Sample records for sheet hydroforming process

  1. Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Zhe; Liu, Wei; Yuan, Shi-Jian

    2015-05-01

    Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.

  2. Analysis of Tube Free Hydroforming using an Inverse Approach with FLD-based Adjustment of Process Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Johnson, Kenneth I.; Khaleel, Mohammad A.

    2003-04-01

    This paper employs an inverse approach (IA) formulation for the analysis of tubes under free hydroforming conditions. The IA formulation is derived from that of Guo et al. established for flat sheet hydroforming analysis using constant strain triangular membrane elements. At first, an incremental analysis of free hydroforming for a hot-dip galvanized (HG/Z140) DP600 tube is performed using the finite element Marc code. The deformed geometry obtained at the last converged increment is then used as the final configuration in the inverse analysis. This comparative study allows us to assess the predicting capability of the inverse analysis. The results willmore » be compared with the experimental values determined by Asnafi and Skogsgardh. After that, a procedure based on a forming limit diagram (FLD) is proposed to adjust the process parameters such as the axial feed and internal pressure. Finally, the adjustment process is illustrated through a re-analysis of the same tube using the inverse approach« less

  3. Finite element assisted prediction of ductile fracture in sheet bulging

    NASA Astrophysics Data System (ADS)

    Donald, Bryan J. Mac; Lorza, Ruben Lostado; Yoshihara, Shoichiro

    2017-10-01

    With growing demand for energy efficiency, there is much focus on reducing oil consumption rates and utilising alternative fuels. A contributor to the solution in this area is to produce lighter vehicles that are more fuel efficient and/or allow for the use of alternative fuel sources (e.g. electric powered automobiles). Near-net-shape manufacturing processes such as hydroforming have great potential to reduce structural weight while still maintaining structural strength and performance. Finite element analysis techniques have proved invaluable in optimizing such hydroforming processes, however, the majority of such studies have used simple predictors of failure which are usually yield criteria such as von Mises stress. There is clearly potential to obtain more optimal solutions using more advanced predictors of failure. This paper compared the Von Mises stress failure criteria and the Oyane's ductile fracture criteria in the sheet hydroforming of magnesium alloys. It was found that the results obtained from the models which used Oyane's ductile fracture criteria were more realistic than those obtained from those that used Von Mises stress as a failure criteria.

  4. Hydroforming device and method

    DOEpatents

    Guza, David E.

    2007-09-11

    An apparatus (10, 110) and method to form a workpiece (32, 132) into a useful product (28, 128) using a pressurized fluid (14), also termed as "hydroforming". The workpiece may be a tube or may be one or a plurality of sheets of a material. The apparatus has a chamber (12) adapted to contain a quantity of a fluid, a hydroforming means positioned within the chamber, and means for substantially immersing the workpiece in the fluid before, during and after the hydroforming operation. Dies (16, 18) enclose the workpiece and provide a cavity of desired shape against which the workpiece is expanded by the pressurized fluid. The chamber may be open or closed to the atmosphere during operation and the fluid temperature and/or level may be controlled.

  5. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  6. Fabrication of micro T-shaped tubular components by hydroforming process

    NASA Astrophysics Data System (ADS)

    Manabe, Ken-ichi; Itai, Kenta; Tada, Kazuo

    2017-10-01

    This paper deals with a T-shape micro tube hydroforming (MTHF) process for 500 µm outer diameter copper microtube. The MTHF experiments were carried out using a MTHF system utilizing ultrahigh pressure. The fundamental micro hydroforming characteristics as well as forming limits are examined experimentally and numerically. From the results, a process window diagram for micro T-shape hydroforming process is created, and a suitable "success" region is revealed.

  7. Investigation on the innovative impact hydroforming technology

    NASA Astrophysics Data System (ADS)

    Lihui, Lang; Shaohua, Wang; Chunlei, Yang

    2013-05-01

    Hydroforming has a rapid development recently which has good forming quality and less cost. However, it still cannot meet the requirements of forming complex parts with small features just like convex tables, or bars which are widely employed in automotive and aircraft industries. The impact hydroforming technology means the most features are formed by hydroforming and the small features are rapidly reshaped by high intensity impact energy in a very short time after the traditional hydroforming. The impact pressure rises to the peak in 10ms which belongs to dynamic loading. In this paper, impact hydroforming process is proposed. The generation and transmission of impact hydroforming energy and impact shock wave were studied and simulated. The deformation process of the metal disks under the dynamic impact loading condition presented impact hydroforming is an effective technology to form complex parts with small features.

  8. Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang

    2018-05-01

    The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.

  9. Reversible and irreversible wrinkling in tube hydroforming process

    NASA Astrophysics Data System (ADS)

    El-Aty, Ali Abd; Ahmed, Tauseef; Farooq, Ahmed

    2017-07-01

    The aim of this research is to analyzeandoptimize the hydroforming process parameters in order to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.

  10. Investigation into Composites Property Effect on the Forming Limits of Multi-Layer Hybrid Sheets Using Hydroforming Technology

    NASA Astrophysics Data System (ADS)

    Liu, Shichen; Lang, Lihui; Guan, Shiwei; Alexandrov, Seigei; Zeng, Yipan

    2018-04-01

    Fiber-metal laminates (FMLs) such as Kevlar reinforced aluminum laminate (ARALL), Carbon reinforced aluminum laminate (CARALL), and Glass reinforced aluminum laminate (GLARE) offer great potential for weight reduction applications in automobile and aerospace construction. In order to investigate the feasibility for utilizing such materials in the form of laminates, sheet hydroforming technology are studied under the condition of uniform blank holder force for three-layered aluminum and aluminum-composite laminates using orthogonal carbon and Kevlar as well as glass fiber in the middle. The experimental results validate the finite element results and they exhibited that the forming limit of glass fiber in the middle is the highest among the studied materials, while carbon fiber material performs the worst. Furthermore, the crack modes are different for the three kinds of fiber materials investigated in the research. This study provides fundamental guidance for the selection of multi-layer sheet materials in the future manufacturing field.

  11. The effect of welding line heat-affected-zone on the formability of tube hydroforming process

    NASA Astrophysics Data System (ADS)

    ChiuHuang, Cheng-Kai; Hsu, Cheng-En; Lee, Ping-Kun

    2016-08-01

    Tube hydroforming has been used as a lightweight design approach to reduce CO2 emission for the automotive industry. For the high strength steel tube, the strength and quality of the welding line is very important for a successful tube hydroforming process. This paper aims to investigate the effect of the welding line's strength and the width of the heat-affected zone on the tube thinning during the hydroforming process. The simulation results show that both factors play an important role on the thickness distribution during the tube expansion.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Masashi; Dohmae, Takeshi; Hocker, Andy

    We are developing the manufacturing method for superconducting radio frequency (SRF) cavities by using a hydroforming instead of using conventional electron beam welding. We expect higher reliability and reduced cost with hydroforming. For successful hydroforming, high-purity seamless niobium tubes with good formability as well as advancing the hydroforming technique are necessary. Using a seamless niobium tube from ATI Wah Chang, we were able to successfully hydroform a 1.3 GHz three-cell TESLA-like cavity and obtained an Eacc of 32 MV/m. A barrel polishing process was omitted after the hydroforming. The vertical test was carried out with very rough inside surface. Wemore » got amazing and interesting result.« less

  13. A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong

    2017-11-01

    Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.

  14. FEA Simulation of Free-Bending - a Preforming Step in the Hydroforming Process Chain

    NASA Astrophysics Data System (ADS)

    Beulich, N.; Craighero, P.; Volk, W.

    2017-09-01

    High-strength steel and aluminum alloys are essential for developing innovative, lightly-weighted space frame concepts. The intended design is built from car body parts with high geometrical complexity and reduced material-thickness. Over the past few years, many complex car body parts have been produced using hydroforming. To increase the accuracy of hydroforming in relation to prospective car concepts, the virtual manufacturing of forming becomes more important. As a part of process digitalization, it is necessary to develop a simulation model for the hydroforming process chain. The preforming of longitudinal welded tubes is therefore implemented by the use of three-dimensional free-bending. This technique is able to reproduce complex deflection curves in combination with innovative low-thickness material design for hydroforming processes. As a first step to the complete process simulation, the content of this paper deals with the development of a finite element simulation model for the free-bending process with 6 degrees of freedom. A mandrel built from spherical segments connected by a steel rope is located inside of the tube to prevent geometrical instability. Critical parameters for the result of the bending process are therefore evaluated and optimized. The simulation model is verified by surface measurements of a two-dimensional bending test.

  15. Strain hardening behavior during manufacturing of tube shapes by hydroforming

    NASA Astrophysics Data System (ADS)

    Park, Hyun Kyu; Yi, Hyae Kyung; Van Tyne, Chester J.; Moon, Young Hoon

    2009-12-01

    Safe and robust process design relies on knowledge of the evolution of the mechanical properties in a tube during hydroforming. The manufacturing of tubular shapes generally consists of three main stages: bending, preforming, and expansion. The latter is usually called hydroforming. As a result of these three steps, the final product's strain hardening history is nonlinear. In the present study, the strain hardening behavior during hydroforming was experimentally investigated. The variation of local flow stress and/or local hardness was used as an index of the strain hardening during the various steps and the local flow stress and/or local hardness were used with respective correlations to determine the effective strain. The strain hardening behavior during hydroforming after preforming has been successfully analyzed by using the relationships between hardness, flow stress, and effective strain for variable pre-strains prior to hydroforming. The comparison of predicted hardness with measured hardness confirms that the methodology used in this study is feasible, and that the strain hardening behavior can be quantitatively estimated with good accuracy.

  16. Numerical investigation of tube hyroforming of TWT using Corner Fill Test

    NASA Astrophysics Data System (ADS)

    Zribi, Temim; Khalfallah, Ali

    2018-05-01

    Tube hydroforming presents a very good alternative to conventional forming processes for obtaining good quality mechanical parts used in several industrial fields, such as the automotive and aerospace sectors. Research in the field of tube hydroforming is aimed at improving the formability, stiffness and weight reduction of manufactured parts using this process. In recent years, a new method of hydroforming appears; it consists of deforming parts made from welded tubes and having different thicknesses. This technique which contributes to the weight reduction of the hydroformed tubes is a good alternative to the conventional tube hydroforming. This technique makes it possible to build rigid and light structures with a reduced cost. However, it is possible to improve the weight reduction by using dissimilar tailor welded tubes (TWT). This paper is a first attempt to analyze by numerical simulation the behavior of TWT hydroformed in square cross section dies, commonly called (Corner Fill Test). Considered tubes are composed of two materials assembled by butt welding. The present analysis will focus on the effect of loading paths on the formability of the structure by determining the change in thickness in several sections of the part. A comparison between the results obtained by hydroforming the butt joint of tubes made of dissimilar materials and those obtained using single-material tube is achieved. Numerical calculations show that the bi-material welded tube has better thinning resistance and a more even thickness distribution in the circumferential directions when compared to the single-material tube.

  17. Producibility Analysis of the Alternative Antitank Airframe Configuration (AATAC) Flex-Wing

    DTIC Science & Technology

    1988-06-01

    3 II. PRODUCTIONIPRODUCIBILITY CONSIDERATIONS ...................... 4 A. High Rage Manufacturing Issues...41 7. Hydroform process showing (1) blank in place, no pressure in cavity, (2) press closed and cavity pressurized, (3) ram... hydroforming and Guerin processes ..... 42 viI LIST OF TABLES Table Page 1. Comparison of Candidate Alloys ................................. 6 2. AATAC Wing

  18. FEM-based strain analysis study for multilayer sheet forming process

    NASA Astrophysics Data System (ADS)

    Zhang, Rongjing; Lang, Lihui; Zafar, Rizwan

    2015-12-01

    Fiber metal laminates have many advantages over traditional laminates (e.g., any type of fiber and resin material can be placed anywhere between the metallic layers without risk of failure of the composite fabric sheets). Furthermore, the process requirements to strictly control the temperature and punch force in fiber metal laminates are also less stringent than those in traditional laminates. To further explore the novel method, this study conducts a finite element method-based (FEM-based) strain analysis on multilayer blanks by using the 3A method. Different forming modes such as wrinkling and fracture are discussed by using experimental and numerical studies. Hydroforming is used for multilayer forming. The Barlat 2000 yield criteria and DYNAFORM/LS-DYNA are used for the simulations. Optimal process parameters are determined on the basis of fixed die-binder gap and variable cavity pressure. The results of this study will enhance the knowledge on the mechanics of multilayer structures formed by using the 3A method and expand its commercial applications.

  19. A Numerical Process Control Method for Circular-Tube Hydroforming Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Kenneth I.; Nguyen, Ba Nghiep; Davies, Richard W.

    2004-03-01

    This paper describes the development of a solution control method that tracks the stresses, strains and mechanical behavior of a tube during hydroforming to estimate the proper axial feed (end-feed) and internal pressure loads through time. The analysis uses the deformation theory of plasticity and Hill?s criterion to describe the plastic flow. Before yielding, the pressure and end-feed increments are estimated based on the initial tube geometry, elastic properties and yield stress. After yielding, the pressure increment is calculated based on the tube geometry at the previous solution increment and the current hoop stress increment. The end-feed increment is computedmore » from the increment of the axial plastic strain. Limiting conditions such as column buckling (of long tubes), local axi-symmetric wrinkling of shorter tubes, and bursting due to localized wall thinning are considered. The process control method has been implemented in the Marc finite element code. Hydroforming simulations using this process control method were conducted to predict the load histories for controlled expansion of 6061-T4 aluminum tubes within a conical die shape and under free hydroforming conditions. The predicted loading paths were transferred to the hydroforming equipment to form the conical and free-formed tube shapes. The model predictions and experimental results are compared for deformed shape, strains and the extent of forming at rupture.« less

  20. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  1. Deformation and recrystallization behavior of super high-purity niobium for SRF cavity

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Doryo, H.; Yuasa, M.; Miyamoto, H.; Yamanaka, M.

    2017-05-01

    Deformation and recyrstallization behavior of pure niobium was investigated in order to clarify the origin of its low hydro-formability despite of its high ductility comparable with pure iron. It was found that pure niobium exhibits lower strain hardening in cold rolling compared with pure iron. Furthermore, in post-deformation annealing, the hardness of niobium decreased monotonously with an increase of temperature, and the typical sharp drop by recrystallization was not evident. This softening behavior was contrasted with the high-purity iron. It is suggested that niobium exhibit the so-called in-situ recrystallization possibly because of low elastic modulus and low accumulative plastic strain energy in spite of high melting temperature. The low hydro-formability of pure niobium sheets or tubes is caused by its low strain hardening and its unique plastic anisotropy which is associated with this recovered residual rolled texture.

  2. Collapse characteristics of hydroformed tubes

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Lee, Young-Moon; Kim, Cheol; Hwang, Sang-Moo

    2002-07-01

    Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiyuan; Zhang, Zicheng, E-mail: zhangzicheng2004@126.com; Manabe, Ken-ichi

    Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier undermore » tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.« less

  4. Hydroformability study of seamless tube using Gurson-Tvergaard-Needleman (GTN) fracture model

    NASA Astrophysics Data System (ADS)

    Harisankar, K. R.; Omar, A.; Narasimhan, K.

    2017-09-01

    Tube hydroforming process is an advanced manufacturing process in which tube acting as blank is placed in between the dies and deformed with the help of hydraulic pressure. It has several advantages over conventional stamping process such as high strength to weight ratio, higher reliability, less tooling cost etc. Fracture surface investigation of tube hydroformed samples reveal dimple formation in the form of void coalescence which is a characteristic feature of ductile fracture. Hence, in order to accurately predict the limiting strains at fracture it is important to model the process using ductile damage criteria. Fracture criteria are broadly classified into two, microscopic and macroscopic. In the present work Gurson-Tvergaard-Neeedleman (GTN) model, which is a microscopic based ductile damage criteria, was used for predicting the limiting strains at fracture for seamless steel tubes and implemented in explicit finite element software, ABAQUS, for variety of strain path and boundary conditions to obtain fracture based forming limit diagram. The original void porosity, the critical porosity and fracture porosity of the Gurson-Tvergaard-Needleman model were determined by image analysis of scanning electron micrographs of the specimen at different testing conditions of the uniaxial tensile test. The other parameters of the model were determined by using inverse approach combined with uniaxial tensile test and simulation. Predicted FLD is found to be in good agreement with the experimental FLD. Furthermore, numerical simulation based parametric study was carried out to understand the impact of various GTN parameters on different aspects of formability parameters such as bursting pressure, bulge height, principal strains and strain path to develop the understanding of deformation and fracture behaviour at the micro-level during tube hydroforming process.

  5. Crashworthiness of Aluminium Tubes; Part 2: Improvement of Hydroforming Operation to Increase Absorption Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert

    2007-05-17

    The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments onmore » hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.« less

  6. Crashworthiness of Aluminium Tubes; Part 2: Improvement of Hydroforming Operation to Increase Absorption Energy

    NASA Astrophysics Data System (ADS)

    D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert; Williams, Bruce; Worswick, Michael

    2007-05-01

    The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments on hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.

  7. Investigation of the effects of process and geometrical parameters on formability in tube hydroforming using a modular hydroforming tool

    NASA Astrophysics Data System (ADS)

    Joghan, Hamed Dardaei; Staupendahl, Daniel; Hassan, Hamad ul; Henke, Andreas; Keesser, Thorsten; Legat, Francois; Tekkaya, A. Erman

    2018-05-01

    Tube hydroforming is one of the most important manufacturing processes for the production of exhaust systems. Tube hydroforming allows generating parts with highly complex geometries with the forming accuracies needed in the automotive sector. This is possible due to the form-closed nature of the production process. One of the main cost drivers is tool manufacturing, which is expensive and time consuming, especially when forming large parts. To cope with the design trend of individuality, which is gaining more and more importance and leads to a high number of product variants, a new flexible tool design was developed. The designed tool offers a high flexibility in manufacturing different shapes and geometries of tubes with just local alterations and relocation of tool segments. The tolerancing problems that segmented tools from the state of the art have are overcome by an innovative and flexible die holder design. The break-even point of this initially more expensive tool design is already overcome when forming more than 4 different tube shapes. Together with an additionally designed rotary hydraulic tube feeding system, a highly adaptable forming setup is generated. To investigate the performance of the developed tool setup, a study on geometrical and process parameters during forming of a spherical dome was done. Austenitic stainless steel (grade 1.4301) tube with a diameter of 40 mm and a thickness of 1.5 mm was used for the investigations. The experimental analyses were supported by finite element simulations and statistical analyses. The results show that the flexible tool setup can efficiently be used to analyze the interaction of the inner pressure, friction, and the location of the spherical dome and demonstrate the high influence of the feeding rate on the formed part.

  8. Experimental Study on the Relationship between Hardness and Principal Strain in Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Wang, G. D.; Chan, L. C.

    2009-11-01

    In order to find a feasible method to evaluate the deformation of tubes during the Tube Hydroforming (THF) process, the hardness and the strain in two selected deformation areas of hydro formed copper tubes (C11000) were measured and tested, and an instinct relationship was found between the hardness and the principal strains of the tubes. The major strain of the surface of tubes had the strongest linear relationship with hardness. A regression formula was used to describe the relationship between hardness and the sensitive strain which is defined in the present work as a dependent variable of major strain and thickness strain.

  9. Optimization of a Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Abedrabbo, Nader; Zafar, Naeem; Averill, Ron; Pourboghrat, Farhang; Sidhu, Ranny

    2004-06-01

    An approach is presented to optimize a tube hydroforming process using a Genetic Algorithm (GA) search method. The goal of the study is to maximize formability by identifying the optimal internal hydraulic pressure and feed rate while satisfying the forming limit diagram (FLD). The optimization software HEEDS is used in combination with the nonlinear structural finite element code LS-DYNA to carry out the investigation. In particular, a sub-region of a circular tube blank is formed into a square die. Compared to the best results of a manual optimization procedure, a 55% increase in expansion was achieved when using the pressure and feed profiles identified by the automated optimization procedure.

  10. Experimental and Numerical Analysis of Hydroformed Tubular Materials for Superconducting Radio Frequency (SRF) Cavities

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Sung

    Superconducting radio frequency (SRF) cavities represent a well established technology benefiting from some 40 years of research and development. An increasing demand for electron and positron accelerators leads to a continuing interest in improved cavity performance and fabrication techniques. Therefore, several seamless cavity fabrication techniques have been proposed for eliminating the multitude of electron-beam welded seams that contribute to the introduction of performance-reducing defects. Among them, hydroforming using hydraulic pressure is a promising fabrication technique for producing the desired seamless cavities while at the same time reducing manufacturing cost. This study focused on experimental and numerical analysis of hydroformed niobium (Nb) tubes for the successful application of hydroforming technique to the seamless fabrication of multi-cell SRF cavities for particle acceleration. The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to both provide starting data for models of hydroforming of Nb tube into seamless SRF cavities. Based on the results of these experiments, numerical analyses using finite element modeling were conducted for a bulge deformation of Cu and Nb. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio (RRR) measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. For numerical analysis of hydroforming process, two different simulation approaches were used. The first model was the macro-scale continuum model using the constitutive equations (stress-strain relationship) as an input of the simulation. The constitutive equations were obtained from the experimental procedure including tensile and tube bulge tests in order to investigate the influence of loading condition on deformation behavior. The second model was a multi-scale model using both macroscopic continuum model and microscopic crystal plasticity (CP) model: First, the constitutive equation was obtained from the other microscopic simulation model (CP-FEM) using the microstructural information (i.e., orientation) of materials from the OIM and simple tensile test data. Continuum FE analysis based on the obtained constitutive equation using CP model were then fulfilled. Several conclusions can be drawn on the basis of the experimental and numerical analysis as follows: 1) The stress-strain relationship from the bulge test represents a more accurate description of the deformation behavior for a hydroforming than that from tensile tests made on segments cut from the tubular materials. 2) For anisotropic material, the incorporation of anisotropic effects using anisotropy coefficient from the tensile test led to even more accurate results. 3) A multi-scale simulation strategy using combination of continuum and CP models can give high quality predictions of the deformation under hydroforming of Cu and Nb tubes.

  11. Metamodeling and optimization of the THF process with pulsating pressure

    NASA Astrophysics Data System (ADS)

    Bucconi, Marco; Strano, Matteo

    2018-05-01

    Tube hydroforming is a process used in various applications to form the tube in a desired complex shape, by combining the use of internal pressure, which provides the required stress to yield the material, and axial feeding, which helps the material to flow towards the bulging zone. In many studies it has been demonstrated how wrinkling and bursting defects can be severely reduced by means of a pulsating pressure, and how the so-called hammering hydroforming enhances the formability of the material. The definition of the optimum pressure and axial feeding profiles represent a daunting challenge in the designing phase of the hydroforming operation of a new part. The quality of the formed part is highly dependent on the amplitude and the peak value of the pulsating pressure, along with the axial stroke. In this paper, a research is reported, conducted by means of explicit finite element simulations of a hammering THF operation and metamodeling techniques aimed at optimizing the process parameters for the production of a complex part. The improved formability is explored for different factors and an optimization strategy is used to determine the most convenient pressure and axial feed profile curves for the hammering THF process of the examined part. It is shown how the pulsating pressure allows the minimization of the energy input in the process, still respecting final quality requirements.

  12. Wrinkle-Free Hydroforming of Wire Mesh

    NASA Technical Reports Server (NTRS)

    Fadness, J.

    1986-01-01

    Plastic films lubricate workpiece so it deforms smoothly. Thin layers of plastic below top die and above bottom die ensure wire screen slides as shaped by hydroforming. Plastic layers are 0.0043 in. (0.11 m) thick. Preformed to contours of dies and final workpiece. New method of hydroforming fine-wire-mesh heat-shield screens eliminates wrinkles and marks. Prevents screen from being damaged and pores from becoming blocked.

  13. Crashworthiness of Aluminium Tubes; Part 1: Hydroforming at Different Corner-Fill Radii and End Feeding Levels

    NASA Astrophysics Data System (ADS)

    D'Amours, Guillaume; Rahem, Ahmed; Williams, Bruce; Worswick, Michael; Mayer, Robert

    2007-05-01

    The automotive industry, with an increasing demand to reduce vehicle weight through the adoption of lightweight materials, requires a search of efficient methods that suit these materials. One attractive concept is to use hydroforming of aluminium tubes. By using FE simulations, the process can be optimized to reduce the risk for failure while maintaining energy absorption and component integrity under crash conditions. It is important to capture the level of residual ductility after forming to allow proper design for crashworthiness. This paper presents numerical and experimental studies that have been carried out for high pressure hydroforming operations to study the influence of the tube corner radius, end feeding, material thinning, and work hardening in 76.2 mm diameter, 3 mm wall thickness AA5754 aluminium alloy tube. End feeding was used to increase the formability of the tubes. The influence of the end feed displacement versus tube forming pressure schedule was studied to optimize the forming process operation to reduce thinning. Validation of the numerical simulations was performed by comparison of the predicted strain distributions and thinning, with measured quantities. The effect of element formulation (thin shell versus solid elements) was also considered in the models.

  14. Prediction of Forming Limit Diagram for Seamed Tube Hydroforming Based on Thickness Gradient Criterion

    NASA Astrophysics Data System (ADS)

    Chen, Xianfeng; Lin, Zhongqin; Yu, Zhongqi; Chen, Xinping; Li, Shuhui

    2011-08-01

    This study establishes the forming limit diagram (FLD) for QSTE340 seamed tube hydroforming by finite element method (FEM) simulation. FLD is commonly obtained from experiment, theoretical calculation and FEM simulation. But for tube hydroforming, both of the experimental and theoretical means are restricted in the application due to the equipment costs and the lack of authoritative theoretical knowledge. In this paper, a novel approach of predicting forming limit using thickness gradient criterion (TGC) is presented for seamed tube hydroforming. Firstly, tube bulge tests and uniaxial tensile tests are performed to obtain the stress-strain curve for tube three parts. Then one FE model for a classical tube free hydroforming and another FE model for a novel experimental apparatus by applying the lateral compression force and the internal pressure are constructed. After that, the forming limit strain is calculated based on TGC in the FEM simulation. Good agreement between the simulation and experimental results is indicated. By combining the TGC and FEM, an alternative way of predicting forming limit with enough accuracy and convenience is provided.

