughness, and slopes were selected to test the accuracy and applicability of the proposed schemes. It was found that the simulated results were in good agreement with the experimental data, analytical values, and the results produced by other models.

  2. Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland

    NASA Astrophysics Data System (ADS)

    Rossi, Matti J.

    1997-09-01

    An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and volume may be significantly larger than what the surface exposure suggests; (2) lava channels may become severely eroded during channel flow even if a lava flow was formed in a relatively short time; (3) the levee dimensions, and hence lava flow dimensions, may be significantly altered by extensive overflows.

  3. Late Miocene volcanic sequences in northern Victoria Land, Antarctica: products of glaciovolcanic eruptions under different thermal regimes

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Rocchi, S.; Armienti, P.

    2011-01-01

    Late Miocene (c. 13-5 Ma) volcanic sequences of the Hallett Volcanic Province (HVP) crop out along >250 km of western Ross Sea coast in northern Victoria Land. Eight primary volcanic and six sedimentary lithofacies have been identified, and they are organised into at least five different sequence architectures as a consequence of different combinations of eruptive and/or depositional conditions. The volcanoes were erupted in association with a Miocene glacial cover and the sequences are overwhelmingly glaciovolcanic. The commonest and most representative are products of mafic aa lava-fed deltas, a type of glaciovolcanic sequence that has not been described before. It is distinguished by (1) a subaerially emplaced relatively thin caprock of aa lavas lying on and passing down-dip into (2) a thicker association of chaotic to crudely bedded hyaloclastite breccias, water-chilled lava sheets and irregular lava masses, collectively called lobe-hyaloclastite. A second distinctive sequence type present is characterised by water-cooled lavas and associated sedimentary lithofacies (diamictite (probably glacigenic) and fluvial sands and gravels) similar to some mafic glaciovolcanic sheet-like sequences (see Smellie, Earth-Science Reviews, 74, 241-268, 2008), but including (for the first time) examples of likely sheet-like sequences with felsic compositions. Other sequence types in the HVP are minor and include tuff cones, cinder cones and a single ice-marginal lacustrine sequence. The glacial thermal regime varied from polar, characterised by sequences lacking glacial erosion, glacigenic sediments or evidence for free water, to temperate or sub-polar for sequences in which all of these features are conspicuously developed.

  4. Friis Hills glacial history: an international collaboration to examine Miocene climate in Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R. W.; Kowalewski, D. E.

    2016-12-01

    The Friis Hills, Antarctica (western McMurdo Dry Valleys) contain unique, well-preserved records of Miocene climate. These terrestrial deposits hold geomorphic clues for deciphering the glacial history in a region directly adjacent to the East Antarctic Ice Sheet. Stacked till sheets, interbedded with lake sediments and non-glacial deposits, reveal a complex history of ice flow and erosion throughout multiple glacial-interglacial cycles (Lewis and Ashworth, 2015). Fossiliferous beds containing Nothofagus, diatoms, algal cells, pollen, insects, and mosses provide past climatological constraints. The Friis Hills sustained multiple alpine glaciations as well as full ice-sheet development, recording glacial drainage reorganization and evidence of previous ice configurations that possibly overrode the Transantarctic Mountains (Lewis and Ashworth, 2015) exposing only scattered nunataks (i.e. a portion of Friis Hills). Lack of chronological control has previously hindered efforts to link the Friis Hills glacial history with regional context; a tephra deposit at the base of the glacial drifts currently provides a single age constraint within the drift deposits. To build upon previous studies, an international collaboration between the USAP, Antarctic New Zealand, and the Italian Antarctic community proposes to core a paleo-lake in the center of the Friis Hills in November 2016, thereby acquiring one of the oldest continuous sedimentological records within the McMurdo Dry Valleys. Here we report discoveries from this year's fieldwork, and reconstruct paleoenvironment at the periphery of the East Antarctic Ice Sheet for the mid-early Miocene, a critical time when marine isotopic records indicate dramatic ice fluctuations. Ash within the sediment core stratigraphy will provide a more robust chronology for the region, and will also suggest possible outcrop locations of corresponding ash deposits to pursue while in the field. We anticipate that the Friis Hills stratigraphy will have the necessary chronological control for correlation with offshore marine records from the Ross Embayment, including the ANDRILL project.

  5. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  6. Can we apply the 10Be/9Be flux tracer to marine sediments along glaciated margins?

    NASA Astrophysics Data System (ADS)

    Valletta, R. D.; Willenbring, J. K.; Passchier, S.; Elmi, C.

    2016-12-01

    Radioactive cosmogenic 10Be normalized to its stable isotope 9Be is proposed as a tracer of continental deposition into the marine basins throughout the Late Cenozoic. Close to glaciated margins, 10Be/9Be may reflect shifts in ice sheet dynamics whereby ice sheet retraction is accompanied by increases in freshwater discharge and terrestrial weathering, which may both increase 10Be and 9Be delivery to the continental shelf. However, this signal is complicated by boundary scavenging during periods of warmth and increased productivity. To disentangle the environmental and biological imprint on the 10Be/9Be isotope record, we sampled extensively characterized marine sedimentary packages offshore the Wilkes Subglacial Basin in an area where East Antarctic Ice Sheet (EAIS) retraction and advance is well-established (IODP U1361A). Combining this existing data with our new measurements creates a uniquely large, multi-proxy dataset for geochemical reconstructions along a glaciated margin. We measured 10Be, 9Be and a suite of bio-reactive transition metals from alternating diatom-rich and diatom-poor clay units 1) adsorbed to authigenic clays and 2) contained within diatom frustules, making this the first dataset of its kind. Diatom-rich clay sediments mark abrupt periods of Pliocene warming and a retracted EAIS. Beryllium co-varies with diatom-rich units: maximum 10Be ( 1.3 x 109 atoms g-1) and 9Be ( 300 ng g-1) peak during warmer intervals. These data mimic patterns observed in the nearby Ross Sea (Yokoyama et al., 2016), suggesting that interglacials are marked along glaciated margins by sudden pulses in Be delivery. By accounting for the Be inventory within diatoms, we have allowed for the exciting pairing of 10Be with 26Al to obtain 1) particle flux and 2) freshwater volume discharged from the EAIS during melting events. These values may offer an approach to constraining changes in two elusive parameters: subglacial erosion and ice sheet melt.

  7. Seismic stratigraphy and tomography in the outer shelf and slope of the Central Basin, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Sookwan; De Santis, Laura; Böhm, Gualtiero; Kuk Hong, Jong; Jin, Young Keun; Geletti, Riccardo; Wardell, Nigel; Petronio, Lorenzo; Colizza, Ester

    2014-05-01

    The Ross Sea, located between Victoria Land and Marie Byrd Land in Antarctica, is one of the main drainage of the Antarctic Ice Sheet (AIS). Reflection seismic data acquired by many countries during several decades have provided insights into the history of the Ross Sea and the AIS evolution. However the majority of the existing seismic data are concentrated in the shelf area, where hiatus formed by grounding ice sheet erosion multiple events prevent to reconstruct the entire sedimentary sequences depositional evolution. On the outer shelf and upper slope, the sedimentary sequences are relatively well preserved. The main purpose of this study is the investigation of the Cenozoic Antarctic Ice Sheet evolution through the seismic sequence analysis of the outer shelf and slope of the Central Basin, in the Ross Sea. The data used are the new multi-channel seismic data, KSL12, were acquired on the outer shelf and upper slope of the Central Bain in February 2013 by Korea Polar Research Institute. The reflection seismic data, previously collected by the Italian Antarctic Program (PNRA) and other data available from the Seismic Data Library System (SDLS) are also used for velocity tomography and seismic sequence mapping. The seismic data were processed by a conventional processing flow to produce the seismic profiles. Preliminary results show well-developed prograding wedges at the mouth of glacial troughs, eroded by a major glacial unconformity, the Ross Sea Unconformity 4 (RSU-4), correlated to a main event between early- and mid-Miocene. The velocity anomalies shown along KSL12-1 can be interpreted as showing the occurrence of gas and fluids, diagenetic horizons and sediment compactions. The isopach maps of each sequence show the variation of thickness of the sediments depocenter shift. The seismic sequence stratigraphy and acoustic facies analysis provide information about different phases of ice sheet's advance and retreat related to the AIS Cenozoic dynamics.

  8. Influence of the West Antarctic Ice Sheet and its collapse on the wind and precipitation regimes of the Ross Embayment

    NASA Astrophysics Data System (ADS)

    Seles, D.; Kowalewski, D. E.

    2015-12-01

    Marine Isotope Stage 31 (MIS 31) is a key analogue for current warming trends yet the extent of the East Antarctic Ice Sheet (EAIS) and the West Antarctic Ice Sheet (WAIS) during this interglacial remains unresolved. Inconsistencies persist between offshore records (suggesting the instability of WAIS) and McMurdo Dry Valley (MDV) terrestrial datasets (indicating long-term ice sheet stability). Here we use a high-resolution regional scale climate model (RegCM3_Polar) to reconstruct paleoclimate during MIS 31 (warm orbit, 400 ppm CO2) and assess changes in precipitation and winds (including katabatic) with WAIS present versus WAIS absent. The MIS 31 scenario with WAIS present resulted in minimal changes in wind magnitude compared with current climate conditions. With WAIS absent, the model predicts a decrease in coastal and highland monthly mean average wind velocities. The greatest rates of snowfall remain along the coast but shift towards higher latitudes with the interior continent remaining dry when WAIS is removed. Focusing on the Ross Embayment, this decreased monthly mean wind velocity and shift of winds to the east indicate a greater influence of offshore winds from the Ross Sea, enabling the increase of precipitation southward along the Transantarctic Mountains (TAM) (i.e. MDV). The apparent decrease of katabatic winds with no WAIS implies that offshore winds may be responsible for bringing the warmer, wetter air into the TAM. The change in wind and precipitation in the Ross Embayment and specifically the MDV highlights the impact of WAIS on Antarctic climate and its subsequent influence on the mass balance of peripheral EAIS domes (i.e. Taylor Dome). Modeling suggests that if WAIS was absent during MIS 31, we would expect (1) greater accumulation at such domes and (2) MDV terrestrial records that reflect a wetter climate, and (3) weaker winds suggesting possibly lower ablation/erosion rates compared to if WAIS was present.

  9. Sustainable Land Management in the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Haile, Mitiku; Nyssen, Jan; Araya, Tesfay

    2014-05-01

    Through centuries of farming practices the farmers and pastoralists in Ethiopia were managing their land resources pertaining to the needs of prevalent populations. With an increasing population and growing demands, more land was put under cultivation. Subsequently forest areas were cleared, encroaching agriculture into steep slopes and areas that were not suitable for agricultural activities. Land degradation and particularly soil erosion by water not only reduced the productivity of the land but also aggravated the effects of drought, such as famine and migration. Obvious signs of degradation in the highlands of Ethiopia are wide gullies swallowing fertile lands and rock outcrops making farming a risky business. But also less visible sheet erosion processes result in a tremendous loss of fertile topsoil, particularly on cropland. Efforts have been made by the farming communities to mitigate land degradation by developing local practices of conserving soil and water. With keen interest and openness one can observe such indigenous practices in all corners of Ethiopia. Notwithstanding these practices, there were also efforts to introduce other soil and water conservation interventions to control erosion and retain the eroded soils. Since the early 1980s numerous campaigns were carried out to build terraces in farmlands and sloping areas. Major emphasis was given to structural technologies rather than on vegetative measures. Currently the landscape of the northern highlands is dotted with millions of hectares of terraced fields and in some places with planned watershed management interventions including exclosures. Apparently these interventions were introduced without prior investigating the detailed problems and conservation needs of the local population. Intensive research is undertaken on the processes of degradation, the impact of the different intervention measures and the role of communities in sustainably managing their land. This paper attempts to review the relevant studies undertaken with emphasis on the approaches to sustainable land management.

  10. The geomorphic impact of glaciers as indicated by tors in North Sweden (Aurivaara, 68° N)

    NASA Astrophysics Data System (ADS)

    André, Marie-Françoise

    2004-02-01

    Geomorphological investigations carried out on 15 tor-like features located on the Aurivaara plateau (North Sweden, 68° N) provide new insights in the greatly debated age of these landforms. Erratics and till trapped deep in the tor joints support a pre-Weichselian age for tor formation. Moreover, the occurrence of various weathering stages in allochtonous material, the joint width up to 1.5 m (requiring long-term weathering), and the frequent association of tors with pediment-like forms, suggest pre-Quaternary tor formation. The juxtaposition of fresh erratics and in situ old weathering features (mushroom rocks, concentrically weathered well-rounded corestones, and grus) indicates a predominantly cold-based regime for the Scandinavian ice sheet, with erratics carried by the overlying moving ice being repeatedly deposited on tor summits during deglaciation phases. The relationships between tors and ice action indicated for the Aurivaara plateau result in the proposal of a morphodynamical succession of five tor subtypes ranging from the preservation of well-rounded corestones still embedded in grus (suggesting negligible glacial erosion) to the almost complete removal of tor features by ice scouring. A comparison with tors in similar geological and topographical contexts from the unglaciated Dartmoor area allows a tentative evaluation of an average overall glacial erosion of 0-10 m on the northern Sweden plateaus, in sharp contrast with the 190 m overdeepening of the nearby Torneträsk basin. Thus, this case study of Swedish tors provides additional support to the recent interpretations of relict landscapes in previously glaciated areas and is in accordance with the classical «model» of glacial selective erosion established in the Nordic and Arctic mountains.

  11. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  12. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  13. The Cenozoic history of East Antarctic subglacial erosion and sediment flux from the offshore detrital thermochronometric record

    NASA Astrophysics Data System (ADS)

    Thomson, S. N.; Reiners, P. W.; Tochilin, C. J.; Hemming, S. R.; Gehrels, G. E.

    2011-12-01

    To improve and better quantify the record of subglacial erosion and landscape evolution in East Antarctica since the inception of the East Antarctic ice sheet (EAIS) at 34 Ma we have developed a novel technique to triple-date single grains of detrital apatite by U-Pb, fission track, and (U-Th)/He dating. We applied this method to offshore sediments deposited from the Cretaceous through Holocene in Prydz Bay. The modern source region of Prydz Bay incorporates the Lambert Glacier catchment that drains some 20% of the EAIS. In pre-glacial times, landscape reconstructions and sediment analysis imply that Prydz Bay was the site of deposition of fluvial sediments draining large parts of the East Antarctic craton including parts of the now-subglacial Gamburtsev Mountains. Apatite U-Pb ages from samples through the whole stratigraphic section show a dominant Pan-African age signature (ca. 500 Ma) implying much of the Lambert catchment experienced Pan-African metamorphism to temperatures > ca. 500°C. Pre-glacial Late Cretaceous and Eocene fluvial sandstones are characterized by old apatite fission track (AFT) and (U-Th)/He (AHe) ages between about 300 and 220 Ma. AFT and AHe single grain age pairs show two distinct groups, one indicative of fast cooling and erosion during the Permian followed by residence at low near-surface temperatures until the Eocene, and the other indicative of more constant, but very slow erosion rates (<0.02 km/Myr) since the Permian. A few ages between 110-120 Ma are seen in some Late Cretaceous sediments diagnostic of resetting related to local basic magmatism associated with Kerguelen plume activity seen in very localized catchment bedrock exposures. Importantly, our thermochronometric data from pre-glacial (Eocene and older) sediments show no evidence for any enhanced Cretaceous erosion in the Lambert Graben catchment area, despite the almost certain presence of the >2500 m high Gamburtsev mountains. These old ages are indicative of a slowly eroding, low relief landscape since the Permian, and are consistent with the widespread pre-glacial planar erosion surface seen in much of East Antarctica. AFT and AHe age distributions in post-glacial late Miocene to Holocene diamictite show a spread to significantly younger ages (mean ages of ca. 200±50 and 80±30 Ma, respectively). These younger ages are diagnostic of locally enhanced catchment erosion rates in excess of 0.1 km/Myr. Modeled predictions of the age-temperature (depth) profile at 34 Ma indicate the youngest detrital AFT-AHe age pairs seen in sediments as old as late Miocene represent grains previously resident at temperatures of 40-55°C (ca. 2 km) prior to the onset of glaciation. This is in excellent agreement with published morphologic estimates of >2 km of glacial incision into the pre-glacial peneplain at the head of the Lambert glacier. Our results imply that the majority of glacial incision and erosion in East Antarctica was accomplished sometime between the earliest Oligocene and late Miocene.

  14. Piping dynamics in mid-altitude mountains under a temperate climate: the Bieszczady Mts., the Eastern Carpathians

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Jakiel, Michał; Krzemień, Kazimierz

    2017-04-01

    Soil erosion is caused not only by overland flow, but also by subsurface flow. Piping which is a process of mechanical removal of soil particles by concentrated subsurface flow is frequently being overlooked and not accounted for in soil erosion studies. However, it seems that it is far more widespread than it has often been supposed. Furthermore, our knowledge about piping dynamics and its quantification currently relies on a limited number of data available for mainly loess-mantled areas and marl badlands. Therefore, this research aims to recognize piping dynamics in mid-altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping-prone soils. The survey was carried out in the Bereźnica Wyżna catchment (305 ha), in the Bieszczady Mts. (the Eastern Carpathians, Poland), where 188 collapsed pipes were mapped. The research was based on the monitoring of selected piping systems located within grasslands (1971-1974, 2013-2016). The development of piping systems is mainly induced by the elongation of pipes and creation of new collapses (closed depressions and sinkholes), rather than by the enlargement of existing piping forms, or the deepening of pipes. It draws attention to the role of dense vegetation (grasslands) in the delay of pipe collapses and, also, to the boundary of pipe development (soil-bedrock interface). The obtained results reveal an episodic, and even stochastic nature of piping activity, expressed by varied one-year and short-term (3 years) erosion rates, and pipe elongation. Changes in soil loss vary significantly between different years (up to 27.36 t ha-1 y-1), reaching the rate of 1.34 t ha-1 y-1 for the 45-year study period. The elongation of pipes also differs, from no changes to 36 m during one year. The results indicate that soil loss due to piping can cause high soil loss even in highly vegetated lands (grasslands), which are generally considered as areas without a significant erosion problem. The scale of piping in the study area is at least by three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under a similar land use (grasslands), and it is comparable to the scale of surface soil erosion on arable lands. It means that piping is an important sediment source for fluvial systems, and it leads to significant soil loss in mid-altitude mountains under a temperate climate. This study is supported by the National Science Centre of Poland, as a part of the first author's project - PRELUDIUM 3 (DEC-2012/05/N/ST10/03926). The first author was also granted the ETIUDA 3 doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland.

  15. Soil erosion and sediment delivery issues in a large hydro-electric power reservoir catchment, Ethiopia

    NASA Astrophysics Data System (ADS)

    Nebiyu, Amsalu; Dume, Bayu; Bode, Samuel; Ram, Hari; Boeckx, Pascal

    2017-04-01

    Land degradation and associated processes such as gullying, flooding and sedimentation, are among the developmental challenges in many countries and HEP reservoirs in the Gilgel Gibe catchment, Ethiopia, are under threat from siltation. Soil erosion is one of the biggest global environmental problems resulting in both on-site and offsite effects which have economic implications and an essential actor in assessing ecosystem health and function. Sediment supply in a catchment is heterogeneous in time and space depending on climate, land use and a number of landscape characteristics such as slope, topography, soil type, vegetation and drainage conditions. In the Ethiopian highlands, sediment delivery depends on discharge, the onset of rainfall, land use and land cover, which varies between rainfall seasons. There is also a variation among catchments in suspended sediment concentration due to the variation in the catchments characteristics in Ethiopia. Rainfall-runoff relationship, sediment production and delivery to rivers or dams is variable and poorly understood; due to heterogeneous lithology; various climatic conditions across small spatial scales; land use and land management practices in Ethiopia. Spatial variation in sediment yield in Africa varies to differences in seismic activity, topography, vegetation cover and annual runoff depth. In the Gilgel-Gibe catchment, the annual sediment load of the Gilgel-Gibe River has been estimated to be about 4.5×107 tons taking the contribution of sheet erosion alone. Also, the suspended sediment yield of the tributaries in Gilgel-Gibe catchment has been estimated to be in the range of 0.4-132.1 tons per hectare per year. The soil loss due to landslide alone in the past 20 years in the catchment was about 11 t/ha/yr. Heavy rainfall, bank erosion and river incisions have been indicated as the main triggering factors for landslides and the associated sediment delivery in the Gilgel-Gibe catchment. Approaches for catchment restoration and reduction of sediment flux are considered. The long term sustainability of HEP power generation in Ethiopia is evaluated in this context.

  16. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure implications of erosional unloading, basin hydrodynamics and glaciation in the Alberta Basin, Western Canada. J. of Geochem. Exploration, 78-79, 143-7. Person, M., Bense, V., Cohen, D. and Banerjee, A, (2012). Models of ice-sheet hydrogeologic interactions: a review. Geofluids, 12, 58-78

  17. Holocene evolution of aquatic bioactivity and terrestrial erosion inferred from Skorarvatn, Vestfirðir, Iceland: Where is the Little Ice Age?

    NASA Astrophysics Data System (ADS)

    Harning, D.; Geirsdottir, A.; Miller, G. H.

    2016-12-01

    Icelandic lake sediment is well suited to provide high-resolution, well-dated continuous archives of North Atlantic climate variability. We provide new insight into the Holocene climate evolution of Vestfirðir, NW Iceland, from a 10.3 ka multi-proxy lake sediment record from non-glacial lake Skorarvatn. Age control is derived from a combination of tephrochronology and 14C-dated macrofossils. Sediment samples were analyzed for both physical (MS, density) and biological (TC, TN, δ13C, δ15N, C/N, BSi) climate proxies, providing a sub-centennial record of aquatic bioactivity and terrestrial landscape stability, and hence, summer temperature. The lake basin was ice free by at least 10.3 ka yet the waning Icelandic Ice Sheet persisted in the catchment until 9.3 ka. The local Holocene Thermal Maximum (HTM), inferred from maximum aquatic bioactivity, spans 8.9 to 7.2 ka but was interrupted by significant cooling at 8.2 ka. In accordance with other Icelandic climate records documenting progressively cooler summers following the HTM, our record reveals reduced aquatic productivity and elevated terrestrial erosion toward the present. Superimposed on this 1st order trend are abrupt episodes of cooling, inferred from low aquatic bioactivity and/or enhanced landscape instability, at 6.4, 4.2, 3, 2.5 and 1.5 ka. Surprisingly, there is no clear indication of the Little Ice Age (LIA) in our record despite evidence for the local ice cap, Drangajökull, attaining maximum areal coverage at this time. Persistently low temperatures inferred from reduced aquatic productivity plateau at 2 ka whereas increasing terrestrial erosion ceases at 1 ka. Lack of a catchment erosion signal during the LIA may be the result of depleted catchment soils and/or perennially frozen ground preventing the mobilization of soil and vegetation. With the exception of the LIA, Skorarvatn's qualitative summer temperature record corresponds closely to summer sea surface temperature and sea ice records on the North Iceland Shelf, supporting previous evidence that the North Atlantic imparts a significant impact of the state of Iceland's terrestrial climate.

  18. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2013-12-01

    Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.

  19. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2011-12-01

    Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.

  20. Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen J.; Clark, Chris D.

    2016-07-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically < 20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent; while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation support gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate.

  1. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies

    NASA Astrophysics Data System (ADS)

    Fielding, Christopher R.

    2006-08-01

    Fluvial strata dominated internally by sedimentary structures of interpreted upper flow regime origin are moderately common in the rock record, yet their abundance is not appreciated and many examples may go unnoticed. A spectrum of sedimentary structures is recognised, all of which occur over a wide range of scale: 1. cross-bedding with humpback, sigmoidal and ultimately low-angle cross-sectional foreset geometries (interpreted as recording the transition from dune to upper plane bed bedform stability field), 2. planar/flat lamination with parting lineation, characteristic of the upper plane bed phase, 3. flat and low-angle lamination with minor convex-upward elements, characteristic of the transition from upper plane bed to antidune stability fields, 4. convex-upward bedforms, down- and up-palaeocurrent-dipping, low-angle cross-bedding and symmetrical drapes, interpreted as the product of antidunes, and 5. backsets terminating updip against an upstream-dipping erosion surface, interpreted as recording chute and pool conditions. In some fluvial successions, the entirety or substantial portions of channel sandstone bodies may be made up of such structures. These Upper Flow Regime Sheets, Lenses and Scour Fills (UFR) are defined herein as an extension of Miall's [Miall, A.D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22: 261-308.] Laminated Sand Sheets architectural element. Given the conditions that favour preservation of upper flow regime structures (rapid changes in flow strength), it is suggested that the presence of UFR elements in ancient fluvial successions may indicate sediment accumulation under the influence of a strongly seasonal palaeoclimate that involves a pronounced seasonal peak in precipitation and runoff.

  2. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2011-12-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on oxygen stratigraphy, radiocarbon dating and lithological constraints suggests that the piston core records paleoenvironmental changes of the last 155 kyr. TOC shows orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka before present (BP) indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 content tends to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  3. Late Pleistocene-Holocene deglaciation history in the Baffin Bay from radiogenic isotope provenance studies

    NASA Astrophysics Data System (ADS)

    Kirillova, V.; Lucassen, F.; Kasemann, S.

    2016-12-01

    Ice sheets dynamics as well as corresponding meltwater pulses and iceberg calving events play a major role in the delivery and dispersion of continental detritus into the ocean in glaciated environments. To trace Greenland, and potentially, Innuitian and Laurentian ice sheet history and freshwater routing during late Pleistocene to Holocene climate transition, we generate strontium (Sr), neodymium (Nd) and lead (Pb) isotope records as proxies for the provenance of continental detritus on sediment cores from the Baffin Bay: GeoTÜ SL 170, from the Greenland side, covering the last 18.000 years of climate history and GeoTÜ SL 174, close to the western coast, covering 48.000 years. For SL 170, a pronounced shift can be observed in all three isotope systems at 12 ka, what coincides with the Younger Dryas cold event. 87Sr/86Sr is around 0.74 before the event and reaches up to 0.72 during it. Nd isotope composition (IC) changes from ɛNd -32 to -26, and the 206Pb/204Pb values range from 18 to 17. The shift suggests a change in the continental sources from the Archean Southern West Greenland to a slightly younger Proterozoic source of the Nagssugtoqidian Mobile Belt in the Central West Greenland. These results allow us to estimate patterns and timings of deglaciation for different regions of the western Greenland Ice Sheet. In core SL174 variations in ɛNd ( -24 to -30) and 206Pb/204Pb ( 17 to 19) provide no clear evidence for a change of the sediment source within the Younger Dryas, despite the similar range of the values as in core SL 170. 87Sr/86Sr is more radiogenic than in SL 170, reaching values of up to 0.75, but without a systematic relation to the deposition age. Since SL 174 core is located closer to the coast and to the LGM (last glacial maximum) ice sheet border, it was possibly exposed to the direct influence of the marine-terminating ice sheet, which supplied material from enhanced glacial and subglacial erosion. Therefore, radiogenic isotope results for this core could be affected by the variable supply of minerals (e.g., micas) delivering radiogenic Sr signature.

  4. Assessment of East Antarctic ice flow directions, ice grounding events, and glacial thermal regime across the middle Miocene climate transition from the ANDRILL-SMS and CRP drill holes

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Hauptvogel, D.; Hansen, M.; Falk, C.; Martin, L.

    2010-12-01

    Here we present a synthesis of early and middle Miocene ice sheet development based on facies analyses and multiple compositional studies on the AND-2A and CRP drillcores from the Ross Sea, ca. 10 km off the coast of East Antarctica. The middle Miocene is characterized by one of the three largest shifts in deep-sea oxygen isotope records. During this time the East Antarctic ice sheet became dry-based at high elevation in the Transantarctic Mountains and advanced across the Ross Sea continental shelf to create widespread glacial unconformities. However, detailed proxy records also indicate that ice development was complex and may have occurred in a stepwise fashion, instead of one major episode. Our analyses of “grounded ice” diamictites from both the CRP and AND-2A cores show a significant change in composition across the middle Miocene transition. More detailed analyses of the stratigraphic distribution of facies, heavy mineral provenance, particle size, and major and trace element geochemistry in AND-2A show that relatively large polythermal ice-sheets similar in size to the modern were already present between 17.6 and 17.1 Ma. These results are in agreement with proxy records suggesting that Antarctic ice volumes were larger than today’s volume during the Mi-1b glaciation. Between 17.1 and 15.6-14.9 Ma, a predominance of iceberg debris sourced from the Ferrar Group in the Transantarctic Mountains suggests vigorous glacial erosion and fjord incision by East Antarctic outlet glaciers. The facies characteristics and comparison with compositional data from Neogene tills in the Transantarctic Mountains further suggest that the East Antarctic ice sheet may have been smaller than today during the Miocene climatic optimum (~17-15 Ma) with ice possibly reaching sea level only near the central Transantarctic Mountains. Advance of the grounding line and the development of glacial flow patterns compatible with a larger ice sheet than the modern commenced between 15.6 and 14.7 Ma and was established prior to 14.2 Ma. These results suggest an earlier onset of Antarctic ice growth across the middle Miocene climate transition than is generally inferred from geochemical proxy records.

  5. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    NASA Astrophysics Data System (ADS)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  6. Formation of Martian araneiforms by gas-driven erosion of granular material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. de Villiers; A. Nermoen; B. Jamtveit

    Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m-1 km scale branched channels known as spiders or araneiforms and dark dust fans deposited on top of the ice. We show that patterns very similar to araneiforms are formed in a Hele-Shaw cell filled with an unconsolidated granular material by slowly deforming the upper wall upward and allowing it to return rapidly tomore » its original position to drive air and entrained particles through a small hole in the upper wall. Straight, braided and quasiperiodic oscillating channels, unlike meandering channels on Earth were also formed.« less

  7. Soil erosion in Iran: Issues and solutions

    NASA Astrophysics Data System (ADS)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method. Journal of Hydrology, 448, 174-180. Asadi, H., Moussavi, A., Ghadiri, H., Rose, C. W. 2011. Flow-driven soil erosion processes and the size selectivity of sediment. Journal of Hydrology, 406(1), 73-81. Asadi, H., Raeisvandi, A., Rabiei, B., Ghadiri, H. 2012. Effect of land use and topography on soil properties and agronomic productivity on calcareous soils of a semiarid region, Iran. Land Degradation & Development, 23(5), 496-504. Ayoubi, S., Ahmadi, M., Abdi, M. R., Abbaszadeh Afshar, F. 2012. Relationships of< sup> 137 Cs inventory with magnetic measures of calcareous soils of hilly region in Iran. Journal of environmental radioactivity, 112, 45-51. Ayoubi, S., Mokhtari Karchegani, P., Mosaddeghi, M. R., Honarjoo, N. 2012. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil and Tillage Research, 121, 18-26. Emadodin, I., Bork, H. R. 2012. Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview. Journal of Land Use Science, 7(2), 203-219. Emadodin, I., Narita, D., Bork, H. R. 2012. Soil degradation and agricultural sustainability: an overview from Iran. Environment, Development and Sustainability, 14(5), 611-625. Haddadchi, A., Nosrati, K., Ahmadi, F. 2014. Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran. CATENA, 116, 105-113. Heshmati, M., Arifin, A., Shamshuddin, J., Majid, N. M. 2012. Predicting N, P, K and organic carbon depletion in soils using MPSIAC model at the Merek catchment, Iran. Geoderma, 175, 64-77. Jafari, R., Bakhshandehmehr, L. 2013. Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degradation & Development.DOI: 10.1002/ldr.2227 Kavian, A., Azmoodeh, A., Solaimani, K. 2014. Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian Journal of Geosciences, 7(5), 1941-1950. Khaledi Darvishan, A., Sadeghi, S. H., Homaee, M., Arabkhedri, M. 2013. Measuring sheet erosion using synthetic color-contrast aggregates. Hydrological Processes. Mahmoodabadi, M. Cerdà, A. 2013. WEPP calibration for improved predictions on interril erosion in semi-arid to arid enviorments. Geoderma, 204-205,75-83. http://dx.doi.org/10.1016/j.geoderma.2013.04.013, Mehdizade, B., Asadi, H., Shabanpour, M., Ghadiri, H. 2013. Impact of erosion and tillage on the productivity and quality of selected semiarid soils of Iran. International Agrophysics, 27(3), 291-297. Moghadam, B. K., Jabarifar, M., Bagheri, M., Shahbazi, E. 2015. Effects of land use change on soil splash erosion in the semi-arid region of Iran. Geoderma, 241, 210-220. Nosrati, K., Ahmadi, F. 2013. Monitoring of soil organic carbon and nitrogen stocks in different land use under surface water erosion in a semi-arid drainage basin of Iran. Journal of Applied Sciences and Environmental Management, 17(2), 225-230. Nourzadeh, M., Bahrami, H. A., Goossens, D., Fryrear, D. W. 2013. Determining soil erosion and threshold friction velocity at different soil moisture conditions using a portable wind tunnel. Zeitschrift für Geomorphologie, 57(1), 97-109. Sadeghi, S. H. R., Seghaleh, M. B., Rangavar, A. S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena, 102, 55-61. Sadeghi, S. H. R., Seghaleh, M. B., Rangavar, A. S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena, 102, 55-61. Sadeghi, S. H., Najafi, S., Riyahi Bakhtiari, A., Abdi, P. 2014. Ascribing soil erosion types for sediment yield using composite fingerprinting technique. Hydrological Sciences Journal, 59(9), 1753-1762. Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., Malone, B. P. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15-28.

  8. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.

  9. Early glaciation already during the Early Miocene in the Amundsen Sea, Southern Pacific: Indications from the distribution of sedimentary sequences

    NASA Astrophysics Data System (ADS)

    Uenzelmann-Neben, Gabriele; Gohl, Karsten

    2014-09-01

    The distribution and internal architecture of seismostratigraphic sequences observed on the Antarctic continental slope and rise are results of sediment transport and deposition by bottom currents and ice sheets. Analysis of seismic reflection data allows to reconstruct sediment input and sediment transport patterns and to infer past changes in climate and oceanography. We observe four seismostratigraphic units which show distinct differences in location and shape of their depocentres and which accumulated at variable sedimentation rates. We used an age-depth model based on DSDP Leg 35 Site 324 for the Plio/Pleistocene and a correlation with seismic reflection characteristics from the Ross and Bellingshausen Seas, which unfortunately has large uncertainties. For the period before 21 Ma, we interpret low energy input of detritus via a palaeo-delta originating in an area of the Amundsen Sea shelf, where a palaeo-ice stream trough (Pine Island Trough East, PITE) is located today, and deposition of this material on the continental rise under sea ice coverage. For the period 21-14.1 Ma we postulate glacial erosion for the hinterland of this part of West Antarctica, which resulted in a larger depocentre and an increase in mass transport deposits. Warming during the Mid Miocene Climatic Optimum resulted in a polythermal ice sheet and led to a higher sediment supply along a broad front but with a focus via two palaeo-ice stream troughs, PITE and Abbot Trough (AT). Most of the glaciogenic debris was transported onto the eastern Amundsen Sea rise where it was shaped into levee-drifts by a re-circulating bottom current. A reduced sediment accumulation in the deep-sea subsequent to the onset of climatic cooling after 14 Ma indicates a reduced sediment supply probably in response to a colder and drier ice sheet. A dynamic ice sheet since 4 Ma delivered material offshore mainly via AT and Pine Island Trough West (PITW). Interaction of this glaciogenic detritus with a west-setting bottom current resulted in the continued formation of levee-drifts in the eastern and central Amundsen Sea.

  10. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.

