Sample records for sheet metal structures

  1. Durability improvements of two-dimensional metal nanoparticle sheets by molecular cross-linked structures between nanoparticles

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru

    2018-03-01

    The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.

  2. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  3. Ternary metal-rich sulfide with a layered structure

    DOEpatents

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  4. First principles study of structural, vibrational and electronic properties of graphene-like MX 2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli; Ni, Jun; Shi, Lin; Shi, Siqi; Tang, Weihua

    2011-05-01

    Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX 2) sheets. We find the lattice parameters and stabilities of the MX 2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS 2 and TaS 2 sheets have comparable energetic stabilities to the synthesized MoS 2 and WS 2 ones. The molybdenum and tungsten dichalcogenide (MoX 2 and WX 2) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX 2 and TaX 2) sheets. However, the NbX 2 and TaX 2 sheets are metals, while the MoX 2 and WX 2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS 2 and WS 2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX 2 sheets have potential applications in nano-electronics and nano-devices.

  5. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  6. Structural assessment of metal foam using combined NDE and FEA

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Young, Philippe G.; Rauser, Richard W.

    2005-05-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a high fidelity finite element analysis is conducted on as fabricated metal foam microstructures, to compare the calculated mechanical properties with the idealized theory. The high fidelity geometric models for the FEA are generated using series of 2D CT scans of the foam structure to reconstruct the 3D metal foam geometry. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile, compressive, and shear mechanical properties are deduced from the FEA model and compared with the theoretical values. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.

  7. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet

    NASA Astrophysics Data System (ADS)

    Cui, Jianxun; Adams, John G. M.; Zhu, Yong

    2018-05-01

    Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.

  8. A combined NDE/FEA approach to evaluate the structural response of a metal foam

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.

    2007-04-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.

  9. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  10. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  11. Structural and Electronic Properties of α2-Graphyne Nanotubes: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2018-02-01

    Another form of carbon-based two-dimensional material in the graphene family, named the α2-graphyne sheet, was predicted very recently. The α2-graphyne sheet was created by doubling each acetylenic linker in an α-graphyne sheet. It exhibited semimetallic Dirac point features similar to graphene and α-graphyne sheets. In the present work, single -walled carbon nanotubes based on an α2-graphyne sheet was introduced. The structural and electronic properties of these nanotubes were studied using density functional theory. It was found that armchair α2-graphyne nanotubes showed metallic behavior, while zigzag α2-graphyne nanotubes were found to have semiconducting or metallic properties depending on tube size. The energy band gap of zigzag α2-graphyne nanotubes decreased with increasing tube diameter. The results indicated that the α2-graphyne sheet and its nanotubes can be proper materials for future nanoelectronics.

  12. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    DOEpatents

    Praeg, Walter F.

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  13. Thermo-electric modular structure and method of making same

    DOEpatents

    Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.

    1974-01-29

    A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)

  14. Development of sheet-metal parabolic-trough reflector panels

    NASA Astrophysics Data System (ADS)

    Biester, A. W.

    1982-06-01

    Efforts to develop accurate, durable, and mass producible sheet metal parabolic trough solar collectors and the associated support for the collectors are described. The design considered is similar to an automobile hood, a two-piece sheet metal structure consisting of a formed steel frame or stiffening panel and a smooth contoured skin. The two pieces may be bonded or welded to form a rigid structure, and a reflective surface applied such as a film, glass mirror, or any of the presently utilized materials. The work encompassed material selection, adhesive selection and testing, tool design and fabrication, prototype panel production, and design and development of torque tube assemblies on which the trough is inclined. Results of adhesive bonding studies are given. It is found that high volume technology can be used to produce accurate and structurally sound reflector panels, and one configuration was selected for fabrication in suitable quantities for performance testing.

  15. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    NASA Astrophysics Data System (ADS)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  16. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  17. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Ping

    2011-01-01

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R s = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowiremore » and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.« less

  18. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, Walter F.

    1997-01-01

    An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.

  19. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    NASA Astrophysics Data System (ADS)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  20. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  1. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  2. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  3. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  4. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, W.F.

    1997-02-11

    An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

  5. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  6. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  7. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  8. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  9. Article and method for making an article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Benjamin Paul; Schick, David Edward; Kottilingam, Srikanth Chandrudu

    An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of depositing a metal alloy powder to form an initial layer including at least one aperture, melting the metal alloy powder with a focused energy source to transform the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder to form a layer including at least one aperture corresponding to the at least one aperture in the initial layer, melting the additional layer of the metal alloy powder with the focused energymore » source to increase the sheet thickness, and repeating the steps of sequentially depositing and melting the additional layers of metal alloy powder until a structure including at least one aperture having a predetermined profile is obtained. The structure is attached to a substrate to make the article.« less

  10. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less

  11. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  12. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  13. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.

    PubMed

    Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald

    2011-12-06

    Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation. © 2011 American Chemical Society

  14. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets

    NASA Astrophysics Data System (ADS)

    Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X. S.; Chan, Siew Hwa; Sun, Qiang

    2012-06-01

    Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], 10.1021/ja108628r, where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO2 capture by considering the adsorptions of H2/CO2 gas mixtures. It is found that ScPc sheet shows a good selectivity for CO2, and the excess uptake capacity of single-component CO2 on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO2 molecules play a key role in the capture.

  15. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  16. Metastable alloy materials produced by solid state reaction of compacted, mechanically deformed mixtures

    DOEpatents

    Atzmon, M.; Johnson, W.L.; Verhoeven, J.D.