  15. Crashworthiness of Aluminium Tubes; Part 1: Hydroforming at Different Corner-Fill Radii and End Feeding Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amours, Guillaume; Rahem, Ahmed; Williams, Bruce

    2007-05-17

    The automotive industry, with an increasing demand to reduce vehicle weight through the adoption of lightweight materials, requires a search of efficient methods that suit these materials. One attractive concept is to use hydroforming of aluminium tubes. By using FE simulations, the process can be optimized to reduce the risk for failure while maintaining energy absorption and component integrity under crash conditions. It is important to capture the level of residual ductility after forming to allow proper design for crashworthiness. This paper presents numerical and experimental studies that have been carried out for high pressure hydroforming operations to study themore » influence of the tube corner radius, end feeding, material thinning, and work hardening in 76.2 mm diameter, 3 mm wall thickness AA5754 aluminium alloy tube. End feeding was used to increase the formability of the tubes. The influence of the end feed displacement versus tube forming pressure schedule was studied to optimize the forming process operation to reduce thinning. Validation of the numerical simulations was performed by comparison of the predicted strain distributions and thinning, with measured quantities. The effect of element formulation (thin shell versus solid elements) was also considered in the models.« less

  16. QUENCH STUDIES AND PREHEATING ANALYSIS OF SEAMLESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palczewski, Ari; Geng, Rongli; Eremeev, Grigory

    One of the alternative manufacturing technologies for SRF cavities is hydroforming from seamless tubes. Although this technology has produced cavities with gradient and Q-values comparable to standard EBW/EP cavities, a few questions remain. One of these questions is whether the quench mechanism in hydroformed cavities is the same as in standard electron beam welded cavities. Towards this effort Jefferson Lab performed quench studies on 2 9 cell seamless hydroformed cavities. These cavities include DESY's - Z163 and Z164 nine-cell cavities hydroformed at DESY. Initial Rf test results Z163 were published in SRF2011. In this report we will present post JLABmore » surface re-treatment quench studies for each cavity. The data will include OST and T-mapping quench localization as well as quench location preheating analysis comparing them to the observations in standard electron beam welded cavities.« less

  17. Preliminary Investigation of the Process Capabilities of Hydroforging

    PubMed Central

    Alzahrani, Bandar; Ngaile, Gracious

    2016-01-01

    Hydroforging is a hybrid forming operation whereby a thick tube is formed to a desired geometry by combining forging and hydroforming principles. Through this process hollow structures with high strength-to-weight ratio can be produced for applications in power transmission systems and other structural components that demands high strength-to-weight ratio. In this process, a thick tube is deformed by pressurized fluid contained within the tube using a multi-purpose punch assembly, which is also used to feed tube material into the die cavity. Fluid pressure inside the thick tube is developed by volume change governed by the movement of the punch assembly. In contrast to the conventional tube hydroforming (THF), the hydroforging process presented in this study does not require external supply of pressurized fluid to the deforming tube. To investigate the capability of hydroforging process, an experimental setup was developed and used to hydroforge various geometries. These geometries included hollow flanged vessels, hexagonal flanged parts, and hollow bevel and spur gears. PMID:28787840

  18. Improving hydro-formability of stainless steel tubes by tube channel pressing

    NASA Astrophysics Data System (ADS)

    Kitano, Y.; Yuasa, M.; Miyamoto, H.; Farshidi, M. H.; Bagherpour, E.

    2017-05-01

    Tube channel pressing (TCP), which is one of the severe plastic deformation (SPD) technologies to refine grain size into submicron size for tubular materials, have been applied to ferritic stainless steel tubes for one pass, in order to alleviate ridging and enhance the hydro-formability. It was found that grain-scale shear bands were introduced by one-pass TCP, and texture and microstructure was successfully modified by promoting recrystallization of deformation microstructure, which is otherwise hard-to-recrystallize, in the post-TCP annealing. Elongation to failure, strain-hardening exponent (n-value) and Lankford values of both longitudinal and circumferential directions increased in comparison to with the tube fabricated by conventional process.

  19. On a New Optimization Approach for the Hydroforming of Defects-Free Tubular Metallic Parts

    NASA Astrophysics Data System (ADS)

    Caseiro, J. F.; Valente, R. A. F.; Andrade-Campos, A.; Jorge, R. M. Natal

    2011-05-01

    In the hydroforming of tubular metallic components, process parameters (internal pressure, axial feed and counter-punch position) must be carefully set in order to avoid defects in the final part. If, on one hand, excessive pressure may lead to thinning and bursting during forming, on the other hand insufficient pressure may lead to an inadequate filling of the die. Similarly, an excessive axial feeding may lead to the formation of wrinkles, whilst an inadequate one may cause thinning and, consequentially, bursting. These apparently contradictory targets are virtually impossible to achieve without trial-and-error procedures in industry, unless optimization approaches are formulated and implemented for complex parts. In this sense, an optimization algorithm based on differentialevolutionary techniques is presented here, capable of being applied in the determination of the adequate process parameters for the hydroforming of metallic tubular components of complex geometries. The Hybrid Differential Evolution Particle Swarm Optimization (HDEPSO) algorithm, combining the advantages of a number of well-known distinct optimization strategies, acts along with a general purpose implicit finite element software, and is based on the definition of a wrinkling and thinning indicators. If defects are detected, the algorithm automatically corrects the process parameters and new numerical simulations are performed in real time. In the end, the algorithm proved to be robust and computationally cost-effective, thus providing a valid design tool for the conformation of defects-free components in industry [1].

  20. Analysis of Tube Hydroforming by means of an Inverse Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Johnson, Kenneth I.; Khaleel, Mohammad A.

    2003-05-01

    This paper presents a computational tool for the analysis of freely hydroformed tubes by means of an inverse approach. The formulation of the inverse method developed by Guo et al. is adopted and extended to the tube hydrofoming problems in which the initial geometry is a round tube submitted to hydraulic pressure and axial feed at the tube ends (end-feed). A simple criterion based on a forming limit diagram is used to predict the necking regions in the deformed workpiece. Although the developed computational tool is a stand-alone code, it has been linked to the Marc finite element code formore » meshing and visualization of results. The application of the inverse approach to tube hydroforming is illustrated through the analyses of the aluminum alloy AA6061-T4 seamless tubes under free hydroforming conditions. The results obtained are in good agreement with those issued from a direct incremental approach. However, the computational time in the inverse procedure is much less than that in the incremental method.« less

  1. The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Oh, Jinho; Choi, Hanho

    2010-06-01

    Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.

  2. Hydroforming of elliptical cavities

    DOE PAGES

    Singer, W.; Singer, X.; Jelezov, I.; ...

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  3. Hydroforming of elliptical cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV /m . The advantages and disadvantages of hydroformed cavities are discussed in this paper.

  4. Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.

    PubMed

    Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J

    2016-08-01

    Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.

  5. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    DOEpatents

    Golovashchenko, Sergey Fedorovich [Beverly Hills, MI

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  6. Research on the innovative hybrid impact hydroforming

    NASA Astrophysics Data System (ADS)

    Lang, Lihui; Wang, Shaohua; Yang, Chunlei

    2013-12-01

    The innovative hybrid impact hydro-forming (IHF) technology is a kind of high strain rate forming technique which can be used for forming complex parts with small features, such as convex tables, bars etc. The present work investigates IHF using a numerical /experimental approach. In this paper, the theory of IHF is presented and finite element simulation was carried out by using MSC. The pressure distribution changes in the depth direction, but not in the width direction. However, the pressure is uniform everywhere in traditional hydro-forming. Using this shock wave loading conditions, forming experiments were carried out. Punching occurred as a result of combined tensile and shear stress effects. Furthermore, results show that using IHF technology, the design constraint to make precise die may be considerably reduced. The need to accurately control punch-die clearance may also be eliminated. Therefore, the research is very useful for forming complicated products.

  7. Correlation between von Mises strain and material thinning in a hydroformed sample of Ti35A aerospace grade titanium

    NASA Astrophysics Data System (ADS)

    Bell, Colin; Jump, Ellen; Kerr, William; Corney, Jonathan; Zuelli, Nicola; Savings, David

    2017-10-01

    This paper presents the results of an experimental investigation of the strain measured on a sample of Ti35A (commercially pure) titanium that was formed past the point of failure in a hydroforming operation. The sample was etched prior to forming to allow for a strain map of the exterior to be created and examined by using a circle grid analysis (CGA) technique. The sample was scanned post forming with precise optical inspection to ascertain an accurate model of its geometry. This paper discusses the results of the analyses including the full geometric and surface strain measurements. This paper then compares material thinning properties to strain values and finds a linear relationship of approximately 3:1 between Von Mises strain and material thinning percentage throughout the sample. The slope of the line appears to correlate strongly with the material's Poisson's ratio and could have potential uses in process planning.

  8. Improvement of Die Corner Filling in Box-shape Stepped Tubes Hydroforming

    NASA Astrophysics Data System (ADS)

    Hosseini-Farrash, S. H.; Elyasi, M.; Bakhshi-Jooybari, M.; Gorji, A.

    2011-01-01

    A new die design to improve the die corner filling in the hydroforming of square-sectional stepped tubes is presented. The proposed die-set contains two additional bushes, compared to the common tube hydroforming dies. First, the tube is placed into the die, filled with liquid, and sealed with the punches. Then, by increasing the internal pressure, the tube is bulged and contacts the die walls (bulging stage). By maintaining the internal pressure, the two upper and lower bushes move until the die cavity is filled completely (calibration stage). The proposed die was simulated and the results show that sharp corners of the part and relatively complete filling of the die cavity can be obtained by using this die set. In order to verify the results, some experiments have been carried out. The experimental results verified the results obtained from the simulations. The thickness distribution of the part is also investigated and it is shown that fairly uniform thickness distribution can be obtained by using the proposed die set.

  9. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  10. Finite Element Analysis of Tube Hydroforming in Non-Symmetrical Dies

    NASA Astrophysics Data System (ADS)

    Nulkar, Abhishek V.; Gu, Randy; Murty, Pilaka

    2011-08-01

    Tube hydroforming has been studied intensively using commercial finite element programs. A great deal of the investigations dealt with models with symmetric cross-sections. It is known that additional constraints due to symmetry may be imposed on the model so that it is properly supported. For a non-symmetric model, these constraints become invalid and the model does not have sufficient support resulting in a singular finite element system. Majority of commercial codes have a limited capability in solving models with insufficient supports. Recently, new algorithms using penalty variable and air-like contact element (ALCE) have been developed to solve positive semi-definite finite element systems such as those in contact mechanics. In this study the ALCE algorithm is first validated by comparing its result against a commercial code using a symmetric model in which a circular tube is formed to polygonal dies with symmetric shapes. Then, the study investigates the accuracy and efficiency of using ALCE in analyzing hydroforming of tubes with various cross-sections in non-symmetrical dies in 2-D finite element settings.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, W.; Singer, X.; Jelezov, I.

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  12. Expandable Metal Liner For Downhole Components

    DOEpatents

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  13. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    NASA Astrophysics Data System (ADS)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples meet the 2015 target of the U.S. Department of Energy, surface coating is required. 5- ZrN and CrN coated BPPs exhibited higher corrosion resistance meeting DOE target while TiN coated samples had the lowest corrosion resistance. Higher coating thicknesses improved the corrosion resistance of the BPPs. 6- Process sequence between coating and manufacturing is not significant for hydroforming case (ZrN and CrN) and stamping case (CrN) in terms of the corrosion resistance. In other words, coating the BPP`s substrate material before manufacturing process does not always decrease the corrosion resistance of the BPPs.

  14. Analysis of the flow property of aluminum alloy AA6016 based on the fracture morphology using the hydroforming technology

    NASA Astrophysics Data System (ADS)

    Lang, Lihui; Zhang, Quanda; Sun, Zhiying; Wang, Yao

    2017-09-01

    In this paper, the hydraulic bulging experiments were respectively carried out using AA6016-T4 aluminum alloy and AA6016-O aluminum alloy, and the deformation properties and fracture mechanism of aluminum alloy under the conditions of thermal and hydraulic were analyzed. Firstly, the aluminum alloy AA6016 was dealt with two kinds of heat treatment systems such as solid solution heat treatment adding natural ageing and full annealing, then the aluminum alloy such as AA6016-T4 and AA6016-O were obtained. In the same working environment, the two kinds of materials were used in the process of hydraulic bulging experiments, according to the observation and measurement of the deformation sizes of grid circles and material thicknesses near the fracture region, the flow properties and development trend of fracture defect of the materials were analyzed comprehensively from the perspective of qualitative analysis and quantitative analysis; Secondly, the two kinds of materials were sampled in different regions of the fracture area and the microstructure morphology of the fracture was observed by the scanning electron microscope (SEM). The influence laws of the heat treatment systems on the fracture defect of the aluminum alloy under the condition of the liquid pressure were studied preliminarily by observing the distribution characteristics of the fracture microstructure morphology of dimple. At the same time, the experimental research on the ordinary stamping forming process of AA6016-O was carried out and the influence law of different forming process on the fracture defect of the aluminum alloy material was studied by observing the distribution of the fracture microstructure morphology; Finally, the development process of the fracture defect of aluminum alloy sheet was described theoretically from the view of the stress state.

  15. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  16. INFLUENCE OF HIGH-ENERGY FORMING ON THE BEHAVIOR OF MATERIALS (EINFLUSS DER HOCHENERGIEUMFORMUNG AUF DAS WERKSTOFFVERHALTEN),

    DTIC Science & Technology

    MATERIAL FORMING, METALS), (*METALS, MECHANICAL PROPERTIES), EXPLOSIVE FORMING, ELECTROFORMING, HYDROFORMING (MECHANICAL), IRON, STEEL, NICKEL, NIOBIUM, TENSILE PROPERTIES, TANTALUM, DEFORMATION, EAST GERMANY.

  17. Innovative forming and fabrication technologies : new opportunities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.; Hryn, J.; Energy Systems

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metalmore » alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.« less

  18. New Forming Technologies for Autobody at POSCO

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Woo; Cha, Myung-Hwan; Choi, Byung-Keun; Kim, Gyo-Sung; Park, Sung-Ho

    2011-08-01

    As development of car body with light weight and enhanced safety became one of the hottest issues in the auto industry, the advanced high strength steels have been broadly applied to various automotive parts over the last few years. Corresponding to this trend, POSCO has developed various types of cold and hot rolled AHSSs such as DP, TRIP, CP and FB, and continues to develop new types of steel in order to satisfy the requirement of OEMs more extensively. To provide optimal technical supports to customers, POSCO has developed more advanced EVI concept, which includes the concept of CE/SE, VA/VE, VI and PP as well as the conventional EVI strategy. To realize this concept, POSCO not only supports customers with material data, process guideline, and evaluation of formability, weld-ability, paint-ability and performance but also provides parts or sub-assemblies which demand highly advanced technologies. Especially, to accelerate adoption of AHSS in autobody, POSCO has tried to come up with optimal solutions to AHSS forming. Application of conventional forming technologies has been restricted more and more by relatively low formability of AHSS with high tensile-strength. To overcome the limitation in the forming, POSCO has recently developed new forming technologies such as hydro-forming, hot press forming, roll forming and form forming. In this paper, tailored strength HPF, hydroformed torsion beam axle and multi-directional roll forming are introduced as examples of new forming technologies.

  19. Effect of Geometric Parameters on Formability and Strain Path During Tube Hydrforming Process

    NASA Astrophysics Data System (ADS)

    Omar, A.; Harisankar, K. R.; Tewari, Asim; Narasimhan, K.

    2016-08-01

    Forming limit diagram (FLD) is an important tool to measure the material's formability for metal forming processes. In order to successfully manufacture a component through tube hydroforming process it is very important to know the effect of material properties, process and geometrical parameters on the outcome of finished product. This can be obtained by running a finite element code which not only saves time and money but also gives a result with considerable accuracy. Therefore, in this paper the mutual effect of diameter as well as thickness has been studied. Firstly the finite element based prediction is carried out to assess the formability of seamless and welded tubes with varying thickness. Later on, effect of varying diameter and thickness on strain path is predicted using statistical based regression analysis. Finally, the mutual effect of varying material property alongwith varying thickness and diameter on constraint factor is studied.

  20. Conceptual Design Studies of Composite AMST

    DTIC Science & Technology

    1974-10-01

    WEIGHT OF THE AIRFRAME THE PROPERTIES OF HIGH -STRENGTH GRAPHITE-EPOXY COMPOSITES (REPRESENTATIVE OF THORNEL 300 FIBERS) WERE USED IN THE APPLICATION...The primary advanced composite material selected was a high -strength graphite-epoxy (Thornel 300/Narmco 5208). Boron-infiltrated aluminum extrusions...Figure Page 25 Trimming Irregular Cutouts in Wing Box Attach Angles ...... 71 26 Hydroforming W-Truss Web Beaded Panels ................ 72 27 Exploded

  1. Physical and mechanical metallurgy of high purity Nb accelerator cavities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, N. T.; Bieler, T. R.; Pourgoghart , F.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less

  2. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieler, T. R.; Wright, N. T.; Pourboghrat, F.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less

  3. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    NASA Astrophysics Data System (ADS)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  4. Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Banks, B. A.; Byers, D. C.

    1972-01-01

    Several closely-space dished accelerator grid systems were fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.

  5. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  6. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  7. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  8. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  9. A High-Sensitivity Hydraulic Load Cell for Small Kitchen Appliances

    PubMed Central

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application. PMID:22163665

  10. A high-sensitivity hydraulic load cell for small kitchen appliances.

    PubMed

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application.

  11. Increasing the formability of ferritic stainless steel tube by granular medium-based hot forming

    NASA Astrophysics Data System (ADS)

    Chen, H.; Staupendahl, D.; Hiegemann, L.; Tekkaya, A. E.

    2017-09-01

    Ferritic stainless steel without the alloy constituent nickel is an economical substitution for austenitic stainless steel in the automotive industry. Its lower formability, however, oftentimes prevents the direct material substitution in forming processes such as hydroforming, necessitating new forming strategies. To extend the forming capacity of ferritic stainless steel tube, the approach of forming at elevated temperatures is proposed. Utilizing granular material as forming medium, high forming temperatures up to 900°C are realized. The forming process works by moving punches axially into the granular medium, thereby, compressing it and causing axial as well as radial pressure. In experimental and numerical investigations it is shown that interfacial friction between the granular medium and the tube inherently causes tube feed, resulting in stain states in the tension-compression region of the FLD. Formability data for this region are gained by notched tensile tests, which are performed at room temperature as well as at elevated temperatures. The measured data show that the formability is improved at forming temperatures higher than 700°C. This observed formability increase is experimentally validated using a demonstrator geometry, which reaches expansion ratios that show fracture in specimens formed at room temperature.

  12. Deformation behaviour of a new magnesium ternary alloy

    NASA Astrophysics Data System (ADS)

    Guglielmi, P.; Kaya, A. Arslan; Sorgente, D.; Palumbo, G.

    2018-05-01

    Magnesium based alloys are yet to fill a greater niche especially in the automotive and aeronautical industry. In fact, such alloys have a big weight saving potential, together with good damping characteristics. However, nowadays about 90% of Magnesium products are produced by casting, mainly using two alloy systems, namely Mg-Al-Zn (AZ91D) and Mg-Al (AM50, AM60). Now the emphasis, especially after having achieved considerable success in creep resistance and understanding of the deformation behaviour of Magnesium, has been shifted towards wrought alloys; AZ31, in this case, is the most popular. In this work a multi-element Magnesium alloy, developed to improve the deformation capacity of such a lightweight material, has been investigated and compared to a commercial AZ31B. The possibility of adopting such a multi-element Magnesium alloy for manufacturing components via unconventional sheet forming (such as superplastic forming, warm hydroforming, incremental forming) has been proved in the present work focusing the attention on the superplastic field. Free inflation tests were thus conducted at 450°C setting constant pressure to investigate the superplastic behaviour (in terms of dome height and strain rate sensitivity index) of both the multi-element Magnesium alloy (Mg-2Zn-Ce) and the commercial one (AZ31B). To enhance information on the thickness distribution and investigate the microstructure evolution, metallographic analyses on the samples used to carry out free inflation tests were also performed. The developed ternary alloy manifested quite a good deformation behaviour (high strain rate sensitivity index), even being tested in the as cast condition; in addition a limited grain coarsening was observed in the specimens after deformation.

  13. Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal

    NASA Astrophysics Data System (ADS)

    Liu, Jianguang; Wang, Zhongjin; Liu, Yan

    2007-05-01

    Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.

  14. Experimental analysis of Nd-YAG laser cutting of sheet materials - A review

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Yadava, Vinod

    2018-01-01

    Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.

  15. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  16. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  17. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  18. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  19. Research on liquid impact forming technology of double-layered tubes

    NASA Astrophysics Data System (ADS)

    Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan

    2018-03-01

    A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.

  20. Thermomechanical processing of HAYNES alloy No. 188 sheet to improve creep strength

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.

    1978-01-01

    Improvements in the low strain creep strength of HAYNES alloy No. 188 thin gauge sheet by means of thermomechanical processing were developed. Processing methods designed to develop a sheet with strong crystallographic texture after recrystallization and to optimize grain size were principally studied. The effects of thickness-to-grain diameter ratio and prestrain on low strain creep strength were also briefly examined. Results indicate that the most significant improvements were obtained in the sheets having a strong crystallographic texture. The low strain creep strength of the textured sheets was observed to be superior to that of standard production sheets in the 922 K to 1255 K temperature range. Tensile, stress rupture, fabricability, and surface stability properties of the experimental sheets were also measured and compared to property values reported for the baseline production sheets.

  1. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    PubMed

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  2. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden

    PubMed Central

    Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-01-01

    Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420

  3. Automated Rapid Prototyping of 3D Ceramic Parts

    NASA Technical Reports Server (NTRS)

    McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.

    2005-01-01

    An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut into individual sheets, which are stacked in the sheet-feeding machine until used. The sheet-feeding machine can hold enough sheets for about 8 hours of continuous operation.

  4. Clinching for sheet materials

    PubMed Central

    He, Xiaocong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified. PMID:28656065

  5. Current status of solar cell performance of unconventional silicon sheets

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Liu, J. K.

    1981-01-01

    It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.

  6. Early Shear Failure Prediction in Incremental Sheet Forming Process Using FEM and ANN

    NASA Astrophysics Data System (ADS)

    Moayedfar, Majid; Hanaei, Hengameh; Majdi Rani, Ahmad; Musa, Mohd Azam Bin; Sadegh Momeni, Mohammad

    2018-03-01

    The application of incremental sheet forming process as a rapid forming technique is rising in variety of industries such as aerospace, automotive and biomechanical purposes. However, the sheet failure is a big challenge in this process which leads wasting lots of materials. Hence, this study tried to propose a method to predict the early sheet failure in this process using mathematical solution. For the feasibility of the study, design of experiment with the respond surface method is employed to extract a set of experiments data for the simulation. The significant forming parameters were recognized and their integration was used for prediction system. Then, the results were inserted to the artificial neural network as input parameters to predict a vast range of applicable parameters avoiding sheet failure in ISF. The value of accuracy R2 ∼0.93 was obtained and the maximum sheet stretch in the depth of 25mm were recorded. The figures generate from the trend of interaction between effective parameters were provided for future studies.

  7. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  8. Characterization of the Polyurethanolytic Activity of Two Alicycliphilus sp. Strains Able To Degrade Polyurethane and N-Methylpyrrolidone▿

    PubMed Central

    Oceguera-Cervantes, Alejandro; Carrillo-García, Agustín; López, Néstor; Bolaños-Nuñez, Sandra; Cruz-Gómez, M. Javier; Wacher, Carmen; Loza-Tavera, Herminia

    2007-01-01

    Two bacterial strains (BQ1 and BQ8) were isolated from decomposed soft foam. These were selected for their capacity to grow in a minimal medium (MM) supplemented with a commercial surface-coating polyurethane (PU) (Hydroform) as the carbon source (MM-PUh). Both bacterial strains were identified as Alicycliphilus sp. by comparative 16S rRNA gene sequence analysis. Growth in MM-PUh showed hyperbolic behavior, with BQ1 producing higher maximum growth (17.8 ± 0.6 mg·ml−1) than BQ8 (14.0 ± 0.6 mg·ml−1) after 100 h of culture. Nuclear magnetic resonance, Fourier transform infrared (IR) spectroscopy, and gas chromatography-mass spectrometry analyses of Hydroform showed that it was a polyester PU type which also contained N-methylpyrrolidone (NMP) as an additive. Alicycliphilus sp. utilizes NMP during the first stage of growth and was able to use it as the sole carbon and nitrogen source, with calculated Ks values of about 8 mg·ml−1. Enzymatic activities related to PU degradation (esterase, protease, and urease activities) were tested by using differential media and activity assays in cell-free supernatants of bacterial cultures in MM-PUh. Induction of esterase activity in inoculated MM-PUh, but not that of protease or urease activities, was observed at 12 h of culture. Esterase activity reached its maximum at 18 h and was maintained at 50% of its maximal activity until the end of the analysis (120 h). The capacity of Alicycliphilus sp. to degrade PU was demonstrated by changes in the PU IR spectrum and by the numerous holes produced in solid PU observed by scanning electron microscopy after bacterial culture. Changes in the PU IR spectra indicate that an esterase activity is involved in PU degradation. PMID:17693569

  9. Research on the Micro Sheet Stamping Process Using Plasticine as Soft Punch

    PubMed Central

    Wang, Xiao; Zhang, Di; Gu, Chunxing; Shen, Zongbao; Liu, Huixia

    2014-01-01

    Plasticine is widely used in the analysis of metal forming processes, due to its excellent material flow ability. In this study, plasticine is used as the soft punch to fabricate array micro-channels on metal sheet in the micro sheet stamping process. This is because plasticine can produce a large material flow after being subjected to force and through the material flow, the plasticine can cause the sheet to fill into the micro-channels of the rigid die, leading to the generation of micro-channels in the sheet. The distribution of array micro-channels was investigated as well as the influence of load forces on the sheet deformations. It was found that the depth of micro-channels increases as the load force increases. When the load force reaches a certain level, a crack can be observed. The micro sheet stamping process was also investigated by the method of numerical simulation. The obtained experimental and numerical results for the stamping process showed that they were in good agreement. Additionally, from the simulation results, it can be seen that the corner region of the micro-channel-shape work piece has a risk to crack due to the existence of maximum von Mises stress and significant thinning. PMID:28788668

  10. Fact sheet for Applicants Intergovernmental Review Process

    EPA Pesticide Factsheets

    When submitting your application for Federal assistance, please observe the following steps pertaining to the intergovernmental review process. This is the Fact sheet for Applicants Intergovernmental Review Process.