  11. Dacitic ash-flow sheet near Superior and Globe, Arizona

    USGS Publications Warehouse

    Peterson, Donald W.

    1961-01-01

    Remnants of a dacitic ash-flow sheet near Globe, Miama, and Superia, Arizona cover about 100 square miles; before erosion the area covered by the sheet was at least 400 square miles and perhaps as much as 1,500 square miles. Its maximum thickness is about 2,000 feet, its average thickness is about 500 feet, and its original volume was at least 40 cubic miles. It was erupted on an eroded surface with considerable relief. The main part of the deposit was thought by early workers to be a lava flow. Even after the distinctive character of welded tuffs and related rocks was discovered, the nature and origin of this deposit remained dubious because textures did not correspond to those in other welded tuff bodies. Yet a lava flow as silicic as this dacite would be viscous instead of spreading out as an extensive sheet. The purpose of this investigation has been to study the deposit, resolve the inconsistencies, and deduce its origin and history. Five stratigraphic zones are distinguished according to differences in the groundmass. From bottom to top the zones are basal tuff, vitrophyre, brown zone, gray zone, and white zone. The three upper zones are distinguished by colors on fresh surfaces, for each weathers to a similar shade of light reddish brown. Nonwelded basal tuff grades upward into the vitrophyre, which is a highly welded tuff. The brown and gray zones consist of highly welded tuff with a lithoidal groundmass. Degree of welding decreases progressively upward through the gray and the white zones, and the upper white zone is nonwelded. Textures are clearly outlined in the lower part of the brown zone, but upward they become more diffuse because of increasing devitrification. In the white zone, original textures are essentially obliterated, and the groundmass consists of spherulites and microcrystalline intergrowths. The chief groundmass minerals are cristobalite and sanidine, with lesser quartz and plagioclase. Phenocrysts comprise about 40 percent of the rock, and their relative proportions are fairly uniform. Almost three-fourths of the phenocrysts are plagioclase, one-tenth quartz, one-tenth biotite, and the remainder sanidine, magnetite, and hornblende, with accessory sphene, zircon, and appetite. Pumice fragments are nearly equidimensional near the top of the sheet, and downward they become progressively more flattened until they finally disappear. The zones and the pumice fragment flattening ration (ratio of length to height) provide means for recognizing several faults within the sheet. Twelve new chemical analyses are nearly uniform in composition. If named according to chemical composition, the rock would be a quartz latite, but when named according to phenocrysts, it is a dacite. From the field occurrence and the interpretation of relict textures, it is concluded that the deposit is an ash-flow sheet containing large amounts of welded tuff, and that it was emplaced by a type of nuee ardente instead of a lava flow or air-fall shower. The nature of zoning and trend of flattening ratios indicate a series of eruptions in rapid enough succession for the sheet to form a single cooling unit. Except in the lower part of the sheet, original textures were obscured by devitrification and crystallization during cooling. Nearly uniform mineralogy and chemistry suggest a single magnetic source. A nearly circular area, about 3? miles in diameter, of altered dacite and earlier volcanic rocks, bounded by intricately faulted and brecciated older rocks, may be the site of a caldera that represents the source of the eruptions.

  12. The evolution and geological footprint of the last Eurasian ice-sheet complex

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob

    2017-04-01

    During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along with its isostatic footprint had a major impact on fluvial hydrology of western Eurasia, damming the Baltic and White Sea proglacial lakes from c. 17.8 ka BP through to the Holocene and diverting many river systems. Acknowledegments This project is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, a M., 2009. The Last Glacial Maximum. Science 325, 710-714. doi:10.1126/science.1172873 Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1-45. doi:10.1111/bor.12142 Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., Stroeven, A.P., 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat. Sci. Rev. 153, 97-121. doi:10.1016/j.quascirev.2016.10.009

  13. Delineation of a Re-establishing Drainage Network Using SPOT and Landsat Images

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Self, S.; Mouginis-Mark, P. J.

    2008-12-01

    The 1991 eruption of Mt. Pinatubo, The Philippines, provided a unique opportunity to study the effects on the landscape of a large eruption in part because it took place after the advent of regular satellite-based observations. The eruption formed one large (>100km2) ignimbrite sheet, with over 70% of the total deposit deposited in three primary drainage basins to the west of the volcano. High-resolution (20 m/pixel) satellite images, showing the western drainage basins and surrounding region both before and after the eruption were used to observe the re-establishment and evolution of drainage networks on the newly emplaced ignimbrite sheet. Changes in the drainage networks were delineated from a time series of SPOT (Satellite Pour l'Observation de la Terre) and Landsat multi-spectral satellite images. The analysis of which was supplemented by ground- based observations. The satellite images showed that the blue prints for the new drainage systems were established early (within days of the eruption) and at a large-scale followed the pre-eruption pattern. However, the images also illustrated the ephemeral nature of many channels due to the influence of secondary pyroclastic flows, lahar- dammed lake breakouts, stream piracy and shifts due to erosion. Characteristics of the defined drainage networks were used to infer the relative influence on the lahar hazard within each drainage basin.

  14. Erosion and Deposition in Schaeberle Crater

    NASA Image and Video Library

    2016-01-14

    Schaeberle Crater is a large, heavily-infilled crater with many interesting features. This image NASA Mars Reconnaissance Orbiter spacecraft shows a window into the crater fill deposit, showcasing eroding bedrock and aeolian landforms. This pit is located near the geometric center of our image, making it a central pit crater. Central pit craters are thought to form from impact melt draining through subsurface cracks in the deepest part of the crater shortly following impact. A closeup image shows light-toned bedrock and a small cliff that appears to be weathering away. Below the cliff there are several different types of aeolian features, including ripples and transverse aeolian ridges (TAR). The sand that forms the small, bluish ripples may be weathering out of the cliff face, in contrast to the larger, light-toned TAR which are thought to be currently inactive. More of the TAR are visible in another closeup image. In this case, they are clearly covered by a dark, ripple-covered sand sheet. We have only imaged this location once, so it is impossible to determine whether or not the sand sheet is blowing in the wind. But due to repeated HiRISE imaging in other areas, active dunes are now known to be common across Mars and we can reasonably speculate that these dunes are moving, too. http://photojournal.jpl.nasa.gov/catalog/PIA20339

  15. Combination of techniques for mapping structural and functional connectivity of soil erosion processes: a case study in a small watershed

    NASA Astrophysics Data System (ADS)

    Seeger, Manuel; Taguas, Encarnación; Brings, Christine; Wirtz, Stefan; Rodrigo Comino, Jesus; Albert, Enrique; Ries, Johabbes B.

    2016-04-01

    Sediment connectivity is understood as the interaction of sediment sources, the sinks and the pathways which connect them. During the last decade, the research on connectivity has increased, as it is crucial to understand the relation between the observed sediments at a certain point, and the processes leading them to that location. Thus, the knowledge of the biogeophysical features involved in sediment connectivity in an area of interest is essential to understand its functioning and to design treatments allowing its management, e. g. to reduce soil erosion. The structural connectivity is given by landscape elements which enable the production, transport and deposition of sediments, whereas the functional connectivity is understood here as variable processes that lead the sediments through a catchment. Therefore, 2 different levels of connectivity have been considered which superpose each other according to the catchments conditions. We studied the different connectivity features in a catchment almost completely covered by an olive grove. It is located south of Córdoba (Spain), close to the city of Puente Genil. The olive plantation type is of low productivity. The soil management was no tillage for the least 9 years. The farmer allow weed growing in the lanes although he applied herbicide treatment and tractor passes usually in the end of spring. Firstly, a detailed mapping of geomorphodynamic features was carried out. We identified spatially distributed areas of increased sheet-wash and crusting, but also areas where rill erosion has leadedto a high density of rills and small gullies. Especially within these areas rock outcrops up to several m² were mapped, showing like this (former) intense erosion processes. In addition, field measurements with different methodologies were applied on infiltration (single ring infiltrometers, rainfall simulations), soil permeability (Guelph permeameter), interrill erosion (rainfall simulator) and concentrated flow (rill experiment). The measurements were conducted at representative areas identified in advance by precedent mapping. Preliminary results show that the rills are highly effective in producing sediments, but also in connecting fast the different sources with the catchment's outlet. But also they act as a disconnecting feature to the areas of observation, as they may lead the runoff (and the transported sediments) outside the catchment. On the other side, the experiments showed that the evidently degraded areas produce only very delayed runoff, and thus also sediments, whereas the areas with stable deep soils show evidences of fast runoff and erosive responses. The preliminary results of the combination of mapping and experimental techniques demonstrate the different levels at where functional and structural connectivity have to be evaluated. The latter one may be, as a geomorphological feature, the result of former process distributions, whereas the directly observable (functional) connectivity may shift in time due to internal feedbacks, such as the result of soil degradation.

  16. Sediment dynamics in restored riparian forest with agricultural surroundings

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Cooper, Miguel; Alencar de Matos, Vitor; Ortega Gomes, Matheus; Ribeiro Rodrigues, Ricardo

    2017-04-01

    The riparian forests are considered Permanent Preservation Areas due to the ecological services provided by these forests. One of these services is the interception of the sediments before they reach the water bodies, which is essential to preserve water quality. The maintenance and restoration of riparian forests are mandatory, and the extent of these areas is defined based on water body width, following the Brazilian Forest Code. The method used to define the size of riparian forest areas elucidates the lack of accurate scientific data of the influence of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests of a Semideciduous Tropical Forest situated in agricultural areas inserted in sugarcane landscapes in the state of São Paulo, Brazil. We defined two sites with soils of contrasting texture to monitor the dynamics and amount of deposited sediments. Site A is in the municipality of Araras and the soil is mainly clay. Site B is in the municipality of São Manuel and is dominated by sandy soils. In both areas, we defined plots to install graded metal stakes that were partially buried to monitor the dynamics of sediments. In site A, we defined eight plots and installed 27 metal stakes in each one. Three of the plots presented 30 m of riparian forest, two presented 15 m of riparian forest and three, 15 m of pasture followed by 15 m of forest. The design of the metal stakes was similar for all plots and was defined based on the type of erosion observed in site A. In site B, we defined seven points to monitor the sediments inside the reforested areas. Here, we observed erosive processes of great magnitude inside the forests, which results in a different design for the metal stakes. A total of nearly 150 metal stakes were installed to monitor these processes and also to verify the deposition in areas not yet affected by erosive processes of great magnitude. The monitoring of the metal stakes started in January of 2016. The data of intensity and frequency of rainfall were collected from rain gauges installed in the areas. The results show great deposition in site B, dominated by sandy soil whereas in site A, a sheet erosion process is dominant. Site A is dominated by clay soils that are not susceptible to erosion processes. In site B, a small amount of deposition was observed inside a gully, which means that the sediments may be being carried to the water bodies. A large amount of sediment was observed in areas which present a spontaneous vegetation followed by a small track of forest. Strong events were responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.

  17. Bedrock structure and the interpretation of palaeo ice stream footprints: examples from the Pleistocene British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.

    2009-04-01

    To model past and future behaviour of ice sheets, a good understanding of both modern and ancient ice streams is required. The study of present-day ice streams provides detailed data of short-term dynamic changes, whilst the study of Pleistocene palaeo-ice streams can provide crucial constraints on the longer-term evolution of ice sheets. To date, palaeo-ice streams, such as the classical Dubawnt Lake palaeo-ice stream of the former Laurentide Ice Sheet, have been recognised largely on the basis of extremely elongate drumlins and megascale glacial lineations; all soft-sediment features. Whilst it appears that topographically unconstrained ice streams (eg. within the West Antarctic Ice Sheet) are generally underlain by deformable till, topographically constrained ice streams such as Jakobshavn Isbrae do not require deformable sediment and may occur on a bedrock-dominated bed. Analysis of DEM data and geomorphology and structural geology fieldwork in Northern Scotland and Northern England has shown the occurrence of highly streamlined bedforms in bedrock of the former base of topographically controlled palaeo-ice streams, which drained parts of the British Ice Sheet. The bedforms are predominantly bedrock megagrooves with asymmetric cross-profiles. In the Ullapool tributary of the Minch palaeo ice stream, bedrock megagrooves form the dominant evidence for ice streaming. The megagrooves are typically 5-15 m deep, 10-30 m wide and 500 - 3000 m long. Spacing of megagrooves is typically 100 - 200 m. In both study areas, the bedrock is strongly anisotropic, either consisting of thin-bedded strata or strongly foliated metasedimentary rocks, with the strata or foliation having a gentle dip. Megagrooves are best developed where the strike of the anisotropy is sub-parallel (within 10 - 20°) with palaeo ice flow. The bedrock in both areas has a well-developed, relatively densely spaced (< 1m), conjugate joint system. We suggest that asymmetric megagrooves are formed by "lateral plucking", facilitated by the combination of strong bedding/foliation and the joint pattern. Glacial erosion was laterally more effective than vertically; so that stepped faces subparallel to palaeo ice flow are enhanced rather that destroyed. We propose that: a) Lateral plucking is an effective mechanism to produce streamlined bedrock bedforms by fast ice flow, providing the bedrock and bedrock structure are suitable; b) some topographically controlled palaeo-ice stream beds are dominated by bedrock rather than soft-sediment; c) the recognition of palaeo-ice streams may be dependent on the type of bedrock and the orientation of bedrock structure with respect to palaeo ice flow; d) palaeo-ice stream footprints may have been underestimated in formerly glaciated areas.

  18. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    PubMed

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh -1 , and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh -1 ), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh -1 ) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang

    2014-11-01

    This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.

  20. Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii

    NASA Astrophysics Data System (ADS)

    Osborn, G.; Sheardown, A.; Blay, C.

    2016-12-01

    The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and there is no reason to expect any difference in lithology. The lower-angle slopes may be erosional footslopes, genetically similar to desert pediments, left behind as the fluted cliffs retreat. On their uphill edges the lower-angle slopes are expanding in area as the cliffs retreat but at the coast the slopes are being consumed by wave action.

  1. Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.

    2011-12-01

    Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more stable environment for a glacier than a glacially eroded valley where slip instabilities can readily propagate upstream. References: Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005).

  2. Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.

    2013-12-01

    Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more stable environment for a glacier than a glacially eroded valley where slip instabilities can readily propagate upstream. References: Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005).

  3. A high-frequency sonar for profiling small-scale subaqueous bedforms

    USGS Publications Warehouse

    Dingler, J.R.; Boylls, J.C.; Lowe, R.L.

    1977-01-01

    A high-resolution ultrasonic profiler has been developed which permits both laboratory and field studies of small-scale subaqueous bedforms. The device uses a 2.5-cm diameter piezoelectric ceramic crystal pulsed at a frequency of 4.5 MHz to obtain vertical accuracy and resolution of at least 1 mm. Compared to other small-scale profiling methods, this ultrasonic technique profiles the bottom more accurately and more rapidly without disturbing the bedforms. These characteristics are vital in wave-dominated nearshore zones where oscillatory flow and low visibility for the most part have stymied detailed bedform studies. In the laboratory the transducer is mounted directly to an instrument carriage. For field work the transducer housing is mounted in a 2 m long aluminum frame which is situated and operated by scuba divers. Observations using the device include ripple geometry and migration, the suspension height of sand during sheet flow, and long-term erosion/deposition at a point. ?? 1977.

  4. U.S. eastern seaboard with Cape Cod taken from Atlantis during STS-106

    NASA Image and Video Library

    2000-10-06

    STS106-710-060 (8-20 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Cape Cod and parts of Massachusetts. Partial sun glint highlights the coastline and brings out subtle details in the waters around Massachusetts. The maximum advance of an ice sheet 23,000 years ago is marked by the unique shape of Cape Cod and by the islands of Nantucket and Martha's Vineyard. Rocks and debris left at the edges of the ice fronts made parts of the landscape slightly higher and more resistant to erosion. Glacial retreat and sea level rise covered the lower ground and gave us the more modern coastline that we are familiar with. The city of New Bedford can be located near the coast and just below the circular lakes of Long Pond, Great Quiittacas Pond, and Assawompset Pond.

  5. Cavitation effects in ultrasonic cleaning baths

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1995-01-01

    In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.

  6. Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.

    2004-03-01

    Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.

  7. Glacial Erosion of Antarctica Evidenced by a Rapid Nd Isotope Excursion Associated with the Eocene-Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Pusz, A. E.; Scher, H. D.; Thunell, R.

    2010-12-01

    The Eocene-Oligocene transition (EOT) marks the largest change in global climate over the past 50 million years. The EOT is characterized by a two step increase in benthic foraminiferal δ18O that culminated at the Eocene-Oligocene Glacial Maximum. The δ18O increase reflects a combination of deep-water temperature change and the first development of continental-scale ice sheets on Antarctica during the Cenozoic. We present two new high-resolution coupled benthic foraminiferal δ18O and fossil fish tooth neodymium (Nd) isotope records across the EOT from South Atlantic Ocean Drilling Program (ODP) Sites 1090 (Agulhas Ridge, 42°54’S, 8°54’E, 3200 m paleo-depth) and 1265 (Walvis Ridge, 28°50’S, 2°38’E, 2400 m paleo-depth). The least radiogenic Nd values of -7.5 at Site 1090 and -8.1 at Site 1265 occur in step with the benthic δ18O shifts at these two sites. Data from Sites 1090 and 1265 are in agreement with coupled benthic δ18O and ɛNd records from ODP Site 738 on the Kerguelen Plateau. The magnitude of the ɛNd excursion is 1.0 at Site 1265, 1.5 at Site 1090, and 3.0 at Site 738. The origin of nonradiogenic Nd associated with the excursions at Sites 1265, 1090, and 738 is likely glacial erosion of old, Precambrian and Proterozoic bedrock from the Antarctic continent during ice sheet formation. This explanation is preferred over a pulse of Northern Component Water because the abrupt ɛNd decrease at the Agulhas and Walvis ridges is half the magnitude of that at Site 738, which is farthest from the influence of a North Atlantic derived deep-water mass source. We interpret the Nd isotope records to reflect the input of a large amount of glacially transported detrital material from the east Antarctic continent that was funneled through the Lambert Graben towards Prydz Bay. The abrupt and coincident character of the ɛNd shift indicates the eroded material was quickly spread through the Southern Ocean and diluted by mixing with other water masses.

  8. Environmental and ice volume changes based on seismic stratigraphy in Sabrina Coast, East Antarctica: Preliminary results from NBP1402

    NASA Astrophysics Data System (ADS)

    Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Frederick, B.; Saustrup, S., Sr.; Domack, E. W.; Lavoie, C.; Shevenell, A.; Blankenship, D. D.; Leventer, A.

    2014-12-01

    In 2014, the R/V Nathaniel B. Palmer (NBP1402) sailed to a virtually unexplored continental shelf along the Sabrina Coast, East Antarctica. The shelf contains the sedimentary record of environmental and ice volume changes within the Aurora Subglacial Basin (ASB), which is presently occupied by ~7 m sea level-rise equivalent of ice. We acquired 750 km of high-resolution seismic data proximal to the Reynolds Trough and Moscow University Ice Shelf glacial systems west of the Dalton Ice Tongue using dual 45/45 cu. in. G.I. guns and a 24 ch. streamer with 3.125 m groups providing a vertical resolution of ~3 m simultaneously with CHIRP data. These are the first images of this margin acquired and show a remarkable set of sequence stratigraphic transitions. Crystalline basement is at the seafloor landward and buried seaward with a transition to smoother reflection interface. Reflective sedimentary strata overlie the basement, dip seaward, and are capped by a landward-dipping regional angular unconformity. Above this are a series of transparent seismic facies that, along with the middle to outer shelf seafloor, dip landward towards a shelf-oblique glacial trough. The older, seaward-dipping strata include a deeper series of units that display at least three stratal architectures interpreted to be shelf deltas implying a pre-glacial, fluvial environment within the drainage basin. Above these sequences, the seismic facies transition to surfaces exhibiting significant erosion, small u-shaped valleys, and channel fill sequences, all of which are reminiscent of temperate glacial features. We interpret these sequences as including sub-ice tunnel valleys and grounding zone wedges with interspersed non-glacial to pro-glacial deposits. Increasing glaciogenic facies upsection suggests a gradual fluvial to glacial transition and increasing glacial extent with time. The subsequent transition to ice sheets is marked by erosion to basement landward and the angular unconformity seaward. The unconformity is overlain by glacial diamict, representing an incomplete record of cold-based glaciations after the ASB became ice-filled. Correlations with cores collected above and below the unconformity and deltaic unit should allow us to determine the ages of these transitions from fluvial to polythermal to ice sheets in East Antarctica.

  9. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets

    NASA Astrophysics Data System (ADS)

    Rogozhina, Irina; Vaughan, Alan

    2014-05-01

    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central Greenland results from the remanent effects of an Early Cenozoic passage of the lithosphere above the Iceland mantle plume that is implicated in strong thermochemical erosion of the lithosphere and significant long-term effects on the present-day subglacial heat flow pattern and thermodynamic state of the Greenland ice sheet. These observations and our modeling results (Petrunin et al., 2013) show that the present-day thermal state of Greenland and Antarctic lithosphere cannot be well understood without taking into account a long-term tectonic history of these regions. The goal of the IceGeoHeat project is to combine existing independent geophysical data and innovative modeling approaches to comprehensively study the evolution and present state of the lithosphere in Greenland and Antarctica, and assess the role of geothermal heat flux in shaping the present-day ice sheet dynamics. This requires multiple collaborations involving experts across a range of disciplines. The project builds on the IceGeoHeat initiative formed in April 2012 and now including researchers from ten countries in the main core (MC) with expertise in numerical modeling and data assessment in geodynamics, geology, geothermics, cryosphere and (paleo-)climate. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.

  10. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Calder, E. S.; Sparks, R. S. J.; Gardeweg, M. C.

    2000-12-01

    Investigations have been made on the distribution of pumice and lithic clasts in the lithic rich Soncor ignimbrite (26.5 ka) and the 1993 pumice flow deposits of Lascar Volcano, Chile. The Soncor ignimbrite shows three main lithofacies which grade into one another. Coarse lithic breccias range from matrix poor stratified varieties, irregular shaped sheets and elongate hummocks in proximal environments, to breccia lenses with pumiceous ignimbrite matrix. Massive, lithic rich facies comprise the bulk of the ignimbrite. Pumice rich facies are bimodal with abundant large pumice clasts (often with reverse grading), rare lithic clasts and occur distally and on high ground adjacent to deep proximal valleys. In the 1993 pyroclastic flow deposits lithic rich facies are deposited on slopes up to 14° whereas pumice rich facies are deposited only on slopes <4°. Lithic rich parts show a thin pumice rich corrugated surface which can be traced into the pumice rich facies. The high lithic content in the Soncor ignimbrite is attributed to the destruction of a pre-existing dome complex, deep explosive cratering into the interior of the volcano and erosion during pyroclastic flow emplacement. Lithic clasts incorporated into the flows during erosion of the basement substrate have been distinguished from those derived from the vent. Categorisation of these lithics and knowledge of the local geology allows these clasts to be used as tracers to interpret former flow dynamics. Lithic populations demonstrate local flow paths and show that lithics are picked up preferentially where flows move around or over obstacles, or through constrictions. Eroded lithics can be anomalously large, particularly close to the location of erosion. Observations of both the Soncor ignimbrite and the 1993 deposits show that lithic rich parts of flows were much more erosive than pumice rich parts. Both the Soncor and 1993 deposits are interpreted as resulting from predominantly high concentration granular suspensions where particle-particle interactions played a major role. The concentrated flows segregated from more expanded and turbulent suspension currents within a few kilometres of the source. During emplacement some degree of internal mixing is inferred to have occurred enabling entrained lithics to migrate into flow interiors. The facies variations and distributions and the strong negative correlation between maximum pumice and lithic clast size are interpreted as the consequence of efficient density segregation within the concentrated flows. The frictional resistance of the lithic rich part is greater so that it deposits on steeper slopes and generally closer to the source. The lower density and more mobile pumice rich upper portions continued to flow and sequentially detached from the lithic rich base of the flow. Pumice rich portions moved to the margins and distal parts of the flow so that distal deposits are lithic poor and non-erosive. The flows are therefore envisaged as going though several important transformations. Proximally, dense, granular flow, undercurrents are formed by rapid sedimentation of suspension currents. Medially to distally the undercurrents evolve to flows with significantly different rheology and mobility characteristics as lithic clasts are sedimented out and distal flows become dominated by pumice.

  11. Antarctic ice discharge due to warm water intrusion into shelf cavities

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Reese, R.; Albrecht, T.; Mengel, M.; Asay-Davis, X.

    2017-12-01

    Ocean-induced melting below ice shelves is the dominant driver for mass loss from the Antarctic Ice Sheet at present. Observations show that many Antarctic ice shelves are thinning which reduces their buttressing potential and can lead to increased ice discharge from the glaciers upstream. Melt rates from Antarctic ice shelves are determined by the temperature and salinity of the ambient ocean. In many parts, ice shelves are shielded by clearly defined density fronts which keep relatively warm Northern water from entering the cavity underneath the ice shelves. Projections show that a redirection of coastal currents might allow these warmer waters to intrude into ice shelf cavities, for instance in the Weddell Sea, and thereby cause a strong increase in sub-shelf melt rates. Using the Potsdam Ice-shelf Cavity mOdel (PICO), we assess how such a change would influence the dynamic ice loss from Antarctica. PICO is implemented as part of the Parallel Ice Sheet Model (PISM) and mimics the vertical overturning circulation in ice-shelf cavities. The model is capable of capturing the wide range of melt rates currently observed for Antarctic ice shelves and reproduces the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. Based on regional observations of ocean temperatures, we use PISM-PICO to estimate an upper limit for ice discharge resulting from the potential erosion of ocean fronts around Antarctica.

  12. On the formation of the tunnel valleys of the southern Laurentide ice sheet

    USGS Publications Warehouse

    Hooke, R. LeB; Jennings, C.E.

    2006-01-01

    Catastrophic releases of meltwater, produced by basal melting and stored for decades in subglacial reservoirs at high pressure, may have been responsible for eroding the broad, deep tunnel valleys that are common along the margins of some lobes of the southern Laurentide ice sheet. We surmise that these releases began when the high water pressure was transmitted to the margin through the substrate. The water pressure in the substrate at the margin would then have been significantly above the overburden pressure, leading to sapping failure. Headward erosion of a conduit in the substrate (piping) could then tap the stored water, resulting in the outburst. In some situations, development of a siphon may have lowered the reservoir below its overflow level, thus tapping additional water. Following the flood, the seal could have reformed and the reservoir refilled, setting up conditions for another outburst. Order of magnitude calculations suggest that once emptied, a subglacial reservoir could refill in a matter of decades. The amount of water released during several outbursts appears to be sufficient to erode a tunnel valley. We think that tunnel valleys are most likely to have formed in this way where and when the glacier margin was frozen to the bed and permafrost extended from the glacier forefield several kilometers back under the glacier, as reservoirs would then have been larger and more common, and the seal more robust and more likely to reform after an outburst. ?? 2006 Elsevier Ltd. All rights reserved.

  13. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice

    PubMed Central

    Parnell, John; McMahon, Sean

    2016-01-01

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  14. Soils Activity Mobility Study: Methodology and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-09-29

    This report presents a three-level approach for estimation of sediment transport to provide an assessment of potential erosion risk for sites at the Nevada National Security Site (NNSS) that are posted for radiological purposes and where migration is suspected or known to occur due to storm runoff. Based on the assessed risk, the appropriate level of effort can be determined for analysis of radiological surveys, field experiments to quantify erosion and transport rates, and long-term monitoring. The method is demonstrated at contaminated sites, including Plutonium Valley, Shasta, Smoky, and T-1. The Pacific Southwest Interagency Committee (PSIAC) procedure is selected asmore » the Level 1 analysis tool. The PSIAC method provides an estimation of the total annual sediment yield based on factors derived from the climatic and physical characteristics of a watershed. If the results indicate low risk, then further analysis is not warranted. If the Level 1 analysis indicates high risk or is deemed uncertain, a Level 2 analysis using the Modified Universal Soil Loss Equation (MUSLE) is proposed. In addition, if a sediment yield for a storm event rather than an annual sediment yield is needed, then the proposed Level 2 analysis should be performed. MUSLE only provides sheet and rill erosion estimates. The U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) provides storm peak runoff rate and storm volumes, the inputs necessary for MUSLE. Channel Sediment Transport (CHAN-SED) I and II models are proposed for estimating sediment deposition or erosion in a channel reach from a storm event. These models require storm hydrograph associated sediment concentration and bed load particle size distribution data. When the Level 2 analysis indicates high risk for sediment yield and associated contaminant migration or when there is high uncertainty in the Level 2 results, the sites can be further evaluated with a Level 3 analysis using more complex and labor- and data-intensive methods. For the watersheds analyzed in this report using the Level 1 PSIAC method, the risk of erosion is low. The field reconnaissance surveys of these watersheds confirm the conclusion that the sediment yield of undisturbed areas at the NNSS would be low. The climate, geology, soils, ground cover, land use, and runoff potential are similar among these watersheds. There are no well-defined ephemeral channels except at the Smoky and Plutonium Valley sites. Topography seems to have the strongest influence on sediment yields, as sediment yields are higher on the steeper hill slopes. Lack of measured sediment yield data at the NNSS does not allow for a direct evaluation of the yield estimates by the PSIAC method. Level 2 MUSLE estimates in all the analyzed watersheds except Shasta are a small percentage of the estimates from PSIAC because MUSLE is not inclusive of channel erosion. This indicates that channel erosion dominates the total sediment yield in these watersheds. Annual sediment yields for these watersheds are estimated using the CHAN-SEDI and CHAN-SEDII channel sediment transport models. Both transport models give similar results and exceed the estimates obtained from PSIAC and MUSLE. It is recommended that the total watershed sediment yield of watersheds at the NNSS with flow channels be obtained by adding the washload estimate (rill and inter-rill erosion) from MUSLE to that obtained from channel transport models (bed load and suspended sediment). PSIAC will give comparable results if factor scores for channel erosion are revised towards the high erosion level. Application of the Level 3 process-based models to estimate sediment yields at the NNSS cannot be recommended at this time. Increased model complexity alone will not improve the certainty of the sediment yield estimates. Models must be calibrated against measured data before model results are accepted as certain. Because no measurements of sediment yields at the NNSS are available, model validation cannot be performed. This is also true for the models used in the Level 2 analyses presented in this study. The need to calibrate MUSLE to local conditions has been discussed. Likewise, the transport equations of CHAN-SEDI and CHAN-SEDII need to be calibrated against local data to assess their applicability under semi-arid conditions and for the ephemeral channels at the NNSS. Before these validations and calibration exercises can be undertaken, a long-term measured sediment yield data set must be developed. Development of long-term measured sediment yield data cannot be overemphasized. Long-term monitoring is essential for accurate characterization of watershed processes. It is recommended that a long-term monitoring program be set up to measure watershed erosion rates and channel sediment transport rates.« less

  15. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth G.; Wright, James D.; Fairbanks, Richard G.

    1991-04-01

    Oxygen isotope records and glaciomarine sediments indicate at least an intermittent presence of large continental ice sheets on Antarctica since the earliest Oligocene (circa 35 Ma). The growth and decay of ice sheets during the Oligocene to modern "ice house world" caused glacioeustatic sea level changes. The early Eocene was an ice-free "greenhouse world," but it is not clear if ice sheets existed during the middle to late Eocene "doubt house world." Benthic foraminiferal δ18O records place limits on the history of glaciation, suggesting the presence of ice sheets at least intermittently since the earliest Oligocene. The best indicator of ice growth is a coeval increase in global benthic and western equatorial planktonic δ18O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such ice volume changes. It is difficult to apply these established principles to the Cenozoic δ18O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. We improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal δ18O increases which are associated with the bases of Zones Oil (circa 35.8 Ma), Oi2 (circa 32.5 Ma), and Mil (circa 23.5 Ma) can be linked with δ18O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. Our new correlations of middle Miocene benthic and western equatorial planktonic δ18O records show remarkable agreement in timing and amplitude. We interpret benthic-planktonic covariance to reflect substantial ice volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the δ18O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9.6 Ma), although low-latitude planktonic δ18O records are required to test this. These inferred glacioeustatic lowerings can be linked to seismic and rock disconformities. For example, we link 12 Oligocene-early late Miocene inferred glacioeustatic lowerings with 12 of the sequence boundaries (= inferred eustatic lowerings) of Haq et al. (1987).

  16. [Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, Northwest China].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Zheng, Shi-Qing; Li, Qiang

    2012-12-01

    Due to the coupling effects of wind and water erosions in the wind-water erosion crisscross region of Loess Plateau, the slope erosion in the region was quite serious, and the erosion process was quite complicated. By using wind tunnel combined with simulated rainfall, this paper studied the sediment-yielding process and its mechanisms of slope erosion under the effects of wind-water alternate erosion, and quantitatively analyzed the efffects of wind erosion on water erosion and the relationships between wind and water erosions. There was an obvious positive interaction between wind and water erosions. Wind erosion promoted the development of microtopography, and altered the quantitative relationship between the sediment-yielding under water erosion and the variation of rainfall intensity. At the rainfall intensity of 60 and 80 mm x h(-1), the sediment-yielding without wind erosion decreased with the duration of rainfall and tended to be stable, but the sediment-yielding with wind erosion decreased to a certain valley value first, and then showed an increasing trend. At the rainfall intensity of 60, 80, and 100 mm x h(-1), the sediment-yielding with the wind erosion at speeds of 11 and 14 m x s(-1) increased by 7.3%-27.9% and 23.2%-39.0%, respectively, as compared with the sediment-yielding without wind erosion. At the rainfall intensity of 120 and 150 mm x h(-1) and in the rainfall duration of 15 minutes, the sediment-yielding with and without wind erosion presented a decreasing trend, but, with the increase of rainfall duration, the sediment-yielding with wind erosion showed a trend of decreasing first and increasing then, as compared with the sediment-yielding without wind erosion. The mechanisms of wind-water alternate erosion were complicated, reflecting in the mutual relation and mutual promotion of wind erosion and water erosion in the aspects of temporal-spatial distribution, energy supply, and action mode of erosion forces.

  17. Determining Relative Contributions of Eroded Landscape Sediment and Bank Sediment to the Suspended Load of Streams and Wetlands Using 7Be and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.

    2005-12-01

    The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.

  18. What do we really know about Earth's early crust?

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Tang, M.

    2016-12-01

    The oldest minerals on Earth, the detrital Hadean Jack Hills zircons from western Australia, show evidence for their crystallization from hydrous, low temperature, granitic magmas. However, considerable debate centers on whether the parental melts are minimum-melt granites formed in subduction zone settings and implying widespread, evolved continental crust (e.g., Harrison, 2009, AREPS), or crystallized from the last differentiates of mafic magmas (Darling et al., 2009, Geology), or even late differentiates of impact melt sheets on a largely water-covered Earth (Kenny et al., 2016, Geology). Another means by which to interrogate the nature of Earth's early crust is through analyses of ancient fine-grained terrigenous sedimentary rocks such as shales or glacial diamictites, which provide averages of the surface of the Earth that is exposed to chemical weathering and erosion. From these studies it has long been known that Archean crust contained a higher proportion of mafic rocks. However, only recently has that proportion been constrained based on a change in the average MgO content of the upper continental crust from 15 wt.% at 3.2 Ga, to 4 wt.% at 2.6 Ga (Tang et al., 2016, Science). These data for terrigeneous sediments require the pre 3.2 Ga crust to be dominated by mafic rocks (only 10-40% `granite' s.l.) and to be high-standing and susceptible to subareal weathering and erosion, implying the mafic crust was thick (see Tang and Rudnick, this meeting). The dramatic transition that occurred in upper crustal composition between 3.2 and 2.6 Ga likely marks the onset of widespread subduction as a means of generating voluminous granite.