    1987-02-03

    Bulk metastable, amorphous or fine crystalline alloy materials are produced by reacting cold-worked, mechanically deformed filamentary precursors such as metal powder mixtures or intercalated metal foils. Cold-working consolidates the metals, increases the interfacial area, lowers the free energy for reaction, and reduces at least one characteristic dimension of the metals. For example, the grains of powder or the sheets of foil are clad in a container to form a disc. The disc is cold-rolled between the nip of rollers to form a flattened disc. The grains are further elongated by further rolling to form a very thin sheet of a lamellar filamentary structure containing filaments having a thickness of less than 0.01 microns. Thus, diffusion distance and time for reaction are substantially reduced when the flattened foil is thermally treated in oven to form a composite sheet containing metastable material dispersed in unreacted polycrystalline material. 4 figs.

  17. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  18. Preparation of graphite intercalation compounds containing oligo and polyethers

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5nr08226a

  19. Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal

    NASA Astrophysics Data System (ADS)

    Liu, Jianguang; Wang, Zhongjin; Liu, Yan

    2007-05-01

    Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.

  20. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  1. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  2. Specifications for Supplementary Classroom Units, Stressed Skin Panel.

    ERIC Educational Resources Information Center

    Waring, Robert B.; And Others

    Complete outline specifications are given for the construction of supplementary classroom units using stressed skin panels. Sections included are--(1) concrete and related work, (2) masonry, (3) structural and miscellaneous metal, (4) curtain walls and metal windows, (5) carpentry and related work, (6) roofing, sheet metal, and related work, (7)…

  3. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  4. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less

  5. Bipolar battery with array of sealed cells

    DOEpatents

    Kaun, Thomas D.; Smaga, John A.

    1987-01-01

    A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.

  6. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOEpatents

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  7. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    NASA Astrophysics Data System (ADS)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  8. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  9. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  10. Experimental Study on Tensile Properties of a Novel Porous Metal Fiber/Powder Sintered Composite Sheet

    PubMed Central

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-01-01

    A novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is developed by sintering a mixture of a porous metal fiber sintered sheet (PMFSS) and copper powders with particles of a spherical shape. The characteristics of the PMFPSCS including its microstructure, sintering density and porosity are investigated. A uniaxial tensile test is carried out to study the tensile behaviors of the PMFPSCS. The deformation and failure mechanisms of the PMFSCS are discussed. Experimental results show that the PMFPSCS successively experiences an elastic stage, hardening stage, and fracture stage under tension. The tensile strength of the PMFPSCS is determined by a reticulated skeleton of fibers and reinforcement of copper powders. With the porosity of the PMFSS increasing, the tensile strength of the PMFPSCS decreases, whereas the reinforcement of copper powders increases. At the elastic stage, the structural elastic deformation is dominant, and at the hardening stage, the plastic deformation is composed of the structural deformation and the copper fibers’ plastic deformation. The fracture of the PMFPSCS is mainly caused by the breaking of sintering joints. PMID:28773833

  11. Quiet Supersonic Platform (QSP) Materials and Structures Focus Group Meeting, 26 June 2001

    DTIC Science & Technology

    2001-07-01

    variety of size scales. Woven metal microtubes offer efficient heat -transfer capability. An inexpensive approach to creating lattice structures uses...because of their light weight and as heat exchangers , by using a metal with high thermal conductivity to draw heat into the lattice, where it can...tubes woven into metal sheets, which are then stacked, sprayed with a transient liquid-phase sintering/bonding agent, and heated . The result is a

  12. A theoretical study on metal atom-modified BC3 sheets for effects of gas molecule adsorptions

    NASA Astrophysics Data System (ADS)

    Tang, Yanan; Cui, Xiao; Chen, Weiguang; Zhu, Dalei; Chai, Huaduo; Dai, Xianqi

    2018-06-01

    Based on the first-principle calculations, the chemical reactivity of transition metal (Fe, Co, Ni, and Cu) dopants within BC3 sheets toward toxic gas molecules (CO, NO, NO2, SO2, and HCN) is comparably investigated. First, the adsorbed gases on metal-modified BC3 sheets exhibit the different stability. Compared with other gases, the metal-modified BC3 substrates exhibit the stronger affinity toward the NO and NO2 molecules (> 1.0 eV), while the adsorbed HCN has the smallest adsorption energy, illustrating that the NO and NO2 as specific toxic gas molecule can be easily detected. Second, the adsorbed gas molecules can effectively regulate the electronic structure and magnetic property of BC3 systems. Fox example, the strong adsorption of NO and NO2 on Fe-modified BC3 systems exhibits non-magnetic property, yet these gases on Co modified BC3 systems exhibit the magnetic character. In addition, the adsorbed NO and SO2 can induce and turn the degree of magnetic moments of Ni- and Cu-modified BC3 systems. Therefore, the different kinds of adsorbed gases on metal-modified BC3 sheets can be distinguished through investigating the changed magnetic moments of system, which would provide important information for designing the functional BC3-based materials.

  13. Metastable alloy materials produced by solid state reaction of compacted, mechanically deformed mixtures

    DOEpatents

    Atzmon, Michael; Johnson, William L.; Verhoeven, John D.

    1987-01-01

    Bulk metastable, amorphous or fine crystalline alloy materials are produced by reacting cold-worked, mechanically deformed filamentary precursors such as metal powder mixtures or intercalated metal foils. Cold-working consolidates the metals, increases the interfacial area, lowers the free energy for reaction, and reduces at least one characteristic dimension of the metals. For example, the grains (13) of powder or the sheets of foil are clad in a container (14) to form a disc (10). The disc (10) is cold-rolled between the nip (16) of rollers (18,20) to form a flattened disc (22). The grains (13) are further elongated by further rolling to form a very thin sheet (26) of a lamellar filamentary structure (FIG. 4) containing filaments having a thickness of less than 0.01 microns. Thus, diffusion distance and time for reaction are substantially reduced when the flattened foil (28) is thermally treated in oven (32) to form a composite sheet (33) containing metastable material (34) dispersed in unreacted polycrystalline material (36).