  11. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  12. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  13. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  14. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  15. Laser: a tool for light weight steel solutions for the automotive industry

    NASA Astrophysics Data System (ADS)

    Prange, Wilfried; Wonneberger, Ingo

    2003-03-01

    Mid 80th the steel industry discovered the laser as a tool to develop new products made from steel -- the tailored blanks. That means welding single blanks together, which are of different gauge or grades and coating. In the meantime this product is one of the key solutions for light weight vehicles with increasing performances. The market development world wide confirms this statement. But the development of this product is still going on. New high power lasers and new laser generations as Nd:YAG lasers are the basis. Today welded blanks with almost any seam/blank configuration are in high volume production. These blanks offer an additional potential for the optimization of the final product. To produce flat blank is only one possibility. New developments are the tailored tubes as a prematerial for the hydroforming process. This product becomes more and more important for optimized body in white solutions. But this design elements need new solutions in the assembly shops. So the laser is going to get more importance in the 3D welding process as well. This was shown for example in the ULSAB(-AVC)-project. Future vehicles more and more contain different materials. For example the joining of steel and aluminum to Hybrid Blanks can be done successfully by the use of laser. So the laser is one of the most important tools in the future.

  16. Forming limit diagrams of tubes with initial wall-thickness difference based on different instability criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Qiwen; Yang, Lianfa; He, Yulin

    2018-05-01

    The Forming limit diagram (FLD), also known as a forming limit curves (FLC), is generally used in metal forming for predicting forming behavior of metals. The purpose of the study is to clarify the difference among the FLC of tubes with initial wall-thickness difference under tension-compression strain states using finite element (FE) simulation of tube hydroforming (THF) and different instability criteria. Firstly, geometrical models for SUS304 stainless steel tubes with initial wall-thickness differences were built by introducing an index `wall-thickness deviation rate'. Secondly, forced-end hydro-bugling of the tubes was modeled and the forming process was simulated by using the commercial finite element (FE) code ABAQUS/Explicit 6.10. Afterwards, the limiting strains of the material in the hydro-bugling process were calculated based on the simulated resultant data and three instability criteria-strain change criterion, strain rate change criterion and strain path change criterion, respectively. Finally, the FLD for the tubes was established and the effect of wall-thickness deviation rate on the FLD was analyzed and the differences among the FLC based on the three instability criteria were compared. The results showed that the FLC are observed to shift in the major-minor strain coordinate system due to the initial non-uniform wall-thickness; however, no distinct differences among the FLC based on the three instability criteria were observed.

  17. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  18. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  19. Kinetic Studies of Thin Current Sheets at Magnetosheath Jets

    NASA Astrophysics Data System (ADS)

    Eriksson, E.; Vaivads, A.; Khotyaintsev, Y. V.; Graham, D. B.; Yordanova, E.; Hietala, H.; Markidis, S.; Giles, B. L.; Andre, M.; Russell, C. T.; Le Contel, O.; Burch, J. L.

    2017-12-01

    In near-Earth space one of the most turbulent plasma environments is the magnetosheath (MSH) downstream of the quasi-parallel shock. The particle acceleration and plasma thermalization processes there are still not fully understood. Regions of strong localized currents are believed to play a key role in those processes. The Magnetospheric Multiscale (MMS) mission has sufficiently high cadence to study these processes in detail. We present details of studies of two different events that contain strong current regions inside the MSH downstream of the quasi-parallel shock. In both cases the shape of the current region is in the form of a sheet, however they show internal 3D structure on the scale of the spacecraft separation (15 and 20 km, respectively). Both current sheets have a normal magnetic field component different from zero indicating that the regions at the different sides of the current sheets are magnetically connected. Both current sheets are boundaries between two different plasma regions. Furthermore, both current sheets are observed at MSH jets. These jets are characterized by localized dynamic pressure being larger than the solar wind dynamic pressure. One current sheet does not seem to be reconnecting while the other shows reconnection signatures. Inside the non-reconnecting current sheet we observe locally accelerated electron beams along the magnetic field. At energies above the beam energy we observe a loss cone consistent with part of the hot MSH-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within this current sheet is similar to the one that occurs at the bow shock, where electron beams and loss cones are also observed. Therefore, we conclude that electron beams observed in the MSH do not have to originate from the bow shock, but can also be generated locally inside the MSH. The reconnecting current sheet also shows signs of thermalization and electron acceleration processes that are discussed in detail.

  20. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  1. Development of Rolling Schedules for Equal Channel Angular Extrusion (ECAE)-Processed AZ31 Magnesium Alloy

    DTIC Science & Technology

    2016-04-01

    Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes, Vincent H Hammond, Michael Eichhorst, Norman Herzig, and Lothar Meyer...Angular Extrusion (ECAE)–Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes and Vincent H Hammond Weapons and Materials Research...successfully reduced into 1.5-mm-thick sheets . Two sets of plates, each with a different texture type, were evaluated. Microscopic examination of

  2. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    PubMed

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Method for shaping sheet thermoplastic and the like

    NASA Technical Reports Server (NTRS)

    Akilian, Mireille K. (Inventor); Schattenburg, Mark L. (Inventor)

    2011-01-01

    Processes and apparati for shaping sheet glass or thermoplastic materials use force from a layer of a flowing fluid, such as air, between the sheet and a mandrel at close to the softening temperature of the thermoplastic. The shape is preserved by cooling. The shape of the air bearing mandrel and the pressure distribution of the fluid contribute to the final shape. A process can be conducted on one or two surfaces such that the force from the air layer is on one or two surfaces of the sheet. The gap size between the sheet and mandrel determines the pressure profile in the gap, which also determines the final sheet shape. In general, smaller gaps lead to larger viscous forces. The pressure profile depends on the shape of the mandrel, the size of the fluid gap and the sheet and the fluid supply pressure.

  4. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  5. Potential Climatic Effects on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.

    1984-01-01

    The Greenland Ice Sheet covers an area of 1,720,000 sq. km and contains approximately 2,600,000 cu km of ice. Most of the ice sheet receives an excess of snow accumulation over the amount of ice lost to wind, meltwater run-off or other ablative processes. The majority of mass loss occurs at the margin of the ice sheet as either surface melt, which flows into the sea or calving of icebergs from the tongues of outlet glaciers. Many estimates of these processes were published. An average of five published estimates is summarized. If these estimates are correct, then the Greenland Ice Sheet is in approximate equilibrium and contributes 490 cu km/a of fresh water to the North Atlantic and Arctic Oceans. Climate effects, ice sheet flow, and application of remote sensing to tracking of the ice sheet are discussed.

  6. Electrical-assisted double side incremental forming and processes thereof

    DOEpatents

    Roth, John; Cao, Jian

    2014-06-03

    A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.

  7. Rainfall and sheet power equation for interrill erosion on steep hillslope

    USDA-ARS?s Scientific Manuscript database

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equa...

  8. An artificial vision solution for reusing discarded parts resulted after a manufacturing process

    NASA Astrophysics Data System (ADS)

    Cohal, V.; Cohal, A.

    2016-08-01

    The profit of a factory can be improved by reusing the discarded components produced. This paper is based on the case of a manufacturing process where rectangular metallic sheets of different sizes are produced. Using an artificial vision system, the shapes and the sizes of the produced parts can be determined. Those sheets which do not respect the requirements imposed are labeled as discarded. Instead of throwing these parts, a decision algorithm can analyze if another metallic sheet with smaller dimensions can be obtained from these. Two methods of decision are presented in this paper, considering the restriction that the sides of the new sheet has to be parallel with the axis of the coordinate system. The coordinates of each new part obtained from a discarded sheet are computed in order to be delivered to a milling machine. Details about implementing these algorithms (image processing and decision respectively) in the MATLAB environment using Image Processing Toolbox are given.

  9. Nonlinear breakup of liquid sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jazayeri, S.A.; Li, X.

    1997-07-01

    Sprays formed from the disintegration of liquid sheets have extensive practical applications, ranging from chemical and pharmaceutical processes to power generation and propulsion systems. A knowledge of the liquid sheet breakup process is essential to the understanding of fundamental mechanism of liquid atomization and spray formation processes. The breakup of liquid sheets has been investigated in terms of hydrodynamic stability via linear analysis by Squire, Hagerty and Shea, Li, etc. nonlinear effect has been studied by Clark and Dombrowski up to the second order, and by Rangel and Sirignano through numerical simulation employing vortex discretization method. As shown by Taubmore » for the breakup of circular liquid jets, the closer to the breakup region, the higher the order of nonlinear analysis has to be for adequate description of the breakup behavior. As pointed out by Bogy, a nonlinear analysis up to the third order is generally sufficient to account for the inherent nonlinear nature of the breakup process. Therefore, a third-order nonlinear analysis has been carried out in this study to investigate the process of liquid sheet disruption preceding the spray formation.« less

  10. Enhancing workability in sheet production of high silicon content electrical steel through large shear deformation

    DOE PAGES

    Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.; ...

    2018-07-01

    Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less

  11. Enhancing workability in sheet production of high silicon content electrical steel through large shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.

    Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less

  12. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  13. Apparatus for electrical-assisted incremental forming and process thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, John; Cao, Jian

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less

  14. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  15. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    NASA Astrophysics Data System (ADS)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  16. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  17. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  18. Investigation of test methods, material properties, and processes for solar cell encapsulants. Fourteenth quarterly progress report, August 12, 1978-November 12, 1979. [EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1979-12-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. This report presents the results of a cost analysis of candidate potting compounds for long life solar module encapsulation. Additionally, the two major encapsulation processes, sheet lamination and liquid casting, are costed on the basis of a large scale production facility. Potting compounds studied include EVA, sheet, clear; EVA,more » sheet, pigmented; EPDM, sheet, clear; Aliphatic urethane, syrup; PVC Plastisol; Butyl acrylate, syrup; and Butyl acrylate, sheet.« less

  19. EoE (Eosinophilic Esophagitis)

    MedlinePlus

    ... Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids For Teens Managing ... Q & A with Experts Health Information Sheet Social Security Disability Application Process For Family and Friends For ...

  20. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  1. STRUCTURE AND HIGH-FIELD PERFORMANCE OF JELLY ROLL PROCESSED Nb{sub 3}Sn WIRES USING Sn-Ta AND Sn-Ti BASED ALLOY SHEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, K.; Tsuyuki, T.; Hayashi, Y.

    Sn-Ta based alloy buttons of different compositions were prepared by the melt diffusion process among constituent metal powders, and then pressed into plates. Meanwhile Sn-Ti based alloy plates were sliced from the melt and cast ingot. Resulting Sn-based alloy plates were rolled into thin sheets. The Sn-based alloy sheet was laminated with a Nb sheet, and wound into a Jelly Roll (JR) composite. The composite was encased in a sheath, and fabricated into a thin wire followed by the heat treatment. The application of hydrostatic extrusion is useful at the initial stage of the fabrication. The JR wires using Sn-Tamore » and Sn-Ti based alloy sheets show a non-Cu J{sub c} of {approx}250 A/mm{sup 2} and {approx}150 A/mm{sup 2} at 20 T and 22 T, respectively, at 4.2 K. It has been found that the Nb impregnates into the Sn-based alloy layers during the reaction, and Nb{sub 3}Sn layers are synthesized by the mutual diffusion between the Nb sheet and the Sn-based alloy sheet without formation of voids. Sn-Ti based alloy sheets are attractive due to their easiness of mass production. Structure and high-field performance of JR processed Nb{sub 3}Sn wires prepared from Sn-based alloy sheets with different compositions are compared in this article.« less

  2. Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels for Cold Forming

    NASA Astrophysics Data System (ADS)

    Park, Keecheol; Oh, Kyungsuk

    2017-09-01

    In order to investigate the effect of leveling conditions on residual stress evolution during the leveling process of hot rolled high strength steels, the in-plane residual stresses of sheet processed under controlled conditions at skin-pass mill and levelers were measured by cutting method. The residual stress was localized near the edge of sheet. As the thickness of sheet was increased, the residual stress occurred region was expanded. The magnitude of residual stress within the sheet was reduced as increasing the deformation occurred during the leveling process. But the residual stress itself was not removed completely. The magnitude of camber occurred at cut plate was able to be predicted by the residual stress distribution. A numerical algorithm was developed for analysing the effect of leveling conditions on residual stress. It was able to implement the effect of plastic deformation in leveling, tension, work roll bending, and initial state of sheet (residual stress and curl distribution). The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  3. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  4. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    EPA Pesticide Factsheets

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  5. Processing experiments on non-Czochralski silicon sheet

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.

    1981-01-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  6. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  7. Colour Based Image Processing Method for Recognizing Ribbed Smoked Sheet Grade

    NASA Astrophysics Data System (ADS)

    Fibriani, Ike; Sumardi; Bayu Satriya, Alfredo; Budi Utomo, Satryo

    2017-03-01

    This research proposes a colour based image processing technique to recognize the Ribbed Smoked Sheet (RSS) grade so that the RSS sorting process can be faster and more accurate than the traditional one. The RSS sheet image captured by the camera is transformed into grayscale image to simplify the recognition of rust and mould on the RSS sheet. Then the grayscale image is transformed into binary image using threshold value which is obtained from the RSS 1 reference colour. The grade recognition is determined by counting the white pixel percentage. The result shows that the system has 88% of accuracy. Most faults exist on RSS 2 recognition. This is due to the illumination distribution which is not equal over the RSS image.

  8. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2003-12-09

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  9. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  10. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  11. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  12. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  13. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2001-01-01

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  14. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  15. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    EPA Pesticide Factsheets

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  16. Fact Sheet - Final Air Toxics Rule for Gold Mine Ore Processing and Production

    EPA Pesticide Factsheets

    Fact sheet summarizing main points of National Emissions Standards for Hazardous Air Pollutants for gold ore processing and production facilities, the seventh largest source of mercury air emission in the United States.

  17. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  18. Development of a low energy micro sheet forming machine

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  19. Collisionless current sheet equilibria

    NASA Astrophysics Data System (ADS)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  20. Properties of Rolled AZ31 Magnesium Alloy Sheet Fabricated by Continuous Variable Cross-Section Direct Extrusion

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Feng; Li, Xue Wen; Shi, Wen Yong

    2018-03-01

    Rolling is currently a widely used method for manufacturing and processing high-performance magnesium alloy sheets and has received widespread attention in recent years. Here, we combined continuous variable cross-section direct extrusion (CVCDE) and rolling processes. The microstructure and mechanical properties of the resulting sheets rolled at different temperatures from CVCDE extrudate were investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and electron backscatter diffraction. The results showed that a fine-grained microstructure was present with an average grain size of 3.62 μm in sheets rolled from CVCDE extrudate at 623 K. Dynamic recrystallization and a large strain were induced by the multi-pass rolling, which resulted in grain refinement. In the 573-673 K range, the yield strength, tensile strength and elongation initially increased and then declined as the CVCDE temperature increased. The above results provide an important scientific basis of processing, manufacturing and the active control on microstructure and property for high-performance magnesium alloy sheet.

  1. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Moustafa, S. E.; Mioduszewski, J.; Chu, V. W.; Forster, R. R.; Hagedorn, B.; Harper, J. T.; Mote, T. L.; Robinson, D. A.; Shuman, C. A.; Smith, L. C.; Tedesco, M.

    2013-03-01

    Improved understanding of Greenland ice sheet hydrology is critically important for assessing its impact on current and future ice sheet dynamics and global sea level rise. This has motivated the collection and integration of in situ observations, model development, and remote sensing efforts to quantify meltwater production, as well as its phase changes, transport, and export. Particularly urgent is a better understanding of albedo feedbacks leading to enhanced surface melt, potential positive feedbacks between ice sheet hydrology and dynamics, and meltwater retention in firn. These processes are not isolated, but must be understood as part of a continuum of processes within an integrated system. This letter describes a systems approach to the study of Greenland ice sheet hydrology, emphasizing component interconnections and feedbacks, and highlighting research and observational needs.

  2. An experimental study on particle effects in liquid sheets

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Troger, Anthony; Jop, Pierre

    2017-06-01

    Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law for suspensions cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient particle-laden liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film and the atomization process. We highlight that the presence of particles modifies the thickness and stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.

  3. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    PubMed Central

    Cai, Yang; Wang, Xiaosong; Yuan, Shijian

    2017-01-01

    Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening. PMID:28772658

  4. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  5. Active microchannel fluid processing unit and method of making

    DOEpatents

    Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

    2001-01-01

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  6. Active microchannel fluid processing unit and method of making

    DOEpatents

    Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

    2002-12-10

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  7. Incremental Feeding High-Pressure Sliding for Grain Refinement of Large-Scale Sheets: Application to Inconel 718

    NASA Astrophysics Data System (ADS)

    Takizawa, Yoichi; Sumikawa, Kosei; Watanabe, Kyohei; Masuda, Takahiro; Yumoto, Manabu; Kanai, Yuta; Otagiri, Yoshiharu; Horita, Zenji

    2018-03-01

    This study updates a process of high-pressure sliding (HPS) recently developed as a severe plastic deformation process under high pressure for grain refinement of sheet samples. The updated version, which we call the incremental feeding HPS (IF-HPS), consists of sliding for SPD and feeding for upsizing the SPD-processed area so that, without increasing the capacity of processing facility, it is possible to cover a much larger area with an SPD-processed ultrafine-grained structure with a grain size of 120 nm. For the IF-HPS processing, anvils with flat surfaces but without grooves are used in an unconstrained condition, and the feeding distance is set equal to the deformed width. A Ni-based superalloy (Inconel 718) is processed by the IF-HPS under 4 GPa at room temperature, and it is possible to obtain an SPD-processed sheet with dimensions of approximately 100 × 100 × 1 mm3. Strain distribution and evolution were examined by hardness measurement and simulation using a finite element method. Tensile tests were conducted using tensile specimens extracted from the IF-HPS-processed sheet. Advent of high strain rate superplasticity with the total elongation of more than 400 pct was confirmed by pulling the tensile specimens with an initial strain rate of 2.0 × 10-2 s-1 at a temperature as low as 1073 K. The formability of the IF-HPS-processed sheet was confirmed by successful cup forming. It was also confirmed that the restoration after the superplastic deformation was feasible by subjecting to conventional heat treatment used for Inconel 718.

  8. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  9. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for basal slip exhibits ductile tensile-type fracture. A two-fold increase in ductility is also observed for the LSEM sheet under uniaxial tensile testing without significant changes in the strength. Among texture and microstructure (grain size), texture is shown to be more critical for Mg sheet formability. However, in conjunction with a favorable texture, fine recrystallized microstructure provides for additional enhancement of strain-hardening capacity and formability. In-situ imaging of material flow during uniaxial tensile testing revealed new, interesting flow localization phenomena and fracture behavior. It is shown that the deformation behavior of Mg sheet is highly texture dependent, and also radically different from that of conventional ductile metals both in terms of necking and fracture. The implications of these observations for the LDH test results and formability of Mg sheet, in general, are briefly discussed.

  10. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    NASA Astrophysics Data System (ADS)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  11. Particle Acceleration and Heating by Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  12. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz

    2016-08-10

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method tomore » estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.« less

  13. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  14. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    NASA Astrophysics Data System (ADS)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  15. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  16. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    NASA Astrophysics Data System (ADS)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  17. Dynamic of particle-laden liquid sheet

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Jop, Pierre; Troger, Anthony

    2016-11-01

    Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin liquid films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient free liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film as a function of time and the atomization process. We highlight that the presence of particles modifies the thickness and the stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.

  18. Controlling the metal to semiconductor transition of MoS 2 and WS 2 in solution

    DOE PAGES

    Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; ...

    2015-01-22

    Lithiation-exfoliation produces single to few-layered MoS 2 and WS 2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS 2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with themore » simplicity of solution processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS 2 and WS 2 within a liquid medium.« less

  19. High-efficiency cell concepts on low-cost silicon sheets

    NASA Technical Reports Server (NTRS)

    Bell, R. O.; Ravi, K. V.

    1985-01-01

    The limitations on sheet growth material in terms of the defect structure and minority carrier lifetime are discussed. The effect of various defects on performance are estimated. Given these limitations designs for a sheet growth cell that will make the best of the material characteristics are proposed. Achievement of optimum synergy between base material quality and device processing variables is proposed. A strong coupling exists between material quality and the variables during crystal growth, and device processing variables. Two objectives are outlined: (1) optimization of the coupling for maximum performance at minimal cost; and (2) decoupling of materials from processing by improvement in base material quality to make it less sensitive to processing variables.

  20. Fact Sheet - Final Air Toxics Rule for Steel Pickling and HCI Process Facilities and Hydrochloric Acid Regeneration Plants

    EPA Pesticide Factsheets

    Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.

  1. Organizational Excellence: Three Keys to the Centralization/Decentralization Debate

    DTIC Science & Technology

    2012-02-15

    33Sheets, 36. 34Sheets, 55. 35James L. Gibson, John M. Ivancevich and James H. Donnelly, Jr., Organizations: Structure, Processes, Behavior...Accounting Office, 1993. Gibson, James L., John M. Ivancevich and James H. Donnelly, Jr.. Organizations: Structure, Processes, Behavior. Dallas, TX

  2. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    NASA Astrophysics Data System (ADS)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  3. Ice sheet climate modeling: past achievements, ongoing challenges, and future endeavors

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.

    2017-12-01

    Fluctuations in surface mass balance (SMB) mask out a substantial portion of contemporary Greenland and Antarctic ice sheet mass loss. That implies that we need accurate, consistent, and long-term SMB time series to isolate the mass loss signal. This in turn requires understanding of the processes driving SMB, and how they interplay. The primary controls on present-day ice sheet SMB are snowfall, which is regulated by large-scale atmospheric variability, and surface meltwater production at the ice sheet's edges, which is a complex result of atmosphere-surface interactions. Additionally, wind-driven snow redistribution and sublimation are large SMB contributors on the downslope areas of the ice sheets. Climate models provide an integrated framework to simulate all these individual ice sheet components. Recent developments in RACMO2, a regional climate model bound by atmospheric reanalyses, have focused on enhancing horizontal resolution, including blowing snow, snow albedo, and meltwater processes. Including these physics not only enhanced our understanding of the ice sheet climate system, but also enabled to obtain increasingly accurate estimates of ice sheet SMB. However, regional models are not suitable to capture the mutual interactions between ice sheet and the remainder of the global climate system in transient climates. To take that next step, global climate models are essential. In this talk, I will highlight our present work on improving ice sheet climate in the Community Earth System Model (CESM). In particular, we focus on an improved representation of polar firn, ice sheet clouds, and precipitation. For this exercise, we extensively use field observations, remote sensing data, as well as RACMO2. Next, I will highlight how CESM is used to enhance our understanding of ice sheet SMB, its drivers, and past and present changes.

  4. Radial-rotation profile forming: A new processing technology of incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Laue, Robert; Härtel, Sebastian; Awiszus, Birgit

    2018-05-01

    Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.

  5. Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet

    NASA Astrophysics Data System (ADS)

    Murakoshi, Yoichi; Shan, Xue-Chuan; Sano, Toshio; Takahashi, Masaharu; Maeda, Ryutaro

    2004-04-01

    Nano imprinting or Nano embossing process have been introduced to fabricate semiconductor, optical device and Micro Electro Mechanical Systems (MEMS) and the Nano Electro Mechanical Systems (NEMS) to reduce the fabrication cost. In our previous paper, micro hot embossing of Polycarbonate (PC) and Polyetheretherketone (PEEK) for optical switch with 8x8 mirrors was reported. The PC and PEEK sheets were embossed at elevated temperature with an embossing machine designed for the MEMS. In the application, the mirrors on the optical switch had some defects, such as slump, sticking and step at side of the mirror, due to embossing process and process conditions. These defects are attributed to the poor materials flow of plastics into the e Ni mold cavity of complicate shape with different aspect ratio. Therefore, the micro hot embossing is optimized in this paper with PTFE sheet to enhance the materials flow. In this paper, the PC and the PEEK sheets, thickness of 300um, are embossed at elevated temperature with the hot embossing machine with a Nickel mold. To control material flow of the PC or the PEEK sheets, Polytetrafluoroethylene (PTFE) sheet, the thickness of 100um, is placed on the PC or the PEEK sheets at elevated temperature. Mirror shape was transferred with better fidelity on the PC and PEEK sheet, and the thickness of cantilever became thinner than previous embossed structure without the PTFE. Especially, the mirror height and the thickness of cantilever on the PC have been improved at lower embossing temperature.

  6. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  7. Nd:YAG laser welding of coated sheet steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, M.P.; Kerr, H.W.; Weckman, D.C.

    1994-12-31

    Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires ofmore » various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.« less

  8. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  9. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less

  10. Microscopic vertical orientation of nano-interspaced graphene architectures in deposit films as electrodes for enhanced supercapacitor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Gyoung Gug; Song, Bo; Li, Liyi

    This paper reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restackedmore » m-rGO sheets were ~40 µm. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited “control” films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to ~1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and ~67% reduction in equivalent series resistance. Finally, the approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors.« less

  11. Microscopic vertical orientation of nano-interspaced graphene architectures in deposit films as electrodes for enhanced supercapacitor performance

    DOE PAGES

    Jang, Gyoung Gug; Song, Bo; Li, Liyi; ...

    2016-12-14

    This paper reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restackedmore » m-rGO sheets were ~40 µm. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited “control” films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to ~1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and ~67% reduction in equivalent series resistance. Finally, the approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors.« less

  12. Investigation of the Formability of TRIP780 Steel Sheets

    NASA Astrophysics Data System (ADS)

    Song, Yang

    The formability of a metal sheet is dependent on its work hardening behaviour and its forming limits; and both aspects must be carefully determined in order to accurately simulate a particular forming process. This research aims to characterize the formability of a TRIP780 sheet steel using advanced experimental testing and analysis techniques. A series of flat rolling and tensile tests, as well as shear tests were conducted to determine the large deformation work hardening behaviour of this TRIP780 steel. Nakazima tests were carried out up to fracture to determine the forming limits of this sheet material. A highly-automated method for generating a robust FLC for sheet materials from DIC strain measurements was created with the help of finite element simulations, and evaluated against the conventional method. A correction algorithm that aims to compensate for the process dependent effects in the Nakazima test was implemented and tested with some success.