  19. Influence of the Quaternary Climate Change on the Landscape of the Southern Part of the Middle Russian Upland (Russia)

    NASA Astrophysics Data System (ADS)

    Romanovskaya, M.; Bessudnov, A. N.; Kuznetsova, T. V.; Sukhanova, T. V.; Krilkov, N. M.

    2017-12-01

    The study area belongs to the East European Plain. In paleoclimatic terms the northern limits of this area were covered by ice sheet during the Last Glacial Maximum (LGM) and the entire area was located within the permafrost zone of the Last Permafrost Maximum (LPM) according to the published maps. The results of our geological and geomorphologic exploration of the area have clearly shown that this area is an actively growing neo-tectonic structure. Geomorphologic study and modeling have revealed the presence of erosion-shaped surfaces of different age which were formed by neo-tectonic movements and the effects of climate fluctuations. The entire landscape of the area is a system of altitudinal steps. Each surface has its own complex of recent deposits, which closely related to climate change. The fluvial terraces of the rivers Don and Tikhaya Sosna were formed under the influence of the Don, Dnepr, Moscow and, Valdai Glaciations. There are many calcareous loess layers and paleosol layers in the Quaternary geological sections of the area. Radiocarbon dating of fossils and paleosol layers found at the archaeological site Divnogorie-9 located in loess-like loam parts of the section (50.9649ºN, 39.3031ºE) provides the age 12-14 ka BP. Our rock-magnetism studies of this section have shown that its formation was affected by regional paleoclimate. We believe that a decrease of the erosion basis during the LGM led to a deepening of the erosion network. Later on, when the climate warmed the powerful but short-lived water streams filled the ravines with thick proluvial deposits. The degradation of the permafrost after LPM within the study area apparently had no significant effects on its landscape formation, as evidenced by the very small number of ice-wedge pseudomorphs and specific morphological features reported for this area. This conclusion is also supported by the results of our carbon research of loess-like loam and paleosol layers. Thus the emerging picture of the landscape of the study area being formed by the work of exogenous agents and neo-tectonic movements and also reflects climatic fluctuations during the Pleistocene and Holocene.

  20. Establishment of warm-season native grasses and forbs on drastically disturbed lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.

    Establishment of warm-season native grasses and forbs (WSNGs) has been viewed by landowners, agronomists, natural resource managers and reclamation specialists as being too expensive and difficult, especially for reclamation, which requires early stand closure and erosion control. Natural resource managers have learned a great deal about establishing WSNGs since the implementation of the 1985 Farm Bill`s Conservation Reserve Program (CRP). Reclamation specialists must begin to use this information to improve reclamation success. Quality control of seed equipment and planting methods has been proven to be the crucial first step in successful establishment. Seedling germination, growth and development of WSNGs aremore » different from that of introduced cool-season grasses and legumes. Specialized seed drills and spring planting periods are essential. Because shoot growth lags far behind root growth the first two seasons, WSNGs often are rejected for reclamation use. Usually, the rejection is based on preconceived notions that bare ground will erode and on reclamation specialists` desire for a closed, uniform, grassy lawn. WSNG`s extensive root systems inhibit rill and gully erosion by the fall of the first season. Planting a weakly competitive, short-lived nurse crop such as perennial ryegrass (Lolium perenne) at low rates with the WSNG mixture can reduce first-season sheet and rill erosion problems and give an appearance of a closed stand. Benefits of WSNGs in soil building and their acid-tolerance make them ideal species for reclamation of drastically disturbed lands. WSNGs and forbs enhance wildlife habitat and promote natural succession and the invasion of the reclamation site by other native species, particularly hardwood trees, increasing diversity and integrating the site into the local ecosystem. This is perhaps their most important attribute. Most alien grasses and legumes inhibit natural succession, slowing the development of a stable mine soil ecosystem. This paper outlines one successful methodology to establish warm-season grasses and forbs on abandoned mine lands in Missouri. The methodology can be successfully adapted for reclamation of all drastically disturbed lands including Title V lands under the Surface Mining Control Reclamation Act of 1977 (PL95-87) to promote ecosystem diversity and stability.« less

  1. Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia

    NASA Astrophysics Data System (ADS)

    Eldridge, David J.

    1999-05-01

    The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens ( Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.

  2. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  3. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: A multiple nuclide approach

    USGS Publications Warehouse

    Bierman, P.R.; Marsella, K.A.; Patterson, Chris; Davis, P.T.; Caffee, M.

    1999-01-01

    Paired 10Be and 26Al analyses (n = 14) indicate that pre-Wisconsinan, glaciated bedrock surfaces near the northern (Baffin Island) and southern (Minnesota) paleo-margins of the Laurentide Ice Sheet have long and complex histories of cosmic-ray exposure, including significant periods of partial or complete shielding from cosmic rays. Using the ratio, 26Al/10Be, we calculate that striated outcrops of Sioux Quartzite in southwestern Minnesota (southern margin) were last overrun by ice at least 500,000 years ago. Weathered bedrock tors on the once-glaciated uplands of Baffin Island (northern margin) are eroding no faster than 1.1 m Myr-1, the equivalent of at least 450,000 years of surface and near-surface exposure. Our data demonstrate that exposure ages and erosion rates calculated from single nuclides can underestimate surface stability dramatically because any intermittent burial, and the resultant lowering of nuclide production rates and nuclide abundances, will remain undetected.

  4. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  5. Magnetic shielding of large high-power-satellite solar arrays using internal currents

    NASA Technical Reports Server (NTRS)

    Parker, L. W.; Oran, W. A.

    1979-01-01

    Present concepts for solar power satellites involve dimensions up to tens of kilometers and operating internal currents up to hundreds of kiloamperes. A question addressed is whether the local magnetic fields generated by these strong currents during normal operation can shield the array against impacts by plasma ions and electrons (and from thruster plasmas) which can cause possible losses such as power leakage and surface erosion. One of several prototype concepts was modeled by a long narrow rectangular panel 2 km wide and 20 km long. The currents flow in a parallel across the narrow dimension (sheet current) and along the edge (wire currents). The wire currents accumulate from zero to 100 kiloamp and are the dominant sources. The magnetic field is approximated analytically. The equations of motion for charged particles in this magnetic field are analyzed. The ion and electron fluxes at points on the surface are represented analytically for monoenergetic distributions and are evaluated.

  6. Impacts of the 2004 Indian ocean tsunami on the southwest coasts of Sri Lanka

    USGS Publications Warehouse

    Morton, Robert A.; Goff, John A.; Nichol, Scott L.

    2007-01-01

    The 2004 Indian Ocean tsunami caused major landscape changes along the southwest coasts of Sri Lanka that were controlled by the flow, natural topography and bathymetry, and anthropogenic modifications of the terrain. Landscape changes included substantial beach erosion and scouring of return-flow channels near the beach, and deposition of sand sheets across the narrow coastal plain. In many areas tsunami deposits also included abundant building rubble due to the extensive destruction of homes and businesses in areas of dense development. Trim lines and flow directions confirmed that shoreline orientation and wave refraction from embayments and rock-anchored headlands locally focused the flow and amplified the inundation. Tsunami deposits were 1 to 36 cm thick but most were less than 25 cm thick. Deposit thickness depended partly on antecedent topography. The deposits were composed of coarse to medium sand organized into a few sets of plane parallel laminae that exhibited overall upward fining and landward thinning trends.

  7. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C. Ó.; Dowdeswell, J. A.; Weinrebe, W.; Catania, G.; Duncan, D.

    2016-03-01

    Marine-terminating glaciers play a critical role in controlling Greenland's ice sheet mass balance. Their frontal margins interact vigorously with the ocean, but our understanding of this interaction is limited, in part, by a lack of bathymetry data. Here we present a multibeam echo sounding survey of 14 glacial fjords in the Uummannaq and Vaigat fjords, west Greenland, which extends from the continental shelf to the glacier fronts. The data reveal valleys with shallow sills, overdeepenings (>1300 m) from glacial erosion, and seafloor depths 100-1000 m deeper than in existing charts. Where fjords are deep enough, we detect the pervasive presence of warm, salty Atlantic Water (AW) (>2.5°C) with high melt potential, but we also find numerous glaciers grounded on shallow (<200 m) sills, standing in cold (<1°C) waters in otherwise deep fjords, i.e., with reduced melt potential. Bathymetric observations extending to the glacier fronts are critical to understand the glacier evolution.

  8. Effect of SDS on human hair: Study on the molecular structure and morphology.

    PubMed

    Singh, Bhawana; Umapathy, Siva

    2011-05-01

    This paper presents a model study to understand the effect of surfactants on the physicochemical properties of human hair. FT-IR ATR spectroscopy has been employed to understand the chemical changes induced by sodium dodecyl sulfate (SDS) on human scalp hair. In particular, the SDS induced changes in the secondary structure of protein present in the outer protective layer of hair, i.e. cuticle, have been investigated. Conformational changes in the secondary structure of protein were studied by curve fitting of the amide I band after every phase of SDS treatment. It has been found that SDS brings rearrangements in the protein backbone conformations by transforming β -sheet structure to random coil and β -turn. Additionally, AFM and SEM studies were carried out to understand the morphological changes induced on the hair surface. SEM and AFM images demonstrated the rupture and partial erosion of cuticle sublayers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Status and Trends of Resources Below Glen Canyon Dam Update - 2009

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The protection of resources found in Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona, emerged as a significant public concern in the decades following the completion of Glen Canyon Dam in 1963. The dam, which lies about 15 miles upstream from the park, altered the Colorado River's flow, temperature, and sediment-carrying capacity, resulting over time in beach erosion, expansion of nonnative species, and losses of native fish. During the 1990s, in response to public concern, Congress and the Department of the Interior embarked on an ongoing effort to reduce and address the effects of dam operations on downstream resources. In 2005, the U.S. Geological Survey produced a comprehensive report entitled 'The State of the Colorado River Ecosystem in Grand Canyon', which documented the condition and trends of resources downstream of Glen Canyon Dam from 1991 to 2004. This fact sheet updates the 2005 report to extend its findings to include data published through April 2009 for key resources.

  10. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Wang, Shijie; Bai, Xiaoyong; Li, Yangbing; Tian, Yichao; Li, Yue; Wu, Luhua; Luo, Guangjie

    2017-07-01

    Although some scholars have studied soil erosion in karst landforms, analyses of the spatial and temporal evolution of soil erosion and correlation analyses with spatial elements have been insufficient. The lack of research has led to an inaccurate assessment of environmental effects, especially in the mountainous area of Wuling in China. Soil erosion and rocky desertification in this area influence the survival and sustainability of a population of 0.22 billion people. This paper analyzes the spatiotemporal evolution of soil erosion and explores its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE). Furthermore, this paper analyzes the relationship between soil erosion and major natural elements in southern China. The results are as follows: (1) from 2000 to 2013, the proportion of the area experiencing micro-erosion and mild erosion was at increasing risk in contrast to areas where moderate and high erosion are decreasing. The area changes in this time sequence reflect moderate to high levels of erosion tending to convert into micro-erosion and mild erosion. (2) The soil erosion area on the slope, at 15-35°, accounted for 60.59 % of the total erosion area, and the corresponding soil erosion accounted for 40.44 %. (3) The annual erosion rate in the karst region decreased much faster than in the non-karst region. Soil erosion in all of the rock outcrop areas indicates an improving trend, and dynamic changes in soil erosion significantly differ among the various lithological distribution belts. (4) The soil erosion rate decreased in the rocky desertification regions, to below moderate levels, but increased in the severe rocky desertification areas. The temporal and spatial variations in soil erosion gradually decreased in the study area. Differences in the spatial distribution between lithology and rocky desertification induced extensive soil loss. As rocky desertification became worse, the erosion modulus decreased and the decreasing rate of annual erosion slowed.

  11. North polar region of Mars: Advances in stratigraphy, structure, and erosional modification

    USGS Publications Warehouse

    Tanaka, K.L.; Rodriguez, J.A.P.; Skinner, J.A.; Bourke, M.C.; Fortezzo, C.M.; Herkenhoff, K. E.; Kolb, E.J.; Okubo, C.H.

    2008-01-01

    We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (???3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly-layered Rupes Tenuis unit (Abrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. The second major episode of activity during the Middle to Late Amazonian (??? <1 Ga) began with a section of dark, sand-rich and light-toned ice-rich irregularly-bedded sequences (Planum Boreum cavi unit, Abbc) along with deposition of evenly-bedded light-toned ice- and moderate-toned dust-rich layers (Planum Boreum 1 unit, Abb1). These units have transgressive and gradational stratigraphic relationships. Materials in Olympia Planum underlying the dunes of Olympia Undae are interpreted to consist mostly of the Planum Boreum cavi unit (Abbc). Planum Boreum materials were then deeply eroded to form spiral troughs, Chasma Boreale, and marginal scarps that define the major aspects of the polar plateau's current regional topography. Locally- to regionally-extensive (though vertically minor) episodes of deposition of evenly-bedded, light- and dark-toned layered materials and subsequent erosion of these materials persisted throughout the Late Amazonian. Sand saltation, including dune migration, is likely to account for much of the erosion of Planum Boreum, particularly at its margin, alluding to the lengthy sedimentological history of the circum-polar dune fields. Such erosion has been controlled largely by topographic effects on wind patterns and the variable resistance to erosion of materials (fresh and altered) and physiographic features. Some present-day dune fields may be hundreds of kilometers removed from possible sources along the margins of Planum Boreum, and dark materials, comprised of sand sheets, extend even farther downwind. These deposits also attest to the lengthy period of erosion following emplacement of the Planum Boreum 1 unit. We find no evidence for extensive glacial flow, topographic relaxation, or basal melting of Planum Boreum materials. However, minor development of normal faults and wrinkle ridges may suggest differential compaction of materials across buried scarps. Timing relations are poorly-defined mostly because resurfacing and other uncertainties prohibit precise determinations of surface impact crater densities. The majority of the stratigraphic record may predate the recent (<20 Ma) part of the orbitally-driven climate record that can be reliably calculated. Given the strong stratigraphic but loose temporal constraints of the north polar geologic record, a comparison of north and south polar stratigraphy permits a speculative scenario in which major Amazonian depositional and erosional episodes driven by global climate activity is plausible. ?? 2008 Elsevier Inc. All rights reserved.

  12. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-04-01

    Soil piping is a complex land degradation process, which involves the hydraulic removal of soil particles by subsurface flow. This process is frequently underestimated and omitted in most soil erosion studies. However, during the last decades several studies reported the importance of soil piping in various climatic zones and for a wide range of soil types. Compared to sheet, rill and gully erosion, very few studies focused on the factors controlling piping and, so far, there is no research study dealing with the effects of plant roots on piping susceptibility of soils having a low cohesion. The objective of this study is therefore to assess the impact of grass root density (RD) on soil piping in sandy soils using the pinhole test. The pinhole test involves a water flow passing through a hole of 1 mm diameter in a soil specimen (sampled using a metal ring with a diameter of 5 cm and a length of 8 cm), under varying hydraulic heads (50 mm, 180 mm, 380 mm and 1020 mm; Nadal-Romero et al., 2011). To provide a quantitative assessment piping susceptibility of the soil sample, the pipeflow discharge (cm3 s-1) and the sediment discharge (g s-1) were measured every minute during a five minute test. Bare and root-permeated samples were tested, using a sandy soil with a sand, silt, clay content of respectively, 94%, 4% and 2%. The root-permeated topsoil samples were taken in field plots sown with a mixture of grasses with fibrous roots. All soil samples were placed on a sandbox with a 100 mm head for 24 hours to ensure a similar water content for all samples. In total, 67 pinhole tests (lasting 5 minutes each) were conducted, i.e. 43 root-permeated soil samples with RD ranging from 0.01 to 0.93 kg m-3 and 24 root-free soil samples as a reference. Clear piping erosion could be observed in 65% of the root-free soil samples, whereas only 17% of rooted soil samples revealed clear piping erosion during the tests. Statistical analyses show that there is a negative correlation (-0.41, p < 0.05) between RD and sediment discharge. Mean pipeflow discharge was 1.4 times larger for the root-free samples compared to the root-permeated samples, while mean sediment discharge was 3 times higher for the root-free samples compared to the rooted samples. This indicates that the presence of fibrous roots in topsoils decreases the susceptibility to soil piping significantly. Furthermore, a positive correlation between the hydraulic head (50-1020 mm) and sediment discharge was observed. Overall, our results suggest that root density is a highly relevant factor for decreasing the soil piping erosion rates in the sandy topsoils. The presence of even very low root densities (< 1 kg m3) decrease pipeflow and sediment discharge. A. Bernatek-Jakiel is supported by the ETIUDA doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland. Reference: Nadal-Romero, E., Verachtert, E., Maes, R., Poesen, J., 2011. Quantitative assessment of the piping erosion susceptibility of loess-derived soil horizons using the pinhole test. Geomorphology 135, 66-79.

  13. Evaluation of different techniques for erosion control on different roadcuts in its first year of implantation

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Rodríguez, Abraham; Viedma, Antonio; Contreras, Valentin; Vanwalleghem, Tom; Taguas, Encarnación V.; Giráldez, Juan Vicente

    2014-05-01

    Linear infrastructures, such as highways and railways, present a large environmental impact. Among this impact is the effect on landscape and the modification of the hydrological conditions of the area and an increase in erosive processes (Martin et al., 2011). The increase of erosive processes is specially significant in roadbanks, resulting in high maintenance costs as well as security risks for the use of the infrastructure if it is not properly controlled. Among roadbanks, roadcuts are specially challenging areas for erosion control and ecological restoration, due to their usually steep slope gradient and poor conditions for establishment of vegetation. There are several studies in Mediterranean conditions indicating how the combination of semiarid conditions with, sporadic, intense rainfall events makes a successful vegetation development and erosion control in motorway roadbanks extremely difficult (e.g. Andrés and Jorbat, 2000; Bochet and García-Fayos, 2004). This communication presents the results of the first year evaluation (hydrological year 2012-2013) of five different erosion control strategies on six different locations under different materials on roadcuts of motorways or railways in Andalusia during 2012-2013 using natural rainfall and simulated rainfall. The six sites were located on roadcuts between 10 and 20 m long on slope steepness ranging from 40 to 90%, in motorways and railways spread over different materials in Andalusia. Site 1, Huelva was located on consolidated sand material, sites 2, Osuna I, site 3, Osuna II and site 4, Mancha Real, on marls. Sites 5, Guadix, and 6, Fiñana, were located on phyllites, in comparison a harder material. At each site 12 plots (10 m long and 2 m wide) were installed using metal sheets buried 10 cm within the soil with their longest side in the direction of the roadcut maximum slope. Six different treatments were evaluated at each site, two replications each. These treatments were: 1- A control with bare soil, 2-Hydroseeding with a mix of grasses and legumes adapted for Mediterranean conditions, 3- Plantation of Mediterranean shrub species at a 1 plant m-2 density, 4- organic erosion control mat (made of coconut or esparto grass, Stipa tenacissima, fiber) plus hydroseeding. 5- synthetic net mat for erosion control plus hydroseeding. 6- synthetic 3D-net mat for erosion control plus hydroseeding. All the plots had an outlet with routed runoff and sediment to a sediment trap located at the base of the roadcut. The treatments were installed during early fall 2012. Since that date sediments were regularly collected and the evolution of vegetation was monitored. In four of the sites (the other two were vandalized) rainfall simulation experiments using a mesoplot rainfall simulator based on Sumner et al. (1996) were performed in summer 2013. The evaluation of vegetation cover and number of plants made in May, at the end of the rainy season, indicated how the hydroseeding treatments (the three mats plus the hydroseeding without mat) presented a relatively high ground cover (between 25 to 35 %) but with a relatively large standard deviation (around 25%). This variability was clearly related to site features (slope, parent material, and climate conditions for the year) with no clear differences among treatments. The plantation and control treatments presented a much lower ground cover, as expected, ranging, in average, from 5 to 10%. There was a large variability in the pattern of plant distribution within the plots, with site to site differences. So in sites 1, 2 and 5 there was a trend towards increased plant density in the lower area of the plot while in site 3 this trend was reversed and in sites 4 and 6 there was not a clear pattern. Sediment lost during the rainfall period, which ranged from 294 to 778 mm from October 1st to May 31st, presented a large variability among sites with maximum values ranging from 2.5 g m-2 (Fiñana) to 1800 (Mancha real). In all the sites there was a clear difference between the mat treatments which presented very low erosion rates, with an average for all sites and the three mat treatments around 4 g m-2, compared to the non-matted treatments which presented much higher erosion rates, average of all sites and three non-matted treatments around 432 g m-2.. There were no significant differences among the different treatments within these two large groups, albeit in some sites a slight reduction in the average erosion rates was observed in the hydroseeding treatment compared to the control and plantation treatments. Simulation experiments performed during summer indicated no runoff generation in the Fiñana site (the one with the lowest sediment generated during the rainy season with an average of 0.7 g m-2), while in the Mancha Real, Huelva and Guadix sites, the results were qualitatively comparable with those observed during the rainfall period with natural rain. The matted treatments presented average sediment losses of 16 g m-2 (for rainfall simulations lasting 35 minutes and an rainfall intensity of 34 mm h-1), while the non-matted treatments averaged sediment losses of 2297 g m-2. The range of maximum sediment losses among sites varied this time in relation to the natural rainfall results with maximum values measured in the Huelva and Guadix sites. The results indicates that effective erosion control in these roadcuts under mostly sedimentary material and Mediterranean conditions was achieved only using erosion mats plus hydroseeding. The protection was achieved mostly by the protective effect of the erosion mats, as indicated by The rainfall simulation experiments highlighted the protective effect of the erosion mats when most of the vegetation was already dead., In addition, there were no apparent with not clear differences during this first year among the different matting materials. Hydroseeding and plantation were apparently successful during the first season, with a significant ground cover and plant density.; However the success of vegetation establishment can only be evaluated in the coming years, since previous experiences (e.g. Bochet and García-Fayos, 2004) indicates the difficulty of successful vegetation recovery on these conditions. Rainfall simulations have proven to be a useful tool to evaluate erosion risk and performance of the different treatments in a shorter time. References Andrés. P., Jorba, M. 2000. Mitigation strategies in some motorways embankments (Catalonia, Spain). Restoration Ecology, 8: 268-275. Bochet, E., García-Fayos, P. 2004. Factors Controlling Vegetation Establishment and Water Erosion on Motorway Slopes in Valencia, Spain. Restoration Ecology, 12: 166-174. Martín, J.F., De Alba, S., Barbero, F. 2011. Consideraciones geomorfológicas e hidrológicas. En: Restauración Ecológica de áreas afectadas por infraestructuras de transporte. Fundación Biodiversidad. p. 43-75. Sumner, H.R; Wauchope, R.D.; Truman, C.C.; Dowler, C.C.; Hook, J.E. 1996. Rainfall simulator and plot design for mesoplot runoff studies. Trans. ASAE 39:125-130.

  14. Prevalence of dental erosion and association with lifestyle factors in Swedish 20-year olds.

    PubMed

    Isaksson, Helén; Birkhed, Dowen; Wendt, Lill-Kari; Alm, Anita; Nilsson, Mats; Koch, Göran

    2014-08-01

    To investigate the prevalence, distribution and severity of dental erosion and its association with lifestyle, oral and general health in young adults. Four hundred and ninety-four individuals, 20-years of age, participated. Dental erosion in molars and maxillary incisors was evaluated. Caries, plaque and gingivitis were registered. Saliva samples were taken and the subjects were interviewed about behavioural and dietary habits and oral and general health. Body mass index (BMI) was calculated. The individuals were sub-divided into two groups according to the presence and absence of dental erosion: within the group with erosion was a sub-group of individuals with extensive erosion. Of the individuals 25% had no erosion, 75% had erosion and 18% had extensive erosion. Erosion was found in molars in 74% of the individuals and on buccal and palatal surfaces in maxillary incisors in 4% and 7%, respectively. Cupping was seen in 65% of individuals and severe erosion in molars in 1.6%. Compared to subjects with no erosion, those with extensive erosion had a higher consumption of soft drinks (p = 0.05), caries prevalence (p < 0.01), prevalence of mutans Streptococci (p < 0.01) and BMI (p < 0.05). Furthermore, subjects with erosion had higher caries prevalence (p < 0.01) and BMI (p < 0.01) than those with no erosion. Swedish young adults have a high prevalence of dental erosion, but the level of severe erosion is low. The study disclosed a relationship between dental erosion and behavioural factors, oral health and BMI.

  15. Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland

    NASA Astrophysics Data System (ADS)

    Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.

    2018-07-01

    In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.

  16. Wisconsinan and early Holocene glacial dynamics of Cumberland Peninsula, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Margreth, Annina; Gosse, John C.; Dyke, Arthur S.

    2017-07-01

    Three glacier systems-an ice sheet with a large marine-based ice stream, an ice cap, and an alpine glacier complex-coalesced on Cumberland Peninsula during the Late Wisconsinan. We combine high-resolution mapping of glacial deposits with new cosmogenic nuclide and radiocarbon age determinations to constrain the history and dynamics of each system. During the Middle Wisconsinan (Oxygen Isotope Stage 3, OIS-3) the Cumberland Sound Ice Stream of the Laurentide Ice Sheet retreated well back into Cumberland Sound and the alpine ice retreated at least to fiord-head positions, a more significant recession than previously documented. The advance to maximal OIS-2 ice positions beyond the mouth of Cumberland Sound and beyond most stretches of coastline remains undated. Partial preservation of an over-ridden OIS-3 glaciomarine delta in a fiord-side position suggests that even fiord ice was weakly erosive in places. Moraines formed during deglaciation represent stillstands and re-advances during three major cold events: H-1 (14.6 ka), Younger Dryas (12.9-11.7 ka), and Cockburn (9.5 ka). Distinctly different responses of the three glacial systems are evident, with the alpine system responding most sensitively to Bølling-Allerød warming whereas the larger systems retreated mainly during Pre-Boreal warming. While the larger ice masses were mainly influenced by internal dynamics, the smaller alpine glacier system responded sensitively to local climate effects. Asymmetrical recession of the alpine glacier complex indicates topoclimatic control on deglaciation and perhaps migration of the accumulation area toward moisture source.

  17. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    PubMed

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Change Analysis on Soil Erosion of Fujian Province from 1990 TO 2015

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Zeng, S. J.; Chen, X. G.; Lin, J. L.; Chen, S. M.

    2017-09-01

    Soil erosion is one of major environment problems in the world, and China is one of the most serious soil erosion country. In this paper, Fujian province was used as a study area for its typical red soil region. Based on USLE model, the soil erosion modulus in 1990 and 2015 were calculated and turned to soil erosion intensity. The soil erosion distribution trend in Fujian province was decrease from south-east coastal zone to north-west inland region. In soil erosion areas, the main erosion type was light level with about 80 %, and the soil erosion levels above serious type were mainly sporadic distribution with less than 10 %. The soil erosion improved for the past 25 years. The areas of different erosion types all decreased, and the total erosion area reduced by 26.59 %. The improvement area mainly located in north-east, south and west region. The aggravation area mainly located in the north and some middle hilly regions. The impact of human activities is more significant for erosion control.

  19. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    The spectrum of aeolian depositional subenvironments in the upper Middle Buntsandstein Karlstal-Schichten sequence in the Eifel North-South-zone at the western margin of the Mid-European Triassic Basin comprises trains of larger and higher narrowly-spaced dunes in sand seas, isolated smaller and lower widely-spaced dunes in floodplains and interdune playas, dry interdune sheet sands, damp interdune adhesive sandflats, wet interdune playa lakes, rainfall runoff watercourses and ephemeral channels cutting through the dune belt, and deflation gravel lag veneers. Distinction of aeolian and fluvial sediments within the succession of closely intertonguing wind- and water-laid deposits is possible by independent analysis of the conventional criteria and the more modern stratification styles. Thick cross-bedded aeolian sand sequences originate as barchanoid-type dunes which accumulate and migrate in the regime of narrow to wide unimodal southeasterly to southwesterly trade winds in low northern palaeolatitude in summer when the intertropical convergence zone is shifted to the north. The predominantly transverse-ridge dunes accrete mainly by grainfall and subcritical climbing of wind ripples, subordinately also by grainflow interfingering with grainfall. Horizontal-laminated aeolian sands form as sand sheets in dry interdune playas by subcritical migration of wind ripple trains, rarely also by plane bed accretion. Thin cross-bedded dune sands or horizontal-laminated aeolian sands capping fluvial cyclothems originate by deflation of emerged alluvial bar sands during low-water stages and subsequent accumulation of the winnowed sand as widely-spaced dunelets or chains of wind ripples in desiccated parts of the adjoining floodplain. The aeolian sand layers at the base of lacustrine cyclothems record migration of isolated little dunes across the dry playa floor at the beginning of a wetting-upwards cyclothem, with the sand deriving from deflation of fluvial incursions or representing residual sand not having been incorporated into larger dunes of the surrounding sand sea. Damp interdune deposits originate by trapping of loose sand that is blown across a moist playa surface as adhesion ripples and warts. The adhesion structures form both in aeolian sheet sand environments with increasing moisture of the substrate and on fluvial channel bars and stream bottoms with declining dampness during subaerial exposure. Wet interdune deposits originate by settling of suspension fines in periodic shallow lakes between the dunes following heavy ephemeral rainfall or forming by rising ground water table, and by aquatic redeposition of aeolian sand due to washout after atmospheric precipitation and alluvial invasion. Deflationary interdune deposits form by winnowing of the sandy matrix from fluvial sheet or bar conglomerates thereby leaving the dispersed gravel as more or less tightly-packed residual veneer on the degradation surface providing bed armour against further aeolian or aquatic erosion. Aeolian deposition is at the top of the Middle Buntsandstein rather rapidly terminated by fluvial inundation of the erg, erosion and partial resedimentation of dune sands and burial of the more or less degraded aeolian bedforms under a carpet of alluvial deposits. At the beginning of the Upper Buntsandstein, a change to semi-arid climate results in stabilization of emerging overbank plains and channels by palaeosol formation and plant growth thus completely inhibiting further accumulation of aeolian sands. The range of modes of origin of dune sands and interdune deposits, the spatial and temporal variability of their accumulation and preservation and the distribution of water-laid intercalations provide a base for independent evaluation of the dynamics of the aeolian system and its controls as well as for comparative assessment of the behaviour of the aeolian environment and the fluvial milieu in a system of intertonguing sand sea and river belt and of the mechanisms triggering and governing the interference pattern.

  20. From minerals to hillslopes: Towards an integrated framework for interpreting chemical and physical erosion

    NASA Astrophysics Data System (ADS)

    Hahm, W.; Riebe, C. S.; Ferrier, K.; Kirchner, J. W.

    2011-12-01

    Traditional frameworks for conceptualizing hillslope denudation distinguish between the movement of mass in solution (chemical erosion) and mass moved via mechanical processes (physical erosion). At the hillslope scale, physical and chemical erosion rates can be quantified by combining measurements of regolith chemistry with cosmogenic nuclide concentrations in bedrock and sediment, while basin-scale rates are often inferred from riverine solute and sediment loads. These techniques integrate the effects of numerous weathering and erosion mechanisms and do not provide prima facie information about the precise nature and scale of those mechanisms. For insight into erosional process, physical erosion has been considered in terms of two limiting regimes. When physical erosion outpaces weathering front advance, regolith is mobilized downslope as soon as it is sufficiently loosened by weathering, and physical erosion rates are limited by rates of mobile regolith production. This is commonly termed weathering-limited erosion. Conversely, when weathering front advance outpaces erosion, the mobile regolith layer grows thicker over time, and physical erosion rates are limited by the efficiency of downslope transport processes. This is termed transport-limited erosion. This terminology brings the description of hillslope evolution closer to the realm of essential realism, to the extent that measurable quantities from the field can be cast in a process-based framework. An analogous process-limitation framework describes chemical erosion. In supply-limited chemical erosion, chemical weathering depletes regolith of its reactive phases during residence on a hillslope, and chemical erosion rates are limited by the supply of fresh minerals to the weathering zone. Alternatively, hillslopes may exhibit kinetic-limited chemical erosion, where physical erosion transports regolith downslope before weatherable phases are completely removed by chemical erosion. We show how supply- and kinetic-limited chemical erosion can be distinguished from one another using data from a global compilation of physical and chemical erosion rates. As a step towards understanding these rates at the level of essential realism, we explore how the hillslope-scale regimes of supply- and kinetic-limited chemical erosion relate to existing conceptual frameworks that interpret weathering rates in terms of transport- and kinetic-limitation at the mineral scale.

  1. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.

  2. The comparison of various approach to evaluation erosion risks and design control erosion measures

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas with different importance.

  3. Do erosion control and snakes mesh?

    Treesearch

    Christopher Barton; Karen Kinkead

    2005-01-01

    In the battle to curb soil erosion and sedimentation, numberous techniques and products for controlling erosion and sedimentation have been developed and are being implemented. Rolled erosion control products, such as a temporary erosion control blankets and permanent turf reinforcement mats, represent one type of erosion control product that has been used extensively...

  4. Glacially-derived overpressure in the northeastern Alaskan subduction zone: combined tomographic and morphometric analysis of shallow sediments on the Yakutat shelf and slope, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.

    2017-12-01

    The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough suggest a spatial relationship between the extent of U-shaped profiles and low-velocity shallow sediments. Towards the SE end of the model we observe a large overlap of U-shaped indices, and a shallow low-velocity zone in the mapped extent of the last glacial maximum suggestive of overpressure due to loading by ice sheet activity.

  5. Detailed Ar-Ar Geochronology of Volcanism at Minna Bluff, Antarctica: Two-Phased Growth and Influence on Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Ross, J. I.; McIntosh, W. C.; Wilch, T. I.

    2012-12-01

    Minna Bluff has been a significant topographic barrier to the flow of the Ross Ice Shelf since the mid-Miocene. Detailed Ar-Ar analyses of kaersutite and sanidine phenocrysts, and groundmass concentrates from volcanic units indicate an overall west to east progression of volcanic activity. Eruptions of basaltic to intermediate lavas, domes, and scoria cones started at ~12 Ma in at what is now the eastern most point of Minna Bluff, "Minna Hook." Activity was centered in this area for ~4 Ma, constructing a pre-Minna Bluff island. Multiple glacial unconformities found at Minna Hook suggest repeated interaction with large warm-based, erosive ice sheets. Activity migrated westward from Minna Bluff Island at 7-8 Ma closing the gap created by the island and the mainland. Significant edifice construction continued until 4-5 Ma with sporadic and parasitic scoria cone eruptions, possibly associated with Mt. Discovery activity, continuing until 2 Ma. The orientations of Minna Bluff's two major axes are strongly controlled by regional tectonic features. Minna Bluff's E-W axis, McIntosh Cliffs, is sub-parallel to the Radial Lineament and the N-S axis, Minna Hook, appears as extension of faulting bounding the Terror Rift. The constructional evolution of the 70km long volcanic complex has an important role in interpreting the climate signals recovered by the ANDRILL Project. Minna Bluff influenced the material delivered to the AND-1B drill site (ANDRILL MIS 2006-2007) in three critical ways: 1) Minna Bluff diverted upstream material, 2) provided a pinning and stabilizing point for the Ross Ice Shelf, possible controlling the calving line prior to the emergence of Ross Island, and 3) was a significant source of fresh volcanic material throughout much of the period recovered by ANDRILL MIS. For example, a kaersutite-bearing clast recovered from 822.78 mbsf in AND-1B yielded an age of 8.53±0.51 Ma, and was likely derived from Minna Bluff. The results from this study can be incorporated into detailed glacier and ice-sheet models of the McMurdo Sound region, a critical area in the Ross Ice Sheet and global climate system.