  14. Method of manufacturing a heat pipe wick with structural enhancement

    DOEpatents

    Andraka, Charles E [Albuquerque, NM; Adkins, Douglas R [Albuquerque, NM; Moreno, James B [Albuquerque, NM; Rawlinson, K Scott [Albuquerque, NM; Showalter, Steven K [Albuquerque, NM; Moss, Timothy A [Albuquerque, NM

    2006-10-24

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  15. Heat pipe wick with structural enhancement

    DOEpatents

    Andraka, Charles E.; Adkins, Douglas R.; Moreno, James B.; Rawlinson, K. Scott; Showalter, Steven K.; Moss, Timothy A.

    2003-11-18

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  16. Metal Foam Analysis: Improving Sandwich Structure Technology for Engine Fan and Propeller Blades

    NASA Technical Reports Server (NTRS)

    Fedor, Jessica L.

    2004-01-01

    The Life Prediction Branch of the NASA Glenn Research Center is searching for ways to construct aircraft and rotorcraft engine fan and propeller blades that are lighter and less costly. One possible design is to create a sandwich structure composed of two metal faces sheets and a metal foam core. The face sheets would carry the bending loads and the foam core would have to resist the transverse shear loads. Metal foam is ideal because of its low density and energy absorption capabilities, making the structure lighter, yet still stiff. The material chosen for the face sheets and core was 17-4PH stainless steel, which is easy to make and has appealing mechanical properties. This material can be made inexpensively compared to titanium and polymer matrix composites, the two current fan blade alternatives. Initial tests were performed on design models, including vibration and stress analysis. These tests revealed that the design is competitive with existing designs; however, some problems were apparent that must be addressed before it can be implemented in new technology. The foam did not hold up as well as expected under stress. This could be due to a number of issues, but was most likely a result of a large number of pores within the steel that weakened the structure. The brazing between the face sheets and the foam was also identified as a concern. The braze did not hold up well under shear stress causing the foam to break away from the face sheets. My role in this project was to analyze different options for improving the design. I primarily spent my time examining various foam samples, created with different sintering conditions, to see which exhibited the most favorable characteristics for our purpose. Methods of analysis that I employed included examining strut integrity under a microscope, counting the number of cells per inch, measuring the density, testing the microhardness, and testing the strength under compression. Shear testing will also be done to examine the strengths of different types of brazes.

  17. Testing single point incremental forming moulds for rotomoulding operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2017-10-01

    Low pressure polymer processes as thermoforming or rotational moulding use much simpler moulds than high pressure processes like injection. However, despite the low forces involved in the process, moulds manufacturing for these applications is still a very material, energy and time consuming operation. Particularly in rotational moulding there is no standard for the mould manufacture and very different techniques are applicable. The goal of this research is to develop and validate a method for manufacturing plastically formed sheet metal moulds by single point incremental forming (SPIF) for rotomoulding and rotocasting operations. A Stewart platform based SPIF machine allow the forming of thick metal sheets, granting the required structural stiffness for the mould surface, and keeping a short manufacture lead time and low thermal inertia. The experimental work involves the proposal of a hollow part, design and fabrication of a sheet metal mould using dieless incremental forming techniques and testing its operation in the production of prototype parts.

  18. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  19. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  20. Introduction to Sheet Metal. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in sheet metal work to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: sheet metal materials, sheet metal tools, and applied skills. Each unit contains some…

  1. Architecture of baked breads depicted by a magnetic resonance imaging.

    PubMed

    Ishida, N; Takano, H; Naito, S; Isobe, S; Uemura, K; Haishi, T; Kose, K; Koizumi, M; Kano, H

    2001-07-01

    The architecture of baked breads made of fresh dough and frozen dough was depicted by magnetic resonance imaging (MRI). Pieces of bread (16 mm cubic cakes) were soaked in organic solvents containing various concentrations of heavy metals (Cu(2+), Co(2+) and Fe(3+)) and images of the grain structure of the breads were obtained. Of the organic solvents tested, acetone was preferable because of its single peak that prevents chemical shift effects on images, the retention of the bread structure, and the solubility of heavy metals. The heavy metals, especially Fe(3+), shortened the overly long relaxation times of acetone to practical lengths for imaging and stained the materials to provide high contrasts. The images obtained in acetone with 8 mM Fe(3+) were suitable for analyzing crumb grain structures. The bread of fresh dough showed a uniform distribution of pores of various sizes made of thin gluten sheets, whereas the pores in the bread of frozen dough were less, prominently large, non-uniformly distributed, and made of thick gluten sheets.

  2. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials

    PubMed Central

    Tan, Chaoliang; Zhang, Hua

    2015-01-01

    Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising route towards high-yield and mass production of such nanomaterials. These nanomaterials are now finding increasing applications in a wide range of areas including catalysis, energy production and storage, sensor and nanotherapy, to name but a few. PMID:26303763

  3. Aircraft Sheet Metal Practices; Sheet Metal Work 2: 9855.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. Requiring 135 clock hours, the basic course covers orientation and techniques in aircraft sheet metal. Emphasis will be placed on the proper use of tools and machines, safety, fabrication methods, aircraft materials, basic layout, and special…

  4. How To Cut a Round and a Square Inside Opening in a Piece of Sheet Metal Using Aviation Snips. Sheet Metal 1-001. Lesson Plan No. 2.

    ERIC Educational Resources Information Center

    Shibayama, Guy T.

    As part of a 90-hour community college course in sheet metal working, this 50-minute lesson was designed to enable a student to: (1) identify and use right and left hand aviation snips; (2) cut out a 6-inch round opening in a piece of sheet metal using aviation snips; and (3) cut out a 6-by-6 inch square opening in a piece of sheet metal using…

  5. Vibration Characteristics Determined for Stainless Steel Sandwich Panels With a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.