  13. Advances in modeling soil erosion after disturbance on rangelands

    USDA-ARS?s Scientific Manuscript database

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  14. Simulations of flow induced structural transition of the β-switch region of glycoprotein Ibα.

    PubMed

    Han, Mengzhi; Xu, Ji; Ren, Ying; Li, Jinghai

    2016-02-01

    Binding of glycoprotein Ibα to von Willebrand factor induces platelet adhesion to injured vessel walls and initiates a multistep hemostatic process. It has been hypothesized that the flow condition could induce a loop to β-sheet conformational change in the β-switch region of glycoprotein Ibα, which regulates it binding to the von Willebrand factor and facilitates the blood clot formation and wound healing. In this work, direct molecular dynamics (MD), flow MD and metadynamics, were employed to investigate the mechanisms of this flow induced conformational transition process. Specifically, the free energy landscape of the whole transition process was drawn by metadynamics with the path collective variable approach. The results reveal that without flow, the free energy landscape has two main basins, including a random loop basin stabilized by large conformational entropy and a partially folded β-sheet basin. The free energy barrier separating these two basins is relatively high and the β-switch could not fold from loop to β-sheet state spontaneously. The fully β-sheet conformations located in high free energy regions, which are also unstable and gradually unfold into partially folded β-sheet state with flow. Relatively weak flow could trigger some folding of the β-switch but could not fold it into fully β-sheet state. Under strong flow conditions, the β-switch could readily overcome the high free energy barrier and fold into fully β-sheet state. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Fuh-Kuo; Chang, Chih-Kun

    2005-08-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures.

  16. [Development, implementation, and analysis of a "collaborative decision-making for reasonable care" document in pediatric palliative care].

    PubMed

    Paoletti, M; Litnhouvongs, M-N; Tandonnet, J

    2015-05-01

    In France, a legal framework and guidelines state that decisions to limit treatments (DLT) require a collaborative decision meeting and a transcription of decisions in the patient's file. The do-not-attempt-resuscitation order involves the same decision-making process for children in palliative care. To fulfill the law's requirements and encourage communication within the teams, the Resource Team in Pediatric Palliative Care in Aquitaine created a document shared by all children's hospital units, tracing the decision-making process. This study analyzed the decision-making process, quality of information transmission, and most particularly the relevance of this new "collaborative decision-making for reasonable care" card. Retrospective study evaluating the implementation of a traceable document relating the DLT process. All the data sheets collected between January and December 2013 were analyzed. A total of 58 data sheets were completed between January and December 2013. We chose to collect the most relevant data to evaluate the relevance of the items to be completed and the transmission of the document, to draw up the patients' profile, and the contents of discussions with families. Of the 58 children for whom DLT was discussed, 41 data sheets were drawn up in the pediatric intensive care unit, seven in the oncology and hematology unit, five in the neonatology unit, four in the neurology unit, and one in the pneumology unit. For 30 children, one sheet was created, for 11 children, two sheets and for two children, three sheets were filled out. Thirty-nine decisions were made for withholding lifesaving treatment, 11 withdrawing treatment, and for five children, no limitation was set. Nine children survived after DLT. Of the 58 data sheets, only 31 discussions with families were related to the content of the data sheet. Of the 14 children transferred out of the unit with a completed data sheet, it was transmitted to the new unit for 11 children (79%). The number of data sheets collected in 1 year shows the value of this document. The participation of several pediatric specialities' referents in its creation, then its progressive presentation in the children's hospital units, were essential steps in introducing and establishing its use. Items describing the situation, management proposals, and adaptation of the children's supportive care were completed in the majority of cases. They correspond to a clinical description, the object of the discussion, and the daily caregiver's practices, respectively. On the other hand, discussions with families were related to the card's contents in only 53% of the cases. This can be explained by the time required to complete the DLT process. It is difficult for referring doctors to systematically, faithfully, and objectively transcribe discussions with parents. Although this process has been used for a long time in intensive care units, this document made possible an indispensable formalisation in the decision-making process. In other pediatric specialities, the sheet allowed introducing the palliative approach and was a starter and a tool for reflection on the do-not-attempt-resuscitation order, thus suggesting the need for anticipation in these situations. With the implementation of this new document, the DLT, data transmission, and continuity of care conditions were improved in the children's hospital units. Sharing this sheet with all professionals in charge of these children would support homogeneity and quality of management and care for children and their parents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Change in oligosaccharides during processing of soybean sheet.

    PubMed

    Wang, Qiushuang; Ke, Leqin; Yang, Dongmei; Bao, Bili; Jiang, Jianmei; Ying, Tiejin

    2007-01-01

    Oligosaccharides have been credited with many health-promoting functions, which had been identified in many clinical studies, such as promoting the growth of Bifidobacterium in human intestine and balance of intestinal bacteria, modulating the immune response, inhibition of cancer and tumor, stimulation of mineral absorption. In this study the effect of processing unit operations on the levels of soybean oligosaccharides during production of soybean sheet were investigated. The concentrations of oligosaccharide in initial raw soybean were: sucrose 43.05 g/kg, raffinose 7.52 g/kg and stachyose 41.32 g/kg (in dry matter). Oligosaccharide losses in the soaking water, in the first filtrating stage, in the second filtrating stage and finally in the sheet formation stage were 0.68, 10.3, 8.15 and 47.22 g/kg (initial dry soybean) respectively, representing 0.74, 11.21, 8.87 and 51.39% of the total oligosaccharides present in the initial soybeans. The recovery of oligosaccharides in the final soybean sheet from the initial soybean was 27.92%. The loss of soybean oligosaccharides in different processing stages, especially in the by-product, the sweet slurry, was considerable. The loss of oligosaccharides was mainly associated with water/matter removal in production process. The analysis of loss profile implied possible ways to improve the technology for production of oligosaccharides-enriched soy-sheets.

  18. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    NASA Astrophysics Data System (ADS)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  19. Molding cork sheets to complex shapes

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Simpson, W. G.; Walker, H. M.

    1977-01-01

    Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.

  20. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  1. The essence of the Blandford-Znajek process

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichiro; Igata, Takahisa

    2018-03-01

    From a spacetime perspective, the dynamics of magnetic field lines of force-free electromagnetic fields can be rewritten into a quite similar form for the dynamics of strings, i.e., dynamics of "field sheets". Using this formalism, we explicitly show that the field sheets of stationary and axisymmetric force-free electromagnetic fields have identical intrinsic properties to the world sheets of rigidly rotating Nambu-Goto strings. Thus, we conclude that the Blandford-Znajek process is kinematically identical to an energy-extraction mechanism by the Nambu-Goto string with an effective magnetic tension.

  2. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  3. Solid/melt interface studies of high-speed silicon sheet growth

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.

    1984-01-01

    Radial growth-rate anisotropies and limiting growth forms of point nucleated, dislocation-free silicon sheets spreading horizontally on the free surface of a silicon melt have been measured for (100), (110), (111), and (112) sheet planes. Sixteen-millimeter movie photography was used to record the growth process. Analysis of the sheet edges has lead to predicted geometries for the tip shape of unidirectional, dislocation-free, horizontally growing sheets propagating in various directions within the above-mentioned planes. Similar techniques were used to study polycrystalline sheets and dendrite propagation. For dendrites, growth rates on the order of 2.5 m/min and growth rate anisotropies on the order of 25 were measured.

  4. Dynamics of Radially Expanding Liquid Sheets

    NASA Astrophysics Data System (ADS)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  5. The use of smoke acid as an alternative coagulating agent for natural rubber sheets' production.

    PubMed

    Ferreira, Vanda S; Rêgo, Ione N C; Pastore, Floriano; Mandai, Mariana M; Mendes, Leonardo S; Santos, Karin A M; Rubim, Joel C; Suarez, Paulo A Z

    2005-03-01

    A comparative study of rubber sheets obtained using formic, acetic, and smoke acid as coagulants is shown for latex obtained from native Amazonian trees and also from commercial cultivated trees. The evaluation of both processes of coagulation was carried out by spectroscopic and physical-chemical analysis, showing no differences in the rubber sheets obtained. This new method of rubber sheet preparation was introduced into Amazonian rainforest rubber tapper communities, which are actually producing in large scale. The physical-mechanical properties were similar among a large sheets made by different rubber tapper communities using this new method.

  6. Synthesis of nanometre-thick MoO3 sheets

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  7. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    NASA Astrophysics Data System (ADS)

    McMillan, M.; Escola, R.; Roca, M.; Thibaut, P.; Aublanc, J.; Shepherd, A.; Remy, F.; Benveniste, J.; Ambrózio, A.; Restano, M.

    2017-12-01

    For the past 25 years, polar-orbiting satellite radar altimeters have provided a valuable record of ice sheet elevation change and mass balance. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which reduces their capacity to make measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 heralded the start of a new era of SAR Interferometric (SARIn) altimetry. However, because the satellite operated in SARIn and LRM mode over the ice sheets, many of the non-interferometric SAR altimeter processing techniques have been optimized for water and sea ice surfaces only. The launch of Sentinel-3, which provides full non-interferometric SAR coverage of the ice sheets, therefore presents the opportunity to further develop these SAR processing methodologies over ice sheets. Here we present results from SPICE, a 2 year study that focuses on (1) developing and evaluating Sentinel-3 SAR altimetry processing methodologies over the Polar ice sheets, and (2) investigating radar wave penetration through comparisons of Ku- and Ka-band satellite measurements. The project, which is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, has worked in advance of the operational phase of Sentinel-3, to emulate Sentinel-3 SAR and pseudo-LRM data from dedicated CryoSat-2 SAR acquisitions made at the Lake Vostok, Dome C and Spirit sites in East Antarctica, and from reprocessed SARIn data in Greenland. In Phase 1 of the project we have evaluated existing processing methodologies, and in Phase 2 we are investigating new evolutions to the Delay-Doppler Processing (DDP) and retracking chains. In this presentation we (1) evaluate the existing Sentinel-3 processing chain by comparing our emulated Sentinel-3 elevations to reference airborne datasets, (2) describe new developments to the DDP and retracking algorithms that are aimed at improving the certainty of retrievals over ice sheets, and (3) investigate radar wave penetration by comparing our SAR data to waveforms and elevations acquired by AltiKa at Ka-band.

  8. Performance analysis of the incremental sheet forming on PMMA using a combined chemical and mechanical approach

    NASA Astrophysics Data System (ADS)

    Conte, R.; Gagliardi, F.; Ambrogio, G.; Filice, F.; Russo, P.

    2017-10-01

    Single Point Incremental Forming (SPIF) has been widely investigated highlighting advantages as low-cost, higher formability and greater process flexibility if compared to traditional processes [1]. Recent works have proven the SPIF feasibility for polymers processing. Experimental researches have been carried out with the aim to investigate the influence of several working variables, i.e. spindle speed, tool diameter, step depth, etc., on the final quality of the formed parts [2, 3]. The processed thermoplastic materials are characterized by glass temperatures close to the room temperature and, therefore, SPIF has been performed without external thermal source, exploiting mostly the friction heat generated during the forming phases. In the proposed work, the attention has been focused on extruded poly(methyl methacrylate) (PMMA) sheets, which are characterized by a glass temperature of more than 100 °C. Because of that, an experimental equipment has been designed and the PMMA sheets have been placed on the top of chamber with controlled temperature before SPIF beginning. The temperature on the upper face of the sheets has been monitored by thermocamera, which has been properly set by matching its readings with the ones extracted by a thermocouple in contact with the sheets. SPIF at different temperatures has been carried out by changing both the heater temperature and the process parameters which have an influence on the workpiece heating. The influence of the highlighted process conditions on the worked parts and on the process feasibility has been investigated. Furthermore, examinations on the quality of the formed parts have been performed pointing out the effects that different process conditions have on surface integrity.

  9. Effect of Thermomechanical Processing on Microstructure, Texture Evolution, and Mechanical Properties of Al-Mg-Si-Cu Alloys with Different Zn Contents

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.

    2017-07-01

    The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.

  10. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  11. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    PubMed

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  12. Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad.

    PubMed

    Lee, Jin-Woong; Chung, Jiyong; Cho, Min-Young; Timilsina, Suman; Sohn, Keemin; Kim, Ji Sik; Sohn, Kee-Sun

    2018-06-20

    An extremely simple bulk sheet made of a piezoresistive carbon nanotube (CNT)-Ecoflex composite can act as a smart keypad that is portable, disposable, and flexible enough to be carried crushed inside the pocket of a pair of trousers. Both a rigid-button-imbedded, rollable (or foldable) pad and a patterned flexible pad have been introduced for use as portable keyboards. Herein, we suggest a bare, bulk, macroscale piezoresistive sheet as a replacement for these complex devices that are achievable only through high-cost fabrication processes such as patterning-based coating, printing, deposition, and mounting. A deep-learning technique based on deep neural networks (DNN) enables this extremely simple bulk sheet to play the role of a smart keypad without the use of complicated fabrication processes. To develop this keypad, instantaneous electrical resistance change was recorded at several locations on the edge of the sheet along with the exact information on the touch position and pressure for a huge number of random touches. The recorded data were used for training a DNN model that could eventually act as a brain for a simple sheet-type keypad. This simple sheet-type keypad worked perfectly and outperformed all of the existing portable keypads in terms of functionality, flexibility, disposability, and cost.

  13. Lightweight Steel Solutions for Automotive Industry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  14. Conflict minerals from the Democratic Republic of the Congo—Tin processing plants, a critical part of the tin supply chain

    USGS Publications Warehouse

    Anderson, Charles

    2015-03-24

    Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being a link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by the USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas was presented in the tungsten fact sheet. Tantalum processing plants were the subject of the second fact sheet in this series published by the USGS NMIC in December 2014. This fact sheet, the third in the series about 3TG minerals, focuses on the tin supply chain by listing selected processors that produced tin materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of the material processed in these facilities.

  15. Design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.

    1980-01-01

    A titanium multiwall thermal protection system panel was designed. The panel is a nine sheet sandwich structure consisting of an upper and lower face sheet; four dimpled sheets, three septum sheets, and clips for attachment to a vehicle structure. An acceptable fabrication process was developed, and the panel design was verified through mechanical and thermal testing of component specimens. A design was completed which takes into consideration fabrication techniques, thermal properties, mechanical properties, and materials availability.

  16. Using artificial neural networks to model aluminium based sheet forming processes and tools details

    NASA Astrophysics Data System (ADS)

    Mekras, N.

    2017-09-01

    In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).

  17. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.

  18. Transparent Carbon Nanotube layers as cathodes in OLEDs

    NASA Astrophysics Data System (ADS)

    Papadimitratos, Alexios; Nasibulin, Albert; Kauppinen, Esko; Zakhidov, Anvar; Solarno Inc Collaboration; Aalto University Collaboration; UT Dallas Collaboration

    2011-03-01

    Organic Light Emitting diodes (OLEDs) have attracted high interest in recent years due to their potential use in future lighting and display applications. Reported work on OLEDs traditionally utilizes low work function materials as cathodes that are expensive to fabricate because of the high vacuum processing. Transparent carbon nanotube (CNT) sheets have excellent mechanical and electrical properties. We have already shown earlier that multi-wall (MWCNT) as well as single CNT (SWCNT) sheets can be used as effective anodes in bright OLEDs [,]. The true advantage of using the CNT sheets lies in flexible devices and new architectures with CNT sheet as layers in tandem devices with parallel connection. In this work, we are investigating the possibility of using SWCNT as cathodes in OLEDs. SWCNT sheets have been reported to show lower work function compared to MWCNT. Our work attempts to demonstrate transparent OLED devices with CNT anodes and cathodes. In the process, OLEDs with CNT cathodes have been fabricated in normal and inverted configurations using inorganic oxides (MoO3,ZnO) as invertion layers.

  19. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  20. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  1. Microstructure Characterization of Weakly Textured and Fine Grained AZ61 Sheet

    NASA Astrophysics Data System (ADS)

    Berman, T. D.; Donlon, W.; Hung, C. K.; Milligan, P.; Decker, R.; Pollock, T. M.; Jones, J. W.

    Formability in magnesium alloy sheet is strongly limited by a strong basal texture in the as-rolled material, which is difficulty to remove by thermal processing. We introduce a new process to the control of texture by combining Thixomolding and Thermomechanical Processing (TTMP). Plates of AZ61L with a divorced β-Mg17Al12 eutectic are produced by Thixomolding, resulting in a non-textured, fine grained (2.8 µm) precursor. Sheet produced from the plate by single pass warm-rolling exhibits a weaker texture, and more isotropic tensile deformation than generally observed in AZ-series alloy sheet. Recrystallization annealing produces a further reduction in texture and average grain size (2.3 µm) and results in nearly isotropic room temperature deformation, a yield strength of 220 MPa, and an elongation of 23%. Particle stimulated nucleation of new grains by the β-phase during both dynamic and static recrystallization, is critical for achieving the low levels of texture. The influence of β-phase distribution in microstructure development is discussed.

  2. Process for making photovoltaic devices and resultant product

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1996-07-16

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  3. Process for making photovoltaic devices and resultant product

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1995-11-28

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  4. Process for making photovoltaic devices and resultant product

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1993-09-28

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  5. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  6. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the Northeast Ice Stream. The contrasting rheology of glacial and interglacial ice may also enhance the deformation associated with freeze-on beneath large ice sheets. The occurrence of basal units both in the ice sheet interior and in the thermally very different ablation zone indicates refreezing is widespread and can occur in many environments beneath an ice sheet. This process appears to influence the morphology and behavior of the ice sheet from top to bottom.

  7. Influence of compost covers on the efficiency of biowaste composting process.

    PubMed

    Marešová, Karolina; Kollárová, Mária

    2010-12-01

    The temperature of matured compost is an indicator of feedstock quality and also a good feedback informing about the suitability of an applied technological procedure. Two independent experiments using the technology of windrow composting at open area were conducted with the final goal to evaluate the effect of compost pile covering (in comparison with uncovered piles) on the course of composting process - behaviour of temperature over time and oxygen content. Two types of sheets were used - Top Tex permeable sheet and impermeable polyethylene sheet. The experiment I (summer months) aimed at comparison of efficiency between the Top Tex sheet cover and the uncovered compost piles, while experiment II (autumn months) compared treatments using the Top Tex sheet and polyethylene sheet by contrast. Within the experiment I the composts consisted of cattle slurry and fresh grass matter at a ratio of 1:1, in case of experiment II consisted of pig/cattle manure, fresh grass matter and chipped material at a ratio of about 1:2:1. The obtained data showed no significant differences among the cover treatments according to ANOVA. The only exception was oxygen content in pile 4 (experiment II) under Top Tex sheet, where a markedly higher oxygen content than under polyethylene sheet was measured during the whole composting period. It was the only case where statistical analysis proved a significant difference; the p-value was 0.0002. Copyright © 2010. Published by Elsevier Ltd.

  8. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    PubMed

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  9. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  10. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.

    2014-12-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  11. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  12. Increases in plasma sheet temperature with solar wind driving during substorm growth phases.

    PubMed

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-12-28

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼10 15  J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  13. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    NASA Astrophysics Data System (ADS)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  14. Water Accounting Plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.

    2012-11-01

    Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i) a resource base sheet, (ii) a consumption sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change) and internal influences (e.g. infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  15. Effect of intermediate annealing on the microstructure and mechanical property of ZK60 magnesium alloy produced by twin roll casting and hot rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei, E-mail: hmchen@just.edu.cn; Zang, Qianhao; Yu, Hui

    2015-08-15

    Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealingmore » can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.« less

  16. Calendering and Rolling of Viscoplastic Materials: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.

    2007-04-01

    The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.

  17. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    NASA Astrophysics Data System (ADS)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  18. Single point incremental forming: Formability of PC sheets

    NASA Astrophysics Data System (ADS)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  19. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-04

    One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensivemore » door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.« less

  20. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  1. Microstructure, Mechanical Properties, and Flatness of SEBM Ti-6Al-4V Sheet in As-Built and Hot Isostatically Pressed Conditions

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, J.; Song, C. N.; Liu, N.; Jia, L.; Elambasseril, J.; Qian, M.

    2017-03-01

    Sheet (0.41-4.80 mm thick) or thin plate structures commonly exist in additively manufactured Ti-6Al-4V components for load-bearing applications. A batch of 64 Ti-6Al-4V sheet samples with dimensions of 210/180 mm × 42 mm × 3 mm have been additively manufactured by selective electron beam melting (SEBM). A comprehensive assessment was then made of their density, surface flatness, microstructure, and mechanical properties in both as-built and hot isostatically pressed conditions, including the influence of the hot isostatic pressing (HIP) temperature. In particular, standard long tensile (156 mm long, 2 mm thick) and fatigue (206 mm long, 2 mm thick) test sheet samples were used for assessment. As-built SEBM Ti-6Al-4V sheet samples with machined surfaces fully satisfied the minimum tensile property requirements for mill-annealed TIMETAL Ti-6Al-4V sheet products, whereas HIP-processed samples (2 mm thick) with machined surfaces achieved a high cycle fatigue (HCF) strength of 625 MPa (R = 0.06, 107 cycles), similar to mill-annealed Ti-6Al-4V (500-700 MPa). The unflatness was limited to 0.2 mm in both the as-built and HIP-processed conditions. A range of other revealing observations was discussed for the additive manufacturing of the Ti-6Al-4V sheet structures.

  2. Polymer quenched prealloyed metal powder

    DOEpatents

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  3. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  4. Fuels planning: science synthesis and integration; economic uses fact sheet 05: NEPA and economics

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The National Environmental Policy Act (NEPA) is the law that requires Federal agencies to consider the environmental impacts of their actions, involve the public in the decisionmaking process, and disclose information, starting at the initial stages of planning. This fact sheet discusses when you should consider economics in the NEPA process, when to do an analysis,...

  5. The Research on Elevation Change of Antarctic Ice Sheet Based on CRYOSAT-2 Alimeter

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Wan, J.; Liu, S.; Li, Y.

    2018-04-01

    In this paper, the Cryosat-2 altimeter data distributed by the ESA, and these data are processed to extract the information of the elevation change of the Antarctic ice sheet from 2010 to 2017. Firstly, the main pretreatment preprocessing for Cryosat-2 altimetry data is crossover adjustment and elimination of rough difference. Then the grid DEM of the Antarctic ice sheet was constructed by using the kriging interpolation method,and analyzed the spatial characteristic time characteristics of the Antarctic ice sheet. The latitude-weighted elevation can be obtained by using the elevation data of each cycle, and then the general trend of the Antarctic ice sheet elevation variation can be seen roughly.

  6. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  7. Non-Evolutionarity of a Reconnecting Current Sheet as a Cause of Its Splitting into MHD Shocks

    NASA Astrophysics Data System (ADS)

    Markovsky, S. A.; Somov, B. V.

    1995-04-01

    Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.

  8. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    NASA Astrophysics Data System (ADS)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  9. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  10. Soluble Graphene Nanosheets from Recycled Graphite of Spent Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Liangliang; Liu, Xiya; Wan, Chuanyun; Ye, Xiangrong; Wu, Fanhong

    2018-02-01

    Soluble graphene nanosheets are fabricated from recycled graphite of spent lithium ion batteries through a modified Hammers process followed by deoxygenation with NaOH-KOH eutectic. Ultrasonic exfoliation in N-methyl-pyrrolidone indicates the loosened graphene layers in recycled graphite are prone to exfoliation. Reduction of the exfoliated graphene oxide sheets was conducted in molten NaOH-KOH eutectic at different temperatures. The results show that molten NaOH-KOH effectively eliminates the unsaturated oxygen-containing moieties from the exfoliated graphene oxide sheets while creating more hydroxyl functional groups. Higher temperature treatment is more prone to remove hydroxyls while producing the shrinkage on the surface of graphene sheets. Graphene sheet with a good solubility is produced when the graphene oxide is heat-treated at 220 °C for 10 h. After reduction, the graphene oxide sheets exhibit excellent dispersibility or solubility in water, ethanol and other polar solvents, therefore being highly desirable for solution processing of graphene materials. Such study not only identifies a high-quality stockpile to prepare soluble graphene but also paves a feasible alternative of graphite recycling from spent lithium batteries.

  11. Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.

    2007-05-01

    Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.

  12. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  13. Energy-Saving Opportunities for Manufacturing Enterprises (International English Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet provides information about the Industrial Technologies Program Save Energy Now energy audit process, software tools, training, energy management standards, and energy efficient technologies to help U.S. companies identify energy cost savings.

  14. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.

    2007-09-01

    While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.

  15. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.

  16. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  17. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  18. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  19. Additive Manufacturing of Functional Elements on Sheet Metal

    NASA Astrophysics Data System (ADS)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  20. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.

    1976-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.

  1. Frustules to fragments, diatoms to dust: How degradation of microfossil shape and microstructures can teach us how ice sheets work

    USGS Publications Warehouse

    Scherer, R.P.; Sjunneskog, C.M.; Iverson, M.R.; Hooyer, T.S.

    2005-01-01

    In a laboratory experiment we investigated micro- and nanoscale changes in fossil diatom valves and in the texture of diatomaceous sediments that result from ice sheet overburden and subglacial shearing. Our experiment included compression and shearing of Antarctic diatom-rich sediments in a ring shear device and comparison of experimental samples with natural glacial sediments from the Antarctic continental shelf. The purpose of the experiment is to establish objective criteria for analyzing subglacial processes and interpreting the origin of glacial-geologic features on the Antarctic continental shelf. We find distinct changes resulting from different glacial settings, with respect to whole diatom frustules, diatom micromorphology, and microtextural properties of sedimentary units. By providing constraints on subglacial shearing, these observations of genetically controlled micro- and nanoscale diatom structures and architecture are contributing to the understanding of large-scale glacial processes, aiding the development of models of modern ice sheet processes, and guiding interpretation of past ice sheet configurations. Copyright ?? 2005 American Scientific Publishers. All rights reserved.

  2. Optimization of the cleaning process on a pilot filtration setup for waste water treatment accompanied by flow visualization

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Hrůza, Jakub

    2018-06-01

    This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.

  3. Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres

    Treesearch

    Baris Yalcin; Steve E Amos; Andrew S D Souza; Craig M Clemons; I Sedat Gunes; Troy K Ista

    2012-01-01

    Hollow glass microspheres were introduced into wood flour/high density polyethylene composites by melt compounding in a twin-screw extruder. The prepared composites were subsequently converted to extruded profiles in order to obtain composite sheeting. The presence of hollow glass microspheres highly reduced the density of the extruded sheets down to 0.9 g/cc, while...