  6. Analyzing hydro abrasive erosion in Kaplan turbine: A case study from India

    NASA Astrophysics Data System (ADS)

    Rai, Anant Kr.; Kumar, Arun

    2016-10-01

    Sediment flow through hydro turbine causes erosion of hydraulic components resulting in drop of turbine efficiency, particularly in hydropower plants of the Himalayan region. The measurement of erosion and monitoring of sediment flow in turbine are major concerns in erosion study. Attempts have been made to study erosion mainly in Pelton and Francis turbines. In this study, a simple and effective method has been presented to measure erosion in a Kaplan turbine of a run-of-river scheme Chilla hydropower plant in foothills of Himalaya. Recent techniques were used to measure sediment parameters like concentration, size, shape and mineral content. A standard erosion model is applied to estimate the erosion in Kaplan turbine blade, runner chamber and draft tube cone. A calibration factor has been proposed to apply the erosion model for site specific conditions. It has been found that the outer trailing edges of the turbine blade and upper runner chamber are most erosion prone zones. Sediment analysis revealed that effective operation can reduce erosion in turbine components. The estimated erosion values from model are found to be consistent with measured values. Finally, suggestions for design improvements and effective operation of erosion affected hydropower plants are given.

  7. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  8. Rill erosion rates in burned forests

    Treesearch

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  9. Protection from erosion following wildfire

    Treesearch

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  10. Global rainfall erosivity assessment based on high-temporal resolution rainfall records

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity quantifies the climatic effect on water erosion. In the framework of the Universal Soil Loss Equation, rainfall erosivity, also known as the R-factor, is defined as the mean annual sum of event erosivity values. For a new global soil erosion assessment, also in the broad context...

  11. Study On The Application Of CBERS-02B To Quantitative Soil Erosion Monitoring

    NASA Astrophysics Data System (ADS)

    Shi, Mingchang; Xu, Jing; Wang, Lei; Wang, Xiaoyun; Mu, Jing

    2010-10-01

    Currently, the reduction of soil erosion is an important prerequisite for achieving ecological security. Since real-time and quantitative evaluation on regional soil erosion plays a significant role in reducing the soil erosion, soil erosion models are more and more widely used. Based on RUSLE model, this paper carries out the quantitative soil erosion monitoring in the Xi River Basin and its surrounding areas by using CBERS-02B CCD, DEM, TRMM and other data. Besides, it performs the validation for monitoring results by using remote sensing investigation results in 2005. The monitoring results show that in 2009, the total amount of soil erosion in the study area was 1.94×106t, the erosion area was 2055.2km2 (54.06% of the total area), and the average soil erosion modulus was 509.7t km-2 a-1. As a case using CBERS-02B data for quantitative soil erosion monitoring, this study provides experience on the application of CBERS-02B data in the field of quantitative soil erosion monitoring and also for local soil erosion management.

  12. Erosion of iron-chromium alloys by glass particles

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1984-01-01

    The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.

  13. Diatoms as Proxies for a Fluctuating Ice Cap Margin, Hvitarvatn, Iceland

    NASA Astrophysics Data System (ADS)

    Black, J. L.; Miller, G. H.; Geirsdottir, A.

    2005-12-01

    There are no complete records of terrestrial environmental change for the Holocene (11,000yrs) in Iceland and the status of Icelandic glaciers in the early Holocene remains unclear. It is not even known whether Iceland's large ice caps disappeared in the early Holocene, and if they did, when they re-grew. Icelandic lakes are particularly well suited to address these uncertainties as: 1) Glacial erosion and soft bedrock result in high lacustrine sedimentation rates, 2) Diagnostic tephras aid the geochronology, 3) Iceland's sensitivity to changes in North Atlantic circulation should produce clear signals in key environmental proxies (diatoms) preserved in lacustrine sequences, and 4) Ice-cap profiles are relatively flat so small changes in the equilibrium line altitude result in large changes in accumulation area. Hence, large changes in ice-sheet margins during the Holocene will impact sedimentation in glacier-dominated lakes and the diatom assemblages at those times. Hvitarvatn is a glacier dominated lake located on the eastern margin of Langjokull Ice Cap in central-western Iceland. The uppermost Hvitarvatn sediments reflect a glacially dominated system with planktonic, silica-demanding diatom taxa that suggest a high dissolved silica and turbid water environment consistent with high fluxes of glacial flour. Below this are Neoglacial sediments deposited when Langjokull was active, but outlet glaciers were not in contact with Hvitarvatn. The diatom assemblage here shows a small increase in abundance, but is still dominated by planktic, silica-demanding taxa. A distinct shift in lake conditions is reflected in the lowermost sediments, composed of predominantly benthic diatoms and deposited in clear water conditions with long growing seasons likely found in an environment with warmer summers than present and with no glacial erosion. Langjokull must have disappeared in the early Holocene for such a diverse, benthic dominated diatom assemblage to flourish.

  14. Base of brackish-water mud as key regional stratigraphic marker of mid-Holocene marine flooding of the Baltic Sea Basin

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Endler, Michael; Moros, Matthias; Jokinen, Sami A.; Hämäläinen, Jyrki; Kotilainen, Aarno T.

    2016-12-01

    Many modern epicontinental seas were dry land before their marine flooding by the mid-Holocene glacioeustatic sea-level rise, whereas the Baltic Sea Basin was covered by a huge postglacial lake. This change from a postglacial lake to the present-day semi-enclosed brackish-water sea is studied here in sediment cores and acoustic profiles from the Baltic Sea major sub-basins, based on novel datasets combined with information extracted from earlier publications. In shallow areas (<50m water depth), the base of the brackish-water mud is erosional and covered by a patchy, thin, transgressive silt-sand sheet resulting from decreased sediment supply, winnowing and the redistribution of material from local coarse-grained deposits during transgression. This erosional marine flooding surface becomes sharp and possibly erosional in deep areas (>50m water depth), where it may be locally less clearly expressed due to reworking and bioturbation. Both in the shallow and deep areas, the brackish-water mud is strongly enriched in organic matter compared to underlying sediments. Bioturbation type changes at the flooding surface in response to the increased sedimentary organic content, but no firm-ground ichnofacies were developed because of low erosion. It is concluded that the base of the brackish-water mud is a robust allostratigraphic bounding surface that is identifiable by the lithologic examination of cores over the Baltic Sea. The surface is a distinct reflector in seismic-acoustic profiles, which facilitates mapping and basin-wide stratigraphic subdivision. Detailed geochronologic studies are required to confirm if sediments immediately overlying the erosional flooding surface in shallow areas are younger than the basal part of the brackish-water mud in deep areas that is predicted to be time-equivalent to the erosion.

  15. Radiolaria and pollen records from 0 to 50 ka at ODP Site 1233: Continental and marine climate records from the Southeast Pacific

    USGS Publications Warehouse

    Pisias, N.G.; Heusser, L.; Heusser, C.; Hostetler, S.W.; Mix, A.C.; Weber, M.

    2006-01-01

    Site 1233 drilled during Leg 202 of the Ocean Drilling Program provides a detailed record of marine and continental climate change in the Southeast Pacific and South American continent. Splits from over 500 samples taken at 20 cm intervals for quantitative analysis of radiolarian and pollen populations yield a temporal resolution of 200-400 years. In each sample, 39 pollen taxa and 40 radiolarian species and genera were evaluated. Age control is provided by 25 AMS 14C dates [Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., Stoner, J., 2004. Science 304, 1959-1962]. Multivariate statistical analyses of these data allow us to conclude the following: (1) During the past 50 ka, the region of the central Chile coast is not directly influenced by polar water from the Antarctic region. (2) Changes in ocean conditions off central Chile during this time interval primarily reflect north-south shifts in the position of the South Pacific transition zone. (3) Changes in Chilean vegetation reflect comparable latitudinal shifts in precipitation and the position of the southern westerlies. (4) The first canonical variate of radiolarian and pollen records extracted from Site 1233 are remarkably similar to each other as well as to temperature records from the Antarctic, which suggests that marine and continental climate variability in the region is tightly coupled at periods longer than 3000 years. (5) The phase coupling of these climate records, which lead variations of continental erosion based on iron abundance at the same site, are consistent with a hypothesis that erosion is linked to relatively long (i.e, few thousand years) response times of the Patagonian ice sheet, and thus is not a direct indicator of regional climate. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Permian Minimum and the Following Major Rise in Seawater 87Sr/86Sr Linked to the Glaciation/Deglaciation and Resultant Change in Weathering Rate

    NASA Astrophysics Data System (ADS)

    Kani, T.; Isozaki, Y.

    2014-12-01

    We report a detailed secular change of the middle Middle to early Late Permian seawater 87Sr/86Sr ratio for and Akasaka and Kamura carbonates (Japan) deposited on mid-Pansalassan seamounts and for Shizipo carbonates (South China) deposited on the shallow marine shelf. In these coeval sections, extremely low values (<0.7069; the lowest values of the Phanerozoic) continued from upper Wordian (middle Middle Permian) to the topmost Capitanian (upper Middle Permian) barren interval immediately below the Middle-Late Permian boundary characterized by the major crisis of large-tested fusulines and rugose corals. Immediately after ca. 5 m.y.-long minimum interval, the major rise in 87Sr/86Sr was started and the rate of the rise (0.00007/m.y.) continued in period of time containing 21 m.y. until early Triassic (~239 Ma), that is faster than the Cenozoic major rise (0.00003/m.y.). The most significant shift through Phanerozoic in Sr isotope trend can be explained by the remarkable changes in continental erosion/weathering rate; in particular, by the onset of glaciation and the following deglaciation, that is supported by global sea level change, in addition to the initial doming/rifting of Pangea. After the Capitanian cooling, the long-term climatic regime shifted to a warmer one during which inland ice sheet was removed to expose old crustal silicates for to erosion/weathering. A mantle plume impingiment might lead a domal uplift that accelerate weathering. Highly radiogenic continental Sr could enter the ocean along the new drainage systems developed with the rifting.

  17. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015.

    PubMed

    Zhang, Haiyan; Fan, Jiangwen; Cao, Wei; Harris, Warwick; Li, Yuzhe; Chi, Wenfeng; Wang, Suizi

    2018-10-15

    Soil erosion caused by wind is a serious environmental problem that results in land degradation and threatens sustainable development. Accurately evaluating wind erosion dynamics is important for reducing the hazard of wind erosion. Separating the climatic and anthropogenic causes of wind erosion can improve the understanding of its driving mechanisms. Based on meteorological, remote sensing and field observation data, we applied the Revised Wind Erosion Equation (RWEQ) to simulate wind erosion in Inner Mongolia, China from 1990 to 2015. We used the variable control method by input of the average climate conditions to calculate human-induced wind erosion. The difference between natural wind erosion and human-induced wind erosion was determined to assess the effect of climate change on wind erosion. The results showed that the wind erosion modulus had a remarkable decline with a slope of 52.23 t/km 2 /a from 1990 to 2015. During 26 years, the average wind erosion for Inner Mongolia amounted to 63.32 billion tons. Wind erosion showed an overall significant decline of 49.23% and the partial severer erosion hazard significantly increased by 7.11%. Of the significant regional decline, 40.72% was caused by climate changes, and 8.51% was attributed to ecological restoration programs. For the significant regional increases of wind erosion, 4.29% was attributed to climate changes and 2.82% to human activities, mainly overgrazing and land use/cover changes. During the study, the driving forces in Inner Mongolia of wind erosion dynamics differed spatially. Timely monitoring based on multi-source data and highlighting the importance of positive human activities by increasing vegetation coverage for deserts, reducing grazing pressure on grasslands, establishing forests as windbreaks and optimizing crop planting rotations of farmlands can all act to reduce and control wind erosion. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil erosion occurs and the development of practical management solutions.

  19. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.

  20. Driving Forces of Dynamic Changes in Soil Erosion in the Dahei Mountain Ecological Restoration Area of Northern China Based on GIS and RS

    PubMed Central

    Li, Xiao; Niu, Xiang; Wang, Bing; Gao, Peng; Liu, Yu

    2016-01-01

    Dynamic change in soil erosion is an important focus of regional ecological restoration research. Here, the dynamic changes of soil erosion and its driving forces in the Dahei Mountain ecological restoration area of northern China were analyzed by LANDSAT TM remote sensing captured via geographic information system (GIS) technologies during three typical periods in 2004, 2008 and 2013. The results showed the following: (1) a decrease in intensive erosion and moderate erosion areas, as well as an increase in light erosion areas, was observed during two periods: one from 2004 to 2008 and the other from 2008 to 2013. (2) Between 2004 and 2008, the variation in the range of slight erosion was the largest (24.28%), followed by light erosion and intensive erosion; between 2008 and 2013, the variation in the range of intensive erosion area was the largest (9.89%), followed by slight erosion and moderate erosion. (3) Socioeconomic impact, accompanied by natural environmental factors, was the main driving force underlying the change in soil erosion within the ecological restoration area. In particular, the socioeconomic factors of per capita forest area and land reclamation rate, as well as the natural environmental factor of terrain slope, significantly influenced soil erosion changes within the ecological restoration area. PMID:26981637

  1. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows

    NASA Astrophysics Data System (ADS)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-12-01

    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  2. The Role of Vegetation Cover in Interactions between Climate and Erosion

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.

    2016-12-01

    Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes. Along the steep slopes of NW Argentina, landslides are the dominant process, and appear to be minimally affected by vegetation cover. In contrast, the more gentle hillslopes in East Africa appear to be stabilized by a dense vegetation cover.

  3. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of practical management solutions.

  4. 3D Mechanical Models of Crustal Deformation and the Effect of Erosion on the Strain Pattern in SE Alaska

    NASA Astrophysics Data System (ADS)

    Barker, A. D.; Koons, P. O.; Upton, P.; Hallet, B.

    2008-12-01

    Employing 3D mechanical modeling to investigate the susceptibility of strain patterns to distinct erosion conditions we have identified a strong connection between surface erosion and strain localization and vertical motion of crustal material. The specific model geometry and boundary conditions are relevant to the dynamic St. Elias orogen of SE Alaska, but the general results and interpretations are universal. To illustrate the effect of erosion we compare results to a reference model without imposed erosion. We consider the crustal response to boundary conditions representing erosion scenarios: 1) regional erosion (~1 mm a-1 over a region ~600 km on a side) and 2) focused incision (~6 mm a-1 in valleys ~10 km wide and 50-100 km long). Whereas regional erosion mimics broader scale mass wasting and periglacial weathering, focused incision represents efficient erosion confined to valley systems similar to the massive Bering, Malaspina and Bagley glaciers of the St. Elias range. Using these boundary conditions we demonstrate significant localization of strain and crustal uplift beneath the sites of erosion. We also show the strain localization pattern adjusts to spatial shifts in erosion arising from substantial (order of 100km) glacial advance or retreat. The magnitude of the strain is higher in each erosion model compared to the reference model. The difference of the strain magnitude between erosion models and reference model depends on the location of the imposed erosion: crustal strain localize most when the forethrust daylights in the zone being eroded. Sustained focused erosion decreases the overall crustal strength beneath the site of erosion due to thinning of the strong brittle crust. Strain naturally concentrates within the weakened zone. Upward advection of warm crust causes further weakening and thereby leads to a tectonic aneurysm.

  5. Application of spatial Markov chains to the analysis of the temporal-spatial evolution of soil erosion.

    PubMed

    Liu, Ruimin; Men, Cong; Wang, Xiujuan; Xu, Fei; Yu, Wenwen

    Soil and water conservation in the Three Gorges Reservoir Area of China is important, and soil erosion is a significant issue. In the present study, spatial Markov chains were applied to explore the impacts of the regional context on soil erosion in the Xiangxi River watershed, and Thematic Mapper remote sensing data from 1999 and 2007 were employed. The results indicated that the observed changes in soil erosion were closely related to the soil erosion levels of the surrounding areas. When neighboring regions were not considered, the probability that moderate erosion transformed into slight and severe erosion was 0.8330 and 0.0049, respectively. However, when neighboring regions that displayed intensive erosion were considered, the probabilities were 0.2454 and 0.7513, respectively. Moreover, the different levels of soil erosion in neighboring regions played different roles in soil erosion. If the erosion levels in the neighboring region were lower, the probability of a high erosion class transferring to a lower level was relatively high. In contrast, if erosion levels in the neighboring region were higher, the probability was lower. The results of the present study provide important information for the planning and implementation of soil conservation measures in the study area.

  6. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.

    PubMed

    Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R

    2014-07-01

    Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.

  7. [Impact of wind-water alternate erosion on the characteristics of sediment particles].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Ma, Xin-Xin; Zheng, Shi-Qing

    2014-02-01

    Wind and water are the two dominant erosion agents that caused soil and water losses in the wind-water alternate erosion region on the Loess Plateau. It is meaningful to study the impact of wind-water alternate erosion on the characteristics of soil particles for understanding the response of soil quality and environment to erosion. Through wind tunnel combined rainfall simulation, this paper studied the characteristics of the erosive sediment particles under the effect of wind-water alternate erosion. The results showed that the particles of 0-1 cm soil were coarsened by wind erosion at the wind speeds of 11 and 14 m x s(-1) compared with no wind erosion. Soil fine particles (< 0.01 mm) decreased by 9.8%-10.8%, and coarse particles (> 0.05 mm) increased by 16.8%-20.8%. The physical property of surface soil was changed by the wind erosion, which, in turn, caused an increase in finer particles content in the sediment. Compared with no wind erosion, fine particles (< 0.01 mm) in sediment under the water-wind alternate erosion increased by 2.7%-18.9% , and coarse particles (> 0.05 mm) decreased by 3.7%-9.3%. However, the changing trend of erosive sediment particles after the wind erosion at wind speeds of 11 and 14 m x s(-1) was different along with the rainfall intensity and duration. The erosive sediment particles at the rainfall intensities of 60, 80, 100 mm x h(-1) changed to greater extents than at the 150 mm x h(-1) rainfall intensity with longer than 15 min runoff flowing.

  8. Does Canoeing Increase Streambank Erosion?

    Treesearch

    Edward A. Hansen

    1975-01-01

    Describes research on the Pine River in Michigan to determine if large increases in canoeing accelerated streambank erosion. Most erosion was natural, but people sliding and camping on streambanks created some erosion. Heavy canoe traffic was not a cause of erosion.

  9. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Treesearch

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  10. Protection From Dental Erosion: All Fluorides are Not Equal.

    PubMed

    Faller, Robert V; Noble, Warden H

    2018-03-01

    All fluoride sources help strengthen teeth against bacterial acids that cause caries. However, excessive exposure to dietary acids, which can result in dental erosion, presents a more aggressive level of challenge compared to caries. Despite the fact that almost all toothpastes contain fluoride, both the incidence and prevalence of dental erosion appear to be on the rise. This article: (1) describes key differences between caries and dental erosion and the ability of different fluoride sources to help prevent erosion; (2) discusses the importance of the evaluation of patients for dental erosion at the earliest stages using the Basic Erosive Wear Examination scoring system to help assess and educate patients; and (3) provides evidence-based information for making specific recommendations to patients with dental erosion. The objective of this article is to assess the comparative ability of fluoride agents to protect against dental erosion. Though all fluorides are able to help strengthen teeth against cariogenic acids, not all available sources of fluoride provide the same level of erosion protection. Daily use of a stabilized stannous fluoride dentifrice has been shown to provide the most effective means of protecting teeth against the increasing risk of dental erosion and erosive tooth wear.

  11. Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion

    PubMed Central

    Campbell, Ian C.; Timmins, Lucas H.; Giddens, Don P.; Virmani, Renu; Veneziani, Alessandro; Rab, S. Tanveer; Samady, Habib; McDaniel, Michael C.; Finn, Aloke V.; Taylor, W. Robert; Oshinski, John N.

    2013-01-01

    Purpose We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. Methods We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography (OCT). Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in x-ray angiograms of barium-perfused autopsy hearts. Results Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. Conclusions This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of wall shear stress, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur. PMID:24223678

  12. The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.

    2009-04-01

    Many types of soil erosion modeling have been developed worldwide; each of models has its own advantage and assumption based on the originated area. Ironically, in the tropical countries where the rainfall intensity is higher than other area, the soil erosion problem gain less attention. As in Indonesia, due the inadequate supporting data and method to dealing with, the soil erosion management appears to be least prior in the policy decision. Hence, there is increasing necessity towards the initiation and integration of risk management model in the soil erosion, to prevent further land degradation problem in Indonesia. The main research objective is to generate a model which can analyze the dynamic system of soil erosion problem. This model will comprehensively consider four main aspects within the dynamic system analysis, i.e.: soil erosion rate modeling, the tolerable soil erosion rate, total soil erosion cost, and soil erosion management measures. The generating model will involve some sub-software i.e. the PC Raster to maintain the soil erosion modeling, Powersim Constructor Ver. 2.5 as the tool to analyze the dynamic system and Python Ver. 2.6.1 to build the main Graphical User Interface model. The first step addressed in this research is figuring the most appropriate soil erosion model to be applied in Indonesia based on landscape, climate, and data availability condition. This appropriate model must have the simplicity aspect in input data but still deal with the process based analysis. By using the soil erosion model result, the total soil erosion cost will be calculated both on-site and off-site effect. The total soil erosion cost will be stated in Rupiah (Indonesian currency) and Dollar. That total result is then used as one of input parameters for the tolerable soil erosion rate. Subsequently, the tolerable soil erosion rate decides whether the soil erosion rate has exceeded the allowed value or not. If the soil erosion rate has bigger value than the tolerable soil erosion rate, the soil erosion management will be applied base on cost and benefit analysis. The soil erosion management measures will conduct as decision maker of defining the best alternative soil conservation method in a certain area. Besides the engineering and theoretical methods, the local wisdom also will be taken into account in defining the alternative manners of soil erosion management. As a prototype, this integrated model will be generated and simulated in Serayu Watershed, Central Java, since this area has a serious issue in soil erosion problem mainly in the upper stream area (Dieng area). The extraordinary monoculture plantation (potatoes) and very intensive soil tillage without proper soil conservation method has accelerated the soil erosion and depleted the soil fertility. Based on the potatoes productivity data (kg/ha) from 1997-2007 showed that there was a declining trend line, approximately minus 8,2% every year. On the other hand the fertilizer and pesticide consumption in agricultural land are significantly increasing every year. In the same time, the high erosion rate causes serious sedimentation problem in lower stream. Those conditions can be used as study case in determining the element at risk of soil erosion and calculation method for the total soil erosion cost (on-site and off-site effect). Moreover, The Serayu Watershed consists of complex landforms which might have variation of soil erosion tolerable rate. In the future, this integrated model can obtain valuable basis data of the soil erosion hazard in spatial and temporal information including its total cost, the sustainability time of certain land or agriculture area, also the consequences price of applying certain agriculture or soil management. Since this model give result explicitly in spatial and temporal, this model can be used by the local authority to run the land use scenario in term of soil erosion impact before applied them in the real condition. In practice, such integrated model could give more understanding knowledge to the local people about the soil erosion, its processes, impacts, and how to manage that. Keywords: Risk assessment, soil erosion, dynamic system, environmental valuation

  13. Erosive osteoarthritis: a more severe form of radiographic hand osteoarthritis rather than a distinct entity?

    PubMed Central

    Marshall, Michelle; Nicholls, Elaine; Kwok, Wing-Yee; Peat, George; Kloppenburg, Margreet; van der Windt, Danielle; Myers, Helen; Dziedzic, Krysia

    2015-01-01

    Objectives To determine whether erosive osteoarthritis shares the same pattern of joint involvement and risk profile as increasing grades of non-erosive hand osteoarthritis. Methods Participants were from two population-based cohorts, aged ≥50 years, reporting hand symptoms in the previous month. Interphalangeal joints were assessed for erosive osteoarthritis (Verbruggen–Veys erosive or remodelled phase) and radiographic osteoarthritis (sliding cut-offs of K&L≥2, K&L≥3 and K&L=4). At the joint level, similarities in the frequency and pattern of erosive and non-erosive osteoarthritis were assessed by Spearman's rank correlation coefficients and generalised estimating equations. At the person level, individuals with erosive osteoarthritis were compared to those with non-erosive osteoarthritis using logistic regression, adjusted for age and gender (aOR), for the following exposures: family history, previous injury, overuse and metabolic factors (BMI, dyslipidaemia, hypertension, diabetes). Results In 1076 symptomatic participants the ranked frequency of involvement for erosive joints was comparable to joints with K&L≥3 and K&L=4 (r>0.95). Patterns of joint involvement in erosive osteoarthritis were strongest for symmetry (aOR=6.5; 95% CI 3.0 to 14.1), followed by row (2.0; 0.8 to 5.0) and ray (0.3; 0.0 to 2.5), which was similar to joints with K&L≥3 and K&L=4. Individuals with erosive osteoarthritis (n=80) had an increased risk of metabolic syndrome (2.7; 1.0 to 7.1), notably dyslipidaemia (4.7; 2.1 to 10.6) compared with non-erosive osteoarthritis classed K&L≥3 (n=193). Conclusions The similar frequency of radiographic joint involvement and patterning in erosive osteoarthritis and more severe non-erosive osteoarthritis is consistent with prevalent erosive osteoarthritis being a severe form of hand osteoarthritis rather than a distinct entity. Metabolic exposures, dyslipidaemia in particular, may be implicated in erosive osteoarthritis. PMID:24095935

  14. Tectonic and erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Jordan, Tom; Watts, Tony; Bell, Robin; Jamieson, Stewart; Finn, Carol; Damaske, Detlef

    2014-05-01

    Understanding the mechanisms leading to intraplate mountain building remains a significant challenge in Earth Sciences compared to ranges formed along plate margins. The most enigmatic intraplate mountain range on Earth is the Gamburtsev Subglacial Mountains (GSM) located in the middle of the Precambrian East Antarctic Craton. During the International Polar Year, the AGAP project acquired 120,000 line km of new airborne geophysical data (Bell et al., 2011, Science) and seismological observations (Hansen et al., 2010, EPSL) across central East Antarctica. Models derived from these datasets provide new geophysical perspectives on crustal architecture and possible uplift mechanisms for the enigmatic GSM (Ferraccioli et al., 2011, Nature). The geophysical data define a 2,500-km-long Paleozoic to Mesozoic rift system in East Antarctica surrounding the GSM. A thick high-density lower crustal root is partially preserved beneath the range and has been interpreted as formed during the Proterozoic assembly of East Antarctica. Rifting could have triggered phase/density changes at deep crustal levels, perhaps restoring some of the latent root buoyancy, as well as causing rift-flank uplift. Permian rifting is well-established in the adjacent Lambert Rift, and was followed by Cretaceous strike-slip faulting and transtension associated with Gondwana break-up; this phase may have provided a more recent tectonic trigger for the initial uplift of the modern GSM. The Cretaceous rift-flank uplift model for the Gamburtsevs is appealing because it relates the initiation of intraplate mountain-building to large-scale geodynamic processes that led to the separation of Greater India from East Antarctica. It is also consistent with several geological and geophysical interpretations within the Lambert Rift. However, recent detrital thermochrology results from Oligocene-Quaternary sediments in Prydz Bay (Tochlin et al., 2012, G3) argue against the requirement for major Cretaceous rift-related exhumation in interior East Antarctica. This raises the question of whether the modern Gamburtsevs may instead have been uplifted solely in response to changes in Cenozoic erosion patterns during the early stages of East Antarctic Ice Sheet formation superimposed upon an a Permian-age rift flank, or an even older highland. To address this question we combine results from: i) analyses of the subglacial landscape for the GSM (Rose et al., 2013 EPSL) with; ii) 2D and preliminary 3D flexural models of peak uplift caused by the isostatic responses to fluvial and glacial valley incision processes. We also compare geophysical relief and isostatic model outputs with estimates of erosion rates since the Oligocene and the total amount of incision estimated for the adjacent Lambert rift region (Thomson et al. 2013, Nature Geoscience). Flexural modelling outputs were also compared against the present-day elevations of up to 1500 m a.s.l of uplifted Oligocene-early Miocene glacial-marine sediments in the Lambert Glacier (Hambrey et al., 2000, Geology). Flexural models yield new estimates of peak uplift and regional lowering for continuous and broken-plate approximations respectively. These results can also be used to re-assess the possible ranges of pre-incision elevations of the "Gamburtsev plateau", which is of key importance when modelling early East Antarctic ice sheet development (e.g. De Conto and Pollard, Nature 2003).

  15. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

    USGS Publications Warehouse

    Rengers, Francis K.; Tucker, G.E.; Moody, J.A.; Ebel, Brian

    2016-01-01

    Erosion following a wildfire is much greater than background erosion in forests because of wildfire-induced changes to soil erodibility and water infiltration. While many previous studies have documented post-wildfire erosion with point and small plot-scale measurements, the spatial distribution of post-fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first-order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low-intensity frontal storms (2.4 mm h−1) and high-intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre-fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi-channelized erosion), with the sites of highest erosion corresponding to locations with the lowest roughness. By contrast, in convergent areas we found erosion caused by overland flow. Soil erosion was locally interrupted by immobile objects such as boulders, bedrock, or tree trunks, resulting in a patchy erosion network with increasing roughness over time.

  16. The similarity of river evolution at the initial stage of channel erosion

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2011-12-01

    The similarity of river evolution at the initial stage of channel erosion Jiun-Chuan Lin Department of Geography, National Taiwan University Abstract The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.

  17. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  18. Preventive Effect of CPP-ACPF Paste and Fluoride Toothpastes Against Erosion and Erosion Plus Abrasion 
In Vitro - A 3D Profilometric Analysis.

    PubMed

    Soares, Genaina Guimarães; Magalhães, Pâmela Amorim; Fonseca, Ana Beatriz Monteiro; Tostes, Monica Almeida; Silva, Eduardo Moreira da; Coutinho, Thereza Christina Lopes

    To evaluate the effect of CPP-ACPF paste and fluoride toothpastes on enamel subjected to erosion and erosion plus abrasion in vitro. A total of 220 human enamel blocks were divided into eleven groups (n = 20): CPP-ACPF paste (MPP), potassium nitrate/sodium fluoride toothpaste (PE), sodium fluoride toothpaste (FD), fluoride-free toothpaste (SO) and control (erosion only with no paste or toothpastes; CO) according to the experimental design: erosion or erosion plus abrasion immediately after erosion (ERO+I-ABR) or 30 min after erosion (ERO+30min-ABR). For 5 days, the specimens were subjected to: (1) erosive challenge (EC) (cola drink, 4 x 5 min/day), topical application of the undiluted paste or diluted toothpastes (1:2 w/w) (4 x 1 min/ day) plus 1 h in artificial saliva (AS) between cycles and overnight; or (2) EC plus abrasion (4 x /60 s/day) performed with the diluted toothpastes (no MMP) plus 1 h in AS between cycles and overnight. Erosion depth was quantified through a 3D profilometer. Data were analysed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (p = 0.05). CPP-ACPF paste and NaF toothpaste showed lowest enamel wear among groups and reduced tissue loss by 89% in erosion challenge. Abrasion led to higher enamel wear than erosion only (p = 0.030). ERO+30min-ABR had no protective effect when compared to ERO+I-ABR (p > 0.05). A high frequency of CPP-ACPF paste application (4x daily) is effective in reducing the effects of erosion. A waiting period before performing toothbrushing does not protect enamel against erosion regardless the composition of the toothpastes.

  19. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    PubMed Central

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, <10%, 10-25%, and >50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  20. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    PubMed Central

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  1. The Use of Laser-Induced Fluorescence to Characterize Discharge Cathode Erosion in a 30 cm Ring-Cusp Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sovey, James S. (Technical Monitor); Williams, George J., Jr.

    2004-01-01

    Relative erosion rates and impingement ion production mechanisms have been identified for the discharge cathode of a 30 cm ion engine using laser-induced fluorescence (LIF). Mo and W erosion products as well as neutral and singly ionized xenon were interrogated. The erosion increased with both discharge current and voltage and spatially resolved measurements agreed with observed erosion patters. Ion velocity mapping identified back-flowing ions near the regions of erosion with energies potentially sufficient to generate the level of observed erosion. Ion production regions downstream of the cathode were indicated and were suggested as possible sources of the erosion causing ions.

  2. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  3. Erosion of water-based fracturing fluid containing particles in a sudden contraction of horizontal pipe

    NASA Astrophysics Data System (ADS)

    Cheng, Jiarui; Cao, Yinping; Dou, Yihua; Li, Zhen

    2017-10-01

    A lab experiment was carried out to study the effects of pipe flow rate, particle concentration and pipe inner diameter ratio on proppant erosion of the reducing wall in hydraulic fracturing. The results show that the erosion rate and erosion distribution are different not only in radial direction but also in circumferential direction of the sample. The upper part of sample always has a minimum erosion rate and erosion area. Besides, the erosion rate of reducing wall is most affected by fluid flow velocity, and the erosion area is most sensitive to the change in the diameter ratio. Meanwhile, the erosion rate of reducing wall in crosslinked fracturing fluid is mainly determined by the fluid flowing state due to the high viscosity of the liquid. In general, the increase in flow velocity and diameter ratio not only cause the expansion of erosion-affected flow region in sudden contraction section, but also lead to more particles impact the wall.

  4. Erosion associated with cable and tractor logging in northwestern California

    Treesearch

    R. M. Rice; P. A. Datzman

    1981-01-01

    Abstract - Erosion and site conditions were measured at 102 logged plots in northwestern California. Erosion averaged 26.8 m 3 /ha. A log-normal distribution was a better fit to the data. The antilog of the mean of the logarithms of erosion was 3.2 m 3 /ha. The Coast District Erosion Hazard Rating was a poor predictor of erosion related to logging. In a new equation...

  5. Composition of enamel pellicle from dental erosion patients.

    PubMed

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p < 0.05). In particular, statherin, a calcium-binding protein, was 35% less abundant (p < 0.05). Calcium concentration within the acquired pellicle was also reduced by 50% in erosion patients (p < 0.001). In contrast, the natural pellicle on the incisor had similar amounts of total protein in erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  6. The similarity of river evolution at the initial stage of channel erosion

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Chuan

    2014-05-01

    The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.

  7. Gastroesophageal Reflux is Not Associated with Dental Erosion in Children

    PubMed Central

    Wild, Yvette K.; Heyman, Melvin B.; Vittinghoff, Eric; Dalal, Deepal H.; Wojcicki, Janet M.; Clark, Ann L.; Rechmann, Beate; Rechmann, Peter

    2011-01-01

    Background & Aims Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. Methods We performed a cross-sectional study of 59 children (ages 9–17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, nor was the gastroenterologist aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans and Lactobacilli. Results Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion, by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Conclusions Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. PMID:21820389

  8. Gastroesophageal reflux is not associated with dental erosion in children.

    PubMed

    Wild, Yvette K; Heyman, Melvin B; Vittinghoff, Eric; Dalal, Deepal H; Wojcicki, Janet M; Clark, Ann L; Rechmann, Beate; Rechmann, Peter

    2011-11-01

    Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. We performed a cross-sectional study of 59 children (ages, 9-17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, and the gastroenterologist was not aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans, and Lactobacilli. Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Dust and chemical erosion biases in cosmogenic nuclide studies: A factor-of-ten problem that could mask strong climatic effects on landscape evolution

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Arvin, L.; Ferrier, K.; Aciego, S.