    2004-01-01

    The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful operating range. Operating a blade at or near the resonance frequencies leads to high-cycle fatigue, which ultimately limits the blade's durability and life. So the aim of this study is to determine the variation of the resonance frequencies for an idealized sandwich blade as a function of its face-sheet thickness, core thickness, and foam density. The finite element method is used to determine the natural frequencies for an idealized rectangular sandwich blade. The proven Lanczos method (ref. 7) is used in the study to extract the natural frequency.

  6. Composite fiber structures for catalysts and electrodes

    NASA Technical Reports Server (NTRS)

    Marrion, Christopher J.; Cahela, Donald R.; Ahn, Soonho; Tatarchuk, Bruce J.

    1993-01-01

    We have recently envisioned a process wherein fibers of various metals in the 0.5 to 15 micron diameter range are slurried in concert with cellulose fibers and various other materials in the form of particulates and/or fibers. The resulting slurry is cast via a wet-lay process into a sheet and dried to produce a free-standing sheet of 'composite paper.' When the 'preform' sheet is sintered in hydrogen, the bulk of the cellulose is removed with the secondary fibers and/or particulates being entrapped by the sinter-locked network provided by the metal fibers. The resulting material is unique, in that it allows the intimate contacting and combination of heretofore mutually exclusive materials and properties. Moreover, due to the ease of paper manufacture and processing, the resulting materials are relatively inexpensive and can be fabricated into a wide range of three-dimensional structures. Also, because cellulose is both a binder and a pore-former, structures combining high levels of active surface area and high void volume (i.e., low pressure drop) can be prepared as freestanding flow through monoliths.

  7. Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek, Anupam; Daehn, Glenn S; Taber, Geoffrey A

    2015-05-05

    A method for forming a piece of a sheet metal is performed by positioning a consumable body, made of metal, proximate to the piece of the sheet metal. The consumable body is rapidly vaporized, and the gas pressure generated thereby is directed into the piece of the sheet metal. This results in acceleration of the piece of sheet metal, and it is collided into a stationary body at a velocity, generally in excess of 200 m/s. Depending upon the type of stationary body, the piece of sheet metal is deformed into a predetermined shape or is welded onto the stationarymore » body. The vaporization is accomplished by passing a high current of electricity into the consumable body. The effect of the vaporized metal may be augmented by additional components in the consumable body.« less

  8. Finite Element Structural Analysis of a Low Energy Micro Sheet Forming Machine Concept Design

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Ahmad, A. F.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.

    2017-05-01

    It is forecasted that with the miniaturization of materials being processed, energy consumption will also be ‘miniaturized’ proportionally. The aim of this researchis to design a low energy micro-sheet-forming machine for the application of thin sheet metal. A fewconcept designsof machine structure were produced. With the help of FE software, the structure is then subjected to a forming force to observe deflection in the structure for the selection of the best and simplest design. Comparison studies between mild steel and aluminium alloys 6061 were made with a view to examine the most suitable material to be used. Based on the analysis, allowable maximum tolerance was set at 2.5µm and it was found that aluminium alloy 6061 suffice to be used.

  9. Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj, E-mail: niraj.ceeri@gmail.com; Narayan Pal, Udit; Prajesh, Rahul

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance inmore » a drift space region maintaining sheet structure without assistance of any external magnetic field.« less

  10. Nickel induced re-structuring of 2D graphene to 1D graphene nanotubes: Role of radical hydrogen in catalyst assisted growth

    NASA Astrophysics Data System (ADS)

    Krishna, Rahul; Titus, Elby

    2017-12-01

    Here, we demonstrate for the first time the structural evolution of 1D graphene nanotubes (GNTs) by the cutting of two dimensional (2D) graphene oxide (GO) sheet in reducing environment at ambient conditions in presence of Ni metal in acidic environment. We observed that in-situ generated radical hydrogen (Hrad) responsible for cutting of graphene sheets and re-structuring of 2D sheet structure to one 1D nanotubes. Structural evolution of GNTs was confirmed by using of transmission electron microscopy (TEM) technique. The current vs. voltage (I-V) characteristics of GNTs displayed room temperature (RT) negative differential resistance (NDR) effect which is typical in nanowires, suggested the applicability of nanomaterial for various kind of electronics applications such as memory devices and transistors fabrication.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Performance Prototype Trough (PPT) Concentrating Collector consists of four 80-foot modules in a 320-foot row. The collector was analyzed, including cost estimates and manufacturing processes to produce collectors in volumes from 100 to 100,000 modules per year. The four different reflector concepts considered were the sandwich reflector structure, sheet metal reflector structure, molded reflector structure, and glass laminate structure. The sheet metal and glass laminate structures are emphasized with their related structure concepts. A preliminary manufacturing plan is offered that includes: documentation of the manufacturing process with production flow diagrams; labor and material costs at various production levels; machinerymore » and equipment requirements including preliminary design specifications; and capital investment costs for a new plant. Of five reflector designs considered, the two judged best and considered at length are thin annealed glass and steel laminate on steel frame panel and thermally sagged glass. Also discussed are market considerations, costing and selling price estimates, design cost analysis and make/buy analysis. (LEW)« less

  12. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebecker, Matthew G.; Sparks, Donald L.

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates usingmore » WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.« less

  13. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  14. Zinc-binding structure of a catalytic amyloid from solid-state NMR.