  4. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  5. Automated knot detection with visual post-processing of Douglas-fir veneer images

    Treesearch

    C.L. Todoroki; Eini C. Lowell; Dennis Dykstra

    2010-01-01

    Knots on digital images of 51 full veneer sheets, obtained from nine peeler blocks crosscut from two 35-foot (10.7 m) long logs and one 18-foot (5.5 m) log from a single Douglas-fir tree, were detected using a two-phase algorithm. The algorithm was developed using one image, the Development Sheet, refined on five other images, the Training Sheets, and then applied to...

  6. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering

    PubMed Central

    Cochis, Andrea; Sorrentino, Rita; Grassi, Federico; Leigheb, Massimiliano; Farè, Silvia

    2018-01-01

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues. PMID:29642573

  7. Exogenous ROS-induced cell sheet transfer based on hematoporphyrin-polyketone film via a one-step process.

    PubMed

    Koo, Min-Ah; Lee, Mi Hee; Kwon, Byeong-Ju; Seon, Gyeung Mi; Kim, Min Sung; Kim, Dohyun; Nam, Ki Chang; Park, Jong-Chul

    2018-04-01

    To date, most of invasive cell sheet harvesting methods have used culture surface property variations, such as wettability, pH, electricity, and magnetism, to induce cell detachment. These methods that rely on surface property changes are effective when cell detachment prior to application is necessary, but of limited use when used for cell sheet transfer to target regions. The study reports a new reactive oxygen species (ROS)-induced strategy based on hematoporphyrin-incorporated polyketone film (Hp-PK film) to transfer cell sheets directly to target areas without an intermediate harvesting process. After green LED (510 nm) irradiation, production of exogenous ROS from the Hp-PK films induces cell sheet detachment and transfer. The study suggests that ROS-induced cell detachment property of the Hp-PK film is closely related to conformational changes of extracellular matrix (ECM) proteins. Also, this strategy with the Hp-PK film can be applied by regulating production rate of exogenous ROS in various types of cells, including fibroblasts, mesenchymal stem cells and keratinocytes. In conclusion, ROS-induced method using the Hp-PK film can be used for one-step cell sheet transplantation and has potential in biomedical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  9. Mechanochemical Modeling of Dynamic Microtubule Growth Involving Sheet-to-Tube Transition

    PubMed Central

    Ji, Xiang-Ying; Feng, Xi-Qiao

    2011-01-01

    Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanisms of microtubule growth from the view of hydrolysis effects. Besides, the growth of a microtubule involves the closure of a curved sheet at its growing end. The curvature conversion from the longitudinal direction to the circumferential direction also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical–chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. First, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure and predict that the minimum conformational cap length that can stabilize the growth is two dimers. Then, we show that the conformational cap and the GTP cap can function independently and harmoniously, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth. PMID:22205994

  10. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  11. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.

    PubMed

    Gea, Saharman; Reynolds, Christopher T; Roohpour, Nima; Wirjosentono, Basuki; Soykeabkaew, Nattakan; Bilotti, Emiliano; Peijs, Ton

    2011-10-01

    Bacterial cellulose (BC) is a natural hydrogel, which is produced by Acetobacter xylinum (recently renamed Gluconacetobacter xylinum) in culture and constitutes of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. Here, a two-step purification process is presented that significantly improves the structural, mechanical, thermal and morphological behaviour of BC sheet processed from these hydrogels produced in static culture. Alkalisation of BC using a single-step treatment of 2.5 wt.% NaOH solution produced a twofold increase in Young's modulus of processed BC sheet over untreated BC sheet. Further enhancements are achieved after a second treatment with 2.5 wt.% NaOCl (bleaching). These treatments were carefully designed in order to prevent any polymorphic crystal transformation from cellulose I to cellulose II, which can be detrimental for the mechanical properties. Scanning electron microscopy and thermogravimetric analysis reveals that with increasing chemical treatment, morphological and thermal stability of the processed films are also improved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  13. Rotating magnetizations in electrical machines: Measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  14. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    Various aspects of a sensitivity analysis, in particular, the impact of variations in metal sheet resistivity, metal line width, diffused layer sheet resistance, junction depth, base layer lifetime, optical coating thickness and optical coating refractive index and on process reproducibility for A's diffusion from a polymer dopant source and on module fabrication were studied. Model calculations show that acceptable process windows exist for each of these parameters.

  15. Rainfall and Sheet Power Equation for Interrill Erosion on Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Shin, S.; Park, S.; Pierson, F. B.; Al-Hamdan, O. Z.; Williams, C. J.

    2012-12-01

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equations that combine the influence of both rainfall and runoff have been proposed by several researchers. However most approaches to modeling interrill erosion have been based on statistical relationships given the inherent complexity in derivation of broadly-applicable physically-based erosion parameters. In this study, a rainfall and sheet power equation to evaluate interrill sediment yields (Qs) was derived from the sum of rainfall power and sheet power expressed by rainfall intensity: Qs=a(cosθ/L){α sinθ ∑ I(t)^(11/9)+β tanθ^(1/2) ∑ (1-fr(t))^(5/3) I(t)^(5/3)}^b, where I(t) is rainfall intensity, θ is slope angle, fr(t) is infiltration rate, a, b, α, and β are coefficients, sinθ I(t)^(11/9) is the rainfall power term, and tanθ^(1/2) (1-fr(t))^(5/3) I(t)^(5/3) is the sheet power term. The rainfall power ratio and sheet power ratio decreased and increased with increased rainfall intensity, respectively. The sheet power term depended greatly on infiltration rate controlled by rainfall intensity, vegetation cover, and soil condition. The rainfall and sheet power equation assuming that α and β is 0 was evaluated using field data from plots on steep hillslopes and showed the better correlation with sediment yields than rainfall kinetic energy, runoff discharge, or interrill equations based on rainfall intensity and runoff discharge founded in the literature. This equation successfully explained physical processes for soil erosion that rainfall power is dominant under low rainfall and sheet power is dominant under heavy rainfall. Additional experimental data is needed to assess coefficients of the power equation to determine the relative quantities of rainfall power and sheet power and to evaluate the erosion efficiency of interactions between raindrop impact and sheet flow and soil erodibility. Acknowledgements: This work was supported by a grant (Code#'08 RTIP B-01) from Regional Technology Innovation Program funded by Ministry of Land, Transport and Maritime Affairs of Korean government.;

  16. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process

    PubMed Central

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979

  17. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  18. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  19. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  20. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  1. Understanding ice sheet evolution to avoid massive sea level rise instead of experiencing it (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Rignot, Eric

    2017-04-01

    With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how the results have impacted our understanding of these interactions. In terms of calving, there is a range of processes acting upon the glacier and ice shelf faces, proceeding from the surface and mostly from below, that are still not sufficiently well explored. I will discuss processes elucidated in Greenland (undercutting and rotation of ice blocks near floatation) and those that are not well known in Antarctica.

  2. Collisionless reconnection in a quasi-neutral sheet near marginal stability

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.; Pellat, R.; Karimabadi, H.

    1989-01-01

    Particle simulations are used to investigate the process of collisionless reconnection in a magnetotail configuration which includes a pressure gradient along the tail axis and tail flaring. In the absence of electron stabilization effects, the tearing mode is stabilized when the ion gyrofrequency in the normal field exceeds the growth rate in the corresponding one-dimensional current sheet. The presence of a low-frequency electromagnetic perturbation in the lobes can serve to destabilize a marginally stable current sheet by producing an extended neutral-sheet region which can then undergo reconnection. These results help to explain how X-type neutral lines, such as those associated with the onset of magnetospheric substorms, can be formed in the near-earth plasma sheet.

  3. Spontaneous formation of electric current sheets and the origin of solar flares

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Wolfson, R.

    1988-01-01

    It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.

  4. Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Shchetinin, I. V.; Park, Y. C.

    2015-07-01

    Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.

  5. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Gupta, Neha

    2015-12-15

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less

  6. Prevention of crack in stretch flanging process using hot stamping technique

    NASA Astrophysics Data System (ADS)

    Syafiq, Y. Mohd; Hamedon, Z.; Azila Aziz, Wan; Razlan Yusoff, Ahmad

    2017-10-01

    Demand for enhancing of passenger safety as well as weight reduction of automobiles has increased the use of high strength steel sheets. As a sheet metal is a lightweight having high strength is suitable for producing automotive parts such as white body panel. The stretch flanging of the high strength steel sheet is a problem due to high springback and easy to crack. This study uses three methods to stretch flange the sheets; using lubricants, shear-edge polishing and hot stamping. The effectiveness of these methods will be measured by comparing the flange length of each methods can achieved. For stretch flange with lubricant and polished sheared edge, the flange length failed to achieve the target 15 mm while hot stamping improved the formability of the sheet and preventing the occurrence of the springback and crack. Hot stamping not only improved formability of the sheet but also transformed the microstructure into martensite thus improve the hardness and the strength of the sheet after been quenched with the dies.

  7. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.

  8. Preparation and characterization of carbon nanofibrous/hydroxyapatite sheets for bone tissue engineering.

    PubMed

    Abd El-Aziz, A M; El Backly, Rania M; Taha, Nahla A; El-Maghraby, Azza; Kandil, Sherif H

    2017-07-01

    Critical size bone defects are orthopedic defects that will not heal without intervention or that will not completely heal over the natural life time of the animal. Although bone generally has the ability to regenerate completely however, critical defects require some sort of scaffold to do so. In the current study we proposed a method to obtain a carbon nanofibrous/Hydroxyapatite (HA) bioactive scaffold. The carbon nanofibrous (CNF) nonwoven fabrics were obtained by the use of the electrospinning process of the polymeric solution of poly acrylonitrile "PAN" and subsequent stabilization and carbonization processes. The CNFs sheets were functionalized by both hydroxyapatite (HA) and bovine serum albumin (BSA). The HA was added to the electrospun solution, but in case of (BSA), it was adsorbed after the carbonization process. The changes in the properties taking place in the precursor sheets were investigated using the characterization methods (SEM, FT-IR, TGA and EDX). The prepared materials were tested for biocompatibility via subcutaneous implantation in New Zealand white rabbits. We successfully prepared biocompatible functionalized sheets, which have been modified with HA or HA and BSA. The sheets that were functionalized by both HA and BSA are more biocompatible with fewer inflammatory cells of (neutrophils and lymphocytes) than ones with only HA over the period of 3weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  10. Wrapping with a splash: High-speed encapsulation with ultrathin sheets

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan

    2018-02-01

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings.

  11. Process research on non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1982-01-01

    High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.

  12. Simulating Thin Sheets: Buckling, Wrinkling, Folding and Growth

    NASA Astrophysics Data System (ADS)

    Vetter, Roman; Stoop, Norbert; Wittel, Falk K.; Herrmann, Hans J.

    2014-03-01

    Numerical simulations of thin sheets undergoing large deformations are computationally challenging. Depending on the scenario, they may spontaneously buckle, wrinkle, fold, or crumple. Nature's thin tissues often experience significant anisotropic growth, which can act as the driving force for such instabilities. We use a recently developed finite element model to simulate the rich variety of nonlinear responses of Kirchhoff-Love sheets. The model uses subdivision surface shape functions in order to guarantee convergence of the method, and to allow a finite element description of anisotropically growing sheets in the classical Rayleigh-Ritz formalism. We illustrate the great potential in this approach by simulating the inflation of airbags, the buckling of a stretched cylinder, as well as the formation and scaling of wrinkles at free boundaries of growing sheets. Finally, we compare the folding of spatially confined sheets subject to growth and shrinking confinement to find that the two processes are equivalent.

  13. Rapid Freeform Sheet Metal Forming: Technology Development and System Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiridena, Vijitha; Verma, Ravi; Gutowski, Timothy

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, ismore » a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.« less

  14. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  15. Chemical Data Reporting Fact Sheet: Chemicals Snapshot

    EPA Pesticide Factsheets

    This fact sheet provides a brief overview of the chemical manufacturing, processing, and use information collected for the 2012 Chemical Data Reporting (CDR) rule. Users do not have access to the complete CDR data set and should draw conclusions with care.

  16. Criminal investigations and the Superfund program. Fact sheet (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The fact sheet, directed toward any one who witnesses fraudulent activity in EPA programs, discusses areas in which fraud and abuse can occur and provides an understanding of the criminal investigation process that results from reports of suspicious activity.

  17. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.

    PubMed

    Kingslake, J; Scherer, R P; Albrecht, T; Coenen, J; Powell, R D; Reese, R; Stansell, N D; Tulaczyk, S; Wearing, M G; Whitehouse, P L

    2018-06-01

    To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters 1 . Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so) 2-4 . Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today's grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance 5 . Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss 6 on millennial timescales will depend on bedrock topography and mantle viscosity-parameters that are difficult to measure and to incorporate into ice-sheet models.

  18. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  19. Using paleoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    King, M. A.; Phipps, S. J.; Roberts, J. L.; White, D.

    2016-12-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modeling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how paleoclimate data can improve our ability to predict the future evolution of the AIS. A large, perturbed-physics ensemble is generated, spanning uncertainty in the parameterizations of four key physical processes within ice sheet models: ice rheology, ice shelf calving, and the stress balances within ice sheets and ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Paleoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  20. Effect of TMP variables upon structure and properties in ODS alloy HDA 8077 sheet. [ThermoMechanical Processing of Oxide Dispersion Strengthened nickel alloy

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.; Tawancy, H. M.

    1980-01-01

    The effects of oxide content level and variations in thermomechanical processing upon the final structure and properties of HDA 8077 sheet have been systematically examined. It was found that creep strength and formability are substantially influenced by both oxide content and TMP schedule. Variations in creep properties obtained appear to correlate with observed microstructures.

  1. Springback effects during single point incremental forming: Optimization of the tool path

    NASA Astrophysics Data System (ADS)

    Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick

    2018-05-01

    Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.

  2. A modular tooling set-up for incremental sheet forming (ISF) with subsequent stress-relief annealing under partial constraints

    NASA Astrophysics Data System (ADS)

    Maqbool, Fawad; Bambach, Markus

    2017-10-01

    Incremental sheet forming (ISF) is a manufacturing process most suitable for small-batch production of sheet metal parts. In ISF, a CNC-controlled tool moves over the sheet metal, following a specified contour to form a part of the desired geometry. This study focuses on one of the dominant process limitations associated with the ISF, i.e., the limited geometrical accuracy. In this regard, a case study is performed which shows that increased geometrical accuracy of the formed part can be achieved by a using stress-relief annealing before unclamping. To keep the tooling costs low, a modular die design consisting of a stiff metal frame and inserts made from inexpensive plastics (Sika®) were devised. After forming, the plastics inserts are removed. The metal frame supports the part during stress-relief annealing. Finite Element (FE) simulations of the manufacturing process are performed. Due to the residual stresses induced during the forming, the geometry of the formed part, from FE simulation and the actual manufacturing process, shows severe distortion upon unclamping the part. Stress relief annealing of the formed part under partial constraints exerted by the tool frame shows that a part with high geometrical accuracy can be obtained.

  3. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  4. Analysis of fracture in sheet bending and roll forming

    NASA Astrophysics Data System (ADS)

    Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias

    2018-05-01

    The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.

  5. Process design of press hardening with gradient material property influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less

  6. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.

    2014-07-01

    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  7. Rewriting Ice Sheet "Glacier-ology"

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2006-12-01

    The revolution in glaciology driven by the suite of increasingly sophisticated satellite instruments has been no more extreme than in the area of ice dynamics. Years ago, glaciologists were (probably unwittingly) selective in what properties of mountain glaciers were also applied to ice sheets. This reinforced the view that they responded slowly to their environment. Notions of rapid response driven by the ideas of John Mercer, Bill Budd and Terry Hughes were politely rejected by the centrists of mainstream glaciological thought. How the tables have turned--and by the ice sheets themselves, captured in the act of rapidly changing by modern remote sensors! The saw-toothed record of sea-level change over past glacial-interglacial cycles required the existence of rapid ice loss processes. Satellite based observations, supported by hard-earned field observations have extended the time scale over which ice sheets can suddenly change to ever shorter intervals: from centuries, to decades, to years to even minutes. As changes continue to be observed, the scientific community is forced to consider new or previously ignored processes to explain these observations. The penultimate goal of ice-sheet dynamics is to credibly predict the future of both the Greenland and Antarctic ice sheets. In this important endeavor, there is no substitute for our ability to observe. Without the extensive data sets provided by remote sensing, numerical models can be neither tested nor improved. The impact of remote sensing on our existing ability to predict the future must be compared to our probable state of knowledge and ability were these data never collected. Among many satellite observed phenomena we would be largely or wholly ignorant of are the recent acceleration of ice throughout much of coastal Greenland; the sudden disintegration of multiple ice shelves along the Antarctic Peninsula; and the dramatic thinning and acceleration of the Amundsen Sea sector of West Antarctica. These observations are driving increased concern about rapidly increasing sea level, a process dominated by ice-sheet dynamics and largely identified, quantified, studied and monitored by satellite sensors.

  8. Text block identification in restoration process of Javanese script damage

    NASA Astrophysics Data System (ADS)

    Himamunanto, A. R.; Setyowati, E.

    2018-05-01

    Generally, in a sheet of documents there are two objects of information, namely text and image. A text block area in the sheet of manuscript is a vital object because the restoration process would be done only in this object. Text block or text area identification becomes an important step before. This paper describes the steps leading to the restoration of Java script destruction. The process stages are: pre-processing, identification of text block, segmentation, damage identification, restoration. The test result based on the input manuscript “Hamong Tani” show that the system works with a success rate of 82.07%

  9. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  10. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.

  11. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    PubMed

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  12. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization

    PubMed Central

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499

  13. Single clay sheets inside electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  14. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  15. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  16. Functionalised graphene sheets as effective high dielectric constant fillers

    PubMed Central

    2011-01-01

    A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn PMID:21867505

  17. Functionalised graphene sheets as effective high dielectric constant fillers

    NASA Astrophysics Data System (ADS)

    Romasanta, Laura J.; Hernández, Marianella; López-Manchado, Miguel A.; Verdejo, Raquel

    2011-08-01

    A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn

  18. Formation of Highly Aligned Collagen Nanofibers by Continuous Cyclic Stretch of a Collagen Hydrogel Sheet.

    PubMed

    Nam, Eunryel; Lee, Won Chul; Takeuchi, Shoji

    2016-07-01

    A collagen sheet with highly aligned collagen fibers is fabricated by continuous cyclic stretch. The rearrangement of the collagen fibers depends on the different process parameters of the cyclic stretch, including magnitude, frequency, and period of stretch. The collagen fibers are aligned perpendicularly to the direction of the stretch. Corneal stromal cells and smooth muscle cells cultivated on the highly aligned collagen sheet show alignment along the collagen fibers without the stretch during culture. Thus, the sheet can be a suitable scaffold for use in regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  20. Flow visualization and modeling for education and outreach in low-income countries

    NASA Astrophysics Data System (ADS)

    Motanated, K.

    2016-12-01

    Being able to visualize the dynamic interaction between the movement of water and sediment flux is undeniably a profound tool for students and novices to understand complicated earth surface processes. In a laser-sheet flow visualization technique, a light source that is thin and monochromatic is required to illuminate sediments or tracers in the flow. However, an ideal laser sheet generator is rather expensive, especially for schools and universities residing in low-income countries. This project is proposing less-expensive options for a laser-sheet source and flow visualization experiment configuration for qualitative observation and quantitative analysis of the interaction between fluid media and sediments. Here, Fresnel lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and Fresnel lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The motion of sediments in a flow can be observed by illuminating the laser-sheet in an interested flow region. The particle motion is recorded by a video camera that is capable of taking multiple frames per second and having a narrow depth of view. The recorded video file can be played in a slow-motion mode so students can visually observe and qualitatively analyze the particle motion. An open source software package for Particle Imaging Velocimetry (PIV) can calculate the local velocity of particles from still images extracted from the video and create a vector map depicting particle motion. This flow visualization experiment is inexpensive and the configuration is simple to setup. Most importantly, this flow visualization technique serves as a fundamental tool for earth surface process education and can further be applied to sedimentary process modeling.

  1. Forming Limit Diagram of Titanium and Stainless Steel Alloys to Study the Formability of Hydro-Mechanical Deep Drawing Parts

    NASA Astrophysics Data System (ADS)

    Shirizly, A.

    2005-08-01

    The increase demand for stronger, lighter and economic sheet metal products, make the Hydromecanical deep drawing process lately more and more popular. The Hydromecanical process is used in almost all types of sheet metal parts from home appliances and kitchenware to automotive and aviation industries. Therefore, many common materials were tested and characterized by their ability to sustain large strains via the well known Forming Limit Diagram (FLD). The aim of this work is to examine the forming capability if the Hydromecanical process in production of hemisphere parts made of materials commonly used in the aviation and aerospace industries. Experimental procedures were carried out to assess their ductility through FLD and the Forming Limit Carve (FLC).Two type of material sheets were tested herewith for demonstrating the procedure: commercial pure titanium and stainless steel 316L. A numerical simulation of the Hydromecanical process was examined and compared to self made Hydromecanical deep drawing of hemispherical parts.

  2. Remote Laser Welding of Zinc Coated Steel Sheets in an Edge Lap Configuration with Zero Gap

    NASA Astrophysics Data System (ADS)

    Roos, Christian; Schmidt, Michael

    Remote Laser Welding (RLW) of zinc-coated steel sheets is a great challenge for the automotive industry but offers high potentials with respect to flexibility and costs. In state of the art applications, sheets are joined in overlap configuration with a preset gap for a stable zinc degassing. This paper investigates RLW of fillets without a preset gap and conditions for a stable process. The influence of process parameters on weld quality and process stability is shown. Experimental data give evidence, that the degassing of zinc through the capillary and the rear melt pool are the major degassing mechanisms. Furthermore the paper gives experimental validation of the zinc degassing in advance of the process zone to the open side of the fillet. Chemical analysis of the hot-dip galvanized zinc coating proof the iron-zinc-alloys to be the reason for a limited effectiveness of this mechanism in comparison to pure zinc as intermediate.

  3. Time Evolution of the Macroscopic Characteristics of a Thin Current Sheet in the Course of Its Formation in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Domrin, V. I.; Malova, H. V.; Popov, V. Yu.

    2018-04-01

    A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth's magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu-Goldberger-Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.

  4. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  5. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  6. Climate Process Team "Representing calving and iceberg dynamics in global climate models"

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.

    2016-12-01

    Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL global climate model. The simulation results show that the Antarctic iceberg calving-size distribution affects iceberg trajectories, determines where iceberg meltwater enters the ocean and the increased ice-berg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline.

  7. Computational modelling of a thermoforming process for thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its finite element discretisation. This model depends on material parameters of the thermoplastic and details of tests undertaken to determine these and the results produced are given. Finally the computational model is applied for a thin sheet of commercially available thermoplastic starch material which is thermoformed into a specific mould. Numerical results of thickness and shape for this problem are given.

  8. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2016-12-01

    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  9. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  10. Relative sea-level rise around East Antarctica during Oligocene glaciation

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Escutia, Carlota; Houben, Alexander J. P.; Vermeersen, Bert L. A.; Bijl, Peter K.; Brinkhuis, Henk; Deconto, Robert M.; Galeotti, Simone; Passchier, Sandra; Pollard, David; Brinkhuis, Henk; Escutia, Carlota; Klaus, Adam; Fehr, Annick; Williams, Trevor; Bendle, James A. P.; Bijl, Peter K.; Bohaty, Steven M.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, Jose Abel; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; McKay, Robert M.; Nakai, Mutsumi; Olney, Matthew P.; Passchier, Sandra; Pekar, Stephen F.; Pross, Jörg; Riesselman, Christina; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash Kumar; Stickley, Catherine E.; Sugisaki, Saiko; Tauxe, Lisa; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-05-01

    During the middle and late Eocene (~ 48-34Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarctica induced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rose despite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an ice-sheet grounding line.

  11. Testing single point incremental forming moulds for rotomoulding operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2017-10-01

    Low pressure polymer processes as thermoforming or rotational moulding use much simpler moulds than high pressure processes like injection. However, despite the low forces involved in the process, moulds manufacturing for these applications is still a very material, energy and time consuming operation. Particularly in rotational moulding there is no standard for the mould manufacture and very different techniques are applicable. The goal of this research is to develop and validate a method for manufacturing plastically formed sheet metal moulds by single point incremental forming (SPIF) for rotomoulding and rotocasting operations. A Stewart platform based SPIF machine allow the forming of thick metal sheets, granting the required structural stiffness for the mould surface, and keeping a short manufacture lead time and low thermal inertia. The experimental work involves the proposal of a hollow part, design and fabrication of a sheet metal mould using dieless incremental forming techniques and testing its operation in the production of prototype parts.

  12. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1975-01-01

    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  13. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.

    1978-01-01

    Bismaleimide resins are prime candidates for nonflammable aircraft interior panels. Three resin types with different structures and processing characteristics were formulated. Resin M 751 was used to fabricate 100 kg of glass fabric prepregs which were used for the preparation of face sheets for honeycomb sandwich panels. Prepreg characteristics and curing cycles for laminate fabrication are provided. In order to advance beyond the current solvent resin technology for fibre and fabric impregnation, a hot melt solvent-less resin system was prepared and characterized. Preliminary tests were performed to develop a wet bonding process for the fabrication of advanced sandwich honeycomb panels by use of polybismaleimide glass fabric face sheets and polybismaleimide Nomex honeycomb core. B-stage material was used for both the core and the face sheet, providing flatwise tensile properties equivalent to those obtained by the state-of-the-art 3-step process which includes an epoxy adhesive resin.

  14. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  15. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  16. Facts About Drug Abuse: Trainer's Manual.

    ERIC Educational Resources Information Center

    Link, William E.; And Others

    Following an introductory survey of the course, this modular drug abuse trainer's manual contains all course-specified materials. These materials are: the course goals and objectives; time/activity sheets; trainer guidelines, process notes, and exercise instructions; detailed lectures and supplementary information. The time/activity sheets contain…

  17. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  18. Apparatus for making photovoltaic devices

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  19. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  20. Multi-crease Self-folding by Global Heating.