    2017-12-01

    Cosmogenic nuclides have been widely used to quantify erosion in mountain ranges around the world, creating a global database of erosion rates from climatically and lithologically diverse sites, and providing vital clues about how mountain landscape evolution is coupled to Earth's carbon cycle and thus global climate change over geologic timescales. Despite this wealth of data, few studies have observed the widely expected strong control of erosion rates by climatic factors such as precipitation and temperature. Here we show that cosmogenic nuclide studies are prone to biases due to dust deposition and chemical erosion, which together can obscure strong relationships between climate and erosion rates. Erosion rates of sites exposed to intense chemical weathering can be underestimated by two-fold due to chemical enrichment of the cosmogenic target mineral quartz — a result of its high chemical erosion resistance, which increases its residence time and thus reduces its apparent erosion rate compared to other soil minerals. Meanwhile, erosion rates of sites with rapid dust deposition can be overestimated by more than ten-fold, due to dust's contributions to soil mass and target mineral abundance. Compilations of dust fluxes and cosmogenic nuclide data suggest that steep climatic trends in erosion rates, ranging from slow erosion rates in dry settings to twenty-fold faster erosion rates in wet settings, could be largely masked by the combined effects of dust deposition and chemical erosion. We argue that these effects need to be quantified in many cosmogenic nuclide studies of erosion rates. Doing so will require dust input rates; soil depth and density; quartz-enrichment ratios in both saprolite relative to bedrock and soil relative to saprolite; and quartz concentrations in deposited dust. Failure to quantify these crucial parameters can lead to misinterpretation of the strength — and even the sign — of feedbacks between climate and erosion rates in mountain landscapes.

  10. Assessment of soil erosion vulnerability in the heavily populated and ecologically fragile communities in Motozintla de Mendoza, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    González-Morales, Selene B.; Mayer, Alex; Ramírez-Marcial, Neptalí

    2018-06-01

    Variability in physical rates and local knowledge of soil erosion was assessed across six rural communities in the Sierra Madre del Sur, Chiapas, Mexico. The average erosion rate estimated using the RUSLE model is 274 t ha-1 yr-1, with the estimated erosion rates ranging from 28 to 717 t ha-1 yr-1. These very high erosion rates are associated with high rainfall erosivity (17 000 MJ mm ha-1 h-1 yr-1) and steep slopes (mean slope = 67 %). Many of the highest soil erosion rates are found in communities that are dominated by forestland, but where most of the tree cover has been removed. Conversely, lower erosion rates are often found where corn is cultivated for most of the year. According to the results of the soil erosion KAP (knowledge, attitude and practices) survey, awareness of the concept of soil erosion was reasonably high in all of the communities, but awareness of the causes of erosion was considerably lower. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently implementing reforestation practices. Another third of the respondents indicated that they were not following any soil conservation practices. Respondents indicated that adoption of government reforestation efforts have been hindered by the need to clear their land to sell forest products or cultivate corn. Respondents also mentioned the difficulties involved with obtaining favorable tree stocks for reforestation. The KAP results were used to assess the overall level of motivation to solve soil erosion problems by compiling negative responses. The relationship between the magnitude of the soil erosion problem and the capacity to reduce soil erosion is inconsistent across the communities. One community, Barrio Vicente Guerrero, had the highest average negative response rate and the second highest soil erosion rate, indicating that this community is particularly vulnerable.

  11. Influence of fibre distribution and grain size on the mechanical behaviour of friction stir processed Mg–C composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertens, A., E-mail: anne.mertens@ulg.ac.be; Simar, A.; Adrien, J.

    Short C fibres–Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of Mg alloy AZ31B or AZ91D. This novel processing technique can allow the easy production of large-scale metal matrix composites. The paper investigates the microstructure of FSPed C fibre–Mg composites in relation with the fragmentation of the C fibres during FSP and their influence on the tensile properties. 3D X-ray tomography reveals that the fibres orient like onion rings and are more or less fragmented depending on the local shear stress during the process. The fibremore » volume fraction can be increased from 2.3% to 7.1% by reducing the nugget volume, i.e. by using a higher advancing speed in AZ31B alloy or a stronger matrix alloy, like AZ91D alloy. A higher fibre volume fraction leads to a smaller grain size which brings about an increase of the composite yield strength by 15 to 25%. However, a higher fibre volume fraction also leads to a lower fracture strain. Fracture surface observations reveal that damage occurs by fibre/matrix decohesion along fibres oriented perpendicularly to the loading direction. - Graphical abstract: Display Omitted - Highlights: • C–Mg MMCs were produced by FSP sandwiches made of a C fabric between Mg sheets. • Fibre fragmentation and erosion is larger when the temperature reached during FSP is lower. • A lower advancing speed brings a lower fibre volume fraction and a lower grain size. • X-ray tomography reveals that fibres orient along the FSP material flow. • The fibres and grain size reduction increase the yield strength by 15 to 25%.« less

  12. Tip-leakage cavitation in the clearance of a 2D hydrofoil with fillets: high-speed visualization and PIV/PTV measurements

    NASA Astrophysics Data System (ADS)

    Zapryagaev, Ivan I.; Timoshevskiy, Mikhail V.; Pervunin, Konstantin S.

    2017-09-01

    Tip-clearance cavitation is one of the most aggressive forms of cavitation as it can cause surface erosion of hydraulic machinery elements and, as a result, their fatigue damage and disturb designed operating conditions. At present, the literature lacks for detailed experimental data on the inception and development of this type of cavitation at various flow conditions. In the paper, a tip-leakage cavitation occurring in the clearance between an end face of a 2D hydrofoil (a scaled-down model of guide vanes (GV) of a Francis turbine) and a transparent wall of the test section was studied. The experiments were carried out for different cavitating regimes on the cavitation number and two attack angles of 3° and 9°, with the gap size (tip clearance width) varied in the range from 0.4 to 0.8 mm. In order to determine the cavitation inception conditions and investigate the dynamics of the tip-leakage cavitation, a high-speed visualization was applied. A modified PIV/PTV technique with a diverging laser beam instead of a laser light sheet was used to measure the mean velocity distributions within the gap. It was shown that the cavitation pattern on the suction side of the GV model impacts the dynamics of the leakage flow in the gap but does not affect the sheet cavity formed close to the foil leading edge in the clearance as well as its size and dynamics. When the gap size is increased, the tip-leakage cavitation initiates at higher cavitation numbers or, in other words, conditions for the cavitation occurrence become more favorable.

  13. 2010 updated assessment of undiscovered oil and gas resources of the National Petroleum Reserve in Alaska (NPRA)

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.; Schuenemeyer, J.H.; Attanasi, E.D.; Garrity, C.P.; Schenk, C.J.; Charpentier, R.R.; Pollastro, R.M.; Cook, T.A.; and Klett, T.R.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 896 million barrels of oil (MMBO) and about 53 trillion cubic feet (TCFG) of nonassociated natural gas in conventional, undiscovered accumulations within the National Petroleum Reserve in Alaska and adjacent State waters. The estimated volume of undiscovered oil is significantly lower than estimates released in 2002, owing primarily to recent exploration drilling that revealed an abrupt transition from oil to gas and reduced reservoir quality in the Alpine sandstone 15-20 miles west of the giant Alpine oil field. The National Petroleum Reserve in Alaska (NPRA) has been the focus of oil exploration during the past decade, stimulated by the mid-1990s discovery of the adjacent Alpine field-the largest onshore oil discovery in the United States during the past 25 years. Recent activities in NPRA, including extensive 3-D seismic surveys, six Federal lease sales totaling more than $250 million in bonus bids, and completion of more than 30 exploration wells on Federal and Native lands, indicate in key formations more gas than oil and poorer reservoir quality than anticipated. In the absence of a gas pipeline from northern Alaska, exploration has waned and several petroleum companies have relinquished assets in the NPRA. This fact sheet updates U.S. Geological Survey (USGS) estimates of undiscovered oil and gas in NPRA, based on publicly released information from exploration wells completed during the past decade and on the results of research that documents significant Cenozoic uplift and erosion in NPRA. The results included in this fact sheet-released in October 2010-supersede those of a previous assessment completed by the USGS in 2002.

  14. Evolution of the early Antarctic ice ages

    NASA Astrophysics Data System (ADS)

    Liebrand, Diederik; de Bakker, Anouk T. M.; Beddow, Helen M.; Wilson, Paul A.; Bohaty, Steven M.; Ruessink, Gerben; Pälike, Heiko; Batenburg, Sietske J.; Hilgen, Frederik J.; Hodell, David A.; Huck, Claire E.; Kroon, Dick; Raffi, Isabella; Saes, Mischa J. M.; van Dijk, Arnold E.; Lourens, Lucas J.

    2017-04-01

    Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ˜110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ˜85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ˜110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (˜28.0 My to ˜26.3 My ago) and across the Oligocene-Miocene Transition (˜23.0 My ago). However, the high-amplitude glacial-interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical—indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions.

  15. Evolution of the early Antarctic ice ages

    PubMed Central

    de Bakker, Anouk T. M.; Beddow, Helen M.; Wilson, Paul A.; Bohaty, Steven M.; Pälike, Heiko; Batenburg, Sietske J.; Hilgen, Frederik J.; Hodell, David A.; Huck, Claire E.; Kroon, Dick; Raffi, Isabella; Saes, Mischa J. M.; van Dijk, Arnold E.; Lourens, Lucas J.

    2017-01-01

    Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene−Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial−interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical—indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions. PMID:28348211

  16. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2012-12-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean. TOC shows orbital-scale increases and decreases during the past ~155 kyr that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold periods. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka BP indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 contents tend to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  17. Calving fluxes and basal melt rates of Antarctic ice shelves.

    PubMed

    Depoorter, M A; Bamber, J L; Griggs, J A; Lenaerts, J T M; Ligtenberg, S R M; van den Broeke, M R; Moholdt, G

    2013-10-03

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.

  18. Analysis of Flexible Anchored Hollow WPC Quay Walls of the New Berth in Tur, Egypt

    NASA Astrophysics Data System (ADS)

    Elsayed, Ayman

    2017-10-01

    A seawall, also known as a bulkhead or retaining wall, is a structure built to reduce the effects of strong waves and to defend costal land from erosion. Traditionally, seawalls are made of steel, timber or concrete construction. Composite materials, however, have been recently introduced for their ease of installation/maintenance in dry processing, low cost, and environmentally friendly materials. A wood plastic composite (WPC) seawall system has been developed and patented for its unique hollow structure that can give greater stiffness and stability under various external stresses. This paper describes the development of design method used in the analysis of the WPC walls. The main challenge during the physical excavation works is to limit the deformations involved in order to minimize damage on adjacent structures. The deformations depend largely on the excavation and strutting procedures, but also on the properties of the structural elements like the soil, the sheet pile and strutting members. The detailed design procedure involves numerical analyses, national regulations and common practice considerations. The contribution of finite element method in this field was used herein to determine the lateral movements, the bending moments of the wall, the passive earth pressure of the soil and the tensile force exerted by the anchor rods. The overall objectives of this research can be divided into two categories, First calibration of the finite element model for the new Tur quay walls (the case study) and reviewing the results of the steel cross section that chosen and the suggested one. Second, analysis and comparing the results of WPC cross-sections with the designed Steel sheet pile wall (SPW).

  19. Current Pattern Change in the Fram Strait at the Pliocene/Pleistocene Boundary

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Geissler, W. H.; Matthiessen, J. J.; Jokat, W.

    2014-12-01

    Thick packages of drift-type sediments were identified in the northwestern and central part of the Fram Strait, mainly along the western Yermak Plateau flank, but also in the central, flat part of the Fram Strait. A large-scale field of sediment waves was found north of 80.5°, along the Yermak Plateau rise. This field separates two drift bodies, a deeper one towards west and a shallower one towards east. The drift bodies were deposited by bottom currents, most likely by the northbound Yermak Branch of the West Spitsbergen Current, but an influence of a southbound current on the westren drift body cannot be ruled out. Within the drift bodies and even more pronounced withing the sediment waves, a stratigraphic boundary is clearly visible. It separates a lower package of waves migrating upslope at a low angle of ~5° from an upper package with significantly increased wave crest migration at ~16.5°. Using the seismic network, this stratigraphic boundary could be tracked to ODP Leg 151, Site 911, where it corresponds to the lithostratigraphic boundary between units IA and IB dated to 2.7 Ma. The increase in wave-crest migration angle points at a shift towards higher sedimentation rates at 2.7 Ma. This corresponds to the intensification of the Northern Hemisphere glaciation with a major expansion of the Scandinavian, northern Barents Sea, North American and Greenland ice sheets. The Barents Shelf that was subaerially exposed and the expansion of the northern Barents Sea ice sheet (as well as Svalbard) are the likely sources for enhanced erosion and fluvial input along the pathway of the West Spitsbergen Current, resulting in higher sedimentation rates in the Fram Strait.

  20. Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex

    USGS Publications Warehouse

    McAdoo, B.G.; Orange, D.L.; Screaton, Elizabeth; Lee, H.; Kayen, R.

    1997-01-01

    A combination of geomorphological, seismic reflection and geotechnical data constrains this study of sediment erosion and deposition at the toe of the Cascadia accretionary prism. We conducted a series of ALVIN dives in a region south of Astoria Canyon to examine the interrelationship of fluid flow and slope failure in a series of headless submarine canyons. Elevated head gradients at the inflection point of canyons have been inferred to assist in localized failures that feed sediment into a closed slope basin. Measured head gradients are an order of magnitude too low to cause seepage-induced slope failure alone; we therefore propose transient slope failure mechanisms. Intercanyon slopes are uniformly unscarred and smooth, although consolidation tests indicate that up to several metres of material may have been removed. A sheet-like failure would remove sediment uniformly, preserving the observed smooth intercanyon slope. Earthquake-induced liquefaction is a likely trigger for this type of sheet failure as the slope is too steep and short for sediment flow to organize itself into channels. Bathymetric and seismic reflection data suggest sediment in a trench slope basin between the second and third ridges from the prism's deformation is derived locally. A comparison of the amounts of material removed from the slopes and that in the basin shows that the amount of material removed from the slopes may slightly exceed the amount of material in the basin, implying that a small amount of sediment has escaped the basin, perhaps when the second ridge was too low to form a sufficient dam, or through a gap in the second ridge to the south. Regardless, almost 80% of the material shed off the slopes around the basin is deposited locally, whereas the remaining 20% is redeposited on the incoming section and will be re-accreted.

  1. Utility of 222Rn as a passive tracer of subglacial distributed system drainage

    NASA Astrophysics Data System (ADS)

    Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas

    2017-03-01

    Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.

  2. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet

    USGS Publications Warehouse

    ten Brink, Uri S.; Hackney, R.I.; Bannister, S.; Stern, T.A.; Makovsky, Y.

    1997-01-01

    In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312-km-long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85 ?? 15 km and a preuplift elevation of 700 ?? 50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.

  3. A tuff cone erupted under frozen-bed ice (northern Victoria Land, Antarctica): linking glaciovolcanic and cosmogenic nuclide data for ice sheet reconstructions

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Rocchi, S.; Johnson, J. S.; Di Vincenzo, G.; Schaefer, J. M.

    2018-01-01

    The remains of a small volcanic centre are preserved on a thin bedrock ridge at Harrow Peaks, northern Victoria Land, Antarctica. The outcrop is interpreted as a monogenetic tuff cone relict formed by a hydrovolcanic (phreatomagmatic) eruption of mafic magma at 642 ± 20 ka (by 40Ar-39Ar), corresponding to the peak of the Marine Isotope Stage 16 (MIS16) glacial. Although extensively dissected and strewn with glacial erratics, the outcrop shows no evidence for erosion by ice. From interpretation of the lithofacies and eruptive mechanisms, the weight of the evidence suggests that eruptions took place under a cold-based (frozen-bed) ice sheet. This is the first time that a tuff cone erupted under cold ice has been described. The most distinctive feature of the lithofacies is the dominance of massive lapilli tuff rich in fine ash matrix and abraded lapilli. The lack of stratification is probably due to repeated eruption through a conduit blasted through the ice covering the vent. The ice thickness is uncertain but it might have been as little as 100 m and the preserved tephra accumulated mainly as a crater (or ice conduit) infill. The remainder of the tuff cone edifice was probably deposited supraglacially and underwent destruction by ice advection and, particularly, collapse during a younger interglacial. Dating using 10Be cosmogenic exposure of granitoid basement erratics indicates that the erratics are unrelated to the eruptive period. The 10Be ages suggest that the volcanic outcrop was most recently exposed by ice decay at c. 20.8 ± 0.8 ka (MIS2) and the associated ice was thicker than at 642 ka and probably polythermal rather than cold-based, which is normally assumed for the period.

  4. Understanding erosion process using rare earth element tracers in a preformed interrill-rill system

    USDA-ARS?s Scientific Manuscript database

    Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill ...

  5. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    USDA-ARS?s Scientific Manuscript database

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  6. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Treesearch

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  7. Macroscopic erosion of divertor and first wall armour in future tokamaks

    NASA Astrophysics Data System (ADS)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  8. [Campylobacter (Helicobacter) pylori in chronic erosive gastritis, duodenitis and gastroduodenitis].

    PubMed

    Kolarski, V; Tsenova, V; Petrova-Shopova, K; Nikolov, S; Kaleva, M; Petrova, D

    1991-01-01

    The presence and degree of manifestation of Campylobacter (Helicobacter) pylori in gastroduodenal mucosa were studied in 100 patients (56 men, mean age 51.4 years, and 44 women, mean age 46.5 years) with endoscopically proved chronic erosive gastritis (52 patients), erosive duodenitis (36 patients) and erosive gastroduodenitis (12 patients). The examinations revealed the presence of Campylobacter (Helicobacter) pylori in mean 77% of the patients with erosive gastritis, duodenitis and gastroduodenitis. Campylobacter (Helicobacter) pylori was found most often in patients with chronic erosive duodenitis--83.3%, whereas in the patients with erosive gastritis it was found in 73.07%. In 83.33% of the patients with chronic erosive gastritis, duodenitis and gastroduodenitis the campylobacter infection was well manifested--(++) according to Le Bodie et al (1987). The results allow the conclusion that one of the important pathogenetic factors of erosive gastritis, duodenitis and gastroduodenitis is the Campylobacter (Helicobacter) pylori infection of gastroduodenal mucosa.

  9. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  10. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  11. Erosion of a grooved surface caused by impact of particle-laden flow

    NASA Astrophysics Data System (ADS)

    Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young

    2016-11-01

    Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.

  12. Dental erosion among 12 year-old Libyan schoolchildren.

    PubMed

    Huew, R; Waterhouse, P J; Moynihan, P J; Maguire, A

    2012-12-01

    As there are limited data on dental erosion in Libya, the aim of this study was to assess the prevalence and severity of dental erosion in a sample of 12 year-old children in Benghazi, Libya. Cross-sectional observational study. Elementary schools in Benghazi, Libya. A random sample of 791 12 year-old children (397 boys and 394 girls) attending 36 schools. Clinical dental examination for erosion using UK National Diet and Nutrition Survey (2000) criteria and self-completion questionnaire. The area and depth of dental erosion affecting the labial and palatal surfaces of the upper permanent incisors and occlusal surfaces of the first permanent molars. Dental erosion was observed in 40.8% of subjects; into enamel affecting 32.5%, into dentine affecting 8.0% and into pulp affecting 0.3% of subjects. Based on area affected, 323 subjects (40.8%) exhibited dental erosion (code > 0), with 32.6% of these subjects having erosion affecting more than two thirds of one or more surfaces examined. Mean total scores for dental erosion for all surfaces per mouth by area and by depth were both 2.69 (sd 3.81). Of the 9492 tooth surfaces examined, 2128 surfaces (22.4%) had dental erosion. Girls had more experience of erosion than boys at all levels of severity (p = 0.001). In a cohort of 12 year-old Libyan schoolchildren, more than one third of children examined showed dental erosion, requiring clinical preventive counselling. Significantly more erosion occurred in girls than boys.

  13. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Angileri, Silvia Eleonora; Conoscenti, Christian; Hochschild, Volker; Märker, Michael; Rotigliano, Edoardo; Agnesi, Valerio

    2016-06-01

    Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km2 river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The adopted method offers the advantages of an objective and repeatable procedure, whose result is useful for local administrators to identify the areas that are most susceptible to water erosion and best allocate resources for soil conservation strategies.

  14. Contrasting Modern and 10Be- derived erosion rates for the Southern Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Bellin, N.; Vanacker, V.; Kubik, P.

    2012-04-01

    In Europe, Southeast Spain was identified as one of the regions with major treat of desertification in the context of future land use and climate change. During the last years, significant progress has been made to understand spatial patterns of modern erosion rates in these semi-arid degraded environments. Numerous European projects have contributed to the collection of modern erosion data at different spatial scales for Southeast Spain. However, these data are rarely analysed in the context of long-term changes in vegetation, climate and human occupation. In this paper, we present Modern and Holocene denudation rates for small river basins (1 to 10 km2) located in the Spanish Betic Cordillera. Long-term erosion data were derived from cosmogenic nuclide analyses of river-borne sediment. Modern erosion data were quantified through analysis of sediment deposition volumes behind check dams, and represent average erosion rates over the last 10 to 40 years. Modern erosion rates are surprisingly low (mean erosion rate = 0.048 mm y-1; n=36). They indicate that the steep, sparsely vegetated hillslopes in the Betic Cordillera cannot directly be associated with high erosion rates. 10Be -derived erosion rates integrate over the last 37500 to 3500 years, and are roughly of the same magnitude. They range from 0.013 to 0.243 mm y-1 (mean denudation rate = 0.062 mm y-1 ± 0.054; n=20). Our data suggest that the modern erosion rates are similar to the long-term erosion rates in this area. This result is in contrast with the numerous reports on human-accelerated modern erosion rates for Southeast Spain. Interestingly, our new data on long-term erosion rates show a clear spatial pattern, with higher erosion rates in the Sierra Cabrera and lower erosion rates in Sierra de las Estancias, and Sierra Torrecilla. Preliminary geomorphometric analyses suggest that the spatial variation that we observe in long-term erosion rates is related to the gradient in uplift rates of the Betic Cordillera.