    PubMed

    Lee, Myungwoon; Wang, Tuo; Makhlynets, Olga V; Wu, Yibing; Polizzi, Nicholas F; Wu, Haifan; Gosavi, Pallavi M; Stöhr, Jan; Korendovych, Ivan V; DeGrado, William F; Hong, Mei

    2017-06-13

    Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive backbones for advanced materials. When β-strands of an amyloid are arranged parallel and in register, side chains from the same position of each chain align, facilitating metal chelation when the residues are good ligands such as histidine. High-resolution structures of metalloamyloids are needed to understand the molecular bases of metal-amyloid interactions. Here we combine solid-state NMR and structural bioinformatics to determine the structure of a zinc-bound metalloamyloid that catalyzes ester hydrolysis. The peptide forms amphiphilic parallel β-sheets that assemble into stacked bilayers with alternating hydrophobic and polar interfaces. The hydrophobic interface is stabilized by apolar side chains from adjacent sheets, whereas the hydrated polar interface houses the Zn 2+ -binding histidines with binding geometries unusual in proteins. Each Zn 2+ has two bis-coordinated histidine ligands, which bridge adjacent strands to form an infinite metal-ligand chain along the fibril axis. A third histidine completes the protein ligand environment, leaving a free site on the Zn 2+ for water activation. This structure defines a class of materials, which we call metal-peptide frameworks. The structure reveals a delicate interplay through which metal ions stabilize the amyloid structure, which in turn shapes the ligand geometry and catalytic reactivity of Zn 2 .

  15. Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study.

    PubMed

    Ding, Yi; Wang, Yanli

    2016-08-17

    Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics.

  16. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon.

    PubMed

    Bandyopadhyay, Arka; Nandy, Atanu; Chakrabarti, Arunava; Jana, Debnarayan

    2017-08-16

    Tetragonal graphene (T-graphene) is a theoretically proposed dynamically stable, metallic allotrope of graphene. In this theoretical investigation, a tight binding (TB) model is used to unravel the metal to semiconductor transition of this 2D sheet under the influence of an external magnetic flux. In addition, the environment under which the sheet exposes an appreciable direct band gap of 1.41 ± 0.01 eV is examined. Similarly, the electronic band structure of the narrowest armchair T-graphene nanoribbon (NATGNR) also gets modified with different combinations of magnetic fluxes through the elementary rings. The band tuning parameters are critically identified for both systems. It is observed that the induced band gaps vary remarkably with the tuning parameters. We have also introduced an exact analytical approach to address the band structure of the NATGNR in the absence of any magnetic flux. Finally, the optical properties of the sheet and NATGNR are also critically analysed for both parallel and perpendicular polarizations with the help of density functional theory (DFT). Our study predicts that this material and its nanoribbons can be used in optoelectronic devices.

  17. Castable plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  18. Metal binding characterization and conformational studies using Raman microscopy of resin-bound poly(aspartic acid).

    PubMed

    Stair, Jacqueline L; Holcombe, James A

    2007-03-01

    The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.

  19. Sacrificial plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2002-01-01

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  20. Sacrificial Plastic Mold With Electroplatable Base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2005-08-16

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  1. Strippable grid facilitates removal of grid-surfaced conical workpiece from die

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Female die facilitates the removal of a sheet metal structure from a die used for explosive forming of the metal. The female die consists of a smooth conical frustum made of fiber glass with a cured epoxy-resin surface on which a molded grid pattern made of a polyurethane resin is overlaid.

  2. 27 CFR 555.207 - Construction of type 1 magazines.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...

  3. 27 CFR 555.207 - Construction of type 1 magazines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...

  4. 27 CFR 555.207 - Construction of type 1 magazines.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...

  5. Vibration analysis of resistance spot welding joint for dissimilar plate structure (mild steel 1010 and stainless steel 304)

    NASA Astrophysics Data System (ADS)

    Sani, M. S. M.; Nazri, N. A.; Alawi, D. A. J.

    2017-09-01

    Resistance spot welding (RSW) is a proficient joining method commonly used for sheet metal joining and become one of the oldest spot welding processes use in industry especially in the automotive. RSW involves the application of heat and pressure without neglecting time taken when joining two or more metal sheets at a localized area which is claimed as the most efficient welding process in metal fabrication. The purpose of this project is to perform model updating of RSW plate structure between mild steel 1010 and stainless steel 304. In order to do the updating, normal mode finite element analysis (FEA) and experimental modal analysis (EMA) have been carried out. Result shows that the discrepancies of natural frequency between FEA and EMA are below than 10 %. Sensitivity model updating is evaluated in order to make sure which parameters are influences in this structural dynamic modification. Young’s modulus and density both materials are indicate significant parameters to do model updating. As a conclusion, after perform model updating, total average error of dissimilar RSW plate is improved significantly.

  6. Method of bonding

    DOEpatents

    Saller, deceased, Henry A.; Hodge, Edwin S.; Paprocki, Stanley J.; Dayton, Russell W.

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  7. RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT SHOP WAS LOCATED IN THE CLOSEST CORNER OF THE BUILDING. THE SHEET METAL SHOP WAS LOCATED IN THE CORNER OF THE BUILDING ON THE RIGHT. THE RIGGERS LOFT WAS LOCATED IN THE PORTION OF THE BUILDING OUT OF VIEW TO THE LEFT - Rosie the Riveter National Historical Park, Riggers Loft/Paint Shop/Sheet Metal Shop, 1322 Canal Boulevard, Richmond, Contra Costa County, CA

  8. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  9. Secondary Structure Switch

    ERIC Educational Resources Information Center

    King, Angela G.

    2006-01-01

    Neurogenerative diseases like Alzheimer's disease and Parkinson's disease involve a transformation between two peptide and protein structures of alpha-helices and beta-sheets, where the peptide backbone can also participate in metal ion binding in addition to histidine residues. However, the complete absence of change in conformation of Coiled…

  10. Thin, porous metal sheets and methods for making the same

    DOEpatents

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.

  11. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  12. Low-Temperature Forming of Beta Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Kaneko, R. S.; Woods, C. A.

    1983-01-01

    Low cost methods for titanium structural fabrication using advanced cold-formable beta alloys were investigated for application in a Mach 2.7 supersonic cruise vehicle. This work focuses on improving processing and structural efficiencies as compared with standard hot formed and riveted construction of alpha-beta alloy sheet structure. Mechanical property data and manufacturing parameters were developed for cold forming, brazing, welding, and processing Ti-15V-3Cr-3Sn-3Al sheet, and Ti-3Al-8V-6Cr-4Zr on a more limited basis. Cost and structural benefits were assessed through the fabrication and evaluation of large structural panels. The feasibility of increasing structural efficiency of beta titanium structure by selective reinforcement with metal matrix composite was also explored.