    PubMed

    Miyashita, Shuhei; Onal, Cagdas D; Rus, Daniela

    2015-01-01

    This study demonstrates a new approach to autonomous folding for the body of a 3D robot from a 2D sheet, using heat. We approach this challenge by folding a 0.27-mm sheetlike material into a structure. We utilize the thermal deformation of a contractive sheet sandwiched by rigid structural layers. During this baking process, the heat applied on the entire sheet induces contraction of the contracting layer and thus forms an instructed bend in the sheet. To attain the targeted folding angles, the V-fold spans method is used. The targeted angle θout can be kinematically encoded into crease geometry. The realization of this angle in the folded structure can be approximately controlled by a contraction angle θin. The process is non-reversible, is reliable, and is relatively fast. Our method can be applied simultaneously to all the folds in multi-crease origami structures. We demonstrate the use of this method to create a lightweight mobile robot.

  1. A tone analyzer based on a piezoelectric polymer and organic thin film transistors.

    PubMed

    Hsu, Yu-Jen; Kymissis, Ioannis

    2012-12-01

    A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.

  2. Numerical and experimental study on multi-pass laser bending of AH36 steel strips

    NASA Astrophysics Data System (ADS)

    Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu

    2018-02-01

    Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.

  3. Lightweight Steel Solutions for Automotive Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI ismore » a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.« less

  4. Advanced Stirling receiver development program, phase 1

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1990-01-01

    Critical technology experiments were designed and developed to evaluate the Stirling cavity heat pipe receiver for a space solar power system. Theoretical criteria were applied to the design of a module for containing energy storage phase change material while avoiding thermal ratcheting. Zero-g drop tower tests, without phase change, were conducted to affirm that the bubble location required to avoid ratcheting could be achieved without the use of container materials that are wetted by the phase change material. A full scale module was fabricated, but not tested. A fabrication method was successfully developed for the sodium evaporator dome, with a sintered screen wick, to be used as the focal point for the receiver. Crushing of the screen during hydroforming was substantially reduced over the results of other researchers by using wax impregnation. Superheating of the sodium in the wick under average flux conditions is expected to be under 10K. A 2000K furnace which will simulate solar flux conditions for testing the evaporator dome was successfully built and tested.

  5. Slicing of Silicon into Sheet Material. Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.; Holden, S. C.; Wolfson, R. G.

    1979-01-01

    The use of multiblade slurry sawing to produce silicon wafers from ingots was investigated. The commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possible are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated.

  6. Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5

    NASA Technical Reports Server (NTRS)

    Merlette, J. B.

    1972-01-01

    Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  7. Identification of a process window for tailored carburization of sheet metals in hot stamping

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Merklein, Marion

    2018-05-01

    Due to governmental regulations concerning the reduction of CO2 emissions and increasing safety standards, hot stamping of high strength boron manganese steel sheets has evolved into a state of the art process for manufacturing structural car body parts. The combined forming and in-die quenching process enables the formation of a fully martensitic microstructure. Therefore, press hardened steels offer high strength, but low ductility. In order to further improve passenger safety, a tailored configuration of mechanical properties is desired. Besides state of the art methods, like the application of locally different heat treatment temperatures or varying quenching rates, the adjustment of mechanical properties of sheet metals by a tailored carburization is a novel approach. For the carburization process, the specimens are first coated with graphite and subsequently heat treated. Within this contribution, different coating strategies as well as heat treatment temperatures and dwell times are investigated. For the determination of a process window, mechanical properties such as tensile strength and microhardness will be analyzed and correlated with the resulting microstructure.

  8. Advanced Process Possibilities in Friction Crush Welding of Aluminum, Steel, and Copper by Using an Additional Wire

    NASA Astrophysics Data System (ADS)

    Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.

    2017-12-01

    Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.

  9. Observational support for the current sheet catastrophe model of substorm current disruption

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Lopez, R. E.; Dusenbery, P. B.; Speiser, T. W.

    1992-01-01

    The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.

  10. 37 CFR 1.76 - Application data sheet.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Application data sheet. 1.76 Section 1.76 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Specification § 1.76...

  11. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  12. Application of image processing technology to problems in manuscript encapsulation. [Codex Hammer

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Korsmo, E. P.

    1983-01-01

    The long term effects of encapsulation individual sheets of the Codex Hammer were investigated. The manuscript was simulated with similar sheets of paper which were photographed under repeatable raking light conditions to enhance their surface texture, encapsulated in plexiglas, cycled in an environmental test chamber, and rephotographed at selected intervals. The film images were digitized, contrast enhanced, geometrically registered, and apodized. An FFT analysis of a control sheet and two experimental sheets indicates no micro-burnishing, but reveals that the ""mesoscale'' deformations with sizes 8mm are degrading monotonically, which is of no concern. Difference image analysis indicates that the sheets were increasingly stressed with time and that the plexiglas did not provide a sufficient environmental barrier under the simulation conditions. The relationship of these results to the Codex itself is to be determined.

  13. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    NASA Astrophysics Data System (ADS)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  14. Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Karlický, M.; Van Doorsselaere, T.; Bárta, M.

    2017-10-01

    Using the FLASH code, which solves the full set of the 2D non-ideal (resistive) time-dependent magnetohydrodynamic (MHD) equations, we study processes during the magnetic reconnection in a vertical gravitationally stratified current sheet. We show that during these processes, which correspond to processes in solar flares, plasmoids are formed due to the tearing mode instability of the current sheet. These plasmoids move upward or downward along the vertical current sheet and some of them merge into larger plasmoids. We study the density and temperature structure of these plasmoids and their time evolution in detail. We found that during the merging of two plasmoids, the resulting larger plasmoid starts to oscillate with a period largely determined by L/{c}{{A}}, where L is the size of the plasmoid and c A is the Alfvén speed in the lateral parts of the plasmoid. In our model, L/{c}{{A}} evaluates to ˜ 25 {{s}}. Furthermore, the plasmoid moving downward merges with the underlying flare arcade, which causes oscillations of the arcade. In our model, the period of this arcade oscillation is ˜ 35 {{s}}, which also corresponds to L/{c}{{A}}, but here L means the length of the loop and c A is the average Alfvén speed in the loop. We also show that the merging process of the plasmoid with the flare arcade is a complex process as presented by complex density and temperature structures of the oscillating arcade. Moreover, all these processes are associated with magnetoacoustic waves produced by the motion and merging of plasmoids.

  15. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1996-02-06

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  16. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1996-01-01

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  17. Deformation and annealing response of TD-nickel chromium

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1975-01-01

    The recrystallization and grain growth processes occurring in TD-NiCr were examined with respect to deformation severity, annealing time, and temperature. Results indicated that two different annealing responses of TD-NiCr are possible, depending on the initial state and processing history prior to annealing. As-received sheet showed a dramatic increase in grain size with decreasing annealing temperature, whereas sheet prior-annealed at 1316 C for 1 hr exhibited very little variation with subsequent annealing temperature.

  18. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Restructuring research objectives from a technical readiness demonstration program to an investigation of high risk, high payoff activities associated with producing photovoltaic modules using non-CZ sheet material is reported. Deletion of the module frame in favor of a frameless design, and modification in cell series parallel electrical interconnect configuration are reviewed. A baseline process sequence was identified for the fabrication of modules using the selected dendritic web sheet material, and economic evaluations of the sequence were completed.

  19. A numerical analysis on forming limits during spiral and concentric single point incremental forming

    NASA Astrophysics Data System (ADS)

    Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.

    2017-01-01

    Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.

  20. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing.

    PubMed

    Islam, Muhammad T; Scoutaris, Nikolaos; Maniruzzaman, Mohammed; Moradiya, Hiren G; Halsey, Sheelagh A; Bradley, Michael S A; Chowdhry, Babur Z; Snowden, Martin J; Douroumis, Dennis

    2015-10-01

    The aim of the work reported herein was to implement process analytical technology (PAT) tools during hot melt extrusion (HME) in order to obtain a better understanding of the relationship between HME processing parameters and the extruded formulations. For the first time two in-line NIR probes (transmission and reflectance) have been coupled with HME to monitor the extrusion of the water insoluble drug indomethacin (IND) in the presence of Soluplus (SOL) or Kollidon VA64 hydrophilic polymers. In-line extrusion monitoring of sheets, produced via a specially designed die, was conducted at various drug/polymer ratios and processing parameters. Characterisation of the extruded transparent sheets was also undertaken by using DSC, XRPD and Raman mapping. Analysis of the experimental findings revealed the production of molecular solutions where IND is homogeneously blended (ascertained by Raman mapping) in the polymer matrices, as it acts as a plasticizer for both hydrophilic polymers. PCA analysis of the recorded NIR signals showed that the screw speed used in HME affects the recorded spectra but not the homogeneity of the embedded drug in the polymer sheets. The IND/VA64 and IND/SOL extruded sheets displayed rapid dissolution rates with 80% and 30% of the IND being released, respectively within the first 20min. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Testing single point incremental forming molds for thermoforming operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  2. In-situ-measurement of the friction coefficient in the deep drawing process

    NASA Astrophysics Data System (ADS)

    Recklin, V.; Dietrich, F.; Groche, P.

    2017-09-01

    The surface texture plays an important role in the tribological behaviour of deep drawn components. It influences both the process of sheet metal forming as well as the properties for post processing, such as paint appearance, bonding, or corrosion tendency. During the forming process, the texture of the sheet metal and therefore its friction coefficient, changes due to process related strains. This contribution focuses on the development and validation of a tool to investigate the friction coefficient of the flange region of deep drawn components. The influence of biaxial strain on the friction coefficient will be quantified through a comparison of the experimental results with a conventional friction test (stand). The presented method will be applied on a cup drawing test, using a segmented and sensor-monitored blankholder. This setup allows the measurement of the friction coefficient in-situ without simplification of the real process. The experiments were carried out using DX 56D+Z as sheet metal and PL61 as lubricant. The results show a characteristic change in the friction coefficient over the displacement of the punch, which is assumed to be caused by strain induced change of the surface texture.

  3. General RMP Guidance - Appendix D: OSHA Guidance on PSM

    EPA Pesticide Factsheets

    OSHA's Process Safety Management (PSM) Guidance on providing complete and accurate written information concerning process chemicals, process technology, and process equipment; including process hazard analysis and material safety data sheets.

  4. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012)

    NASA Astrophysics Data System (ADS)

    Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.; Watkins, Michael M.; Box, Jason E.; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-09-01

    Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at ˜ 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003-2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice-ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by the models while simultaneously having more pronounced trends; thus, discrepancies are likely controlled by a combination of missing processes and errors in both the SMB products and ISSM. At the margins, we find evidence of consistent intra-annual variations in regional MB that deviate distinctively from the SMB annual cycle. Ultimately, these monthly-scale variations, likely associated with hydrology or ice-ocean interaction, contribute to steeper negative mass trends observed by GRACE_JPL. Thus, models should consider such processes at relatively high (monthly-to-seasonal) temporal resolutions to achieve accurate estimates of Greenland MB.

  5. Pay Equity--A Fact Sheet.

    ERIC Educational Resources Information Center

    National Commission on Working Women, Washington, DC.

    This fact sheet addresses pay equity, that is, the goal of a fair wage-setting process that eliminates sex and race discrimination. It begins by setting forth the problem through statistics on men's and women's median annual earnings, the occupational categories represented by women workers, and median annual earnings by occupation. A glossary is…

  6. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Using an extreme bony prominence anatomical model to examine the influence of bed sheet materials and bed making methods on the distribution of pressure on the support surface.

    PubMed

    Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko

    2014-05-01

    Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  8. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012)

    NASA Astrophysics Data System (ADS)

    Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric

    2016-06-01

    Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related to ice dynamics or hydrology, may lead to the observed differences. This highlights the need for further evaluation of modeled processes at regional and seasonal scales, and further study of ice sheet processes not accounted for, such as the role of subglacial hydrology in variations in glacial flow.

  9. Heating Effect on Manufacturing Li4Ti5O12 Electrode Sheet with PTFE Binder on Battery Cell Performance

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Lubis, B. M.; Humaidi, S.; Prihandoko, B.

    2018-05-01

    The synthesis of Li4Ti5O12 (LTO) and study of the heating effect on the manufacturing process of LTO sheet on the electrochemical performance have been investigated. LTO anode material composed with LiOH.H2O, TiO2 as raw materials were synthesized by the solid-state process. All raw materials were stoichiometrically mixed and milled with a planetary ball mill for 4 h to become the precursor of LTO. The precursor was characterized by Simultaneous Thermal Analyzer (STA) to determine sintering temperature. The STA analysis revealed that the minimum temperature to sinter the precursor was 600 °C. The precursor was sintered by using high-temperature furnace at 900 °C for 2 h in air atmosphere. The final product was ground and sieved with a screen to get finer and more homogenous particles. The final product was characterized by X-ray Diffraction (XRD) to determined crystal structure and phases. LTO sheet was prepared by mixing LTO powders with PTFE and AB in ratio 85:10:5 wt% by varrying heating process with 40 °C, 50 °C and 70 °C to become slurry. The slurry was coated on Cu foil with doctor blade method and dried at 80 °C for 1 h. LTO sheet was characterized by FTIR to analyze functional groups. LTO sheet was cut into circular discs with 16 mm in diameter. LTO sheet was arranged with a separator, metallic lithium and electrolyte become coin cell in a glove box. Automatic battery cycler was used to measure electrochemical performance and specific capacity of the cell. From the XRD analysis showed that single phase of LTO phase with a cubic crystal structure is formed. FTIR testing showed that there are stretching vibrations of Ti-O and H-F from tetrahedral TiO6 and PTFE respectively. Increasing temperature on LTO sheet manufacturing doesn’t change the structure of LTO. Cyclic voltammetry analysis showed that sample with heating of 40 °C showed better redox process than others. Charge-discharge test also showed that sample with heating of 40 °C has higher specific capacity than other samples with 53 mAh·g-1.

  10. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  11. Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M.

    2012-12-01

    A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.

  12. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    NASA Astrophysics Data System (ADS)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  13. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    PubMed

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Using palaeoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Phipps, Steven; King, Matt; Roberts, Jason; White, Duanne

    2017-04-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modelling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how palaeoclimate data can improve our ability to predict the future evolution of the AIS. A 50-member perturbed-physics ensemble is generated, spanning uncertainty in the parameterisations of three key physical processes within the model: (i) the stress balance within the ice sheet, (ii) basal sliding and (iii) calving of ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Palaeoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  15. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; Mienert, J.; Bünz, S.

    2017-06-01

    Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.

  16. Ice sheet-ocean interactions and sea level change

    NASA Astrophysics Data System (ADS)

    Heimbach, Patrick

    2014-03-01

    Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.

  17. Formation of Sprays From Conical Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Peck, Bill; Mansour, N. N.; Koga, Dennis (Technical Monitor)

    1999-01-01

    Our objective is to predict droplet size distributions created by fuel injector nozzles in Jet turbines. These results will be used to determine the initial conditions for numerical simulations of the combustion process in gas turbine combustors. To predict the droplet size distribution, we are currently constructing a numerical model to understand the instability and breakup of thin conical liquid sheets. This geometry serves as a simplified model of the liquid jet emerging from a real nozzle. The physics of this process is difficult to study experimentally as the time and length scales are very short. From existing photographic data, it does seem clear that three-dimensional effects such as the formation of streamwise ligaments and the pulling back of the sheet at its edges under the action of surface tension are important.

  18. The microbiome of glaciers and ice sheets.

    PubMed

    Anesio, Alexandre M; Lutz, Stefanie; Chrismas, Nathan A M; Benning, Liane G

    2017-01-01

    Glaciers and ice sheets, like other biomes, occupy a significant area of the planet and harbour biological communities with distinct interactions and feedbacks with their physical and chemical environment. In the case of the glacial biome, the biological processes are dominated almost exclusively by microbial communities. Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil. There is a remarkable similarity between the different specific glacial habitats across glaciers and ice sheets worldwide, particularly regarding their main primary producers and ecosystem engineers. At the surface, cyanobacteria dominate the carbon production in aquatic/sediment systems such as cryoconite holes, while eukaryotic Zygnematales and Chlamydomonadales dominate ice surfaces and snow dynamics, respectively. Microbially driven chemolithotrophic processes associated with sulphur and iron cycle and C transformations in subglacial ecosystems provide the basis for chemical transformations at the rock interface under the ice that underpin an important mechanism for the delivery of nutrients to downstream ecosystems. In this review, we focus on the main ecosystem engineers of glaciers and ice sheets and how they interact with their chemical and physical environment. We then discuss the implications of this microbial activity on the icy microbiome to the biogeochemistry of downstream ecosystems.

  19. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  20. Operation Upshot-Knothole, Nevada Proving Ground, March-June 1953. Projects 23.4-23.14 and 23.16. Genetic Effects of Fast Neutrons from Nuclear Detonations,

    DTIC Science & Technology

    1954-01-01

    THIS SHEET AND RETURN TO DTIC-DDA-2 FORM DOCUMENT PROCESSING SHEET DTIC oct79 70A OCT. 79 11 0 0 0 r/ WT-820 This document consists of 86 Pages No...mutation curve with no lower limit.2 In addition, there is a dose-related recovery process for physiological effects of lrradaticn by chronic or repeated...individual formed by reproductive processes may be expected to show in all its cells whatever genetic effects the ionizations have produced. 9,1w The

  1. A stable planar bilayer membrane of phospholipid supported by cellulose sheets.

    PubMed

    Setaka, M; Yamamoto, T; Sato, N; Yano, M; Kwan, T

    1982-01-01

    A new method is reported for preparing a thin planar membrane of 1,2-distearoylsn-glycero-3-phosphocholine and egg yolk lecithin-cholesterol (molar ratio of 1:1) between a pair of cellulose sheets. This technique, developed from the method of the multilayer planar membrane preparation (Setaka, M., et al. (1979) J. Biochem. 86, 355-362; 1619-1622; (1980) J. Biochem. 88, 1819-1829), consisted of three experimental processes. First, a phospholipid monolayer was prepared at an air-water interface, then taken up on a stretched cellulose sheet. A thin lipid membrane, supported from both sides by cellulose sheets, was constructed by combining two of these lipid monolayer-cellulose sheets. The permeability coefficient of the thin lipid membrane was estimated by removing the effect of two outer cellulose sheets, and this permeability was found to be larger than those of other model membranes of a lipid bilayer, indicating that the present lipid membrane is not a perfect single lipid bilayer. However, certain experimental evidence suggests that the bulk of the phospholipids formed a bilayer between the two cellulose sheets. Since this lipid membrane is particularily stable, larger membranes can be prepared by the present method than other planar bilayer membranes of lipid, which are usually constructed inside a pin hole in a thin teflon sheet.

  2. Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content

    PubMed Central

    2015-01-01

    Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature. PMID:25056606

  3. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Koepke, Juergen; Ildefonse, Benoit; Cichy, Sarah B.; Deschamps, Fabien

    2010-11-01

    In ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated.

  4. Reversible hydrogel-solution system of silk with high beta-sheet content.

    PubMed

    Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun

    2014-08-11

    Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature.

  5. Process of making solar cell module

    DOEpatents

    Packer, M.; Coyle, P.J.

    1981-03-09

    A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

  6. The Role of Evolutive Elastic Properties in the Performance of a Sheet Formed Spring Applied in Multimedia Car Industry

    NASA Astrophysics Data System (ADS)

    Faria, J.; Silva, J.; Bernardo, P.; Araújo, M.; Alves, J. L.

    2016-08-01

    The manufacturing process and the behaviour of a spring manufactured from an aluminium sheet is described and investigated in this work considering the specifications for the in-service conditions. The spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multistep forming process and in working conditions.

  7. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less

  8. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  9. Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene.

    PubMed

    Al-Sherbini, Al-Sayed; Bakr, Mona; Ghoneim, Iman; Saad, Mohamed

    2017-05-01

    Graphene sheets have been exfoliated from bulk graphite using high energy wet milling in two different solvents that were 2-ethylhexanol and kerosene. The milling process was performed for 60 h using a planetary ball mill. Morphological characteristics were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). On the other hand, the structural characterization was performed using X-ray diffraction technique (XRD) and Raman spectrometry. The exfoliated graphene sheets have represented good morphological and structural characteristics with a valuable amount of defects and a good graphitic structure. The graphene sheets exfoliated in the presence of 2-ethylhexanol have represented many layers, large crystal size and low level of defects, while the graphene sheets exfoliated in the presence of kerosene have represented fewer number of layers, smaller crystal size and higher level of defects.

  10. Multi response optimization of sheet forming of Kenaf-Polypropylene composites using grey based fuzzy algorithm

    NASA Astrophysics Data System (ADS)

    Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea

    2018-02-01

    Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.

  11. Face-Sheet Quality Analysis and Thermo-Physical Property Characterization of OOA and Autoclave Panels

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.

    2012-01-01

    Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kg/sq m (3.1 lb/cu ft (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.

  12. Face-Sheet Quality Analysis and Thermo-Physical Property Characterization of OOA and Autoclave Panels

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.

    2012-01-01

    Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kilograms per square meters (3.1 pounds per cubic feet (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.

  13. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  14. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.

  15. Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-zhuang; Li, Jing-yuan; Fang, Zhi

    2018-02-01

    In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.

  16. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas is presented in the tungsten fact sheet. This fact sheet, the second in a series about 3TG minerals, focuses on the tantalum supply chain by listing selected processors that produced tantalum materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of material processed in these facilities.

  17. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  18. Stampless fabrication of sheet bars using disposable templates

    NASA Astrophysics Data System (ADS)

    Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.

    2016-04-01

    The article is devoted to the new method of small-scale fabrication of sheet bars. The procedure is performed by using disposable overlay templates, or those associated with a sheet, which parameters are obtained directly from the drawing. The proposed method used as a substitution of die cutting enables to intensify the preparatory technological process, which is particularly effective when launching the market-oriented items into production. It significantly increases the competitiveness of mechanical engineering and creates the conditions for technical support of present-day flexible production systems.

  19. Development of Turbulent Magnetic Reconnection in a Magnetic Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Can; Lu, Quanming; Wang, Rongsheng

    In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.

  20. Process for alloying uranium and niobium

    DOEpatents

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  1. Production development of organic nonflammable spacecraft potting, encapsulating and conformal coating compounds. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Appendices are presented which include: statement of work; material vendor contacts; formulation/processing data sheet; upward propagation test; flammability test conditions/results sheet; odor test; vacuum stability requirements; flammability test facility; determination of offgassing products and carbon monoxide test; and pneumatic and mechanical impact test guidelines.

  2. 40 CFR 63.4281 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fabric, rainwear, sheets, tents, threads and V-belts. The coating and printing subcategory includes any... slashing process, sizing compounds are applied to warp yarn to bind the fiber together and stiffen the yarn..., sheets, towels, and threads. (b) You are subject to this subpart if you own or operate a new...

  3. 40 CFR 63.4281 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fabric, rainwear, sheets, tents, threads and V-belts. The coating and printing subcategory includes any... slashing process, sizing compounds are applied to warp yarn to bind the fiber together and stiffen the yarn..., sheets, towels, and threads. (b) You are subject to this subpart if you own or operate a new...

  4. 40 CFR 63.4281 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fabric, rainwear, sheets, tents, threads and V-belts. The coating and printing subcategory includes any... slashing process, sizing compounds are applied to warp yarn to bind the fiber together and stiffen the yarn..., sheets, towels, and threads. (b) You are subject to this subpart if you own or operate a new...

  5. Quantifying the movement of multiple insects using an optical insect counter

    USDA-ARS?s Scientific Manuscript database

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  6. Delinquency Cases in Juvenile Court, 2002. OJJDP Fact Sheet #02

    ERIC Educational Resources Information Center

    Stahl, Anne L.

    2006-01-01

    This fact sheet presents statistics on delinquency cases processed by juvenile courts in 2002. The number of delinquency cases handled by juvenile courts decreased 11 percent between 1997 and 2002. During this time, the number of person offense cases decreased 2 percent, property offense cases decreased 27 percent, drug law violation cases…

  7. Improving Reading in Every Class: A Sourcebook for Teachers.

    ERIC Educational Resources Information Center

    Thomas, Ellen Lamar; Robinson, H. Alan

    This sourcebook for high school teachers suggests procedures not only for teaching the fundamental process of reading, but also for teaching reading in all of the high school content areas. It features motivating activities, a subject-area index, and guide sheets and work sheets. Chapters include "How to Use This Book,""Building Vocabulary and…

  8. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    PubMed

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  9. Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging

    PubMed Central

    Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George

    2012-01-01

    Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684

  10. Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging.

    PubMed

    Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George

    2012-12-03

    Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.

  11. Curvature of Double-Membrane Organelles Generated by Changes in Membrane Size and Composition

    PubMed Central

    Knorr, Roland L.; Dimova, Rumiana; Lipowsky, Reinhard

    2012-01-01

    Transient double-membrane organelles are key players in cellular processes such as autophagy, reproduction, and viral infection. These organelles are formed by the bending and closure of flat, double-membrane sheets. Proteins are believed to be important in these morphological transitions but the underlying mechanism of curvature generation is poorly understood. Here, we describe a novel mechanism for this curvature generation which depends primarily on three membrane properties: the lateral size of the double-membrane sheets, the molecular composition of their highly curved rims, and a possible asymmetry between the two flat faces of the sheets. This mechanism is evolutionary advantageous since it does not require active processes and is readily available even when resources within the cell are restricted as during starvation, which can induce autophagy and sporulation. We identify pathways for protein-assisted regulation of curvature generation, organelle size, direction of bending, and morphology. Our theory also provides a mechanism for the stabilization of large double-membrane sheet-like structures found in the endoplasmic reticulum and in the Golgi cisternae. PMID:22427874

  12. System and method of reducing motion-induced noise in the optical detection of an ultrasound signal in a moving body of material

    DOEpatents

    Habeger, Jr., Charles C.; LaFond, Emmanuel F.; Brodeur, Pierre; Gerhardstein, Joseph P.

    2002-01-01

    The present invention provides a system and method to reduce motion-induced noise in the detection of ultrasonic signals in a moving sheet or body of material. An ultrasonic signal is generated in a sheet of material and a detection laser beam is moved along the surface of the material. By moving the detection laser in the same direction as the direction of movement of the sheet of material the amount of noise induced in the detection of the ultrasonic signal is reduced. The scanner is moved at approximately the same speed as the moving material. The system and method may be used for many applications, such in a paper making process or steel making process. The detection laser may be directed by a scanner. The movement of the scanner is synchronized with the anticipated arrival of the ultrasonic signal under the scanner. A photodetector may be used to determine when a ultrasonic pulse has been directed to the moving sheet of material so that the scanner may be synchronized the anticipated arrival of the ultrasonic signal.