  15. Relationship between dental erosion and respiratory symptoms in patients with gastro-oesophageal reflux disease.

    PubMed

    Wang, Geng-Ru; Zhang, Hui; Wang, Zhong-Gao; Jiang, Guang-Shui; Guo, Cheng-Hao

    2010-11-01

    Both dental erosion and respiratory symptoms are extra-oesophageal manifestations of gastro-oesophageal reflux disease (GERD). The aim of this study was to determine whether dental erosion was correlated with respiratory symptoms in GERD patients. 88 GERD patients were recruited and assigned to three groups mainly according to the frequency of respiratory symptoms: Group I: never; Group II: occasional (1-2 days a week or less); Group III: frequent (3-5 days a week or more). All patients underwent medical evaluations, including medical history, questionnaire answering and alimentary tract examinations. Dental examinations were carried out on these patients and 36 healthy controls. Dental erosions were measured by modified method of Smith and Knight Tooth Wear Index (TWI). Location and severity of dental erosion were recorded. The prevalence of dental erosion in Group III (64.52%) was higher (p<0.05) than that in Groups I (36.67%) and II (44.44%). GERD patients were presented with dental erosion with TWI scores ranging from 1 to 4. Though proportion of dental erosion with Score 2 (7/20) in Group III was higher than that in Group I (2/11) and Group II (3/12), there was no statistical significance in the proportions of erosion scores among three patient groups. Correlation coefficient between airway symptoms and scores of dental erosion was 0.231 (p<0.05). Palatal erosion of upper incisor was seen in 8 persons (72.7%) in Group I, 9 persons (75%) in Group II and 16 persons (80%) in Group III (p>0.05). Labial erosion of upper incisors was found in 1 person in Groups I and II respectively and 4 persons in Group III. All patients with labial erosion on upper incisors had palatal erosion, except 1 patient in Group III. In GERD patients, dental erosions are more prevalent in patients with frequent respiratory symptoms than those in patients with occasional and without respiratory symptoms. Palatal erosion of upper incisor is the main manifestation in patients. Acid reflux is the main causative factor of dental erosion in GERD patients with airway symptoms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments. Contrary to previous studies, the pore pressure gradient exhibited a range of values when erosion occurred, which indicates that erosion is the result of multiple physical mechanisms competing to secure or destabilize the sediment bed. The observations provide a better understanding of the forces acting within the sediment, and could improve parameters used in coastal sediment transport models to better predict coastal change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMEP23D0851S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMEP23D0851S"><span>Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sou, I.; Calantoni, J.; Reed, A. H.; Furukawa, Y.</p> <p>2012-12-01</p> <p>A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The PIV system uses four cameras and a dual cavity Nd:YAG laser. The system allows for a pair of stereo PIV windows of about 10 cm by 10 cm each to be arbitrarily located within a single light sheet. Image pairs were acquired with all four cameras at 50 Hz for 50 consecutive seconds for each flow condition. The stereo PIV windows were positioned on either side of sediment cores inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The oscillatory flows are generated by two types of driving mechanism (scotch yoke and crank lever) for converting the rotational motion of the flywheel into the linear motion of a piston. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. Two kinds of inorganic sediment samples were examined. One was a mixture of 50% kaolinite and 50% 500-micron sand under flows driven by the crank lever mechanism. Another sediment core was a mixture of 50% mud collected in Galveston Bay, TX, and 50% 250-micron sand under flows driven by the scotch-yoke mechanism. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. An example of the instantaneous velocity field superimposed on the raw image is shown in Figure 1. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the mud core, the residual light intensity was assumed to be scattered from suspended sediments eroded from the core. Relative comparisons were only made using the same sample mixture since it is difficult, if not impossible, to calibrate the light scattering from different sediments.; Figure 1. An example of the instantaneous time-resolved velocity field superimposed on the raw image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23E2839S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23E2839S"><span>Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.</p> <p>2017-12-01</p> <p>As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour around bridge piers and beach erosion were observed. Sediment samples, penetrometer, and mini torvane data were collected at most of these sites and data analysis is being conducted. The presentation will provide an overview of the findings of the GEER team. The preliminary report may be found at www.geerassociation.org.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V31C3041B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V31C3041B"><span>Near-Vent, Fissure-Fed Lava Channel Network Morphologies in the Kīlauea December 1974 Flow: Implications for Differentiating Lava Construction From Fluvial Erosion on Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bleacher, J. E.</p> <p>2015-12-01</p> <p>Streamlined islands are often assumed to be the product of erosion by water and are cited as evidence of aqueous flows on Mars. However, lava can build streamlined islands in a manner that is more easily explained by flow thickening followed by partial drainage of preferred lava pathways. Kīlauea's December 1974 (D1974) flow was emplaced as a broad sheet-like flow from a series of en echelon fissures across an older hummocky pāhoehoe tumulus field. The lavas surrounded the tumuli and coalesced to fill a topographic low near the basal scarp of the Koae Fault System. As these obstacles were inundated by the D1974 flow, the lava preferentially cooled around the tumuli to form a higher viscosity zone beneath a smooth crust. Stagnation of these thinner, cooler, and more viscous zones focused the flow into a series of preferred lava pathways located between the stagnant islands. Changes in the local discharge rate disrupted the crust of the flow above the lower viscosity pathways. Older tumuli adjacent to the D1974 flow display the same relief as the flow's islands and uncovered portions of this older flow are exposed at the tops of many islands, supporting an interpretation that islands were anchored by high-standing pre-flow tumuli. As the local lava supply waned, partial drainage of the preferred pathways occurred between the higher-standing surfaces anchored to the older tumuli. The resulting morphology consists of a relatively smooth flow field with thin margins that is dissected by depressed pathways or channels. This morphology resembles an erosional surface incised into a smooth plain, but actually represents an initial constructional process followed by partial drainage within a viscous lava flow. Many other Hawaiian rift zone, fissure-fed flow fields display comparable morphologies in the near vent facies, including islands, terraces, thin flow margins and a lack of well defined topographic levees along channels. Thus, branching channel networks and streamlined islands within fissure-fed flow fields on Mars could have resulted from a combination of initial flow thickening followed by partial drainage of preferred lava pathways, and therefore do not necessarily imply substrate erosion or modification by fluvial processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC31A1017F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC31A1017F"><span>Sea-level responses to sediment transport over the last ice age cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrier, K.; Mitrovica, J. X.</p> <p>2013-12-01</p> <p>Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032529','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032529"><span>Analysis of the Effect of Surface Modification on Polyimide Composites Coated with Erosion Resistant Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ndalama, Tchinga; Hirschfeld, Deidre; Sutter, James K. (Technical Monitor)</p> <p>2003-01-01</p> <p>The aim of this research is to enhance performance of composite coatings through modification of graphite-reinforced polyimide composite surfaces prior to metal bond coat/ hard topcoat application for use in the erosive and/or oxidative environments of advanced engines. Graphite reinforced polyimide composites, PMR-15 and PMR-II-50, formed by sheet molding and pre-pregging will be surface treated, overlaid with a bond coat and then coated with WC-Co. The surface treatment will include cleaning, RF plasma or ultraviolet light- ozone etching, and deposition of SiO(x) groups. These surface treatments will be studied in order to investigate and improve adhesion and oxidation resistance. The following panels were provided by NASA-Glenn Research Center(NASA-GRC): Eight compression molded PMR-II-50; 6 x 6 x 0.125 in. Two vacuum-bagged PMR-II-50; 12 x 12 x 0.125 in. Eight compression molded PMR-15; 6 x 6 x 0.125 in. One vacuum-bagged PMR-15; 12 x 12 x 0.125 in. All panels were made using a 12 x 12 in. T650-35 8HS (3K-tow) graphite fabric. A diamond-wafering blade, with deionized water as a cutting fluid, was used to cut PMR-II-50 and PMR-15 panels into 1 x 1 in. pieces for surface tests. The panel edges exhibiting delamination were used for the preliminary surface preparation tests as these would be unsuitable for strength and erosion testing. PMR-15 neat resin samples were also provided by NASA GRC. Surface profiles of the as-received samples were determined using a Dektak III Surface profile measuring system. Two samples of compression molded PMR-II-50 and PMR-15, vacuum-bagged PMR-II-50 and PMR-15 were randomly chosen for surface profile measurement according to ANSI/ASME B46.1. Prior to each measurement, the samples were blasted with compressed air to remove any artifacts. Five 10 mm-long scans were made on each sample. The short and long wavelength cutoff filter values were set at 100 and 1000 m, diamond stylus radius was 12.5 microns. Table 1 is a summary of the arithmetic average roughness (Ra) and waviness (Wa) for the composite surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916818D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916818D"><span>Integrating isotopic tracer techniques with Bayesian modelling for improved assessment and management of sedimentation problems in the Gilgel-Gibe catchment, Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dume, Bayu; Amsalu, Nebiyu; Bode, Samuel; Mtei, Kelvin; Munishi, Linus; Navas, Ana; Semmens, Brice; Smith, Hugh; Stock, Brian; Blake, Will; Boeckx, Pascal</p> <p>2017-04-01</p> <p>Soil erosion and associated downstream siltation of dams and lakes is becoming serious threat to catchment ecosystem services supporting water, food and energy security in Ethiopia. Sediments originate on catchment hillslopes but mobilisation processes vary depending on land use and terrain. The Gilgel Gibe hydroelectric dam is one of a series of development projects launched by the Federal Government of Ethiopia. The catchment is characterised by erodible, deforested agricultural land which is also overgrazed. Siltation and nutrient enrichment are significant issues given 'hotspot' sheet erosion estimates of 2210 ton per square km. The annual contribution of sediment from the Gilgel Gibe River to the dam was estimated at 277 thousand tons per year leading to accumulations of 3.75 x 107 cubic metres per year of silt behind the dam. The primary driver for mobilisation and translocation to downstream is believed to be erosion on agricultural lands and collapse of steep banks, through landsliding into river channels in the highland headwaters. The relative importance of specific sources of siltation are unknown and sediment source apportionment has been identified as a first essential step before soil conservation measures can be implemented. Knowledge of sediment source and transfer dynamics is critical to inform management policy decisions to maintain and enhance future food, water and energy security To test the applicability of a new combination of Bayesian unmixing modelling with sediment fingerprinting in this terrain (IMIXSED approach) a demonstration sub-catchment was selected through field assessment in the upper Gilgel-Gibe water-supply catchments (Unta River) and sampling strategies designed. Accordingly, sources, i.e. soil samples from landslides (n=40), eroding channel bank (n = 5), cultivated land (n = 30), grasslands (n = 30), wooded areas (n = 10), homestead plots (n = 10) were collected alongside 10 spatially-integrated sediment deposits from the receptor cobble bed river after the 2016 rainy season. In order to extract reliable information on the sources of fine sediment delivered into rivers and dam, new isotopic techniques (e.g., Compound Specific Stable Isotopes (CSSIs)) combined with other isotopic techniques (fallout radionuclides) and geochemical tracer properties (via WD-XRF) were employed to quantify sediment sources. Results from this demonstration catchment are discussed in the context of the wider sediment pressures on the Hydro-Electric Power infrastructure of the Gilgel Gibe system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020613','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020613"><span>Viewpoint: Sustainability of piñon-juniper ecosystems - A unifying perspective of soil erosion thresholds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.</p> <p>1998-01-01</p> <p>Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43G1533H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43G1533H"><span>Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, M. J.; Silins, U.; Anderson, A.</p> <p>2016-12-01</p> <p>Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3916424','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3916424"><span>Validating and Improving Interrill Erosion Equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi</p> <p>2014-01-01</p> <p>Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20689238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20689238"><span>Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi</p> <p>2010-01-01</p> <p>Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29692107','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29692107"><span>[Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng</p> <p>2017-11-01</p> <p>Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2397L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2397L"><span>Temporal and spatial variations of rainfall erosivity in Southern Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang</p> <p>2014-05-01</p> <p>Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SOIL....2...49S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SOIL....2...49S"><span>Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.</p> <p>2016-01-01</p> <p>Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830017582','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830017582"><span>Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rao, P. V.; Buckley, D. H.</p> <p>1983-01-01</p> <p>The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24432788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24432788"><span>Dental erosion: a widespread condition nowadays? A cross-sectional study among a group of adolescents in Norway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Søvik, Jenny Bogstad; Tveit, Anne Bjørg; Storesund, Trond; Mulic, Aida</p> <p>2014-10-01</p> <p>This study aimed to investigate the prevalence, distribution and severity of erosive wear in a group of 16-18-year-olds in the western part of Norway. A second aim was to describe possible associations between caries experience, socioeconomic background and origin of birth. Adolescents (n = 795) attending recall examinations at Public Dental Service (PDS) clinics were also examined for dental erosive wear on index surfaces, using the Visual Erosion Dental Examination scoring system (VEDE). In total, 795 individuals were examined. Dental erosive wear was diagnosed in 59% of the population (44% erosive wear in enamel only, 14% combination of enamel and dentine lesions, 1% erosive wear in dentine only). The palatal surfaces of upper central incisors and occlusal surfaces of first lower molars were affected the most (33% and 48% of all surfaces, respectively). Cuppings on molars were registered in 66% of the individuals with erosive wear. Erosive wear was significantly more prevalent among men (63%) than women (55%) (p = 0.018). There were no significant associations between dental erosive wear and caries experience, socioeconomic background or origin of birth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT.......255L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT.......255L"><span>Effect of mechanical properties on erosion resistance of ductile materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levin, Boris Feliksovih</p> <p></p> <p>Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By incorporating this parameter into a new erosion model, good correlation was observed with experimentally measured erosion rates. An increase in area under the microhardness curve led to an increase in erosion resistance. It was shown that an increase in hardness below the eroded surface occurs mainly due to the strain-rate hardening effect. Strain-rate sensitivities of tested materials were estimated from the nanoindentation tests and showed a decrease with an increase in materials hardness. Also, materials combining high hardness and strain-rate sensitivity may offer good erosion resistance. A methodology is presented to determine the proper mechanical properties to incorporate into the erosion parameter based on the physical model of the erosion mechanism in ductile materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..423..176Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..423..176Z"><span>Numerical study of impact erosion of multiple solid particle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping</p> <p>2017-11-01</p> <p>Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1225B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1225B"><span>Channel Processes and Sedimentology of a Boulder-Bed Ephemeral Stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Billi, Paolo</p> <p>2014-05-01</p> <p>Very few papers report about the geomorphology and sedimentology of modern very coarse-grained, ephemeral streams. Other than the relevance of shedding some light on fluvial processes in dryland, boulder-bed rivers, this paper aims to provide some insight on their sedimentological characteristics as a diagnostic tool in the interpretation of old deposits. A field study on such topics is carried out on the Golina River, a sandy boulder-bed ephemeral stream of the Kobo basin in northern Ethiopia, subjected to intermittent flow generated by isolated, high intensity rainfall. Though the main gemorphological characteristics of the braid bars and channels are apparently similar to those of perennial counterparts, field investigations show the general physiographic setting and the sedimentology of the study reach result from very different depositional/erosion processes. A model based on the superimposition of coarse-grained bedload sheets, with the characteristics described by Whiting et la. (1988), and subsequent dissection during the receding flood flow is considered. This model was found to well explain the morphological and sedimentological features of the study river reach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890000662','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890000662"><span>Standardization of the carbon-phenolic materials and processes. Vol. 2: Test methods and specifications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, William B.</p> <p>1988-01-01</p> <p>Carbon-phenolic composite materials are used in the ablation process in the nozzles of the Space Shuttle Main Engine. The nozzle is lined with carbon cloth-phenolic resin composites. The extreme heat and erosion of the burning propellant are controlled by the carbon-phenolic composite by means of ablation, a heat and mass transfer process in which a large amount of heat is dissipated by sacrificailly removing material from a surface. Phenolic materials ablate with the initial formation of a char. The depth of the char is a function of the heat conduction coefficient of the composite. The char layer is a poor conductor so it protects the underlying phenolic composite from the high heat of the burning propellant. The nozzle component ablative liners (carbon cloth-phenolic resin composites) are tape wrapped, hydroclave and/or autoclave cured, machined and assembled. The tape consists of prepreg broadcloth. The materials flow sheet for the nozzle ablative liners is given. The prepreg is a three component system: phenolic resin, carbon cloth, and carbon filler. This is Volume 2 of the report, Test Methods and Specifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27616724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27616724"><span>Prevalence of dental erosion among people with gastroesophageal reflux disease in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Wenhao; Liu, Jingming; Chen, Su; Wang, Yao; Zhang, Zhenting</p> <p>2017-01-01</p> <p>Gastroesophageal reflux disease (GERD) is typically diagnosed based on symptoms of regurgitation and heartburn, although it may also manifest as asthma-like symptoms, laryngitis, or dental erosion. The purpose of this prospective, cross-sectional study was to assess the prevalence of dental erosion in people with GERD and to evaluate the association between GERD and dental erosion. The presence, severity, and pattern of dental erosion was assessed in 51 participants with GERD and 50 participants without GERD using the Smith and Knight tooth wear index. Medical, dietary, and dental histories were collected by questionnaire. Factors potentially related to dental erosion, including GERD, were evaluated by logistic regression. Dental erosion was observed in 31 (60.8%) participants with GERD and 14 (28%) participants without GERD. Bivariate analysis revealed that participants with GERD were more likely to experience dental erosion (crude odds ratio [cOR]: 2.74; 95% CI: 1.19, 6.32) than participants without GERD. Multivariate analysis also revealed that participants with GERD had a higher risk of dental erosion (adjusted odds ratio [aOR]: 3.97; 95% CI: 1.45, 10.89). Consumption of grains and legumes, the most frequently consumed foods in China, did not correlate with dental erosion. However, carbonated beverage consumption was significantly associated with GERD and dental erosion (aOR: 3.34; 95% CI: 1.01, 11.04; P=.04). GERD was positively correlated with dental erosion. Carbonated beverage consumption can increase the risk of both GERD and dental erosion. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860015345','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860015345"><span>Contribution to the study of the electric arc: Erosion of metallic electrodes. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Castro, A.</p> <p>1986-01-01</p> <p>A procedure is described for determining the extent of arc electrode erosion (excluding erosion due to transfer of material) from measurements of emitted spectral beam intensity. The relation between emission intensity and plasma temperature is ascertained. Experimental study of several combinations of monometallic electrodes shows that the method is suitable for determining cathode erosion, although the anode metal affects the extent of erosion. Combinations of electrodes which lead to low erosion of silver are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5560727','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5560727"><span>Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; da Silva, Thiago Cruvinel; Honório, Heitor Marques; Rios, Daniela</p> <p>2017-01-01</p> <p>This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges. PMID:28817591</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28817591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28817591"><span>Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela</p> <p>2017-01-01</p> <p>This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AeoRe..32..192J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AeoRe..32..192J"><span>Simulations of wind erosion along the Qinghai-Tibet Railway in north-central Tibet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Yingsha; Gao, Yanhong; Dong, Zhibao; Liu, Benli; Zhao, Lin</p> <p>2018-06-01</p> <p>Wind erosion along the Qinghai-Tibet Railway causes sand hazard and poses threats to the safety of trains and passengers. A coupled land-surface erosion model (Noah-MPWE) was developed to simulate the wind erosion along the railway. Comparison with the data from the 137Cs isotope analysis shows that this coupled model could simulate the mean erosion amount reasonably. The coupled model was then applied to eight sites along the railway to investigate the wind-erosion distribution and variations from 1979 to 2012. Factors affecting wind erosion spatially and temporally were assessed as well. Majority wind erosion occurs in the non-monsoon season from December to April of the next year except for the site located in desert. The region between Wudaoliang and Tanggula has higher wind erosion occurrences and soil lose amount because of higher frequency of strong wind and relatively lower soil moisture than other sites. Inter-annually, all sites present a significant decreasing trend of annual soil loss with an average rate of -0.18 kg m-2 a-1 in 1979-2012. Decreased frequency of strong wind, increased precipitation and soil moisture contribute to the reduction of wind erosion in 1979-2012. Snow cover duration and vegetation coverage also have great impact on the occurrence of wind erosion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33B1933B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33B1933B"><span>Upscaling Bedrock Erosion Laws from the Point to the Patch and from the Event to the Year</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beer, A. R.; Turowski, J. M.</p> <p>2017-12-01</p> <p>Bedrock erosion depends on the interactions between the bedload tools and cover effects. However, it is unclear (i) how well long-term calibrations of existing erosion models can predict individual erosion events, and (ii) whether at-a-point event calibrations can be spatio-temporally upscaled. Here, we evaluate the performance of at-a-point calibrated erosion models by scaling their erosional efficiency coefficients (k-factors). We use continuous measurements of water discharge and bedload transport at 1- minute resolution, supplemented by repeated sub-millimeter-resolution spatial erosion surveys of a concrete slab in a small Swiss pre-alpine stream. Our results confirm the linear dependency of bedrock abrasion on sediment flux under sediment-starved conditions integrated over space (the 0.2m2 slab surface) and time (20 months). The predictive quality of the commonly applied unit stream power (USP) model is strongly susceptible to bedload transport distribution, whereas the bedload-dependent tools-only model yields more reasonable results. Applying the fitted mean model k-factors to a 16-year, 1-minute-resolution time series of discharge and bedload transport shows that the excess USP model EUSP (which includes a discharge threshold for bedload transport) generally predicts cumulative erosion reasonably well. For exceptional events, however, the EUSP model fails to predict the resulting large erosion rates. Hence, for sediment-starved conditions, event-based erosion model calibration can be applied over larger spatio-temporal scales with stationary k-factors, if a discharge threshold for sediment transport is taken into account. The EUSP model is a surrogate to predict long-term erosion given average erosive events, but fails to capture large event erosion rates. Consequently, the erosion tendency during average erosive events is generally matched by overall EUSP modelling, but large and highly erosive events are underpredicted. In such, water discharge does not account for the non-linearity in sediment availability (e.g., due to sudden release of interlocked sediment from the streambed) and in grain impact energies on the bedrock (i.e., large grain impacts dominate total erosion), which are the main drivers of a bedrock channel's morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919050B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919050B"><span>What can we learn from national-scale geodata describing soil erosion?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benaud, Pia; Anderson, Karen; Carvalho, Jason; Evans, Martin; Glendell, Miriam; James, Mike; Lark, Murray; Quine, Timothy; Quinton, John; Rawlins, Barry; Rickson, Jane; Truckell, Ian; Brazier, Richard</p> <p>2017-04-01</p> <p>The United Kingdom has a rich dataset of soil erosion observations, which have been collected using a wide range of methodologies, across various spatial and temporal scales. Yet, while observations of soil erosion have been carried out along-side agricultural development and intensification, understanding whether or not the UK has a soil erosion problem remains a question to be answered. Furthermore, although good reviews of existing soil erosion rates exist, there is no single resource that brings all of this work together. Therefore, the primary aim of this research was to build a picture of why attempts to quantify erosion rates across the UK empirically have fallen short, through: (1) Collating all available, UK-based and empirically-derived soil erosion datasets into a spatially explicit and open-access database, (2) Developing an understanding of observed magnitudes of erosion, in the UK, (3) Evaluating impact of non-environmental controls on erosion observations i.e. study methodologies, and (4) Exploring trends between environmental controls and erosion rates. To-date, the database holds over 1500 records, which include results from both experimental and natural conditions, across arable, grassland and upland environments. Of the studies contained in the database, erosion has been observed ca. 40% of instances, ranging from <0.01 t.ha-1.yr-1 to 143 t.ha-1.yr-1. However, preliminary analysis has highlighted that over 90% of the studies included in the database only quantify soil loss via visible erosion features, such as rills or gullies, through volumetric assessments. Furthermore, there has been an inherent bias in the UK towards quantifying soil erosion in locations with either a known history or high probability of erosion occurrence. As a consequence, we conclude that such databases, may not be used to make a statistically unbiased assessment of national-scale erosion rates, however, they can highlight maximum likely rates under a wide range of soil, topography and land use conditions. Finally, this work suggests there is a strong argument for a replicable and statistically robust national soil erosion monitoring program to be carried out along-side the proposed sustainable intensification of agriculture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP52A..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP52A..05B"><span>Spatial bedrock erosion distribution in a natural gorge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beer, A. R.; Turowski, J. M.; Kirchner, J. W.</p> <p>2015-12-01</p> <p>Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half of the total eroded material. Our results demonstrate the practicability of TLS for highly resolved spatio-temporal erosion monitoring in the field and quantitatively confirm concepts of spatially varying erosion rates based current thinking. Furthermore, we introduce an easy-to-apply method for qualitative spatial erosion detection by paint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8676','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8676"><span>"Keynote address, Theme 4, Management of steepland erosion: an overview"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert R. Ziemer</p> <p>1981-01-01</p> <p>Abstract - Steepland erosion is a composite of surface, channel, and mass erosion. The relative importance of each process is determined by an interaction between climate, soil, geology, topography, and vegetation. A change in any of these components can increase or decrease the rate of erosion. The key to successful management of erosion is the ability to 1)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=238903','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=238903"><span>Rainfall erosivity and rainfall return period in the experimental watershed of Aracruz, in the Coastal Plain of Espirito Santo, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The knowledge of the factors influencing water erosion is relevant to land management practices. Rainfall, expressed by rainfall erosivity, is very important among the factors affecting water erosion. Thus, the objective of this study was to determine rainfall erosivity and return period for the Coa...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50654','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50654"><span>Validation of Water Erosion Prediction Project (WEPP) model for low-volume forest roads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>William Elliot; R. B. Foltz; Charlie Luce</p> <p>1995-01-01</p> <p>Erosion rates of recently graded nongravel forest roads were measured under rainfall simulation on five different soils. The erosion rates observed on 24 forest road erosion plots were compared with values predicted by the Water Erosion Prediction Project (WEPP) Model, Version 93.1. Hydraulic conductivity and soil erodibility values were predicted from methods...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41629','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41629"><span>Wind erosion of soils burned by wildfire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud</p> <p>2011-01-01</p> <p>Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=218688&keyword=european+AND+journal&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=218688&keyword=european+AND+journal&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Modeling the Contribution of Ephemeral Gully Erosion Under Different Soil Management in An Olive Orchard Microcatchment Using AnnAGNPS Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>In Spain, few studies have been carried out to explore the erosion caused by processes other than interrill and rill erosion, such as gully and ephemeral gully erosion, especially because most of the available studies have evaluated the erosion at plot scale. A study about the en...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2419','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2419"><span>Surface Erosion Control Techniques on Newly Constructed Forest Roads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Johnny M. Grace; John Wilhoit; Robert Rummer; Bryce Stokes</p> <p>1999-01-01</p> <p>A newly constructed forest road was treated with three erosion control treatments: wood excelsior erosion mat, native grass species, and exotic grass species. The study evaluates treatment methods on the basis of sediment reduction and runoff volume reduction compared to no treatment. The erosion mat treatment was most effective in mitigating erosion losses with a 98...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Fract..2640012X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Fract..2640012X"><span>Fractal Approach to Erosion Threshold of Bentonites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Y. F.; Li, X. Y.</p> <p></p> <p>Bentonite has been considered as a candidate buffer material for the disposal of high-level radioactive waste (HLW) because of its low permeability, high sorption capacity, self-sealing characteristics and durability in a natural environment. Bentonite erosion caused by groundwater flow may take place at the interface of the compacted bentonite and fractured granite. Surface erosion of bentonite flocs is represented typically as an erosion threshold. Predicting the erosion threshold of bentonite flocs requires taking into account cohesion, which results from interactions between clay particles. Beyond the usual dependence on grain size, a significant correlation between erosion threshold and porosity measurements is confirmed for bentonite flocs. A fractal model for erosion threshold of bentonite flocs is proposed. Cohesion forces, the long-range van der Waals interaction between two clay particles are taken as the resource of the erosion threshold. The model verification is conducted by the comparison with experiments published in the literature. The results show that the proposed model for erosion threshold is in good agreement with the experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3223197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3223197"><span>[Erosive petechial gastritis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Llorens, P</p> <p>1988-01-01</p> <p>We studied 20 patients in which a variety of erosive gastritis is described. We named it petechial erosive gastritis. We have to bring up that its sequence is due to the presence of the petechiae in the center of the mucosal area. Then in degrees of higher intensity erosions occur also at the center of the area mucosa. Occasionally the erosions meet, become larger and may bleed. An endoscopic classification of petechial erosive gastritis is established it rates mild, moderate, severe and hemorrhagic degrees. Even if the histopathologic study does not keep a strict correspondence with the severity of endoscopic observation of the lesions, it is possible to separate easily a petechial stage from an erosive stage. Demonstration of these lesions at their sequence from petechial to bleeding erosion constitutes an important contribution to the study of acute gastric lesions and it might open a way to a better study of the alterations of the irrigation of the gastric mucosa and the etiology of erosive lesions and acute ulcer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5554566','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5554566"><span>Restorative Rehabilitation of a Patient with Dental Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>AlShahrani, Mohammed Thamer; Alqarni, Mohammed</p> <p>2017-01-01</p> <p>Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition. PMID:28828189</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28828189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28828189"><span>Restorative Rehabilitation of a Patient with Dental Erosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>AlShahrani, Mohammed Thamer; Haralur, Satheesh B; Alqarni, Mohammed</p> <p>2017-01-01</p> <p>Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4084632','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4084632"><span>Effects of Crop Canopies on Rain Splash Detachment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi</p> <p>2014-01-01</p> <p>Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2·h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields. PMID:24992386</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22973138','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22973138"><span>Relationship between food habits and tooth erosion occurrence in Malaysian University students.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manaf, Zahara Abdul; Lee, Mei Tee; Ali, Nor Hazirah Muhammad; Samynathan, Selvamary; Jie, Ying Phor; Ismail, Noor Hasnani; Bibiana Hui Ying, Yong; Wei Seng, Yeo; Yahya, Nurul Asyikin</p> <p>2012-04-01</p> <p>Tooth erosion is a growing dental problem; however, the role of diet in the aetiology of tooth erosion is unclear. A cross-sectional study was conducted to determine the association between tooth erosion occurrence and the consumption of acidic foods and drinks among undergraduate university students. A total of 150 undergraduate students (33 males and 117 females) aged 19 to 24 years at Universiti Kebangsaan Malaysia participated in this study. The Basic Erosive Wear Examination was used to assess the occurrence of tooth erosion. Information regarding dental hygiene practices, usual dietary habits, and consumption of acidic foods and drinks was obtained through a structured questionnaire. In all, 68% of subjects had tooth erosion. Subjects who reported having received information about healthy eating were less likely to have tooth erosion (χ(2) [1, N = 150] = 7.328, P = 0.007). The frequencies of milk (OR = 0.29, 95% CI = 0.13-0.67) and tea/coffee (adjusted OR = 0.42, 95% CI = 0.19-0.95) consumption were negatively associated with tooth erosion. Dental hygiene practice, the frequency and amount of acidic food and drink intake, and body mass index classification were not significantly associated with the risk of tooth erosion (P > 0.05). A high prevalence of tooth erosion was observed among this group of students. Preventive measures, such as dietary advice and increased consumption of milk at a younger age, may reduce the occurrence of tooth erosion among this age group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18621966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18621966"><span>Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Fei-Hai; Wang, Ning; He, Wei-Ming; Chu, Yu; Dong, Ming</p> <p>2008-10-01</p> <p>Wind erosion is a severe stress for plants in drylands, but the mechanisms by which plants withstand erosion remain largely unknown. Here, the hypothesis is tested that maintaining rhizome connections helps plants to tolerate erosion. Five transects were established across an inland dune in Inner Mongolia, China, and measurements were made of leaf number, biomass per ramet and rhizome depth of Psammochloa villosa in 45 plots. In 40 x 40 cm plots of P. villosa on another dune, the top 15 or 30 cm of sand was removed for 1.5 or 3 months to simulate short- and long-term moderate and severe erosion, respectively, with untreated plots as controls, and the rhizomes at the edges of half of the plots were severed to mimic loss of rhizome connections. Leaf number and biomass per ramet showed quadric relationships with rhizome depth; when rhizomes were exposed to the air, the associated ramets either died or became very weak. Ramet number, leaf number and biomass per plot decreased with increasing erosion severity. Rhizome connections did not affect these traits under control or short-term erosion, but increased them under long-term erosion. Rhizome connections alleviated the negative effects of erosion on P. villosa, very likely because the erosion-stressed ramets received water and/or photosynthates translocated from those connected ramets that were not subject to erosion. This study provides the first evidence that maintaining rhizome connections helps plants to tolerate erosion in drylands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035567','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035567"><span>Bank erosion along the dam-regulated lower Roanoke River, North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, Robert K.; Townsend, Phil A.</p> <p>2009-01-01</p> <p>Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability and erosion. Three high dams (completed between 1953 and 1963) were built along the Piedmont portion of the Roanoke River, North Carolina; just downstream the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, >700 bank-erosion pins were installed along 66 bank transects. Additionally, discrete measurements of channel bathymetry, turbidity, and presence or absence of mass wasting were documented along the entire study reach (153 km). A bank-erosion- floodplain-deposition sediment budget was estimated for the lower river. Bank toe erosion related to consistently high low-flow stages may play a large role in increased mid- and upper-bank erosion. Present bank-erosion rates are relatively high and are greatest along the middle reaches (mean 63 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates, such that erosion-rate maxima have since migrated downstream. Mass wasting and turbidity also peak along the middle reaches; floodplain sedimentation systematically increases downstream in the study reach. The lower Roanoke River isnet depositional (on floodplain) with a surplus of ??2,800,000 m3yr. Results suggest that unmeasured erosion, particularly mass wasting, may partly explain this surplus and should be part of sediment budgets downstream of dams. ?? 2009 The Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24992386','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24992386"><span>Effects of crop canopies on rain splash detachment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi</p> <p>2014-01-01</p> <p>Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2 · h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24175513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24175513"><span>[Biological soil crust nitrogenase activity and its responses to hydro-thermic factors in different erosion regions on the Loess Plateau, China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ming, Jiao; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Wang, Ai-Guo</p> <p>2013-07-01</p> <p>Based on field survey, the biological soil crusts at their stable development stage were collected from the water erosion region, water-wind erosion region, and wind erosion region on the Loess Plateau, aimed to study the effects of the variations of moisture and temperature on the crusts nitrogenase activity (NA). The NA of the crusts in the erosion regions decreased in the order of water erosion region (127.7 micromol x m(-2) x h(-1)) > water-wind erosion region (34.6 micromol x m(-2) x h(-1)) > wind erosion region (6.0 micromol x m(-2) x h(-1)), and the optimal temperature for the crust nitrogen fixation was 35 degrees C, 25 degrees C, and 15 degrees C, respectively. At the optimal temperature and 100% -40% field water-holding capacity, the NA of the crusts from the water erosion and water-wind erosion regions had no significant difference. The NA of the crusts from the wind erosion region was more sensitive to the variation of moisture, showing a dramatic decline when the moisture decreased to 80% field water-holding capacity, and totally lost when the moisture decreased to 20% field water-holding capacity. The differences in the NA of the crusts from the three erosion regions and the responses of the NA to the variations of moisture and temperature were likely associated with the climate, environment, and the crust species composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22856274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22856274"><span>Managing dental erosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal</p> <p>2012-01-01</p> <p>The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431744','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431744"><span>Relationship between Food Habits and Tooth Erosion Occurrence in Malaysian University Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zahara, Abdul Manaf; Mei Tee, Lee; Nor Hazirah, Muhammad Ali; Selvamary, Samynathan; Ying Phor, Jie; Noor Hasnani, Ismail; Bibiana Hui Ying, Yong; Wei Seng, Yeo; Nurul Asyikin, Yahya</p> <p>2012-01-01</p> <p>Background: Tooth erosion is a growing dental problem; however, the role of diet in the aetiology of tooth erosion is unclear. A cross-sectional study was conducted to determine the association between tooth erosion occurrence and the consumption of acidic foods and drinks among undergraduate university students. Methods: A total of 150 undergraduate students (33 males and 117 females) aged 19 to 24 years at Universiti Kebangsaan Malaysia participated in this study. The Basic Erosive Wear Examination was used to assess the occurrence of tooth erosion. Information regarding dental hygiene practices, usual dietary habits, and consumption of acidic foods and drinks was obtained through a structured questionnaire. Results: In all, 68% of subjects had tooth erosion. Subjects who reported having received information about healthy eating were less likely to have tooth erosion (χ2 [1, N = 150] = 7.328, P = 0.007). The frequencies of milk (OR = 0.29, 95% CI = 0.13–0.67) and tea/coffee (adjusted OR = 0.42, 95% CI = 0.19–0.95) consumption were negatively associated with tooth erosion. Dental hygiene practice, the frequency and amount of acidic food and drink intake, and body mass index classification were not significantly associated with the risk of tooth erosion (P > 0.05). Conclusion: A high prevalence of tooth erosion was observed among this group of students. Preventive measures, such as dietary advice and increased consumption of milk at a younger age, may reduce the occurrence of tooth erosion among this age group. PMID:22973138</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28826465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28826465"><span>A Dental Hygienist's and Therapist's Guide to the Management of Tooth Erosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ariyanayagam, Yana</p> <p>2016-08-01</p> <p>Dental care professionals can support patients to prevent and manage tooth erosion. The role of the dentist is to restore the structure and function of teeth damaged by acid erosion, while the role of the dental hygienist therapist is to work alongside the dentist to help manage and reduce the risk of tooth erosion. This article will highlight how the dental hygienist or therapist can identify tooth erosion. It will describe the features of tooth erosion and outline the causes. This article will discuss preventative care options for patients who are at risk of tooth erosion, including specific oral hygiene instructions, fluoride advice and use of other dental products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41635','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41635"><span>Rill erosion in natural and disturbed forests: 1. Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>P. R. Robichaud; J. W. Wagenbrenner; R. E. Brown</p> <p>2010-01-01</p> <p>Rill erosion can be a large portion of the total erosion in disturbed forests, but measurements of the runoff and erosion at the rill scale are uncommon. Simulated rill erosion experiments were conducted in two forested areas in the northwestern United States on slopes ranging from 18 to 79%. We compared runoff rates, runoff velocities, and sediment flux rates from...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930070188&hterms=usle+soil&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dusle%2Bsoil','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930070188&hterms=usle+soil&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dusle%2Bsoil"><span>Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Price, Kevin P.</p> <p>1993-01-01</p> <p>Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16964934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16964934"><span>[Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yuhuan; Wang, Jing; Zhang, Jixian</p> <p>2006-06-01</p> <p>With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1930b0054S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1930b0054S"><span>Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila</p> <p>2018-02-01</p> <p>The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2676890','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2676890"><span>A New Strategy to Enhance Cavitational Tissue Erosion Using a High-Intensity, Initiating Sequence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.