  13. Testing single point incremental forming molds for thermoforming operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  14. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  15. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  16. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  17. Effects of forming history on crash simulation of a vehicle

    NASA Astrophysics Data System (ADS)

    Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.

    2016-08-01

    The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.

  18. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  19. Reinforcement for Stretch Formed Sheet Metal

    NASA Technical Reports Server (NTRS)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  20. Explosive force of primacord grid forms large sheet metal parts

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.

  1. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  2. Metal ion influence on eumelanin fluorescence and structure.

    PubMed

    Sutter, Jens-Uwe; Birch, David J S

    2014-04-10

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  3. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  4. Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors

    NASA Technical Reports Server (NTRS)

    Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)

    1974-01-01

    The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.

  5. Flexible Ceramic-Metal Insulation Composite and Method of Making

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)

    1998-01-01

    A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.

  6. Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.

    PubMed

    Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun

    2003-08-01

    The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.

  7. Precision Sheet Metal. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in precision sheet metal. Included among the topics addressed in the course are the following: employment opportunities in metalworking, measurement and layout, orthographic projection, precision sheet metal drafting, simple layout, hand tools,…

  8. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    PubMed

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  9. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization

    PubMed Central

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499

  10. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  11. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    NASA Astrophysics Data System (ADS)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  12. Laser-assisted micro sheet forming

    NASA Astrophysics Data System (ADS)

    Holtkamp, Jens; Gillner, Arnold

    2008-01-01

    The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures

  13. Overview of Boiler House and Sheet Metal and Electrical Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Boiler House and Sheet Metal and Electrical Shops Building (center - with single large chimney), note the monitor on the original section of the Boiler House Building, view facing north - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  14. Sheet Metal Contract. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Kirkpatrick, Thomas; Sappe', Hoyt

    This report provides results of Phase I of a project that researched the occupational area of sheet metal, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train sheet metal workers. Section 1 contains general information: purpose of Phase I; description…

  15. Numerical analysis of thermal drilling technique on titanium sheet metal

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Thermal drilling is a technique used in drilling of sheet metal for various applications. It involves rotating conical tool with high speed in order to drill the sheet metal and formed a hole with bush below the surface of sheet metal. This article investigates the finite element analysis of thermal drilling on Ti6Al4Valloy sheet metal. This analysis was carried out by means of DEFORM-3D simulation software to simulate the performance characteristics of thermal drilling technique. Due to the contribution of high temperature deformation in this technique, the output performances which are difficult to measure by the experimental approach, can be successfully achieved by finite element method. Therefore, the modeling and simulation of thermal drilling is an essential tool to predict the strain rate, stress distribution and temperature of the workpiece.

  16. Electrical-assisted double side incremental forming and processes thereof

    DOEpatents

    Roth, John; Cao, Jian

    2014-06-03

    A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.

  17. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  18. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  19. Achieving Small Structures in Thin NiTi Sheets for Medical Applications with Water Jet and Micro Machining: A Comparison

    NASA Astrophysics Data System (ADS)

    Frotscher, M.; Kahleyss, F.; Simon, T.; Biermann, D.; Eggeler, G.

    2011-07-01

    NiTi shape memory alloys (SMA) are used for a variety of applications including medical implants and tools as well as actuators, making use of their unique properties. However, due to the hardness and strength, in combination with the high elasticity of the material, the machining of components can be challenging. The most common machining techniques used today are laser cutting and electrical discharge machining (EDM). In this study, we report on the machining of small structures into binary NiTi sheets, applying alternative processing methods being well-established for other metallic materials. Our results indicate that water jet machining and micro milling can be used to machine delicate structures, even in very thin NiTi sheets. Further work is required to optimize the cut quality and the machining speed in order to increase the cost-effectiveness and to make both methods more competitive.

  20. Heat treatment effect on the electronic and magnetic structures of nanographene sheets investigated through electron spectroscopy and conductance measurements.

    PubMed

    Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu

    2014-04-28

    The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite.

  1. Method of laminating structural members

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A laminate is obtained by providing a lightweight core material, such as a honeycombed plastic or metal, within the cavity defined by an annular mold cavity frame. Face sheets, which are to be bonded to the core material, are provided on opposite sides of the frame and extend over the frame, thus sealing the core material in the cavity. An adhesive is provided between the core material and the face sheets and the combined thickness of the core material and adhesive is a close fit within the opposed face sheets. A gas tight seal, such as an O-ring gasket, is provided between the frame and the face sheet members to form a gas tight cavity between the face sheet members and the frame. External heat and pressure are used to bond the face sheets to the core material. Gas pressure is introduced into the sealed cavity to minimize out-gasing of the adhesive.

  2. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther

    2017-12-01

    Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.

  3. TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid.

    PubMed

    Ribao, Paula; Rivero, Maria J; Ortiz, Inmaculada

    2017-05-01

    Noble metals have been used to improve the photocatalytic activity of TiO 2 . Noble metal nanoparticles prevent charge recombination, facilitating electron transport due to the equilibration of the Fermi levels. Furthermore, noble metal nanoparticles show an absorption band in the visible region due to a high localized surface plasmon resonance (LSPR) effect, which contributes to additional electron movements. Moreover, systems based on graphene, titanium dioxide, and noble metals have been used, considering that graphene sheets can carry charges, thereby reducing electron-hole recombination, and can be used as substrates of atomic thickness. In this work, TiO 2 -based nanocomposites were prepared by blending TiO 2 with noble metals (Pt and Ag) and/or graphene oxide (GO). The nanocomposites were mainly characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), Raman spectroscopy, and photocurrent analysis. Here, the photocatalytic performance of the composites was analyzed via oxidizing dichloroacetic acid (DCA) model solutions. The influence of the noble metal load on the composite and the ability of the graphene sheets to improve the photocatalytic activity were studied, and the composites doped with different noble metals were compared. The results indicated that the platinum structures show the best photocatalytic degradation, and, although the presence of graphene oxide in the composites is supposed to enhance their photocatalytic performance, graphene oxide does not always improve the photocatalytic process. Graphical abstract It is a schematic diagram. Where NM is Noble Metal and LSPR means Localized Surface Plasmon Resonance.