  13. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study

    PubMed Central

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-01-01

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207

  14. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  15. A Statistical Model of the Magnetotail Neutral Sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Sudong; Zhang, Tielong; Baumjohann, Wolfgang; Nakamura, Rumi; Ge, Yasong; Du, Aimin; Wang, Guoqiang; Lu, Quanming

    2015-04-01

    The neutral sheet of the magnetotail is characterized by weak magnetic field, strong cross tail current, and a reversal of the magnetic field direction across it. The dynamics of the earth's magnetosphere is greatly influenced by physical processes that occur near the neutral sheet. However, the exact position of the neutral sheet is variable in time. It is therefore essential to have a reliable estimate of the average position of the neutral sheet. Magnetic field data from ten years of Cluster, nineteen years of Geotail, four years of TC 1, and seven years of THEMIS observations have been incorporated to obtain a model of the magnetotail neutral sheet. All data in aberrated GSM (Geocentric Solar Magnetospheric) coordinate system are normalized to the same solar wind pressure condition. The shape and position of the neutral sheet, illustrated directly by the separator of positive and negative Bx on the YZ cross sections, are fitted with a displaced ellipse model. It is consistent with previous studies that the neutral sheet becomes curvier in the YZ cross section when the dipole tilt increases, yet our model shows the curviest neutral sheet compared with previous models. The new model reveals a hinging distance very close to 10 RE at a reference solar wind dynamic pressure of 2 nPa. We find that the earth dipole tilt angle not only affects the neutral sheet configuration in the YZ cross section but also in the XZ cross section. The neutral sheet becomes more tilting in the XZ cross section when the dipole tilt increases. The effect of an interplanetary magnetic field (IMF) penetration is studied, and an IMF By-related twisting of about 3° is found. Anticlockwise twisting of the neutral sheet is observed, looking along the downtail direction, for a positive IMF By, and clockwise twisting of the neutral sheet for a negative IMF By.

  16. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less

  17. Bio-sheet graft therapy for artificial gastric ulcer after endoscopic submucosal dissection: an animal feasibility study.

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Ko, Kwang Hyun; Jung, Yunho; Chung, Il-Kwun; Jeong, Seok; Lee, Don Haeng; Hong, Sung Pyo; Hahm, Ki Baik

    2015-04-01

    Various bio-sheet grafts have been attempted either to accelerate healing of artificial ulcers or to prevent adverse events after endoscopic submucosal dissection (ESD), but neither prospective nor mechanistic studies were available. To evaluate the substantial effect of a bio-sheet graft on artificial ulcer healing and its feasibility as an endoscopic treatment modality. Preclinical, in vivo animal experiment and proof-of-concept study. Animal laboratory. Three mini-pigs, Sus scrofa, mean age 14 months. Multiple ulcers sized 2.5 cm in diameter were generated by ESD in 3 mini-pigs and were assigned randomly into the following 3 groups; control group, bio-sheet group, or combination (bio-sheet plus drug) group. Bio-sheet grafts or bio-sheet plus drug combinations were applied on the artificial ulcers immediately after the ESD. Feasibility and efficacy of endoscopic bio-sheet graft therapy for the management of artificial ulcers and the evaluation of healing conditions based on histology changes in the remaining gastric bed tissues harvested from the stomachs. Thirty-three ESD specimens were obtained. On an image analysis of the ratio of healed area in the remaining gastric bed tissue compared with the matched dissected gastric mucosa, the control group showed the most significant improvement in healing activity among the 3 groups (P < .05), whereas the severity of inflammation in the remaining ulcer tissue was significantly attenuated in bio-sheet and combination groups (P < .05). Animal model. Although the bio-sheet grafts provided physical protection from gastric acid attack as reflected in the attenuated inflammation on the ulcer beds, unexpected delayed ulcer healing was noted in the bio-sheet graft group because of its physical hindrance of the healing process. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  18. Wrapping with a splash: High-speed encapsulation with ultrathin sheets.

    PubMed

    Kumar, Deepak; Paulsen, Joseph D; Russell, Thomas P; Menon, Narayanan

    2018-02-16

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation

    PubMed Central

    Chen, Serene W.; Drakulic, Srdja; Deas, Emma; Ouberai, Myriam; Aprile, Francesco A.; Arranz, Rocío; Ness, Samuel; Roodveldt, Cintia; Guilliams, Tim; De-Genst, Erwin J.; Klenerman, David; Wood, Nicholas W.; Knowles, Tuomas P.J.; Alfonso, Carlos; Rivas, Germán; Abramov, Andrey Y.; Valpuesta, José María; Dobson, Christopher M.; Cremades, Nunilo

    2015-01-01

    We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of β-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their β-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the β-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species. PMID:25855634

  20. State-of-technology for joining TD-NiCr sheet.

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding (EBW), gas-tungsten arc welding (GTAW), diffusion welding (DFW), resistance spot welding (RSW), resistance seam welding (RSEW), and brazing. Roll welding (RW) and explosion welding (EXW) have not been developed to the point where they can be used to make sound welds in TD-NiCr. Joining work that has previously been done on TD-NiCr by various organizations, both privately supported and under Air Force and NASA contracts, is described in this summary. Current work is also described that is being done at General Dynamics/Convair (under NASA contract) and at NASA/Lewis to develop and evaluate DFW, RSW, RSEW, and brazing. Preliminary comparisons of joining processes are made for typical applications. A brief description of the manufacture of TD-NiCr sheet by a recently standardized process (under NASA contract) also is given.

  1. Through-process modelling of texture and anisotropy in AA5182

    NASA Astrophysics Data System (ADS)

    Crumbach, M.; Neumann, L.; Goerdeler, M.; Aretz, H.; Gottstein, G.; Kopp, R.

    2006-07-01

    A through-process texture and anisotropy prediction for AA5182 sheet production from hot rolling through cold rolling and annealing is reported. Thermo-mechanical process data predicted by the finite element method (FEM) package T-Pack based on the software LARSTRAN were fed into a combination of physics based microstructure models for deformation texture (GIA), work hardening (3IVM), nucleation texture (ReNuc), and recrystallization texture (StaRT). The final simulated sheet texture was fed into a FEM simulation of cup drawing employing a new concept of interactively updated texture based yield locus predictions. The modelling results of texture development and anisotropy were compared to experimental data. The applicability to other alloys and processes is discussed.

  2. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    PubMed

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  3. Sensitivity of an Antarctic Ice Sheet Model to Sub-Ice-Shelf Melting

    NASA Astrophysics Data System (ADS)

    Lipscomb, W. H.; Leguy, G.; Urban, N. M.; Berdahl, M.

    2017-12-01

    Theory and observations suggest that marine-based sectors of the Antarctic ice sheet could retreat rapidly under ocean warming and increased melting beneath ice shelves. Numerical models of marine ice sheets vary widely in sensitivity, depending on grid resolution and the parameterization of key processes (e.g., calving and hydrofracture). Here we study the sensitivity of the Antarctic ice sheet to ocean warming and sub-shelf melting in standalone simulations of the Community Ice Sheet Model (CISM). Melt rates either are prescribed based on observations and high-resolution ocean model output, or are derived from a plume model forced by idealized ocean temperature profiles. In CISM, we vary the model resolution (between 1 and 8 km), Stokes approximation (shallow-shelf, depth-integrated higher-order, or 3D higher-order) and calving scheme to create an ensemble of plausible responses to sub-shelf melting. This work supports a broader goal of building statistical and reduced models that can translate large-scale Earth-system model projections to changes in Antarctic ocean temperatures and ice sheet discharge, thus better quantifying uncertainty in Antarctic-sourced sea-level rise.

  4. The Influence of Alternating Low-Cycle Bending Loads on Sheet Properties Having an Hcp Crystal Lattice

    NASA Astrophysics Data System (ADS)

    Demler, Eugen; Rodman, Dmytro; Rodman, Mykhailo; Gerstein, Gregory; Grydin, Olexandr; Briukhanov, Arkadiy A.; Klose, Christian; Nürnberger, Florian; Maier, Hans Jürgen

    2018-02-01

    The process of cyclic bending was investigated using thin sheets of the magnesium alloy AZ31 and α-titanium. These materials possess an hcp crystal lattice with different c/a ratios. It turned out that the latter have a substantial influence on the sheet deformation behavior. Even for small deformations (up to 2% strain), a large influence on the yield stress was present for both materials. In addition, cyclic bending contributes to the activation of prismatic slip, which is accompanied by twinning and detwinning. The changes in sheet anisotropy following cyclic bending were determined using texture measurements. Specifically, the AZ31 alloy sheets exhibited a considerable change in anisotropy of the mechanical properties with an increasing number of bending cycles. The anisotropy in the yield stress increases from 15% in the initial condition to 40% after three cycles. For the α-titanium sheet, the change in anisotropy was approx. 26% less. In general, the largest changes in properties occurred already in the first bending cycle and a stabilization took place upon further cycling.

  5. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  6. NASA Ares 1 Crew Launch Vehicle Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.

    2006-01-01

    The Upper Stage Element of NASA s Ares I Crew Launch Vehicle (CLV) is a "clean-sheet" approach that is being designed and developed in-house, with Element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115 long and 216" in diameter. While the Reusable Solid Rocket Booster (RSRB) design has changed since the CLV inception, the Upper Stage Element design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system.

  7. Developing an experimental case in aluminium foils 1100 to determine the maximum angle of formability in a piece by Dieless-SPIF process

    NASA Astrophysics Data System (ADS)

    Gabriel, Paramo; Adrian, Benitez

    2014-07-01

    Incremental sheet forming by the method of single point incremental forming Dieless-SPIF, is a widely studied process, experimented and developed in countries with high manufacturing technologies, with friendly costs when the productive configuration in a productivity system is based in small production batches. United states, United kingdom and France lead this type of studies and cases, developing various proof with experimental geometries, different from the national environment such as Colombia, Bolivia, Chile, Ecuador and Peru where this process where discretely studied. Previously mentioned, it pretends develop an experimental case of a particular geometry, identifying the maximum formability angle of material permissible for the forming of a piece in one pass, the analysis of forming limit curve (FLC), with the objective to emphasizes in this innovative method based in CAD-CAM technologies, compare with other analogous process of deformation sheet metal like embossing, take correct decisions about the viability and applicability of this process (Dieless) in a particular industrial piece, which responses to the necessities of productive configurations mentioned and be highly taken like a manufacturing alternative to the other conventional process of forming sheet metal like embossing, for systems with slow batches production.

  8. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    NASA Astrophysics Data System (ADS)

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-01

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  9. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    NASA Astrophysics Data System (ADS)

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; Price, Stephen; Hoffman, Matthew; Lipscomb, William H.; Fyke, Jeremy; Vargo, Lauren; Boghozian, Adrianna; Norman, Matthew; Worley, Patrick H.

    2017-06-01

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptops to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Ultimately, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.

  10. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  11. Sensitivity analysis of the add-on price estimate for the silicon web growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1981-01-01

    The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.

  12. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  13. Anti-reflection coatings on large area glass sheets

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    Antireflective coatings which may be suitable for use on the covers of photovoltaic solar modules can be easily produced by a dipping process. The coatings are applied to glass by drawing sheets of glass vertically out of dilute aqueous sodium silicate solutions at a constant speed, allowing the adherent liquid film to dry, then exposing the dried film to concentrated sulfuric acid, followed by a water rinse and dry. The process produces coatings of good optical performance (96.7 percent peak transmission at 0.540 mu M wavelength) combined with excellent stain and soil resistance, and good resistance to abrasion. The process is reproduceable and easily controlled.

  14. FSA future directions: FSA technology activities in FY86

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1985-01-01

    The silicon material, advanced silicon sheet, device research, and process research activities are explained. There will be no new initiatives. Many activities are targeted for completion and the emphasis will then be on technology transfer. Industrial development of the fluidized-bed reactor (FBR) deposition technology is proceeding. Technology transfer and industry funding of sheet development are continuing.

  15. Fuels planning: science synthesis and integration; environmental consequences fact sheet 08: Evaluating sedimentation risks associated with fuel management

    Treesearch

    William Elliot; Pete Robichaud

    2005-01-01

    This fact sheet describes the sources of sediment in upland forest watersheds in the context of fuel management activities. It presents the dominant forest soil erosion processes, and the principles behind the new sediment delivery interface developed to aid in erosion analysis of fuel management projects.

  16. Fuels planning: science synthesis and integration; social issues fact sheet 11: Challenges to collaboration

    Treesearch

    Christine Esposito

    2006-01-01

    Bringing the right people into a collaborative process can be difficult. Potential collaborators must all feel they have something to gain to justify investing resources, sharing knowledge, and perhaps compromising on goals and actions. This fact sheet discusses some of the common challenges that individuals, communities, and institutions face in collaboration.

  17. Juvenile Delinquency Probation Caseload, 1985-2002. OJJDP Fact Sheet #04

    ERIC Educational Resources Information Center

    Livsey, Sarah

    2006-01-01

    This fact sheet presents statistics on delinquency cases resulting in probation, 2002. Probation was the disposition in 38 percent of all delinquency cases processed by the juvenile courts in 2002. The number of cases placed on probation increased 44 percent between 1985 and 2002. Property offense cases made up the greatest proportion of the…

  18. Secured Transactions: An Integrated Classroom Approach Using Financial Statements and Acronyms

    ERIC Educational Resources Information Center

    Seganish, W. Michael

    2005-01-01

    Students struggle with the subject of secured transactions under the Uniform Commercial Code. In this article, the author presents a method that uses balance-sheet information to help students visualize the difference between secured and unsecured creditors. The balance sheet is also used in the Uniform Commercial Code process, in which one must…

  19. Sucrose Treated Carbon Nanotube and Graphene Yarns and Sheets

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey (Inventor); Kim, Jae-Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor)

    2017-01-01

    Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.

  20. Numerical analysis of tailored sheets to improve the quality of components made by SPIF

    NASA Astrophysics Data System (ADS)

    Gagliardi, Francesco; Ambrogio, Giuseppina; Cozza, Anna; Pulice, Diego; Filice, Luigino

    2018-05-01

    In this paper, the authors pointed out a study on the profitable combination of forming techniques. More in detail, the attention has been put on the combination of the single point incremental forming (SPIF) and, generally, speaking, of an additional process that can lead to a material thickening on the initial blank considering the local thinning which the sheets undergo at. Focalizing the attention of the research on the excessive thinning of parts made by SPIF, a hybrid approach can be thought as a viable solution to reduce the not homogeneous thickness distribution of the sheet. In fact, the basic idea is to work on a blank previously modified by a deformation step performed, for instance, by forming, additive or subtractive processes. To evaluate the effectiveness of this hybrid solution, a FE numerical model has been defined to analyze the thickness variation on tailored sheets incrementally formed optimizing the material distribution according to the shape to be manufactured. Simulations based on the explicit formulation have been set up for the model implementation. The mechanical properties of the sheet material have been taken in literature and a frustum of cone as benchmark profile has been considered for the performed analysis. The outcomes of numerical model have been evaluated in terms of both maximum thinning and final thickness distribution. The feasibility of the proposed approach will be deeply detailed in the paper.

  1. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  2. Highly crystalline lithium titanium oxide sheets coated with nitrogen-doped carbon enable high-rate lithium-ion batteries.

    PubMed

    Han, Cuiping; He, Yan-Bing; Li, Baohua; Li, Hongfei; Ma, Jun; Du, Hongda; Qin, Xianying; Yang, Quan-Hong; Kang, Feiyu

    2014-09-01

    Sheets of Li4Ti5O12 with high crystallinity are coated with nitrogen-doped carbon (NC-LTO) using a controlled process, comprising hydrothermal reaction followed by chemical vapor deposition (CVD). Acetonitrile (CH3 CN) vapor is used as carbon and nitrogen source to obtain a thin coating layer of nitrogen-doped carbon. The layer enables the NC-LTO material to maintain its sheet structure during the high-temperature CVD process and to achieve high crystallinity. Doping with nitrogen introduces defects into the carbon coating layer, and this increased degree of disorder allows fast transportation of lithium ions in the layer. An electrode of NC-LTO synthesized at 700 °C exhibits greatly improved rate and cycling performance due to a markedly decreased total cell resistance and enhanced Li-ion diffusion coefficient (D(Li)). Specific capacities of 159.2 and 145.8 mA h g(-1) are obtained using the NC-LTO sheets, at charge/discharge rates of 1 and 10 C, respectively. These values are much higher than values for LTO particles did not undergo the acetonitrile CVD treatment. A capacity retention value as high as 94.7% is achieved for the NC-LTO sheets after 400 cycles in a half-cell at 5 C discharge rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polar ice-sheet contributions to sea level during past warm periods

    NASA Astrophysics Data System (ADS)

    Dutton, A.

    2015-12-01

    Recent sea-level rise has been dominated by thermal expansion and glacier loss, but the contribution from mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions under future sustained warming. Due to limitations of existing ice sheet models and the lack of relevant analogues in the historical record, projecting the timing and magnitude of polar ice sheet mass loss in the future remains challenging. One approach to improving our understanding of how polar ice-sheet retreat will unfold is to integrate observations and models of sea level, ice sheets, and climate during past intervals of warmth when the polar ice sheets contributed to higher sea levels. A recent review evaluated the evidence of polar ice sheet mass loss during several warm periods, including interglacials during the mid-Pliocene warm period, Marine Isotope Stage (MIS) 11, 5e (Last Interglacial), and 1 (Holocene). Sea-level benchmarks of ice-sheet retreat during the first of these three periods, when global mean climate was ~1 to 3 deg. C warmer than preindustrial, are useful for understanding the long-term potential for future sea-level rise. Despite existing uncertainties in these reconstructions, it is clear that our present climate is warming to a level associated with significant polar ice-sheet loss in the past, resulting in a conservative estimate for a global mean sea-level rise of 6 meters above present (or more). This presentation will focus on identifying the approaches that have yielded significant advances in terms of past sea level and ice sheet reconstruction as well as outstanding challenges. A key element of recent advances in sea-level reconstructions is the ability to recognize and quantify the imprint of geophysical processes, such as glacial isostatic adjustment (GIA) and dynamic topography, that lead to significant spatial variability in sea level reconstructions. Identifying specific ice-sheet sources that contributed to higher sea levels is a challenge that is currently hindered by limited field evidence at high latitudes. Finally, I will explore the concept of how increasing the quantity and quality of paleo sea level and ice sheet reconstructions can lead to improved quantification of contemporary changes in ice sheets and sea level.

  4. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Li, Zhiwei; Li, Fei; Yang, Yuande; Hao, Weifeng; Bao, Feng

    2018-03-01

    We report on a successful application of the horizontal-to-vertical spectral ratio (H / V) method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0) related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure ice sheet thickness in Antarctica.

  5. Process Mechanics Analysis in Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, G.; Filice, L.; Fratini, L.; Micari, F.

    2004-06-01

    The request of highly differentiated products and the need of process flexibility have brought the researchers to focus the attention on innovative sheet forming processes. Industrial application of conventional processes is, in fact, economically convenient just for large scale productions; furthermore conventional processes do not allow to fully satisfy the mentioned demand of flexibility. In this contest, single point incremental forming (SPIF) is an innovative and flexible answer to market requests. The process is characterized by a peculiar process mechanics, being the sheet plastically deformed only through a localised stretching mechanism. Some recent experimental studies have shown that SPIF permits a relevant increase of formability limits, just as a consequence of the peculiar deformation mechanics. The research here addressed is focused on the theoretical investigation of process mechanics; the aim was to achieve a deeper understanding of basic phenomena involved in SPIF which justify the above mentioned formability enhancing.

  6. The rolling performance of Fe-6.5 wt.% Si sheets edged with stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ye, F.; Liang, Y. F.; Shi, X. J.; Lin, J. P.

    2017-10-01

    Compared with common electrical steel, high silicon electrical steel (Fe-6.5 wt.% Si alloy) exhibits excellent soft magnetic properties and a wide application prospect in high frequency electromagnetic fields. In the process of cold rolling Fe-6.5 wt.% Si alloy, edge-crack often occurs on the sheets due to the inadequate ductility and limited formability. It was found that the Fe-6.5 wt.% Si alloy sheet edged with 304 stainless steel by laser welding show an improved rolling performance. The composite sheet could be cold rolled to a thickness of 0.07 mm without observed edge cracks. The mechanical property of the edging material should be in an appropriate window in reference to that of the Fe-6.5 wt.% Si alloy.

  7. Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example

    NASA Astrophysics Data System (ADS)

    A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

  8. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what observed in previous models. This transient effect did not significantly propagate upstream towards the inner parts of ice sheet, and rapidly decayed with time. The process was also accompanied by significant ice thinning. Models results suggest that the ice sheet is almost unaffected by flow perturbations induced by ice shelf collapse, unless other processes (e.g., grounding line instability induced by warm water penetration) are involved.

  9. The Rapid Ice Sheet Change Observatory (RISCO)

    NASA Astrophysics Data System (ADS)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images and image animations from the ice sheet scale down to scales of meters, (2) maps of ice flow velocity and acceleration and (3) digital elevation models and elevation change maps. These products are created both from user-tasked data acquisitions and from a decade of archived data. An online user interface will allow browsing of the data catalog, product ordering and requests for sensor tasking. Over the next few years, RISCO will develop into a long-term observational system, with an adaptable infrastructure to accommodate new sensors and currently unforeseeable demands. RISCO has the potential to greatly enhance observation of ice sheets, moving from ad hoc studies of past changes using whatever data happens to be available, to scalable, targeted, near-real time monitoring of events as they occur.

  10. Light sheet microscopy.

    PubMed

    Weber, Michael; Mickoleit, Michaela; Huisken, Jan

    2014-01-01

    This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail. © 2014 Elsevier Inc. All rights reserved.

  11. InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei

    Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.

  12. How might the North American ice sheet influence the northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the altitude of the American ice sheet leads to less total precipitation and snowfall and to colder temperatures over both the Scandinavian and the Barents and Kara sea sectors. We then compute the resulting annual surface mass balance over the Fennoscandian region from the simulated temperature and precipitation fields used to force an ice-sheet model. It clearly appears that the SMB is dominated by the ablation signal. In response to the summer cooling induced by the American ice-sheet albedo, high positive SMB values are obtained over the Eurasian region, leading thus to the growth of an ice sheet. On the contrary, the gradual increase of the American ice-sheet altitude induces more ablation over the Eurasian sector, hence limiting the growth of Fennoscandia. To test the robustness of our results with respect to the Eurasian ice sheet state, we carried out two additional LMDZ experiments with new boundary conditions involving both the American (flat or full LGM) and high Eurasian ice sheets. The most striking result is that the Eurasian ice sheet is maintained under full-LGM North American ice-sheet conditions, but loses ~ 10 % of its mass compared to the case in which the North American ice sheet is flat. These new findings qualitatively confirm the conclusions from our first series of experiments and suggest that the development of the Eurasian ice sheet may have been slowed down by the growth of the American ice sheet, offering thereby a new understanding of the evolution of Northern Hemisphere ice sheets throughout glacial-interglacial cycles.

  13. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  14. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  15. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    NASA Astrophysics Data System (ADS)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  16. Deep drawability of Ti/resin/Ti laminated sheet

    NASA Astrophysics Data System (ADS)

    Hardada, Yasunroi; Hattori, Shuji

    2017-10-01

    Aiming to enhance functionality of titanium cup, the formability of titanium/resin/titanium laminated sheet by deep drawing was investigated. Although pure titanium has excellent corrosion resistance, the density of titanium is higher than that of light metals, such as aluminum and magnesium. Part of the titanium cup made of resin allows for weight reduction of the cup. Furthermore, the clad cup is more likely to have heat retention and protection against vibration characteristics. In the experiment, the materials were pure titanium and polycarbonate. The initial thickness of the sheet was 0.2 to 0.5 mm in thickness. A total plate thickness of the blank was 1.0 to 1.5 mm in thickness. The blank diameter is 70 mm. The laminated sheet was constituted by interposing resin between two titanium sheets. Each sheet in stacked condition was not joined each other. In the deep drawing process, the laminated sheet was employed and a flat sheet blank was formed into a circle by a punch. For the prevention of seizure in contact area between a drawing tool and titanium, titanium blank was treated by oxide coating. By this method, the fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The deep drawing was carried out to investigate the formability. The laminated sheet was successfully drawn without the cracks. The section of the drawn cup was observed to examine a formability of the resin sheet. The reduction rate of the thickness was less than 10%. It was found that the titanium/resin/titanium clad cup was successfully drawn.

  17. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2017-12-01

    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  18. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  19. In Pursuit of Analogs for Europa's Dynamics & Potential Habitats

    NASA Astrophysics Data System (ADS)

    Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.

    2010-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.

  20. Factors governing hole expansion ratio of steel sheets with smooth sheared edge

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Gyo-Sung; Kim, Hyoung Seop

    2016-11-01

    Stretch-flangeability measured using hole expansion test (HET) represents the ability of a material to form into a complex shaped component. Despite its importance in automotive applications of advanced high strength steels, stretch-flangeability is a less known sheet metal forming property. In this paper, we investigate the factors governing hole expansion ratio (HER) by means of tensile test and HET. We correlate a wide range of tensile properties with HERs of steel sheet specimens because the stress state in the hole edge region during the HET is almost the same as that of the uniaxial tensile test. In order to evaluate an intrinsic HER of steel sheet specimens, the initial hole of the HET specimen is produced using a milling process after punching, which can remove accumulated shearing damage and micro-void in the hole edge region that is present when using the standard HER evaluation method. It was found that the intrinsic HER of steel sheet specimens was proportional to the strain rate sensitivity exponent and post uniform elongation.

  1. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor

    NASA Astrophysics Data System (ADS)

    Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.

    2012-05-01

    Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.

  2. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by cyclic atomic layer reduction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei

    The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less

  3. Electron flat-top distributions and cross-scale wave modulations observed in the current sheet of geomagnetic tail

    NASA Astrophysics Data System (ADS)

    Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong

    2017-08-01

    We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.