</p> <p>2009-01-01</p> <p>Our previous studies have shown that pulsed ultrasound can physically remove soft tissue through cavitation. A new strategy to enhance the cavitation-induced erosion is proposed wherein tissue erosion is initiated by a short, high-intensity sequence of pulses and sustained by lower intensity pulses. We investigated effects of the initiating sequence on erosion and cavitation sustained by lower intensity pulses. Multiple three-cycle pulses at a pulse repetition frequency of 20 kHz delivered by a 788-kHz focused transducer were used for tissue erosion. Fixing the initiating sequence at ISPPA of 9000 W/cm2, 16 combinations of different numbers of pulses within the initiating sequence and different sustaining pulse intensities were tested. Results showed: the initiating sequence increases the probability of erosion occurrence and the erosion rate with only slight overall increases in propagated energy; the initiating sequence containing more pulses does not increase the sustained cavitation period; and if extinguished and reinitiated, the sustained cavitation period becomes shorter after each initiation, although the waiting time between adjacent cavitation periods is random. The high-intensity, initiating sequence enhances cavitational tissue erosion and enables erosion at intensities significantly lower than what is required to initiate erosion. PMID:16921893</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23937899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23937899"><span>Assessment of mercury erosion by surface water in Wanshan mercury mining area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle</p> <p>2013-08-01</p> <p>Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29145525','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29145525"><span>Association Between Missing Posterior Teeth and Occurrence of Temporomandibular Joint Condylar Erosion: A Cone Beam Computed Tomography Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bertram, Felix; Hupp, Linus; Schnabl, Dagmar; Rudisch, Ansgar; Emshoff, Rüdiger</p> <p></p> <p>To determine a possible association between asymptomatic temporomandibular joint (TMJ) condylar erosion and the number of missing posterior teeth and their location, as well as the number of dental quadrants with missing posterior teeth. This case-control study involved 210 patients (male to female ratio = 98:112) aged 16-74 years, with 105 asymptomatic patients with TMJ condylar erosion and a control group of 105 patients without TMJ condylar erosion. Cone beam computed tomography images were evaluated to classify the severity of TMJ condylar erosion as grade 0 (absence of erosion), grade I (slight erosion), grade II (moderate erosion), or grade III (extensive erosion). The number of missing posterior teeth (mean ± standard deviation [SD]; 2.7 ± 2.4 vs 0.7 ± 1.2) (P < .001), number of dental quadrants with missing posterior teeth (1.5 ± 1.3 vs 0.6 ± 0.9) (P < .001), and bilateral location of missing posterior teeth (41 ± 39.0 vs 10 ± 9.5) (P < .001) were all significantly higher in patients with erosion than in those without erosion. The condylar erosion grade was significantly associated with the number of missing posterior teeth (odds ratio [OR] = 1.24; P = .006), the number of dental quadrants with missing posterior teeth (OR = 1.36; P = .006), and the bilateral occurrence of missing posterior teeth (OR = 3.03; P = .002). The findings from this study suggest a possible association between TMJ condylar erosion grades and the number of missing posterior teeth, the number of quadrants with missing posterior teeth, and the bilateral occurrence of missing posterior teeth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22974565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22974565"><span>Oesophageal mucosal intercellular space diameter and reflux pattern in childhood erosive and non-erosive reflux disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mancini, Valentina; Ribolsi, Mentore; Gentile, Massimo; de'Angelis, Gianluigi; Bizzarri, Barbara; Lindley, Keith J; Cucchiara, Salvatore; Cicala, Michele; Borrelli, Osvaldo</p> <p>2012-12-01</p> <p>We sought to compare intercellular space diameter in children with non-erosive and erosive reflux disease, and a control group. We also aimed to characterize the reflux pattern in erosive and non-erosive reflux disease patients, and to explore the relationship between intercellular space diameter values and reflux parameters. Twenty-four children with non-erosive reflux disease, 20 with erosive reflux disease, and 10 controls were prospectively studied. All patients and controls underwent upper endoscopy. Biopsies were taken at 2-3 cm above the Z-line, and intercellular space diameter was measured using transmission electron microscopy. Non-erosive and erosive reflux disease patients underwent impedance-pH monitoring. Mean intercellular space diameter values were significantly higher in both non-erosive (0.9 ± 0.2 μm) and erosive reflux disease (1 ± 0.2 μm) compared to controls (0.5 ± 0.2 μm, p<0.01). No difference was found between the two patient groups. Acid exposure time, the number of acid, weakly acidic and weakly alkaline reflux events did not differ between the two patient groups. No difference was found in the mean intercellular space diameter between non-erosive reflux disease children with and without abnormal acid exposure time (1 ± 0.3 vs. 0.9 ± 0.2 μm). No correlation was found between any reflux parameter and intercellular space diameter values. Dilated intercellular space diameter seems to be a useful and objective marker of oesophageal damage in paediatric gastro-oesophageal reflux disease, regardless of acid exposure. In childhood, different gastro-oesophageal reflux disease phenotypes cannot be discriminated on the basis of reflux pattern. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H43F1686W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H43F1686W"><span>Erosion Rates of Volcanic-ash Derived Soils in the Blue Mountains of Eastern Oregon, USA: A Comparison Across Sales in Space and Time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wondzell, S. M.; Clifton, C. F.; Harris, R. M.; Ritchie, J. C.</p> <p>2007-12-01</p> <p>We examined present day rates of erosion in the Blue Mountains of eastern Oregon to quantify background erosion rates to provide standards for assessing possible accelerated rates of erosion resulting from wild fire or from land-management activities such as prescribed fire. The Skookum Creek watersheds, where stream discharge and sediment yield have been recorded continuously since the watersheds were gauged in 1992, provided a watershed-scale estimate of erosion rates. We installed hillslope erosion plots on north- and south- facing slopes within the watersheds in 2002 and collected data for three years to estimate short-term, hillslope- scale erosion rates. We also collected soil samples and analyzed them for 137Cs to get a 40-yr time- integrated estimate of hillslope erosion rates. Our results showed large differences between whole-watershed sediment yields and hillslope erosion rates measured from plots, suggesting that episodic processes dominated sediment production and transport and therefore controlled watershed-scale sediment budgets. At the hillslope-scale, short-term erosion resulted primarily from digging by small mammals and trampling by elk. Visual observations at the plots suggested that annual down-slope sediment movement was usually less than one meter. There were no significant difference among slope positions, but erosion rates were significantly higher on south-facing aspects and positively correlated to the amount of bare ground. In contrast, the 137Cs data suggested that erosion rates differed with slope position. Higher erosion rates were measured in toe- and mid-slope positions, with little erosion occurring on upper slopes and ridge tops. We examine these results in light of the present-day pattern of surface soils resulting from redistribution of volcanic ash from upper- slope to lower-slope positions and the effects of disturbance, including wildfire and the preferential grazing of riparian and lower-slope positions by domestic livestock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24752041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24752041"><span>Effectiveness assessment of soil conservation measures in reducing soil erosion in Baiquan County of Northeastern China by using (137)Cs techniques.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Qing-Wen; Li, Yong</p> <p>2014-05-01</p> <p>Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5990L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5990L"><span>Relationships between slope erosion processes and aggregate stability of Ultisols from subtropical China during rainstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Gang; Xiao, Hai; Liu, Puling</p> <p>2017-04-01</p> <p>Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the subtropical Ultisols by using REE tracing method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53C0967N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53C0967N"><span>Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.</p> <p>2016-12-01</p> <p>Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment Research and Technology Development Fund (S15-2-2) of the Ministry of the Environment, Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4585747','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4585747"><span>Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mahdipoor, M.S.; Kirols, H.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M.</p> <p>2015-01-01</p> <p>Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ Vn, where the speed exponent is 7–9 for Ti6Al4V and 11–13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl. PMID:26391370</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21070109-study-cavitation-erosion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21070109-study-cavitation-erosion"><span>A Study of Cavitation Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi</p> <p>2002-07-01</p> <p>The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regardingmore » the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26391370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26391370"><span>Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahdipoor, M S; Kirols, H S; Kevorkov, D; Jedrzejowski, P; Medraj, M</p> <p>2015-09-22</p> <p>Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ V(n), where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://onlinelibrary.wiley.com/doi/10.1029/2005GM000326/summary','USGSPUBS'); return false;" href="http://onlinelibrary.wiley.com/doi/10.1029/2005GM000326/summary"><span>Erosion of soil organic carbon: implications for carbon sequestration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.</p> <p>2009-01-01</p> <p>Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJMPS...6..209S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJMPS...6..209S"><span>Study of Erosive Wear Behaviour on SIC/SIC Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suh, Min-Soo</p> <p></p> <p>In the field of aerospace propulsion system, erosive wear on continuous silicon carbide (SiC) fibre-reinforced SiC (SiC/SiC) composites is of significant issue to achieve high energy efficiency. This paper proposes a crucial factor and a design guideline of SiC/SiC composites for higher erosion performance regarding cost effectiveness. Fabrication and evaluation of impacts and wear on SiC/SiC composites are successfully carried out. Erosive wear behaviours of the CVI and the LPS composites evidently show that the crucial fabrication factor against solid particle erosion (SPE). Erosive wear mechanisms on various SiC/SiC composites are determined based on the analysis of erosive wear behaviour. Designing guideline for the SiC/SiC composites for pursuit of high erosion performance is also proposed as focusing on the followings; volume fraction of matrix, strength of the matrix, bonding strength, and PyC interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27838220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27838220"><span>Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, D G; Chen, D R; Liang, P</p> <p>2017-03-01</p> <p>The influence of Mo on ultrasonic cavitation erosion of 316 L stainless steel in 3.5% NaCl solution were investigated using an ultrasonic cavitation erosion (CE) facility. The morphologies of specimen after cavitation erosion were observed by scanning electron microscopy (SEM). The results showed that the addition of Mo can sharply decrease the mean depth of erosion (MDE) of 316 L SS, implying the increased resistance of cavitation erosion. In order to better understanding the influence of Mo on the cavitation erosion of 316 L SS, the semi-conductive property of passive films on 316 L SS containing different concentrations of Mo were studied by Mott-Schottky plot. Based on Mott-Schottky results and semiconductor physics, a physical model was proposed to explain the effect mechanism of Mo on cavitation erosion of 316 L SS. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013140','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013140"><span>Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria</p> <p>2008-01-01</p> <p>The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........88M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........88M"><span>A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mansouri, Amir</p> <p></p> <p>The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in gas-sand, water-sand and viscous liquid-sand flows with high accuracy. Furthermore, in order to gain a better understanding of the erosion mechanism, a comprehensive experimental study was conducted to investigate the important factors influencing the erosion rate in gas-sand and slurry flows. The wear pattern and total erosion ratio were measured in a direct impingement jet geometry (for both dry impact and submerged impingement jets). The effects of fluid viscosity, abrasive particle size, particle impact speed, jet inclination angle, standoff distance, sand concentration, and exposure time were investigated. Also, the eroded samples were studied with Scanning Electron Microscopy (SEM) to understand the erosion micro-structure. Also, the sand particle impact speed and angle were measured using a Particle Image Velocimetry (PIV) system. The measurements were conducted in two types of erosion testers (gas-solid and liquid-solid impinging jets). The Particle Tracking Velocimetry (PTV) technique was utilized which is capable of tracking individual small particles. Moreover, CFD modeling was performed to predict the particle impact data. Very good agreement between the CFD results and PTV measurements was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37360','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37360"><span>A field method for soil erosion measurements in agricultural and natural lands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Y.P. Hsieh; K.T. Grant; G.C. Bugna</p> <p>2009-01-01</p> <p>Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/5984','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/5984"><span>Erosion rates of wood during natural weathering. Part II, Earlywood and latewood erosion rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. Sam Williams; Mark T. Knaebe; William C. Feist</p> <p>2001-01-01</p> <p>This is the second in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. In the work reported here, the erosion rates of earlywood and latewood were determined for smooth-planed vertical-grained lumber for an exposure period of 14 years. The specimens were oriented vertically, facing south; erosion was measured annually for the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45731','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45731"><span>Potential impacts of climate change on soil erosion vulnerability across the conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C. Segura; G. Sun; S. McNulty; Y. Zhang</p> <p>2014-01-01</p> <p>Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990SPIE.1326..310W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990SPIE.1326..310W"><span>Erosion modeling and test of slip-cast fused silica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weiskopf, Francis B., Jr.; Lin, Jeffrey S.; Drobnick, Rudy A.; Feather, Brian K.</p> <p>1990-10-01</p> <p>This paper summarizes a test program to verify the Balageas erosion model for Slip Cast Fused Silica in a flight-like erosive environment. The test program is summarized with particular attention paid to documenting the erosive environment. The Balageas model was found to over predict the erosion for these tests and a revised model which gives reasonable agreement with the data is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.H43A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.H43A..07S"><span>Epic Erosion Along Newly Constructed Roads in Yunnan, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidle, R. C.; Kono, Y.; Yamaguchi, T.</p> <p>2007-05-01</p> <p>The recent expansion and construction of new mountain roads in northwestern Yunnan Province, China, poses problems related to landslides and surface erosion that are impacting the headwaters of three great river systems: the Salween, Mekong, and Yangtze. Many of these newer roads are simply blasted into unstable hillsides with virtually no attention paid to optimal road location, construction practices, and erosion control measures. During summer 2006, seven people traveling in a minivan along a newly constructed road to Weixi were killed by a landslide. A survey conducted along a this 23.5 km road section (4 yr old) in the headwaters of the Mekong River revealed epic levels of landslides and surface erosion. Based on a preliminary survey, the road erosion was categorized as moderately severe, severe, or very severe, and a representative 0.75 to 0.90 km stretch of road was then surveyed for both landslide (based on dimensional analysis) and surface erosion (based on soil pedestal height). Average mass wasting rates (9608 t ha-1yr-1) along the road were more than 13 times higher than surface erosion (720 t ha-1yr-1), even though surface erosion rates are among the highest reported for disturbed lands. Dry ravel constituted a minor proportion of the mass wasting: 4% in the severe erosion section of the road and 0.5-0.6% in the moderately severe and very severe sections. For the very severe erosion road section (6 km long), estimated landslide erosion alone was > 33,000 t ha- 1yr-1, 620 times the average landslide erosion from forest roads built in unstable terrain in western North America. These levels of landslide erosion along the Weixi road are the highest ever documented and are somewhat representative of erosion along new mountain roads in this region of Yunnan. Sediment produced from roads is highly connected to fluvial systems; we estimate that 80-95% of the direct sediment contributions into the headwaters of these rivers are attributable to road erosion and landslides. These epic sediment loads represent cumulative effects that may persist in these important transnational rivers for decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27900655','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27900655"><span>Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah</p> <p>2016-12-01</p> <p>Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.300...45C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.300...45C"><span>Review of erosion dynamics along the major N-S climatic gradient in Chile and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carretier, S.; Tolorza, V.; Regard, V.; Aguilar, G.; Bermúdez, M. A.; Martinod, J.; Guyot, J.-L.; Hérail, G.; Riquelme, R.</p> <p>2018-01-01</p> <p>Chile is an elongated country, running in a north-south direction for more than 30° along a subduction zone. Its climate is progressively wetter and colder from north to south. This particular geography has been used positively by a growing number of studies to better understand the relationships between erosion processes and climate, land use, slope, tectonics, volcanism, etc. Here we review the erosion rates, factors, and dynamics over millennial to daily periods reported in the literature. In addition, 21 new catchment mean erosion rates (suspended sediment and 10Be) are provided, and previous suspended sediment-derived erosion rates are updated. A total of 485 local and catchment mean erosion rates are reported. Erosion rates vary between some of the smallest values on earth (10-5 mm/a) to moderate values ≤0.5 mm/a compared to other active ranges. This review highlights strong limitations concerning the quantification of local erosion factors because of uncertainties in sampling point location, slope and rainfall data. For the mean erosion rates E for the millennial and decennial catchments, a model of the form E ∝ S/ [1 - (S/0.6)2] Rα with α = [0.3,0.8] accounts for 40 to 70% of the erosion variance, confirming a primary role of slope S compared to precipitation rate R over this time scale. Over the long-term, this review points to the long (5 to >10 Ma) response time of rivers to surface uplift in north-central arid Chile. Over millennia, data provide evidence for the progressive contribution of extreme erosion events to millennial averages for drier climates, as well as the link between glacier erosion and glacier sliding velocity. In this period of time, a discrepancy exists between the long-term offshore sedimentological record and continental decennial or millennial erosion data, for which no single explanation appears. Still, little information is available concerning the magnitude of variation of millennial erosion rates. Over centuries, data show the variable role of groundwater in the dynamics of suspended load and document a decrease in erosion over hundreds of years, probably associated with historical harvesting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29680758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29680758"><span>Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teng, Hongfen; Liang, Zongzheng; Chen, Songchao; Liu, Yong; Viscarra Rossel, Raphael A; Chappell, Adrian; Yu, Wu; Shi, Zhou</p> <p>2018-04-18</p> <p>Soil erosion by water is accelerated by a warming climate and negatively impacts water security and ecological conservation. The Tibetan Plateau (TP) has experienced warming at a rate approximately twice that observed globally, and heavy precipitation events lead to an increased risk of erosion. In this study, we assessed current erosion on the TP and predicted potential soil erosion by water in 2050. The study was conducted in three steps. During the first step, we used the Revised Universal Soil Equation (RUSLE), publicly available data, and the most recent earth observations to derive estimates of annual erosion from 2002 to 2016 on the TP at 1-km resolution. During the second step, we used a multiple linear regression (MLR) model and a set of climatic covariates to predict rainfall erosivity on the TP in 2050. The MLR was used to establish the relationship between current rainfall erosivity data and a set of current climatic and other covariates. The coefficients of the MLR were generalised with climate covariates for 2050 derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models to estimate rainfall erosivity in 2050. During the third step, soil erosion by water in 2050 was predicted using rainfall erosivity in 2050 and other erosion factors. The results show that the mean annual soil erosion rate on the TP under current conditions is 2.76tha -1 y -1 , which is equivalent to an annual soil loss of 559.59×10 6 t. Our 2050 projections suggested that erosion on the TP will increase to 3.17tha -1 y -1 and 3.91tha -1 y -1 under conditions represented by RCP2.6 and RCP8.5, respectively. The current assessment and future prediction of soil erosion by water on the TP should be valuable for environment protection and soil conservation in this unique region and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030067417&hterms=potential+kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpotential%2Bkinetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030067417&hterms=potential+kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpotential%2Bkinetic%2Benergy"><span>High-Energy Two-Stage Pulsed Plasma Thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markusic, Tom</p> <p>2003-01-01</p> <p>A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant was chosen to test whether or not the reduced electrode erosion found in the Lithium Lorentz Force Accelerator (LiLFA) could also be realized in a pulsed plasma thruster. The use of the molten lithium dense plasma injector also eliminates the need for a gas valve and electrical switch; the injector design fulfills both roles, and uses no moving parts to provide, in principle, a highly reliable propellant feed and electrical switching system. Experimental results reported in this paper include: second-stage current traces, high-speed photographic and holographic imaging of the thruster exit plume, and internal mapping of the discharge chamber magnetic field from B-dot probe data. The magnetic field data is used to create a two-dimensional description of the evolution of the current sheet inside the thruster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70184449','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70184449"><span>Dimensionless erosion laws for cohesive sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walder, Joseph S.</p> <p>2016-01-01</p> <p>A method of achieving a dimensionless collapse of erosion-rate data for cohesive sediments is proposed and shown to work well for data collected in flume-erosion tests on mixtures of sand and mud (silt plus clay sized particles) for a wide range of mud fraction. The data collapse corresponds to a dimensional erosion law of the form E∼(τ−τc)m">E∼(τ−τc)mE∼(τ−τc)m, where E">EE is erosion rate, τ">ττ is shear stress, τc">τcτc is the threshold shear stress for erosion to occur, and m≈7/4">m≈7/4m≈7/4. This result contrasts with the commonly assumed linear erosion law E=kd(τ−τc)">E=kd(τ−τc)E=kd(τ−τc), where kd">kdkd is a measure of how easily sediment is eroded. The data collapse prompts a re-examination of the way that results of the hole-erosion test (HET) and jet-erosion test (JET) are customarily analyzed, and also calls into question the meaningfulness not only of proposed empirical relationships between kd">kdkd and τc">τcτc, but also of the erodibility parameter kd">kdkd itself. Fuller comparison of flume-erosion data with hole-erosion and jet-erosion data will require revised analyses of the HET and JET that drop the assumption m=1">m=1m=1 and, in the case of the JET, certain simplifying assumptions about the mechanics of jet scour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28828151','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28828151"><span>Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks: Ultrastructural analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio</p> <p>2017-07-01</p> <p>The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words: Dental erosion, enamel, SEM, toothpaste.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2701773','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2701773"><span>Adaptation of Rhizome Connections in Drylands: Increasing Tolerance of Clones to Wind Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Fei-Hai; Wang, Ning; He, Wei-Ming; Chu, Yu; Dong, Ming</p> <p>2008-01-01</p> <p>Background and Aims Wind erosion is a severe stress for plants in drylands, but the mechanisms by which plants withstand erosion remain largely unknown. Here, the hypothesis is tested that maintaining rhizome connections helps plants to tolerate erosion. Methods Five transects were established across an inland dune in Inner Mongolia, China, and measurements were made of leaf number, biomass per ramet and rhizome depth of Psammochloa villosa in 45 plots. In 40 × 40 cm plots of P. villosa on another dune, the top 15 or 30 cm of sand was removed for 1·5 or 3 months to simulate short- and long-term moderate and severe erosion, respectively, with untreated plots as controls, and the rhizomes at the edges of half of the plots were severed to mimic loss of rhizome connections. Key Results Leaf number and biomass per ramet showed quadric relationships with rhizome depth; when rhizomes were exposed to the air, the associated ramets either died or became very weak. Ramet number, leaf number and biomass per plot decreased with increasing erosion severity. Rhizome connections did not affect these traits under control or short-term erosion, but increased them under long-term erosion. Conclusions Rhizome connections alleviated the negative effects of erosion on P. villosa, very likely because the erosion-stressed ramets received water and/or photosynthates translocated from those connected ramets that were not subject to erosion. This study provides the first evidence that maintaining rhizome connections helps plants to tolerate erosion in drylands. PMID:18621966</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP41B0912M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP41B0912M"><span>Using Crater Counts to Constrain Erosion Rates on Mars: Implications for the Global Dust Cycle, Sedimentary Rock Erosion and Organic Matter Preservation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayer, D. P.; Kite, E. S.</p> <p>2016-12-01</p> <p>Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010202','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010202"><span>The role of lava erosion in the formation of lunar rilles and Martian channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carr, M.H.</p> <p>1974-01-01</p> <p>Lava tubes and channels develop around active sources of low viscosity lava. The channels normally form without erosion; however, sustained flow can result in the incision of a lava channel and simulation of fluvial erosion features. Lava erosion by means of thermal incision was modelled by computer, erosion rates calculated, and these compared with rates observed terrestrially. Lunar sinuous rilles are examined in light of the proposed lava erosion. The mechanism explains many features of lunar rilles that were heretofore puzzling and implies erosion rates comparable to terrestrial rates. Many Mars channels also appear to form by the action of lava; however, the larger, more spectacular Mars channels do not appear to have been formed by the same process. ?? 1974.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790025608','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790025608"><span>Beach erosion control study at Pass Christian. [using remote sensors and satellite observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>The methods of measuring the existence of erosion and the effects of sand stabilization control systems are described. The mechanics of sand movement, the nature of sand erosion, and the use of satellite data to measure these factors and their surrogates are discussed using the locational and control aspects of aeolian and litoral erosion zones along the sand beach of the Mississippi coast. The aeolian erosion is highlighted due to the redeposition of the sand which causes high cleanup costs, property damage, and safety and health hazards. The areas of differential erosion and the patterns of beach sand movement are illustrated and the use of remote sensing methods to identify the areas of erosion are evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6368V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6368V"><span>Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.</p> <p>2014-05-01</p> <p>Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. A modelling framework that is specifically adapted to mountain environments is currently lacking. Most studies make use of general river basin models that were originally parameterized and calibrated for temperate, low relief landscapes. Transposing these modelling concepts directly to steep environments with shallow and stony soils often leads to unrealistic model predictions, as model input parameters are rarely calibrated for the range of environmental conditions found in mountain regions. Here, we present a conceptual model that evaluates erosion regulation as a function of human disturbances in vegetation cover. The basic idea behind this model is that soil erosion mechanisms are independent of human impact, but that the frequency-magnitude distributions of erosion rates change as a response to human disturbances. Pre-disturbance (or natural) erosion rates are derived from in-situ produced 10Be concentrations in river sediment, while post-disturbance (or modern) erosion rates are derived from sedimentation rates in small catchments. In its simplicity, the model uses vegetation cover change as a proxy of human disturbance in a given vegetation system. The model is then calibrated with field measurements from two mountainous sites with strongly different vegetation dynamics, climatic and geological settings: the Tropical Andes, and the Spanish Betic Cordillera. Natural erosion processes are important in mountainous sites, and natural erosion benchmarks are primordial to assess human-induced changes in erosion rates. While the Spanish Betic Cordillera is commonly characterized as a degraded landscape, there is no significant change in erosion due to human disturbance for uncultivated sites. The opposite is true for the Tropical Andes where the share of natural erosion in the modern erosion rate is minimal for most disturbed sites. When pooling pre- and post-disturbance erosion data from both sites, it becomes evident that the human acceleration of erosion is significantly related to vegetation disturbance. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052011','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052011"><span>Time scale bias in erosion rates of glaciated landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe</p> <p>2016-01-01</p> <p>Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3615L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3615L"><span>Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin</p> <p>2017-04-01</p> <p>Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918313D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918313D"><span>Soil erosion risk assessment using interviews, empirical soil erosion modeling (RUSLE) and fallout radionuclides in a volcanic crater lake watershed subjected to land use change, western Uganda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Crop, Wannes; Ryken, Nick; Tomma Okuonzia, Judith; Van Ranst, Eric; Baert, Geert; Boeckx, Pascal; Verschuren, Dirk; Verdoodt, Ann</p> <p>2017-04-01</p> <p>Population pressure results in conversion of natural vegetation to cropland within the western Ugandan crater lake watersheds. These watersheds however are particularly prone to soil degradation and erosion because of the high rainfall intensity and steep topography. Increased soil erosion losses expose the aquatic ecosystems to excessive nutrient loading. In this study, the Katinda crater lake watershed, which is already heavily impacted by agricultural land use, was selected for an explorative study on its (top)soil characteristics - given the general lack of data on soils within these watersheds - as well as an assessment of soil erosion risks. Using group discussions and structured interviews, the local land users' perceptions on land use, soil quality, soil erosion and lake ecology were compiled. Datasets on rainfall, topsoil characteristics, slope gradient and length, and land use were collected. Subsequently a RUSLE erosion model was run. Results from this empirical erosion modeling approach were validated against soil erosion estimates based on 137Cs measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JTST...21..838G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JTST...21..838G"><span>Slurry Erosive Wear Evaluation of HVOF-Spray Cr2O3 Coating on Some Turbine Steels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goyal, Deepak Kumar; Singh, Harpreet; Kumar, Harmesh; Sahni, Varinder</p> <p>2012-09-01</p> <p>In this study, Cr2O3 coatings were deposited on CF8M and CA6NM turbine steels by high-velocity oxy-fuel (HVOF)-spray process and analyzed with regard to their performance under slurry erosion conditions. High Speed Erosion Test Rig was used for slurry erosion tests, and the effects of three parameters, namely, average particle size, speed (rpm), and slurry concentration on slurry erosion of these materials were investigated. SEM micrographs on the surface of samples, before and after slurry erosion tests, were taken to study the erosion mechanism. For the uncoated steels, CA6NM steel showed better erosion resistance in comparison with CF8M steel. The HVOF-sprayed Cr2O3-coated CF8M and CA6NM steels showed better slurry erosion resistance in comparison with their uncoated counterparts. It may be due to the higher hardness as a result of HVOF-sprayed Cr2O3 coating in comparison with the uncoated CF8M and CA6NM steels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27713925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27713925"><span>Time scale bias in erosion rates of glaciated landscapes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe</p> <p>2016-10-01</p> <p>Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3250100H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3250100H"><span>Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min</p> <p>2018-04-01</p> <p>The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1214800B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1214800B"><span>Analytical tools for assessing land degradation and its impact on soil quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bindraban, P. S.; Mantel, S.; Bai, Z.; de Jong, R.</p> <p>2010-05-01</p> <p>Maintaining and enhancing the quality of land is of major importance to sustain future production capacity for food and other agriculture based products like fibers and wood, and for maintaining ecosystems services, including below and above ground biodiversity, provision of soil water and sequestration of carbon. Deterioration of this production base will be detrimental to the provision of the foreseen dramatic increase in human needs for goods and services. For this reason, land degradation, defined as a long-term loss in ecosystem function and productivity, has to be understood properly. Climate, soils, topography and socioeconomic activities are primary factors that can cause, by themselves or in combination, a number of temporary or permanent changes in the landscape, leading to degradation of vegetation and soils. For identifying intervention measures to prevent and revert trends of land deterioration, it is fundamental to know the extent of land degradation and to understand its impact on functional properties of land. To assess the global extent, (Bai et al. 2008) apply a remotely sensed vegetation index that describes the greenness of the vegetation cover as a proxy for biomass. Biomass production has been identified as a strong indicator for soil quality as it is an integral measure for soil, crop and environmental characteristics (Bindraban et al., 2000). Bai and colleagues observed that 24% of the global land has been degrading over the past 26 years - often in very productive areas. The relation with functional properties of land can be made through ecosystem models. Mantel et al. (1999; 2000) applied dynamic crop-soil models to calculate crop productivity at the national level. A baseline scenario that represents the current conditions and a scenario for 20 years of prolonged sheet erosion were modeled to calculate the productivity impact of topsoil erosion for wheat in Uruguay and for maize in Kenya. They concluded that topsoil erosion primarily affects nutrient availability; in 20% of the potential maize growing areas productivity declined more then 50%. Overall, hydraulic soil functions were less affected by erosion in Kenya, still rain-fed yield decline exceeded 50 % on very steep lands. The simulated loss of topsoil in the Uruguay case mostly affected soil physical properties causing a reduction in rainfed wheat yields. Soil fertility status was little affected. In this paper we reflect on the use and effectiveness of these two approaches and discuss options for their (partial) integration as a means to better quantify extent, degree of degradation and the effects on soil quality. References Bai ZG, Dent DL, Olsson L and Schaepman ME 2008. Proxy global assessment of land degradation. Soil Use and Management 24, 223-234 Bindraban PS, Stoorvogel JJ, Jansen DM, Vlaming J and Groot JJR 2000. Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agriculture, Ecosystems and the Environment 81, 103-112 Mantel S and van Engelen VWP 1999. Assessment of the impact of water erosion on productivity of maize in Kenya: an integrated modelling approach. Land Degradation & Development 10, 577-592 Mantel S, van Engelen VWP, Molfino JH and Resink JW 2000. Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level. Soil Use and Management 16, 270-278</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022097','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022097"><span>Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.</p> <p>2000-01-01</p> <p>Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As a result, the wind erosion potential determined using the generalised soil map Was about 26% greater than the erosion potential estimated by using the detailed soil map in Terry County. This study demonstrates the feasibility of scaling up from fields to regions to estimate wind erosion potential by coupling a field-scale wind erosion model with GIS and identifies possible sources of error with this approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..806J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..806J"><span>Quantification Of Erosion Rates Of Agriculturally Used Soils By Artificial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jha, Abhinand</p> <p>2010-05-01</p> <p>0.0.1 1. Introduction to soil erosion measurement by radionuclides Soil erosion by water, wind and tillage affects both agriculture and the natural environment. Studying this phenomenon would be one of the advancements in science. Soil erosion occurs worldwide and since the last two decades it has been a main topic of discussion all over the world. The use of environmental radionuclides such as 90Sr, 137Cs to study medium term soil erosion (40 yrs) started in the early 1990's. Using these new techniques better knowledge about erosion can be gained and this knowledge can be implemented for erosion risk management. The erosion and sedimentation study by using man-made and natural radioisotopes is a key technique, which has developed over the past 30 years. Fallout 137Cs and Cosmogenic 7Be are radionuclides that have been used to provide independent measurements of soil-erosion and sediment-deposition rates and patterns [1] [2] [3] [4]. Erosion measurements using radionuclides 137Cs, 7Be Caesium-137 from atmospheric nuclear-weapons tests in the 1950s and 1960s (Fig.1) is a unique tracer of erosion and sedimentation, since there are no natural sources of 137Cs. Unique events such as the Chernobyl accident in April 1986 caused regional dispersal of 137Cs that affects the total global deposition budget. This yearly pattern of fallout can be used to develop a chronology of deposition horizons in lakes, reservoirs, and floodplains. 137Cs can be easily measured by gamma spectroscopy. Using 137Cs is a fast and cheap method to study erosion-deposition processes compared to the traditional methods like silt bags. PIC Figure 1: Global 137Cs fallout (Modified from SAAS Bulletin 353, Part E, DDR, 1986) When 137Cs, 7Be reach the soil surface by wet and dry deposition, they are quickly and strongly adsorbed by ion exchange and are essentially non exchangeable in most environments. Each radionuclide is distributed differently in the soil because of differences in half-lives (30 yrs for 137Cs and 53 days for 7Be), delivery rates, delivery histories, and land use (Fig. 2). An Physical processes, such as water and wind, are the dominant factors moving 137Cs, 7Be tagged soil particles within and between landscape compartments. PIC Figure 2: Generalized sketch illustrating the distributions of 137Cs and 7Be in tilled and undisturbed soils 2 Erosion study at Young Moraine regions of Germany Recently, a study had been performed to evaluate erosion rates in a typical pattern of landscapes in the Young Moraine regions of North-East Germany [5]. The 137Cs concentrations were measured at selected sampling points of various study sites. Among the areas selected for sampling was Basedow, which is a cultivated area, situated north of Berlin. During a master thesis study at university of Bremen in the academic year 2008-2009 [6] a second sampling campaign was performed at the same study site and 137Cs and 7Be concentrations were measured. Two mathematical models (a proportional model and a mass balance model) were applied to estimate erosion or deposition rates giving a distinction between uncultivated or essentially undisturbed soils and cultivated or soils under permanent pasture (Fig.3A). An improved depositional model was developed during this study. The simulation results from this model are presented in Fig.4. Due to the half-life (53.2 days) of 7Be, a mass balance model was developed and used to calculate erosion rates from 7Be (Fig.3B). PIC Figure 3: A: Erosion rates for 137Cs calculated by mass balance model. B: Erosion rates calculated with mass balance model using the 7Be data at Basedow (2008). The results verify that there is long term erosion as a result of wind, water and agricultural practices. The annual erosion rates at Basedow calculated using a mass balance and a proportional model were in the range between 30-50 t ha-1yr-1. These values were comparable to the erosion rates calculated in the previous study [5] by the models mentioned above. PIC Figure 4: Profiles of sediment calculated for different erosion rates by Cs-137 within the ploughed soil 3 Conclusions and outlook Erosion rates for agricultural soils at Young Moraine regions of North-East Germany were determined by using two radionuclides, 137Cs and 7Be. In combination, the two radionuclides provide a valuable means of investigating soil erosion and assessing erosion risk in the study area. Potentials and limitations of the erosion measurement techniques using radiotracers are discussed in this study. The models used to quantify erosion rates using 137Cs and 7Be were studied. Erosion rates calculated by theses models are difficult to measure over a period of 50 years. A validation of these erosion rates for the time period (50 years) used in the 137Cs-based models will give a new perspective to the use of soil erosion modeling. Most of the regions in India are suffering from high erosion rates [7]. By using the new techniques in erosion quantification the land management practices can be improved and the erosion risk can be reduced in India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=38952&Lab=ORD&keyword=usle+AND+soil&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=38952&Lab=ORD&keyword=usle+AND+soil&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>PREDICTING MINESOIL EROSION POTENTIAL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Two experimental plots were instrumented with erosion pins to study the correspondence between point erosion and erosion over an area on strip mine soil. Using a rotating boom rainfall simulator, data were collected by sampling the runoff every five minutes for the duration of th...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=320662','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=320662"><span>Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Erosion is the detachment of soil particles and transportation to another location. Wind erosion occurs when wind speed exceeds a critical threshold level, and loose soil particles or soil particles removed by abrasion then move in one of three ways: creep, saltation, and suspension. Erosion by wate...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/5985','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/5985"><span>Erosion rates of wood during natural weathering. Part III, Effect of exposure angle on erosion rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. Sam Williams; Mark T. Knaebe; James W. Evans; William C. Feist</p> <p>2001-01-01</p> <p>This is the third in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. The specimens were exposed at an orientation of 90* or 45* facing south or horizontally (0*) for 10 years. Erosion was measured annually for the first 8 years and after 10 years. The erosion rates of earlywood (springwood) and latewood (summerwood) were...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26199519','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26199519"><span>Restorative Management of Intrinsic and Extrinsic Dental Erosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Salehi, Samira Kathryn</p> <p>2014-12-01</p> <p>The restorative management of tooth surface loss is highlighted through the presentation of two advanced cases of dental erosion. On presentation, the causes of the dental erosion in both patients had been previously diagnosed and stopped. The first patient was a 67 year old with intrinsic erosion and an element of attrition where a multidisciplinary approach was used. The other, a 17 year old patient with extrinsic erosion managed via adhesive restorations. Adhesive techniques are a relatively simple, effective and conservative method for the treatment of dental erosion. The two treatment modalities (conventional versus contemporary) are compared and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786288','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786288"><span>The WEPP Model Application in a Small Watershed in the Loess Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Han, Fengpeng; Ren, Lulu; Zhang, Xingchang; Li, Zhanbin</p> <p>2016-01-01</p> <p>In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau. PMID:26963704</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040085892','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040085892"><span>Real-Time Measurements of Aft Dome Insulation Erosion on Space Shuttle Reusable Solid Rocket Motor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McWhorter, Bruce; Ewing, Mark; Albrechtsen, Kevin; Noble, Todd; Longaker, Matt</p> <p>2004-01-01</p> <p>Real-time erosion of aft dome internal insulation was measured with internal instrumentation on a static test of a lengthened version of the Space Shuffle Reusable Solid Rocket Motor (RSRM). This effort marks the first time that real-time aft dome insulation erosion (Le., erosion due to the combined effects of thermochemical ablation and mechanical abrasion) was measured in this kind of large motor static test [designated as Engineering Test Motor number 3 (ETM3)I. This paper presents data plots of the erosion depth versus time. The data indicates general erosion versus time behavior that is in contrast to what would be expected from earlier analyses. Engineers have long known that the thermal environment in the aft dome is severe and that the resulting aft dome insulation erosion is significant. Models of aft dome erosion involve a two-step process of computational fluid dynamics (CFD) modeling and material ablation modeling. This modeling effort is complex. The time- dependent effects are difficult to verify with only prefire and postfire insulation measurements. Nozzle vectoring, slag accumulation, and changing boundary conditions will affect the time dependence of aft dome erosion. Further study of this data and continued measurements on future motors will increase our understanding of the aft dome flow and erosion environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP43A0966G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP43A0966G"><span>AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galloza, M.; Webb, N.; Herrick, J.</p> <p>2015-12-01</p> <p>Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29726208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29726208"><span>[Research progress on wind erosion control with polyacrylamide (PAM).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yuan Yuan; Wang, Zhan Li</p> <p>2016-03-01</p> <p>Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.377....9W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.377....9W"><span>Changes in soil erosion and sediment transport based on the RUSLE model in Zhifanggou watershed, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Lei; Qian, Ju; Qi, Wen-Yan; Li, Sheng-Shuang; Chen, Jian-Long</p> <p>2018-04-01</p> <p>In this paper, changes of sediment yield and sediment transport were assessed using the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information Systems (GIS). This model was based on the integrated use of precipitation data, Landsat images in 2000, 2005 and 2010, terrain parameters (slope gradient and slope length) and soil composition in Zhifanggou watershed, Gansu Province, Northwestern China. The obtained results were basically consistent with the measured values. The results showed that the mean modulus of soil erosion is 1224, 1118 and 875 t km-2 yr-1 and annual soil loss is 23 130, 21 130 and 16 536 in 2000, 2005 and 2010 respectively. The measured mean erosion modulus were 1581 and 1377 t km-2 yr-1, and the measured annual soil loss were 29 872 and 26 022 t in 2000 and 2005. From 2000 to 2010, the amount of soil erosion was reduced yearly. Very low erosion and low erosion dominated the soil loss status in the three periods, and moderate erosion followed. The zones classified as very low erosion were increasing, whereas the zones with low or moderate erosion were decreasing. In 2010, no zones were classified as high or very high soil erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994rwoc.rept......','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994rwoc.rept......"><span>Robotic weld overlay coatings for erosion control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29228963','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29228963"><span>The influence of frequently consumed beverages and snacks on dental erosion among preschool children in Saudi Arabia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Dlaigan, Yousef H; Al-Meedania, Laila A; Anil, Sukumaran</p> <p>2017-12-11</p> <p>To determine the prevalence of dental erosion and its association to commonly used beverages and snacks among 3 to 5 year old preschool children in Riyadh, Saudi Arabia. Three hundred eighty-eight preschool children between 3 and 5 years old were selected from 10 different schools using a cluster random sample selection; there were 184 (47%) boys and 204 (53%) girls. The surfaces of each tooth were examined for erosion, and the level of tooth wear was recorded. Data on the frequently used beverages and snacks were obtained by questionnaires completed by the parents of the preschool children. Among the 388 children examined, 47% exhibited low erosion, 10% exhibited moderate erosion and 4% exhibited severe erosion. There was no statistically significant difference between boys and girls in terms of the prevalence of erosion. Sixty percent of the children regularly consumed juice drinks. Among daily consumers, 84% of children showed erosion prevalence with strongly significant association (p < 0.005). Holding the drink in the mouth also showed a significant association with erosion (p < 0.02). It was concluded that an association was found between the prevalence of dental erosion and the frequency of citrus and carbonated juice consumed by the preschool children in Saudi Arabia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JTST...23..389G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JTST...23..389G"><span>Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.