  4. Observed use of voluntary controls to reduce physical exposures among sheet metal workers of the mechanical trade

    PubMed Central

    Dale, Ann Marie; Miller, Kim; Gardner, Bethany T.; Hwang, Ching-Ting; Evanoff, Bradley; Welch, Laura

    2015-01-01

    Introduction Little is known about the transfer into the workplace of interventions designed to reduce the physical demands of sheet metal workers. Methods We reviewed videos from a case series of 15 sheet metal worksite assessments performed in 2007–2009 to score postures and physical loads, and to observe the use of recommended interventions to reduce physical exposures in sheet metal activities made by a NIOSH stakeholder meeting in 2002. Results Workers showed consistent use of material handling devices, but we observed few uses of recommended interventions to reduce exposures during overhead work. Workers spent large proportions of time in awkward shoulder elevation and low back rotation postures. Conclusions In addition to the development of new technologies and system designs, increased adoption of existing tools and practices could reduce time spent in awkward postures and other risks for musculoskeletal disorders in sheet metal work. PMID:26360196

  5. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles describe preparation of clean iron sheet for corrosion experiments, models of crystalline structures using glass marbles, photographic production of diffraction grids for producing analogies of X-ray diffraction patterns, and a simple method of determining a reactivity series for the common metals. (AL)

  7. Automotive Body Sheet Metal Maintenance I; Automotive Body Repair and Refinishing 1: 9033.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The automotive body sheet metal maintenance course is an exploratory course in the use of all sheet metal working and equipment common to this trade area. Included are techniques of diagnosis of damage and repair. Emphasized is the proper use of tools and fabrication methods used in automotive body maintenance and repair. This nine week course…

  8. 48 CFR 53.301-1427 - Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form). 53.301-1427 Section 53.301-1427... Illustrations of Forms 53.301-1427 Standard Form 1427, Inventory Schedule A—Construction Sheet (Metals in Mill...

  9. Synthesis of Metal Phthalocyanine Sheet Polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1986-01-01

    New method for synthesizing metal phthalocyanine tetracarboxylic acids (MPTCA's) yields high purity end product. In addition, high-purity metal phthalocyanine sheet polymers synthesized from compounds. Monomer formed into sheet polymer by heating. Units of polymer linked in manner similar to phenyl-group linkages in biphenyl: Conjugation extends throughout macromolecule, thereby increasing delocalization of TT-electrons. Increases conductivity and thermal stability of polymer.

  10. 45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE USED TO CUT SHEET METAL USED IN WINDMILLS AND WATER TANKS. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  11. Aircraft Sheet Metal General Repairs; Sheet Metal Work 3: 9857.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The outline will serve as a guide to the high school student interested in the field of sheet metal work. Intended for the 12th grade level, the course is organized into three instructional blocks: (1) general repairs, (2) line maintenance, (3) brazing and soldering, followed by a posttest. The advanced course is 135 hours in length and offers…

  12. Experimental formability analysis of bondal sandwich sheet

    NASA Astrophysics Data System (ADS)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  13. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  14. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    NASA Astrophysics Data System (ADS)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  15. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.

  16. Adsorbing H₂S onto a single graphene sheet: A possible gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis; Auluck, S.

    2014-09-14

    The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causesmore » to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.« less

  17. Vertical pillar-superlattice array and graphene hybrid light emitting diodes.

    PubMed

    Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il

    2010-08-11

    We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.

  18. Rapid induction bonding of composites, plastics, and metals

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.

    1991-01-01

    The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.

  19. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  20. Hydrothermal Synthesis and Characterization of Ni-Al Montmorillonite-Like Phyllosilicates

    PubMed Central

    Reinholdt, Marc X.; Brendlé, Jocelyne; Tuilier, Marie-Hélène; Kaliaguine, Serge; Ambroise, Emmanuelle

    2013-01-01

    This work describes the first hydrothermal synthesis in fluoride medium of Ni-Al montmorillonite-like phyllosilicates, in which the only metallic elements in the octahedral sheet are Ni and Al. X-ray diffraction , chemical analysis, thermogravimetric and differential thermal analysis, scanning electron microscopy and transmission electron microscopy confirm that the synthesized samples are montmorillonite-like phyllosilicates having the expected chemical composition. The specific surface areas of the samples are relatively large (>100 m2 g−1) compared to naturally occurring montmorillonites. 29Si and 27Al nuclear magnetic resonance (NMR) indicate substitutions of Al for Si in the tetrahedral sheet. 19F NMR and Ni K-edge extended X-ray absorption fine structure (EXAFS) local probes highlight a clustering of the metal elements and of the vacancies in the octahedral sheet of the samples. These Ni-Al phyllosilicates exhibit a higher local order than in previously synthesized Zn-Al phyllosilicates. Unlike natural montmorillonites, where the distribution of transition metal cations ensures a charge equilibrium allowing a stability of the framework, synthetic montmorillonites entail clustering and instability of the lattice when the content of divalent element in the octahedral sheet exceeds ca. 20%. Synthesis of Ni-Al montmorillonite-like phyllosilicates, was successfully achieved for the first time. These new synthetic materials may find potential applications as catalysts or as materials with magnetic, optical or staining properties. PMID:28348321

  1. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  2. Method and apparatus for determining weldability of thin sheet metal

    DOEpatents

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  3. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  4. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  5. Apparatus for electrical-assisted incremental forming and process thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, John; Cao, Jian

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less

  6. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  7. An evaluation of GTAW-P versus GTA welding of alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Kurgan, C.; Malone, T. W.