  4. The Folded Paper Size Illusion: Evidence of Inability to Perceptually Integrate More Than One Geometrical Dimension

    PubMed Central

    2016-01-01

    The folded paper-size illusion is as easy to demonstrate as it is powerful in generating insights into perceptual processing: First take two A4 sheets of paper, one original sized, another halved by folding, then compare them in terms of area size by centering the halved sheet on the center of the original one! We perceive the larger sheet as far less than double (i.e., 100%) the size of the small one, typically only being about two thirds larger—this illusion is preserved by rotating the inner sheet and even by aligning it to one or two sides, but is dissolved by aligning both sheets to three sides, here documented by 88 participants’ data. A potential explanation might be the general incapability of accurately comparing more than one geometrical dimension at once—in everyday life, we solve this perceptual-cognitive bottleneck by reducing the complexity of such a task via aligning parts with same lengths. PMID:27698977

  5. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by cyclic atomic layer reduction technique

    DOE PAGES

    Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei; ...

    2018-05-12

    The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less

  6. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    NASA Astrophysics Data System (ADS)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  7. Interactive Ice Sheet Flowline Model for High School and College Students

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Rezvanbehbahani, S.; Shankar, S.

    2017-12-01

    Teaching about climate and climate change is conceptually challenging. While teaching tools and lesson plans are rapidly evolving to help teachers and students improve their understanding of climate processes, there are very few tools targeting ice sheet and glacier dynamics. We have built an interactive ice sheet model that allows students to explore how Antarctic glaciers respond to different climate perturbations. Interactive models offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. As a result, this project provides a much-needed bridge between the data and models used by the scientific community and students in high school and college. We target our instructional and assessment activities to three high school and college students with the overall aim of increasing understanding of ice sheet dynamics and the different ways that ice sheets are impacted by climate change, while also improving their fundamental math skills.

  8. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    PubMed

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  9. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  10. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.

    PubMed

    Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  11. Membrane rupture generates single open membrane sheets during vaccinia virus assembly.

    PubMed

    Chlanda, Petr; Carbajal, Maria Alejandra; Cyrklaff, Marek; Griffiths, Gareth; Krijnse-Locker, Jacomine

    2009-07-23

    The biogenesis and dynamics of cellular membranes are governed by fusion and fission processes that ensure the maintenance of closed compartments. These principles also apply to viruses during acquisition of their envelope. Based on conventional electron microscopy (EM), however, it has been proposed that poxviruses assemble from membranes made de novo with "free" ends in the cytoplasm. Here, we analyze the origin and structure of poxvirus membranes in a close-to-native state and in three dimensions by using cryopreservation and electron tomography (ET). By cryo-EM, the precursor membrane of poxviruses appears as an open membrane sheet stabilized by a protein scaffold. ET shows that this membrane is derived from pre-existing cellular membranes that rupture to generate an open compartment, rather than being made de novo. Thus, poxvirus infection represents an excellent system to study how cytoplasmic membranes can form open sheets by a process distinct from well-defined mechanisms of membrane biogenesis.

  12. Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.

    1979-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.

  13. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  14. Analysis of defect structure in silicon. Silicon sheet growth development for the large area silicon sheet task of the Low-Cost Solar array Project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.

    1982-01-01

    One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.

  15. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  16. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite.

    PubMed

    Sevilla, Marta; Ferrero, Guillermo A; Fuertes, Antonio B

    2016-11-21

    A facile and environmentally friendly synthetic strategy for the production of stable and easily processable dispersions of graphene in water is presented. This strategy represents an alternative to classical chemical exfoliation methods (for example the Hummers method) that are more complex, harmful, and dangerous. The process is based on the electrochemical exfoliation of graphite and includes three simple steps: 1) the anodic exfoliation of graphite in (NH 4 ) 2 SO 4 , 2) sonication to separate the oxidized graphene sheets, and 3) reduction of oxidized graphene to graphene. The procedure makes it possible to convert around 30 wt % of the initial graphite into graphene with short processing times and high yields. The graphene sheets are well dispersed in water, have a carbon/oxygen atomic ratio of 11.7, a lateral size of about 0.5-1 μm, and contain only a few graphene layers, most of which are bilayer sheets. The processability of this type of aqueous dispersion has been demonstrated in the fabrication of macroscopic graphene structures, such as graphene aerogels and graphene films, which have been successfully employed as absorbents or as electrodes in supercapacitors, respectively. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Process development of two high strength tantalum base alloys (ASTAR-1211C and ASTAR-1511C)

    NASA Technical Reports Server (NTRS)

    Ammon, R. L.

    1974-01-01

    Two tantalum base alloys, Ta-12W-1.0Re-0.7Hf-0.025C(ASTAR-1211C) and Ta-15W-1.0Re-0.7Hf-0.025C(ASTAR-1511C), were cast as 12.5 cm (5 inch) diameter ingots and processed to swaged rod, sheet, forged plate, and tubing. Swaged rod was evaluated with respect to low temperature ductility, elevated temperature tensile properties, and elevated temperature creep behavior. A standard swaging process and final annealing schedule were determined. Elevated temperature tensile properties, low temperature impact properties, low temperature DBTT behavior, and extended elevated temperature creep properties were determined. A process for producing ASTAR-1211C and ASTAR-1511C sheet were developed. The DBTT properties of GTA and EB weld sheet given post-weld anneal and thermal aging treatments were determined using bend and tensile specimens. High and low temperature mechanical properties of forging ASTAR-1211C and ASTAR-1511C plate were determined as well as elevated temperature creep properties. Attempts to produce ASTAR-1211C tubing were partially successful while attempts to make ASTAR-1511C tubing were completely unsuccessful.

  18. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  19. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  20. Ice-Sheet Dynamics and Millennial-Scale Climate Variability in the North Atlantic across the Middle Pleistocene Transition (Invited)

    NASA Astrophysics Data System (ADS)

    Hodell, D. A.; Nicholl, J.

    2013-12-01

    During the Middle Pleistocene Transition (MPT), the climate system evolved from a more linear response to insolation forcing in the '41-kyr world' to one that was decidedly non-linear in the '100-kyr world'. Smaller ice sheets in the early Pleistocene gave way to larger ice sheets in the late Pleistocene with an accompanying change in ice sheet dynamics. We studied Sites U1308 (49° 52.7'N, 24° 14.3'W; 3871 m) and U1304 (53° 3.4'N, 33° 31.8'W; 3024 m) in the North Atlantic to determine how ice sheet dynamics and millennial-scale climate variability evolved as glacial boundary conditions changed across the MPT. The frequency of ice-rafted detritus (IRD) in the North Atlantic was greater during glacial stages prior to 650 ka (MIS 16), reflecting more frequent crossing of an ice volume threshold when the climate system spent more time in the 'intermediate ice volume' window, resulting in persistent millennial scale variability. The rarity of Heinrich Events containing detrital carbonate and more frequent occurrence of IRD events prior to 650 ka may indicate the presence of 'low-slung, slippery ice sheets' that flowed more readily than their post-MPT counterparts (Bailey et al., 2010). Ice volume surpassed a critical threshold across the MPT that permitted ice sheets to survive boreal summer insolation maxima, thereby increasing ice volume and thickness, lengthening glacial cycles, and activating the dynamical processes responsible for Laurentide Ice Sheet instability in the region of Hudson Strait (i.e., Heinrich events). The excess ice volume during post-MPT glacial maxima provided a large, unstable reservoir of freshwater to be released to the North Atlantic during glacial terminations with the potential to perturb Atlantic Meridional Overtunring Circulation. We speculate that orbital- and millennial-scale variability co-evolved across the MPT and the interaction of processes on orbital and suborbital time scales gave rise to the changing patterns of glacial-interglacial cycles through the Quaternary. Bailey, I., Bolton, C.T., DeConto, R.M., Pollard, D., Schiebel, R. and Wilson, P.A. (2010) A low threshold for North Atlantic ice rafting from "low-slung slippery" late Pliocene ice sheets. Paleoceanography, 25, PA1212-[14pp]. (doi:10.1029/2009PA001736).

  1. Comparability Study of Armed Services Vocational Aptitude Battery Scores from Answer Sheet and Answer Card Administration. Final Report.

    ERIC Educational Resources Information Center

    Valentine, Lonnie D., Jr.; Cowan, Douglas K.

    Armed Services Vocational Aptitude Battery (ASVAB) Form 2 was standardized for Digitek answer sheets. In September 1973, the Digitek scoring facility at Randolph AFB will be inadequate to handle anticipated scoring load. Consequently, ASVAB answer forms have been redesigned for processing via a Hewlett-Packard mark-sense reader from IBM card size…

  2. Electromagnetic tornadoes in space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.; Crew, G.B.; Retterer, J.M.

    1988-01-01

    The exotic phenomenon of energetic-ion conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail; lower-hybrid energization of ions in the boundary layer of the plasma sheet and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations and analytical treatments of the heating processes are described.

  3. Augmentative Device Helps Max Speak. PACER Center ACTion Information Sheets. PHP-c75

    ERIC Educational Resources Information Center

    PACER Center, 2014

    2014-01-01

    This Action Information Sheet follows a family's process of selecting and using augmentative and alternative communication to help their young son, Max, speak. Max is affected by global dyspraxia, which makes learning new motor skills--especially speech--quite difficult. For the first years of his life, Max could not say words. Before he and his…

  4. Modelled Growth and Decay of the Cordilleran Ice Sheet Through the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Marshall, S. J.; Banwell, A.

    2015-12-01

    The Cordilleran Ice Sheet in western North America had an enigmatic evolution during the last glacial cycle, developing out of sync with the larger Laurentide and global glaciation. The geological record suggests that the ice sheet emerged late, ca. 45 ka, growing to be a fully-established ice sheet in isotope stages 3 and 2 and deglaciating late in the glacial cycle. This has been a challenge to model, and is a paleoclimatic curiosity, because the western Cordillera of North America is heavily glacierized today, and one would intuitively expect it to act as an inception centre for the Pleistocene ice sheets. The region receives heavy precipitation, and modest cooling should induce large-scale glacier expansion. Indeed, a Cordilleran Ice Sheet quickly nucleates in isotope substage 5d in most ice sheet modeling studies to date, and is a resilient feature throughout the glaciation. The fact that a full-scale Cordilleran Ice Sheet did not develop until relatively late argues for either: (a) ice sheet models that have been inadequate in resolving the process of alpine-style glaciation, i.e., the coalescence of alpine icefields, or (b) a climatic history in western North America that deviated strongly from the hemispheric-scale cooling which drove the growth of the Laurentide and Scandinavian Ice Sheets, as recorded in Greenland. We argue that reasonable reconstructions of Cordilleran Ice Sheet growth and decay implicate a combination of these two considerations. Sufficient model resolution is required to capture the valley-bottom melt that suppresses icefield coalescence, while early-glacial cooling must have been modest in the Pacific sector of North America. We argue for a persistent warm, dry climate relative to that in eastern North America and the Atlantic sector, likely associated with positive feedbacks between atmospheric circulation and the nascent Laurentide Ice Sheet (i.e., peristent circulation patterns similar to those of 2014-2015). This must have been disrupted as the Laurentide thickened and advanced southward, allowing the Cordilleran Ice Sheet to emerge from numerous isolated icefield complexes.

  5. Laser-Assisted Bending of Sharp Angles With Small Fillet Radius on Stainless Steel Sheets: Analysis of Experimental Set-Up and Processing Parameters

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco

    2015-06-01

    Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.

  6. Toward Surface Mass Balance Modeling over Antarctic Peninsula with Improved Snow/Ice Physics within WRF

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, G.; Zhang, J.; Yao, Y.

    2017-12-01

    The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.

  7. Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation

    NASA Astrophysics Data System (ADS)

    Lemieux, J.-M.; Sudicky, E. A.; Peltier, W. R.; Tarasov, L.

    2008-09-01

    In the recent literature, it has been shown that Pleistocene glaciations had a large impact on North American regional groundwater flow systems. Because of the myriad of complex processes and large spatial scales involved during periods of glaciation, numerical models have become powerful tools to examine how ice sheets control subsurface flow systems. In this paper, the key processes that must be represented in a continental-scale 3-D numerical model of groundwater flow during a glaciation are reviewed, including subglacial infiltration, density-dependent (i.e., high-salinity) groundwater flow, permafrost evolution, isostasy, sea level changes, and ice sheet loading. One-dimensional hydromechanical coupling associated with ice loading and brine generation were included in the numerical model HydroGeoSphere and tested against newly developed exact analytical solutions to verify their implementation. Other processes such as subglacial infiltration, permafrost evolution, and isostasy were explicitly added to HydroGeoSphere. A specified flux constrained by the ice sheet thickness was found to be the most appropriate boundary condition in the subglacial environment. For the permafrost, frozen and unfrozen elements can be selected at every time step with specified hydraulic conductivities. For the isostatic adjustment, the elevations of all the grid nodes in each vertical grid column below the ice sheet are adjusted uniformly to account for the Earth's crust depression and rebound. In a companion paper, the model is applied to the Wisconsinian glaciation over the Canadian landscape in order to illustrate the concepts developed in this paper and to better understand the impact of glaciation on 3-D continental groundwater flow systems.

  8. Widespread surface meltwater drainage in Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  9. Developing an informational tool for ethical engagement in medical tourism.

    PubMed

    Adams, Krystyna; Snyder, Jeremy; Crooks, Valorie A; Johnston, Rory

    2017-08-25

    Medical tourism, the practice of persons intentionally travelling across international boundaries to access medical care, has drawn increasing attention from researchers, particularly in relation to potential ethical concerns of this practice. Researchers have expressed concern for potential negative impacts to individual safety, public health within both countries of origin for medical tourists and destination countries, and global health equity. However, these ethical concerns are not discussed within the sources of information commonly provided to medical tourists, and as such, medical tourists may not be aware of these concerns when engaging in medical tourism. This paper describes the methodology utilized to develop an information sheet intended to be disseminated to Canadian medical tourists to encourage contemplation and further public discussion of the ethical concerns in medical tourism. The methodology for developing the information sheet drew on an iterative process to consider stakeholder feedback on the content and use of the information sheet as it might inform prospective medical tourists' decision making. This methodology includes a literature review as well as formative research with Canadian public health professionals and former medical tourists. The final information sheet underwent numerous revisions throughout the formative research process according to feedback from medical tourism stakeholders. These revisions focused primarily on making the information sheet concise with points that encourage individuals considering travelling for medical tourism to do further research regarding their safety both within the destination country, while travelling, and once returning to Canada, and the potential impacts of their trip on third parties. This methodology may be replicated for the development of information sheets intending to communicate ethical concerns of other practices to providers or consumers of a certain service.

  10. The balance sheet technique. Volume I. The balance sheet analysis technique for preconstruction review of airports and highways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBelle, S.J.; Smith, A.E.; Seymour, D.A.

    1977-02-01

    The technique applies equally well to new or existing airports. The importance of accurate accounting of emissions, cannot be overstated. The regional oxidant modelling technique used in conjunction with a balance sheet review must be a proportional reduction technique. This type of emission balancing presumes equality of all sources in the analysis region. The technique can be applied successfully in the highway context, either in planning at the system level or looking only at projects individually. The project-by-project reviews could be used to examine each project in the same way as the airport projects are examined for their impact onmore » regional desired emission levels. The primary limitation of this technique is that it should not be used when simulation models have been used for regional oxidant air quality. In the case of highway projects, the balance sheet technique might appear to be limited; the real limitations are in the transportation planning process. That planning process is not well-suited to the needs of air quality forecasting. If the transportation forecasting techniques are insensitive to change in the variables that affect HC emissions, then no internal emission trade-offs can be identified, and the initial highway emission forecasts are themselves suspect. In general, the balance sheet technique is limited by the quality of the data used in the review. Additionally, the technique does not point out effective trade-off strategies, nor does it indicate when it might be worthwhile to ignore small amounts of excess emissions. Used in the context of regional air quality plans based on proportional reduction models, the balance sheet analysis technique shows promise as a useful method by state or regional reviewing agencies.« less

  11. Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection

  12. 7 CFR 52.784 - Score sheet for canned red tart pitted cherries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... UNDER THE AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Canned Red Tart...

  13. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    PubMed

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, I D /I G = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (<5 layers) holey graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH 4 NO 3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  14. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  15. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  16. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less

  17. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    DOE PAGES

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; ...

    2017-03-23

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less

  18. Low cost light-sheet microscopy for whole brain imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia

    2018-02-01

    Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.

  19. In vitro studies on human periodontal ligament stem cell sheets enhanced by enamel matrix derivative.

    PubMed

    Wang, Zhongshan; Feng, Zhihong; Wu, Guofeng; Bai, Shizhu; Dong, Yan; Zhao, Yimin

    2016-05-01

    Numerous preclinical and clinical studies have focused on the periodontal regenerative functions of enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs) of developing porcine teeth. In this study, periodontal ligament (PDL) stem cells (PDLSCs) were isolated, and the effects of EMD on the extracorporeal induction process and the characteristics of PDLSC sheets were investigated for their potential as a more effective stem-cell therapy. EMD-enhanced cell sheets could be induced by complete medium supplemented with 50 μg/mL vitamin C and 100 μg/mL EMD. The EMD-enhanced cell sheets appeared thicker and more compact than the normal PDLSC sheets, demonstrated more layers of cells (3-7 layers), secreted richer extracellular matrix (ECM), showed varying degrees of increases in mRNA expression of periodontal tissue-specific genes (COL I, POSTN), calcification-related genes (RUNX2, OPN, OCN) and a cementum tissue-specific gene (CAP), and possessed a better mineralization ability in terms of osteogenic differentiation in vitro. These EMD-enhanced cell sheets may represent a potential option for stem-cell therapy for PDL regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  1. Bacteria beneath the West Antarctic ice sheet.

    PubMed

    Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann

    2009-03-01

    Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.

  2. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  3. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    NASA Astrophysics Data System (ADS)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  4. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    NASA Astrophysics Data System (ADS)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  5. Laser processing for strengthening of the self-restoring metal-elastomer interface on a silicone sheet

    NASA Astrophysics Data System (ADS)

    Yasuda, Kiyokazu

    2012-08-01

    A self-restoring microsystem is a unique concept which realizes the sensing functionality and robust interface which mechanically and electrically connects a deformable object such as a human body with printed electronic devices. For this purpose, the formation of conductive wiring on an elastomer substrate was attempted using the nickel ink printing process. Before the wiring process, surface patterning of a silicone sheet by a galvano-scanned infrared laser was conducted for the enhancement of interface adhesion of the metal deposit and polymer. Characterization of the fabricated pattern was conducted by optical microscopy. The novel method was successfully demonstrated as a fabrication of selective patterns of metal particles on self-restoring MEMS.

  6. Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates

    DOEpatents

    Huang, Jianhua [Blacksburg, VA; Baird, Donald G [Blacksburg, VA; McGrath, James E [Blacksburg, VA

    2008-04-29

    A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have conductivity in excess of 150 S/cm and have sufficient mechanical strength to be used in fuel cells. The bipolar plates can be formed as a skin/core laminate where a second polymer material is used on the skin surface which provides for enhanced conductivity, chemical resistance, and resistance to gas permeation.

  7. Synthesis of porous sheet-like Co{sub 3}O{sub 4} microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Shanshan; Jing Xiaoyan; Liu Jingyuan

    2013-01-15

    Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less

  8. Finite element simulation and Experimental verification of Incremental Sheet metal Forming

    NASA Astrophysics Data System (ADS)

    Kaushik Yanamundra, Krishna; Karthikeyan, R., Dr.; Naranje, Vishal, Dr

    2018-04-01

    Incremental sheet metal forming is now a proven manufacturing technique that can be employed to obtain application specific, customized, symmetric or asymmetric shapes that are required by automobile or biomedical industries for specific purposes like car body parts, dental implants or knee implants. Finite element simulation of metal forming process is being performed successfully using explicit dynamics analysis of commercial FE software. The simulation is mainly useful in optimization of the process as well design of the final product. This paper focuses on simulating the incremental sheet metal forming process in ABAQUS, and validating the results using experimental methods. The shapes generated for testing are of trapezoid, dome and elliptical shapes whose G codes are written and fed into the CNC milling machine with an attached forming tool with a hemispherical bottom. The same pre-generated coordinates are used to simulate a similar machining conditions in ABAQUS and the tool forces, stresses and strains in the workpiece while machining are obtained as the output data. The forces experimentally were recorded using a dynamometer. The experimental and simulated results were then compared and thus conclusions were drawn.

  9. Fabrication of fine-grain tantalum diffusion barrier tube for Nb3Sn conductors

    NASA Astrophysics Data System (ADS)

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-01

    Diffusion barriers used in Nb3Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  10. Composite fiber structures for catalysts and electrodes

    NASA Technical Reports Server (NTRS)

    Marrion, Christopher J.; Cahela, Donald R.; Ahn, Soonho; Tatarchuk, Bruce J.

    1993-01-01

    We have recently envisioned a process wherein fibers of various metals in the 0.5 to 15 micron diameter range are slurried in concert with cellulose fibers and various other materials in the form of particulates and/or fibers. The resulting slurry is cast via a wet-lay process into a sheet and dried to produce a free-standing sheet of 'composite paper.' When the 'preform' sheet is sintered in hydrogen, the bulk of the cellulose is removed with the secondary fibers and/or particulates being entrapped by the sinter-locked network provided by the metal fibers. The resulting material is unique, in that it allows the intimate contacting and combination of heretofore mutually exclusive materials and properties. Moreover, due to the ease of paper manufacture and processing, the resulting materials are relatively inexpensive and can be fabricated into a wide range of three-dimensional structures. Also, because cellulose is both a binder and a pore-former, structures combining high levels of active surface area and high void volume (i.e., low pressure drop) can be prepared as freestanding flow through monoliths.

  11. Vertex Models of Epithelial Morphogenesis

    PubMed Central

    Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.

    2014-01-01

    The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108

  12. Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage.

    PubMed

    Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong

    2017-06-14

    Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.

  13. Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn.

    PubMed

    Matsuda, Keisuke; Gotoh, Hiroki; Tajika, Yuki; Sushida, Takamichi; Aonuma, Hitoshi; Niimi, Teruyuki; Akiyama, Masakazu; Inoue, Yasuhiro; Kondo, Shigeru

    2017-10-24

    The external organs of holometabolous insects are generated through two consecutive processes: the development of imaginal primordia and their subsequent transformation into the adult structures. During the latter process, many different phenomena at the cellular level (e.g. cell shape changes, cell migration, folding and unfolding of epithelial sheets) contribute to the drastic changes observed in size and shape. Because of this complexity, the logic behind the formation of the 3D structure of adult external organs remains largely unknown. In this report, we investigated the metamorphosis of the horn in the Japanese rhinoceros beetle Trypoxylus dichotomus. The horn primordia is essentially a 2D epithelial cell sheet with dense furrows. We experimentally unfolded these furrows using three different methods and found that the furrow pattern solely determines the 3D horn structure, indicating that horn formation in beetles occurs by two distinct processes: formation of the furrows and subsequently unfolding them. We postulate that this developmental simplicity offers an inherent advantage to understanding the principles that guide 3D morphogenesis in insects.

  14. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  15. The impact of newly produced protein and dietary fiber rich fractions of yellow pea (Pisum sativum L.) on the structure and mechanical properties of pasta-like sheets.

    PubMed

    Muneer, Faraz; Johansson, Eva; Hedenqvist, Mikael S; Plivelic, Tomás S; Markedal, Keld Ejdrup; Petersen, Iben Lykke; Sørensen, Jens Christian; Kuktaite, Ramune

    2018-04-01

    Two fractions from pea (Pisum sativum L.), protein isolate (PPI) and dietary fiber (PF), were newly produced by extraction-fractionation method and characterized in terms of particle size distribution and structural morphology using SEM. The newly produced PPI and PF fractions were processed into pasta-like sheets with varying protein to fiber ratios (100/0, 90/10, 80/20, 70/30 and 50/50, respectively) using high temperature compression molding. We studied protein polymerization, molecular structure and protein-fiber interactions, as well as mechanical performance and cooking characteristics of processed PPI-PF blends. Bi-modal particle size distribution and chemical composition of the PPI and PF fractions influenced significantly the physicochemical properties of the pasta-like sheets. Polymerization was most pronounced for the 100 PPI, 90/10 and 80/20 PPI-PF samples as studied by SE-HPLC, and polymerization decreased with addition of the PF fraction. The mechanical properties, as strength and extensibility, were likewise the highest for the 100 PPI and 90/10 PPI-PF blends, while the E-modulus was similar for all the studied blends (around 38 MPa). The extensibility decreased with the increasing amount of PF in the blend. The highest amounts of β-sheets were found in the pasta-like sheets with high amounts of PPI (100, 90 and 80%), by FT-IR. An increase in PF fraction in the blend, resulted into the high amounts of unordered structures as observed by FT-IR, as well as in an increase in the molecular scattering distances observed by SAXS. The water uptake increased and cooking loss decreased with increased proportions of the PF fraction, and the consistency of 10 min cooked pasta-like sheets were alike al dente texture. The new knowledge obtained in this study on the use of extraction-fractionation method to produce novel PPI and PF fractions for developing innovative high nutritious food can be of a great importance. The obtained knowledge on the pea protein and fiber processing behaviour could greatly contribute to a better control of functional properties of various temperature-processed products from yellow pea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-07-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  17. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  18. Effects of Changing Hot Rolling Direction on Microstructure, Texture and Mechanical Properties of Cu-2.7Be Sheets

    NASA Astrophysics Data System (ADS)

    Zhu, Daibo; Liu, Chuming; Yu, Haijun; Han, Tan

    2018-03-01

    A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly < {101} > for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.

  19. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  20. Cause and Prevention of Explosions Involving DC Casting of Aluminum Sheet Ingot

    NASA Astrophysics Data System (ADS)

    Richter, Ray T.; Ekenes, J. Martin

    The casting of aluminum alloy sheet ingot and T-bar presents the potential for some of the most volatile situations that can occur in DC (direct chill) and EMC (Electromagnetic) casting processes. Aluminum Association explosion incident data from over 300 explosions spanning a twenty-year period were reviewed and analyzed looking for common factors and repetitive reasons for explosions. Analysis of explosions occurring during the three stages of sheet ingot casting, `start of cast', `steady state' and `end of cast', were examined and prioritized. Case studies illustrate the need for understanding both technical and non-technical factors contributing to explosions involving molten metal. This paper identifies the major causes of explosions involving DC casting of aluminum alloy sheet ingot and makes recommendations for how to prevent the recurrence of such events and minimize the risk of injury.

Top