</p> <p>2014-02-01</p> <p>In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28646132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28646132"><span>Global rainfall erosivity assessment based on high-temporal resolution rainfall records.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano</p> <p>2017-06-23</p> <p>The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B13G0594B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B13G0594B"><span>Boreal forest soil erosion and soil-atmosphere carbon exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.</p> <p>2013-12-01</p> <p>Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod did not induce meaningful changes in model estimates of atmospheric C source or sink strength, likely due to the low turnover rate of SOC in this system. However, variation in mineral soil erosion rates induced large shifts in the source and sink strengths for atmospheric C; after 50 y of mineral soil erosion at 5 cm y-1, we observed a maximum C source of 35 kg C m-2 and negligible sink strength. Doubling the erosion rate approximately doubled the source strength. Scaling these estimates to the region requires estimates of the area undergoing mineral soil erosion in forests similar to those modeled. We suggest that erosion is an important but little studied feature of fire-driven boreal systems that will influence atmospheric CO2 budgets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960045798','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960045798"><span>Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barker, Timothy</p> <p>1996-01-01</p> <p>Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036984','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036984"><span>Thermal erosion of a permafrost coastline: Improving process-based models using time-lapse photography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wobus, C.; Anderson, R.; Overeem, I.; Matell, N.; Clow, G.; Urban, F.</p> <p>2011-01-01</p> <p>Coastal erosion rates locally exceeding 30 m y-1 have been documented along Alaska's Beaufort Sea coastline, and a number of studies suggest that these erosion rates have accelerated as a result of climate change. However, a lack of direct observational evidence has limited our progress in quantifying the specific processes that connect climate change to coastal erosion rates in the Arctic. In particular, while longer ice-free periods are likely to lead to both warmer surface waters and longer fetch, the relative roles of thermal and mechanical (wave) erosion in driving coastal retreat have not been comprehensively quantified. We focus on a permafrost coastline in the northern National Petroleum Reserve-Alaska (NPR-A), where coastal erosion rates have averaged 10-15 m y-1 over two years of direct monitoring. We take advantage of these extraordinary rates of coastal erosion to observe and quantify coastal erosion directly via time-lapse photography in combination with meteorological observations. Our observations indicate that the erosion of these bluffs is largely thermally driven, but that surface winds play a crucial role in exposing the frozen bluffs to the radiatively warmed seawater that drives melting of interstitial ice. To first order, erosion in this setting can be modeled using formulations developed to describe iceberg deterioration in the open ocean. These simple models provide a conceptual framework for evaluating how climate-induced changes in thermal and wave energy might influence future erosion rates in this setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......211K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......211K"><span>Water droplet erosion mechanisms of Ti-6Al-4V</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamkar Zahmatkesh, Niloofar</p> <p></p> <p>Water impingement erosion of materials can be a life-limiting phenomenon for the components in many erosive environments. For example, aircraft body exposed to rain, steam turbine blade, and recently in gas turbine coupled with inlet fogging system. The last is the focus of this study. Inlet fogging system is the most common method used to augment gas turbine output during hot days; high ambient temperature causes strong deterioration of the engine performance. Micro-scaled droplets introduced into the inlet airflow allow the cooling of entering air as well as intercooling the compressor (overspray) and thus optimizes the output power. However, erosion damage of the compressor blades in overspray stage is one of the major concerns associated with the inlet fogging system. The main objective of this research work (CRIAQ MANU419 project) is to understand the erosion induced by water droplets on Titanium alloy to eventually optimize the erosion resistance of the Ti-based compressor blade. Therefore, characterization of the water droplet erosion damage on Ti-6Al-4V receives the major importance. The influence of base material microstructure and impact parameters were considered in erosion evaluation in present study. This work covers the characterization of the erosion damage on Ti-6Al-4V alloy in two parts: - The water droplet erosion damage through a novel experimental approach. The collected data were processed both qualitatively and quantitatively for multi-aspects damage study. - The influence of impact velocity on erosion in an attempt to represent the in-service conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...90a2054G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...90a2054G"><span>Simulation of erosion by a particulate airflow through a ventilator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghenaiet, A.</p> <p>2015-08-01</p> <p>Particulate flows are a serious problem in air ventilation systems, leading to erosion of rotor blades and aerodynamic performance degradation. This paper presents the numerical results of sand particle trajectories and erosion patterns in an axial ventilator and the subsequent blade deterioration. The flow field was solved separately by using the code CFX- TASCflow. The Lagrangian approach for the solid particles tracking implemented in our inhouse code considers particle and eddy interaction, particle size distribution, particle rebounds and near walls effects. The assessment of erosion wear is based on the impact frequency and local values of erosion rate. Particle trajectories and erosion simulation revealed distinctive zones of impacts with high rates of erosion mainly on the blade pressure side, whereas the suction side is eroded around the leading edge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5092Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5092Z"><span>Reassessment of soil erosion on the Chinese loess plateau: were rates overestimated?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jianlin; Govers, Gerard</p> <p>2014-05-01</p> <p>Several studies have estimated regional soil erosion rates (rill and interrill erosion) on the Chinese loess plateau using an erosion model such as the RUSLE (e.g. Fu et al., 2011; Sun et al., 2013). However, the question may be asked whether such estimates are realistic: studies have shown that the use of models for large areas may lead to significant overestimations (Quinton et al., 2010). In this study, soil erosion rates on the Chinese loess plateau were reevaluated by using field measured soil erosion data from erosion plots (216 plots and 1380 plot years) in combination with a careful extrapolation procedure. Data analysis showed that the relationship between slope and erosion rate on arable land could be well described by erosion-slope relationships reported in the literature (Nearing, 1997). The increase of average erosion rate with slope length was clearly degressive, as could be expected from earlier research. However, for plots with permanent vegetation (grassland, shrub, forest) no relationship was found between erosion rates and slope gradient and/or slope length. This is important, as it implies that spatial variations of erosion on permanently vegetated areas cannot be modeled using topographical functions derived from observations on arable land. Application of relationships developed for arable land will lead to a significant overestimation of soil erosion rates. Based on our analysis we estimate the total soil erosion rate in the Chinese Loess plateau averages ca. 6.78 t ha-1 yr-1 for the whole loess plateau, resulting in a total sediment mobilisation of ca. 0.38 Gt yr-1. Erosion rates on arable land average ca. 15.10 t ha-1 yr-1. These estimates are 2 to 3 times lower than previously published estimates. The main reason why previous estimates are likely to be too high is that the values of (R)USLE parameters such as K, P and LS factor were overestimated. Overestimations of the K factor are due to the reliance of nomograph calculations, resulting in significantly higher erodibility values than those obtained from field data. Overestimations of the P and LS factors are mainly due to the fact that erosion control measures such as terracing are not accounted for and that erroneous scaling functions are used on permanently vegetated areas. Our findings have not only important implications with respect to the mobilization of sediments by agricultural erosion: we will also need to reassess the impact of erosion on biogeochemicaly cycling and crop productivity. Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., & Wu, B. (2011). Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4), 284-293. doi:10.1016/j.ecocom.2011.07.003 Nearing, M. A. (1997). A single, continuous function for slope steepness influence on soil loss. Soil Science Society of American Journal, 61(3), 917-919. Quinton, J. N., Govers, G., Van Oost, K., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5), 311-314. doi:10.1038/ngeo838 Sun, W., Shao, Q., & Liu, J. (2013). Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. Journal of Geographical Sciences, 23(6), 1091-1106. doi:10.1007/s11442-013-1065-z</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5553346','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5553346"><span>Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks: Ultrastructural analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco</p> <p>2017-01-01</p> <p>Background The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Material and Methods Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Results Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). Conclusions The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words:Dental erosion, enamel, SEM, toothpaste. PMID:28828151</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp...99Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp...99Y"><span>Spatial and temporal variations of wind erosion climatic erosivity in the farming-pastoral zone of Northern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, Shuping; Yang, Ruixin; Yan, Yechao; Yang, Zhengwei; Wang, Dandan</p> <p>2018-03-01</p> <p>Wind erosion climatic erosivity is an important parameter to assess the possible effects of climatic conditions on wind erosion. In this paper, the wind erosion climatic factor (C-factor), which was used to quantify the wind erosion climatic erosivity, was calculated for the period 1960-2014 based on monthly meteorological data collected from 101 stations in the farming-pastoral zone of Northern China. The Mann-Kendall (M-K) test, trend analysis, and geostatistical analysis methods were used to explore the spatial and temporal characteristics of the wind erosion climatic erosivity in this region. The result suggests that the annual C-factor, with a maximum of 76.05 in 1969 and a minimum of 26.57 in 2007, has a significant decreasing trend over the past 55 years. Strong seasonality in the C-factor was found, with the highest value in spring, which accounts for a significant proportion of the annual C-factor (41.46%). However, the coefficient of variation of the seasonal C-factor reaches a maximum in winter and a minimum in spring. The mean annual C-factor varies substantially across the region. Areas with high values of the mean annual C-factor (C ≥ 100) are located in Ulanqab and Dingxi, while areas with low values (C ≤ 10) lie in Lanzhou, Linxia, Dingxi, Xining, and Chengde. Spatial analysis on the trend of the C-factor reveals that 81% of the stations show statistically significant decreases at a 90% confidence level. An examination of the concentration ratio of the C-factor shows that the wind erosion climatic erosivity is concentrated in spring, especially in April, which makes this period particularly important for implementing soil conservation measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090014104&hterms=hall+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhall%2Btest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090014104&hterms=hall+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhall%2Btest"><span>In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzink, Kurt A.; Korman, Valentin</p> <p>2008-01-01</p> <p>One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster's operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor was tested using a linear Hall thruster geometry, which served as a means of producing plasma erosion of a ceramic discharge chamber. The mass flow rate, discharge voltage, and applied magnetic field strength could be varied, allowing for erosion measurements over a broad thruster operating envelope. Results are presented demonstrating the ability of the REAST sensor to capture not only the insulator erosion rates but also changes in these rates as a function of the discharge parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611017B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611017B"><span>Bank Erosion Vulnerability Zonation (BEVZ) -A Proposed Method of Preparing Bank Erosion Zonation and Its Application on the River Haora, Tripura, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandyopadhyay, Shreya; de, Sunil Kumar</p> <p>2014-05-01</p> <p>In the present paper an attempt has been made to propose RS-GIS based method for erosion vulnerability zonation for the entire river based on simple techniques that requires very less field investigation. This method consist of 8 parameters, such as, rainfall erosivity, lithological factor, bank slope, meander index, river gradient, soil erosivity, vegetation cover and anthropogenic impact. Meteorological data, GSI maps, LISS III (30m resolution), SRTM DEM (56m resolution) and Google Images have been used to determine rainfall erosivity, lithological factor, bank slope, meander index, river gradient, vegetation cover and anthropogenic impact; Soil map of the NBSSLP, India has been used for assessing Soil Erosivity index. By integrating the individual values of those six parameters (the 1st two parameters are remained constant for this particular study area) a bank erosion vulnerability zonation map of the River Haora, Tripura, India (23°37' - 23°53'N and 91°15'-91°37'E) has been prepared. The values have been compared with the existing BEHI-NBS method of 60 spots and also with field data of 30 cross sections (covering the 60 spots) taken along 51 km stretch of the river in Indian Territory and found that the estimated values are matching with the existing method as well as with field data. The whole stretch has been divided into 5 hazard zones, i.e. Very High, High, Moderate, Low and Very Low Hazard Zones and they are covering 5.66 km, 16.81 km, 40.82km, 29.67 km and 9.04 km respectively. KEY WORDS: Bank erosion, Bank Erosion Hazard Index (BEHI), Near Bank Stress (NBS), Erosivity, Bank Erosion Vulnerability Zonation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PCE...100..296S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PCE...100..296S"><span>Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral satellite data in the former South African homelands of Transkei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seutloali, Khoboso E.; Dube, Timothy; Mutanga, Onisimo</p> <p>2017-08-01</p> <p>Soil erosion is increasingly recognised as the principal cause of land degradation, loss of agricultural land area and siltation of surrounding water waterbodies. Accurate and up-to-date soil erosion mapping is key in understanding its severity if these negative impacts are to be minimised and affected areas rehabilitated. The aim of this work was to map the severity of soil erosion, based on the 30-m Landsat series multispectral satellite data in the former South African homelands of Transkei between the year 1994 and 2010. Further, the study assessed if the observed soil erosion trends and morphology that existed in this area could be explained by biophysical factors (i.e. slope, stream erosivity, topographic wetness index) retrieved from the 30-m ASTER Digital Elevation Model (DEM). The results of this study indicate that the Transkei region experiences varying erosion levels from moderate to very severe. The large portion of the land area under the former homelands was largely affected by rill erosion with approximately 74% occurring in the year 1984 and 54% in 2010. The results also revealed specific thresholds of soil erosion drivers. These include steeper areas (≥30°), high stream power index greater than 2.0 (stream erosivity), relatively lower vegetation cover (≤15%) and low topographic wetness index (≤5%). The results of this work demonstrate the severity of soil erosion in the Southern African former homelands of Transkei for the year 1984 and 2010. Additionally, this work has demonstrated the significance of the 30-m Landsat multispectral sensor in examining soil erosion occurrence at a regional scale where in-depth field work still remains a challenging task.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815143G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815143G"><span>How does slope form affect erosion in CATFLOW-SED?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin</p> <p>2016-04-01</p> <p>Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.307...93B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.307...93B"><span>A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda</p> <p>2018-04-01</p> <p>In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25446243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25446243"><span>Estimated prevalence of erosive tooth wear in permanent teeth of children and adolescents: an epidemiological systematic review and meta-regression analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salas, M M S; Nascimento, G G; Huysmans, M C; Demarco, F F</p> <p>2015-01-01</p> <p>The main purpose of this systematic review was to estimate the prevalence of dental erosion in permanent teeth of children and adolescents. An electronic search was performed up to and including March 2014. Eligibility criteria included population-based studies in permanent teeth of children and adolescents aged 8-19-year-old reporting the prevalence or data that allowed the calculation of prevalence rates of tooth erosion. Data collection assessed information regarding geographic location, type of index used for clinical examination, sample size, year of publication, age, examined teeth and tissue exposure. The estimated prevalence of erosive wear was determined, followed by a meta-regression analysis. Twenty-two papers were included in the systematic review. The overall estimated prevalence of tooth erosion was 30.4% (95%IC 23.8-37.0). In the multivariate meta-regression model use of the Tooth Wear Index for clinical examination, studies with sample smaller than 1000 subjects and those conducted in the Middle East and Africa remained associated with higher dental erosion prevalence rates. Our results demonstrated that the estimated prevalence of erosive wear in permanent teeth of children and adolescents is 30.4% with high heterogeneity between studies. Additionally, the correct choice of a clinical index for dental erosion detection and the geographic location play an important role for the large variability of erosive tooth wear in permanent teeth of children and adolescents. The prevalence of tooth erosion observed in permanent teeth of children and adolescents was considerable high. Our results demonstrated that prevalence rate of erosive wear was influenced by methodological and diagnosis factors. When tooth erosion is assessed, the clinical index should be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050185566','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050185566"><span>Effects of Bedrock Landsliding on Cosmogenically Determined Erosion Rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niemi, Nathan; Oskin, Mike; Burbank, Douglas; Heimsath, Arjun</p> <p>2005-01-01</p> <p>The successful quantification of long-term erosion rates underpins our understanding of landscape. formation, the topographic evolution of mountain ranges, and the mass balance within active orogens. The measurement of in situ-produced cosmogenic radionuclides (CRNs) in fluvial and alluvial sediments is perhaps the method with the greatest ability to provide such long-term erosion rates. In active orogens, however, deep-seated bedrock landsliding is an important erosional process, the effect of which on CRN-derived erosion rates is largely unquantified. We present a numerical simulation of cosmogenic nuclide production and distribution in landslide-dominated catchments to address the effect of bedrock landsliding on cosmogenic erosion rates in actively eroding landscapes. Results of the simulation indicate that the temporal stability of erosion rates determined from CRN concentrations in sediment decreases with increased ratios of landsliding to sediment detachment rates within a given catchment area, and that larger catchment areas must be sampled with increased frequency of landsliding in order to accurately evaluate long-term erosion rates. In addition, results of this simulation suggest that sediment sampling for CRNs is the appropriate method for determining long-term erosion rates in regions dominated by mass-wasting processes, while bedrock surface sampling for CRNs is generally an ineffective means of determining long-term erosion rates. Response times of CRN concentrations to changes in erosion rate indicate that climatically driven cycles of erosion may be detected relatively quickly after such changes occur, but that complete equilibration of CRN concentrations to new erosional conditions may take tens of thousands of years. Simulation results of CRN erosion rates are compared with a new, rich dataset of CRN concentrations from the Nepalese Himalaya, supporting conclusions drawn from the simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31811','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31811"><span>Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>P. R. Robichaud; J. W. Wagenbrenner; R. E. Brown; P. M. Wohlgemuth; J. L. Beyers</p> <p>2008-01-01</p> <p>Between 1998 and 2002, six sites were established immediately after large wildfires in the western United States to determine the effectiveness of contour-felled log erosion barriers in mitigating post-wildfire runoff and erosion. In each pair of matched, burned, and small watersheds (1-13 ha), one was treated with contour-felled log erosion barriers and one was left...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1083439','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1083439"><span>Composite biaxially textured substrates using ultrasonic consolidation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Blue, Craig A; Goyal, Amit</p> <p>2013-04-23</p> <p>A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31B..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31B..07R"><span>The Distribution and Magnitude of Glacial Erosion on 103-year Timescales at Engabreen, Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rand, C.; Goehring, B. M.</p> <p>2017-12-01</p> <p>We derive the magnitudes of glacial erosion integrated over 103-year timescales across a transect transverse to the direction of ice flow at Engabreen, Norway. Understanding the distribution of glacial erosion is important for several reasons, including sediment budgeting to fjord environments, development of robust landscape evolution models, and if a better understanding between erosion and ice-bed interface properties (e.g., sliding rate, basal water pressure) can be developed, we can use records of glacial erosion to infer glaciological properties that can ultimately benefit models of past and future glaciers. With few exceptions, measurements of glacial erosion are limited to the historical past and even then are rare owing to the difficulty of accessing the glacier bed. One method proven useful in estimating glacial erosion on 103-year timescales is to measure the remaining concentrations of cosmogenic nuclides that accumulate in exposed bedrock during periods of retracted glacier extent and are removed by glacial erosion and radioactive decay during ice cover. Here we will present measurements of 14C and 10Be measured in proglacial bedrock from Engabreen. Our transects are ca. 600 and 400 meters in front of the modern ice front, and based on historical imagery, was ice covered until the recent past. Initial 10Be results show an increase in concentrations of nearly an order of magnitude from the samples near the center of the glacial trough to those on the lateral margin, consistent with conceptual models of glacial erosion parameterized in terms of sliding velocity. Naïve exposure ages that assume no subglacial erosion range from 0.22 - 9.04 ka. More importantly, we can estimate erosion depths by assuming zero erosion of the highest concentration sample along the two transects and calculate the amount of material removed to yield the lower concentrations elsewhere along the two transects. Results indicate minimum erosion depths of 1-183 cm for most ice proximal transect and 7-56 cm for the more distal one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp..149G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp..149G"><span>Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang</p> <p>2018-03-01</p> <p>Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28892722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28892722"><span>Behavior of farmers in regard to erosion by water as reflected by their farming practices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Auerswald, Karl; Fischer, Franziska K; Kistler, Michael; Treisch, Melanie; Maier, Harald; Brandhuber, Robert</p> <p>2018-02-01</p> <p>The interplay between natural site conditions and farming raises erosion by water above geological background levels. We examined the hypothesis that farmers take erosion into account in their farming decisions and switch to farming practices with lower erosion risk the higher the site-specific hazard becomes. Erosion since the last tillage was observed from aerial orthorectified photographs for 8100 fields belonging to 1879 farmers distributed across Bavaria (South Germany) and it was modeled by the Universal Soil Loss Equation using highly detailed input data (e.g., digital terrain model with 5×5m 2 resolution, rain data with 1×1km 2 and 5min resolution, crop and cropping method from annual field-specific data from incentive schemes). Observed and predicted soil loss correlated closely, demonstrating the accuracy of this method. The close correlation also indicted that the farmers could easily observe the degree of recent erosion on their fields, even without modelling. Farmers clearly did not consider erosion in their decisions. When natural risk increased, e.g. due to steeper slopes, they neither grew crops with lower erosion potential, nor reduced field size, nor used contouring. In addition, they did not compensate for the cultivation of crops with higher erosion potential by using conservation techniques like mulch tillage or contouring, or by reducing field size. Only subsidized measures, like mulch tillage or organic farming, were applied but only at the absolute minimum that was necessary to obtain subsidies. However, this did not achieve the reduction in erosion that would be possible if these measures had been fully applied. We conclude that subsidies may be an appropriate method of reducing erosion but the present weak supervision, which assumes that farmers themselves will take erosion into account and that subsidies are only needed to compensate for any disadvantages caused by erosion-reducing measures, is clearly not justified. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ThApC.119..515M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ThApC.119..515M"><span>Evaluating spatial and temporal variations of rainfall erosivity, case of Central Rift Valley of Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew</p> <p>2015-02-01</p> <p>Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16515171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16515171"><span>[Dynamics of soil erosion at upper reaches of Minjiang River based on GIS].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Xingyuan; Hu, Zhibi; Li, Yuehui; Hu, Yuanman</p> <p>2005-12-01</p> <p>Based on TM and ETM imagines, and employing GIS technique and empirical Revised Universal Soil Loss Equation (RUSLE) model, this paper studied the dynamics of soil erosion at the upper reaches of Minjiang River during three typical periods, with the main affecting factors analyzed. The results showed that the soil erosion area was increased by 1.28%, 1.84 % and 1.70% in 1986, 1995 and 2000, respectively. The average erosion modulus was increased from 832.64 t x km(-2) x yr(-1) in 1986 to 1048.74 t x km(-2) yr(-2) in 1995 and reached 1362.11 t x km(-2) yr(-1) in 2000, and soil loss was mainly of slight and light erosion, companying with a small quantity of middling erosion. The area of soil erosion was small, and the degree was light. There was a significant correlation between slope and soil loss, which mainly happened in the regions with a slope larger than 25 degrees, and accounted for 93.65%, 93.81% and 92.71% of the total erosion in 1986, 1995 and 2000, respectively. As for the altitude, middling, semi-high and high mountains and dry valley were liable to soil erosion, which accounted for 98.21%, 97.63% and 99.27% of the total erosion in 1986, 1995 and 2000, respectively. Different vegetation had a significant effect on soil erosion, and shrub and newly restored forest were the main erosion area. Excessive depasture not only resulted in the degradation of pasture, but also led to slight soil erosion. Land use type and soil type also contributed to soil loss, among which, dry-cinnamon soil and calcic gray-cinnamon soil were the most dangerous ones needing more protection. Soil loss was also linearly increased with increasing population and households, which suggested that the increase of population and households was the driving factor for soil loss increase in this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3798326','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3798326"><span>Effect of Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Zhongwu; Huang, Jinquan; Zeng, Guangming; Nie, Xiaodong; Ma, Wenming; Yu, Wei; Guo, Wang; Zhang, Jiachao</p> <p>2013-01-01</p> <p>The effects of water erosion (including long-term historical erosion and single erosion event) on soil properties and productivity in different farming systems were investigated. A typical sloping cropland with homogeneous soil properties was designed in 2009 and then protected from other external disturbances except natural water erosion. In 2012, this cropland was divided in three equally sized blocks. Three treatments were performed on these blocks with different simulated rainfall intensities and farming methods: (1) high rainfall intensity (1.5 - 1.7 mm min−1), no-tillage operation; (2) low rainfall intensity (0.5 - 0.7 mm min−1), no-tillage operation; and (3) low rainfall intensity, tillage operation. All of the blocks were divided in five equally sized subplots along the slope to characterize the three-year effects of historical erosion quantitatively. Redundancy analysis showed that the effects of long-term historical erosion significantly caused most of the variations in soil productivity in no-tillage and low rainfall erosion intensity systems. The intensities of the simulated rainfall did not exhibit significant effects on soil productivity in no-tillage systems. By contrast, different farming operations induced a statistical difference in soil productivity at the same single erosion intensity. Soil organic carbon (SOC) was the major limiting variable that influenced soil productivity. Most explanations of long-term historical erosion for the variation in soil productivity arose from its sharing with SOC. SOC, total nitrogen, and total phosphorus were found as the regressors of soil productivity because of tillage operation. In general, this study provided strong evidence that single erosion event could also impose significant constraints on soil productivity by integrating with tillage operation, although single erosion is not the dominant effect relative to the long-term historical erosion. Our study demonstrated that an effective management of organic carbon pool should be the preferred option to maintain soil productivity in subtropical red soil hilly region. PMID:24147090</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23815978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23815978"><span>Can control of soil erosion mitigate water pollution by sediments?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rickson, R J</p> <p>2014-01-15</p> <p>The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to express in monetary terms. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188862','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188862"><span>Covariation of climate and long-term erosion rates acrossa steep rainfall gradient on the Hawaiian island of Kaua'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ken Ferrier,; J. Taylor Perron,; Sujoy Mukhopadhyay,; Matt Rosener,; Stock, Jonathan; Slosberg, Michelle; Kimberly L. Huppert,</p> <p>2013-01-01</p> <p>Erosion of volcanic ocean islands creates dramatic landscapes, modulates Earth’s carbon cycle, and delivers sediment to coasts and reefs. Because many volcanic islands have large climate gradients and minimal variations in lithology and tectonic history, they are excellent natural laboratories for studying climatic effects on the evolution of topography. Despite concerns that modern sediment fluxes to island coasts may exceed long-term fluxes, little is known about how erosion rates and processes vary across island interiors, how erosion rates are influenced by the strong climate gradients on many islands, and how modern island erosion rates compare to long-term rates. Here, we present new measurements of erosion rates over 5 yr to 5 m.y. timescales on the Hawaiian island of Kaua‘i, across which mean annual precipitation ranges from 0.5 to 9.5 m/yr. Eroded rock volumes from basins across Kaua‘i indicate that million-year-scale erosion rates are correlated with modern mean annual precipitation and range from 8 to 335 t km–2 yr–1. In Kaua‘i’s Hanalei River basin, 3He concentrations in detrital olivines imply millennial-scale erosion rates of >126 to >390 t km–2 yr–1 from olivine-bearing hillslopes, while fluvial suspended sediment fluxes measured from 2004 to 2009 plus estimates of chemical and bed-load fluxes imply basin-averaged erosion rates of 545 ± 128 t km–2 yr–1. Mapping of landslide scars in satellite imagery of the Hanalei basin from 2004 and 2010 implies landslide-driven erosion rates of 30–47 t km–2 yr–1. These measurements imply that modern erosion rates in the Hanalei basin are no more than 2.3 ± 0.6 times faster than millennial-scale erosion rates, and, to the extent that modern precipitation patterns resemble long-term patterns, they are consistent with a link between precipitation rates and long-term erosion rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24883340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24883340"><span>Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H</p> <p>2014-06-01</p> <p>Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (p< 0.05). The serum zinc levels were decreased in patients with erosive oral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H34C..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H34C..01P"><span>ERMiT: Estimating Post-Fire Erosion in Probabilistic Terms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierson, F. B.; Robichaud, P. R.; Elliot, W. J.; Hall, D. E.; Moffet, C. A.</p> <p>2006-12-01</p> <p>Mitigating the impact of post-wildfire runoff and erosion on life, property, and natural resources have cost the United States government tens of millions of dollars over the past decade. The decision of where, when, and how to apply the most effective mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) is a web-based application that estimates erosion in probabilistic terms on burned and recovering forest, range, and chaparral lands. Unlike most erosion prediction models, ERMiT does not provide `average annual erosion rates;' rather, it provides a distribution of erosion rates with the likelihood of their occurrence. ERMiT combines rain event variability with spatial and temporal variabilities of hillslope burn severity, soil properties, and ground cover to estimate Water Erosion Prediction Project (WEPP) model input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain event erosion rates with a probability of occurrence for each of five post-fire years. Over the 5 years of modeled recovery, the occurrence probability of the less erodible soil parameters is increased and the occurrence probability of the more erodible soil parameters is decreased. In addition, the occurrence probabilities and the four spatial arrangements of burn severity (arrangements of overland flow elements (OFE's)), are shifted toward lower burn severity with each year of recovery. These yearly adjustments are based on field measurements made through post-fire recovery periods. ERMiT also provides rain event erosion rate distributions for hillslopes that have been treated with seeding, straw mulch, straw wattles and contour-felled log erosion barriers. Such output can help managers make erosion mitigation treatment decisions based on the probability of high sediment yields occurring, the value of resources at risk for damage, cost, and other management considerations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009794','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009794"><span>Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodriquez, Gary</p> <p>2013-01-01</p> <p>The Moonraker Excavator and other tools under development for use on the Moon, Mars, and asteroids will be employed to construct a number of civil engineering projects and to mine the soil. Mounds of loose soil will be subject to the local transport mechanisms plus artificial mechanisms such as blast effects from landers and erosion from surface vehicles. Some of these structures will require some permanence, with a minimum of maintenance and upkeep. Combustion Synthesis (CS) is a family of processes and techniques whereby chemistry is used to transform materials, often creating flame in a hard vacuum. CS can be used to stabilize civil engineering works such as berms, habitat shielding, ramps, pads, roadways, and the like. The method is to unroll thin sheets of CS fabric between layers of regolith and then fire the fabric, creating a continuous sheet of crusty material to be interposed among layers of loose regolith. The combination of low-energy processes, ISRU (in situ resource utilization) excavator, and CS fabrics, seems compelling as a general method for establishing structures of some permanence and utility, especially in the role of robotic missions as precursors to manned exploration and settlement. In robotic precursory missions, excavator/ mobility ensembles mine the Lunar surface, erect constructions of soil, and dispense sheets of CS fabrics that are covered with layers of soil, fired, and then again covered with layers of soil, iterating until the desired dimensions and forms are achieved. At the base of each berm, for example, is a shallow trench lined with CS fabric, fired and filled, mounded, and then covered and fired, iteratively to provide a footing against lateral shear. A larger trench is host to a habitat module, backfilled, covered with fabric, covered with soil, and fired. Covering the applied CS fabric with layers of soil before firing allows the resulting matrix to incorporate soil both above and below the fabric ply into the fused layer, developing a very irregular surface which, like sandpaper, can provide an anchor for loose soil. CS fabrics employ a coarse fiberglass weave that persists as reinforcement for the fired material. The fiberglass softens at a temperature that exceeds the combustion temperature by factors of two to three, and withstands the installation process. This type of structure should be more resistant to rocket blast effects from Lunar landers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=294600','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=294600"><span>Acoustic measurements of soil-pipeflow and internal erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion. Therefore, non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=272161','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=272161"><span>Acoustic measurements of soil pipeflow and internal erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion therefore non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=278103','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=278103"><span>The management submodel of the Wind Erosion Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=335864','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=335864"><span>Cropping system effects on wind erosion potential</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1042a2004L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1042a2004L"><span>Numerical investigation on performance and sediment erosion of Francis runner with different guide vane profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lama, R.; Dahal, D. R.; Gautam, S.; Acharya, N.; Neopane, H.; Thapa, B. S.</p> <p>2018-06-01</p> <p>Francis turbine are ideal turbines for Himalayan and Andes region where both low and high-altitude mountains are located. Turbines operating in such regions face operational and maintenance problems due to the sediment erosion. In order to reduce the erosion effects on these components the design of components for higher sediment handling is essence. This paper presents performance analysis of Francis runner and prediction of sediment erosion on the runner blades for different operating conditions with different guide vane profiles. The simulations were carried out for 11 guide vane opening angles using Tabakoff erosion model. At full load and best efficiency point the erosion was localized at pressure side of runner blades outlet due to higher relative velocity. On the other hand, at part load condition, erosion was observed at suction side of the blades. Application of asymmetric guide vane profile NACA 4412 showed higher efficiency for all operating conditions with minimum erosion on runner blades in compare to symmetric guide vane profile NACA 0012.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29895083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29895083"><span>[Recurrent Corneal Erosions in Epithelial Corneal Dystrophies].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geerling, Gerd; Lisch, Walter; Finis, David</p> <p>2018-06-01</p> <p>The corneal epithelium is the most important structure of the ocular optical system. Recurrent corneal erosions can result from inflammation, trauma, degeneration and dystrophies. Epithelial basement membrane dystrophy (EBMD), epithelial recurrent erosion dystrophy (ERED) and Francheschetti and Meesmann's epithelial corneal dystrophy (MECD) can all - besides other signs and symptoms - result in more or less frequent corneal erosions. The pathomechanisms involved however are different. In EBMD, corneal erosions are facultative and clinical signs are often subtle. Aberrant basement membrane structures are associated with thinning of the epithelium and can be clinically identified as maps or fingerprints. In ERED, recurrent corneal erosions are - predominantly in the first decades of life - always present. A defect in the COL17A1 gene results in a dysfunctional hemidesmosome. In MECD, punctate corneal erosions are less frequent and result from intraepithelial microcysts which open spontaneously onto the ocular surface. Usually lubricants, therapeutic contact lenses and sometimes epithelial debridement and phototherapeutic keratectomy are the mainstay for treating corneal erosions in these three dystrophies. Georg Thieme Verlag KG Stuttgart · New York.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613279G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613279G"><span>Development of a glacially dominated shelf-slope-fan system in tectonically active southeast Alaska: Results of IODP Expedition 341 core-log-seismic integrated studies at glacial cycle resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert</p> <p>2014-05-01</p> <p>Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to 100 kyr glacial-interglacial cycles. Examination of the sink for both of these systems, which includes the Surveyor Fan and Aleutian Trench wedge, demonstrates a clear climatic driver for sediment flux to the deep sea. The first appearance of ice-rafted debris at our distal drill site closely approximates the start of the Pleistocene and a doubling of sediment accumulation accompanies the MPT. Converting sediment volumes just within the deep-sea sinks back to erosion rates in the orogen and correlating with changes in exhumation rates from thermochronology demonstrates a lack of accelerated tectonic response to the intensification of Northern Hemisphere glaciations at the start of the Pleistocene but increased shortening and exhumation of sediments at the MPT. The form of tectonic response differs between out-of-sequence thrusting or antiformal stacking within the fold and thrust belt to the west and a near vertical advection of material in a tectonic aneurysm in the core of the orogen to the east.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P41A1351I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P41A1351I"><span>Origin of Theater-Headed Tributaries to Escalante and Glen Canyons, Utah: Analogs to Martian Valley Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irwin, R. P.; Fortezzo, C. M.; Tooth, S. E.; Howard, A. D.; Zimbelman, J. R.; Barnhart, C. J.; Benthem, A. J.; Brown, C. C.; Parsons, R. A.</p> <p>2008-12-01</p> <p>Some tributaries to Glen and Escalante Canyons in southern Utah share similar characteristics to typical Martian fluvial valleys, motivating their frequent use as process analogs. In the spring of 2008, we investigated six tributary canyons formed in Navajo sandstone (two branches of Bowns, Explorer, Fence, and two branches of a tributary between the latter two) to test the hypothesis that seepage weathering and erosion are the dominant geomorphic processes. Measurements included spring discharge, pH, and hardness; compressive strength by Schmidt hammer of Navajo and underlying Kayenta beds; Selby bulk strength of Navajo sandstone; discharge estimates for flash floods; size of transported rocks; and vertical profiles of valley headwalls and alcoves. Plateau slickrock surfaces are commonly rounded on 10-100-m length scales and yield abundant runoff, as during rainfall observed on May 21-22. Incision into the Navajo surface by overland flow yields narrow, high-gradient valleys with V-shaped cross-sections; abrasion by sediment and weathering by standing water in closely spaced potholes facilitate downcutting. These small contributing valleys funnel waterfalls over the broad headscarps, forming small plunge pools. Headwalls are largely swept clear of debris relative to sidewalls. Canyon dimensions increase significantly below seeps, and wide alcoves are found only at these locations. We found no significant difference in rock strength at the top and bottom of the Navajo headwalls, suggesting that headscarp retreat requires basal weathering. Diverse weathering processes affect different sections of the headscarp relief. An intermittent waterfall may directly attack the base of an alcove, processes related to vegetation usually affect its lower slope (wetted by seepage from a discrete layer exposed in the deepest zone), and salt weathering often occurs on the roof. Scarps above an alcove are relatively unweathered and retreat primarily by sheet fracturing. The parabolic shape maximizes strength and is not a direct consequence of sapping. Infrequent flash floods of ~1-10 m3/s (woody debris and erosion indicated depth) exceed the magnitude of 1-2 L/s spring discharges by more than three orders of magnitude, and flooding is primarily responsible for sediment transport, particularly imbricated rocks up to tens of cm in size. The tributary canyons are growing headward along their contributing streams rather than up the structural dip, except where the contributing plateau surface is a dip slope (e.g., Fence and Explorer canyons). Few headwalls and contributing streams follow a large exposed tectonic joint; any structural control is primarily due to cumulative smaller fractures. These observations suggest a hybrid model for theater-headed valleys in massive rocks. Seepage weathering is an essential factor in forming steep headwalls and alcoves in Navajo sandstone, but headward retreat and erosion of debris depends on flash floods rather than seepage erosion. Plateau topography, contributing streams, and small joints rather than structural dip or large tectonic fractures control the valley planform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53F..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53F..04P"><span>Experimental investigation into the initiation and intensity of erosion in granular flows and its effect on flow dynamics with applications to pyroclastic density currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pollock, N. M.; Brand, B. D.; Roche, O.</p> <p>2017-12-01</p> <p>The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12705941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12705941"><span>Soil erosion and the global carbon budget.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lal, R</p> <p>2003-07-01</p> <p>Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of conservation-effective measures may reduce the risks of C emission and sequester C in soil and biota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27913025','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27913025"><span>Mapping monthly rainfall erosivity in Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos</p> <p>2017-02-01</p> <p>Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP12B..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP12B..02T"><span>Patterns and Controls of Erosion along the Elson Lagoon Coastline, Barrow, Alaska (2003-2016)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tweedie, C. E.; Escarzaga, S. M.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Aiken, Q.; Lopez, A. F.; Aguirre, A.; George, C.; Nelson, L.; Brown, J.</p> <p>2016-12-01</p> <p>With arctic warming and the combined effect of decreased summer sea ice extent, longer fetch for wave propagation, warmer sea surface and ground temperature, and longer periods of open water; the propensity for increased arctic coastal erosion rates and land-ocean sediment inputs to increase has been recognized for some time. In this study, we report on coastal erosion trends along a 11km stretch of coastline adjacent to the Barrow Environmental Observatory (BEO) where the position of the 2-4 meter high coastal bluff has been monitored annually with survey grade differential GPS (dGPS). Modern and historic erosion trends can be viewed through interactive web mapping applications at http://barrowmapped.org/. Rates of aerial and volumetric erosion losses averaged 0.7-2.8 meters and 0.8-3.5 cubic meters per meter of coast per year from 2003-2015 for each of the four coastal sections monitored. These losses equate to losses to the atmosphere and/or inputs to lagoon waters 53-220kgC per meter of coast per year. Such aerial losses are lower than from other areas of the Beaufort Sea coast that lack protective barrier islands, but 25-30% higher than historic decadal-scale change rates estimated for this section of coastline. However, regression analyses indicate no significant change to the rate of erosion during the past 13 years. Historic hotspots of erosion remained modern hotspots of erosion, and increases in modern erosion rates were greatest for sections of coast where historically high rates of erosion have been recorded. Regionally, the Elson Lagoon study area shows some of the highest rates of erosion for the Barrow Peninsula, which are generally 2-3 times mean annual erosion rates recorded for the Chukchi Sea Coastline near Barrow. Regression tree analysis used to isolate the relative importance of different biophysical controls of erosion differ between analyses run for aerial and volumetric losses along the Elson Lagoon Coast. These analyses also highlight key differences in controls between sampling periods with high/low wind-wave activity. In particular, analyses show the important influence of wave energy, land cover type, and landscape geomorphic history on modern coastal erosion dynamics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>