    1991-01-01

    Mechanical properties were evaluated to determine statistically whether the pulsed current gas tungsten arc welding (GTAW-P) process produces welds in alloy 718 with room temperature structural performance equivalent to current Space Shuttle Main Engine (SSME) welds manufactured by the constant current GTAW-P process. Evaluations were conducted on two base metal lots, two filler metal lots, two heat input levels, and two welding processes. The material form was 0.125-inch (3.175-mm) alloy 718 sheet. Prior to welding, sheets were treated to either the ST or STA-1 condition. After welding, panels were left as welded or heat treated to the STA-1 condition, and weld beads were left intact or machined flush. Statistical analyses were performed on yield strength, ultimate tensile strength (UTS), and high cycle fatigue (HCF) properties for all the post welded material conditions. Analyses of variance were performed on the data to determine if there were any significant effects on UTS or HCF life due to variations in base metal, filler metal, heat input level, or welding process. Statistical analyses showed that the GTAW-P process does produce welds with room temperature structural performance equivalent to current SSME welds manufactured by the GTAW process, regardless of prior material condition or post welding condition.

  8. Fact Sheets: Final Rules to Reduce Toxic Air Pollutants from Surface Coating of Metal Cans

    EPA Pesticide Factsheets

    This page contains the August 2003 final rule fact sheet and the December 2005 final rule fact sheet that contain information on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Cans.

  9. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    NASA Astrophysics Data System (ADS)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  10. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Astrophysics Data System (ADS)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  11. A MoO2 sheet as a promising electrode material: ultrafast Li-diffusion and astonishing Li-storage capacity

    NASA Astrophysics Data System (ADS)

    Zhou, Yungang; Geng, Cheng

    2017-03-01

    The potential of MoO2 crystal as an electrode material is reported, and nanostructural MoO2 systems, including nanoparticles, nanospheres, nanobelts and nanowires, were synthesized and proved to be advanced electrode materials. A two-dimensional (2D) geometric structure represents an extreme of surface-to-volume ratio, and thus is more suitable as an electrode material in general. Stimulated by the recent fabrication of 2D MoO2, we adopted an ab initio molecular dynamics simulation and density functional theory calculation to study the stability and electrochemical properties of a MoO2 sheet. Identified by a phonon dispersion curve and potential energy curve calculations, the MoO2 sheet proved to be dynamically and thermally stable. After lithiation, similar to most promising 2D structures, we found that a Li atom can strongly adsorb on a MoO2 sheet, and the lithiated MoO2 sheet presented excellent metallic properties. Note that, compared with most promising 2D structures, we unexpectedly revealed that the diffusion barrier of the Li atom on the MoO2 sheet was much lower and the storage capacity of the MoO2 sheet was much larger. The calculated energy barrier for the diffusion of Li on the MoO2 sheet was only 75 meV, and, due to multilayer adsorption, the theoretical capacity of the MoO2 sheet can reach up to 2513 mA h g-1. Benefiting from general properties, such as strong Li-binding and excellent conductivity, and unique phenomena, such as ultrafast diffusion capacity and astonishing storage capacity, we highlight a new promising electrode material for the Li-ion battery.

  12. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  13. STRUCTURE AND HIGH-FIELD PERFORMANCE OF JELLY ROLL PROCESSED Nb{sub 3}Sn WIRES USING Sn-Ta AND Sn-Ti BASED ALLOY SHEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, K.; Tsuyuki, T.; Hayashi, Y.

    Sn-Ta based alloy buttons of different compositions were prepared by the melt diffusion process among constituent metal powders, and then pressed into plates. Meanwhile Sn-Ti based alloy plates were sliced from the melt and cast ingot. Resulting Sn-based alloy plates were rolled into thin sheets. The Sn-based alloy sheet was laminated with a Nb sheet, and wound into a Jelly Roll (JR) composite. The composite was encased in a sheath, and fabricated into a thin wire followed by the heat treatment. The application of hydrostatic extrusion is useful at the initial stage of the fabrication. The JR wires using Sn-Tamore » and Sn-Ti based alloy sheets show a non-Cu J{sub c} of {approx}250 A/mm{sup 2} and {approx}150 A/mm{sup 2} at 20 T and 22 T, respectively, at 4.2 K. It has been found that the Nb impregnates into the Sn-based alloy layers during the reaction, and Nb{sub 3}Sn layers are synthesized by the mutual diffusion between the Nb sheet and the Sn-based alloy sheet without formation of voids. Sn-Ti based alloy sheets are attractive due to their easiness of mass production. Structure and high-field performance of JR processed Nb{sub 3}Sn wires prepared from Sn-based alloy sheets with different compositions are compared in this article.« less

  14. A Fully Automated and Robust Method to Incorporate Stamping Data in Crash, NVH and Durability Analysis

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan

    2011-08-01

    Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.

  15. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  16. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    NASA Technical Reports Server (NTRS)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  17. Impact Resistance of Lightweight Hybrid Structures for Gas Turbine Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The ballistic impact resistance of hybrid composite sandwich structures was evaluated with the ultimate goal of developing new materials or structures for potential gas turbine engine fan containment applications. The sandwich structures investigated consisted of GLARE-5 laminates as face sheets with lightweight cellular metallic materials such as honeycomb, foam, and lattice block as a core material. The impact resistance of these hybrid sandwich structures was compared to GLARE-5 laminates and 2024-T3 Al sheet, which were tested as a function of areal weight (material thickness). The GLARE-5 laminates exhibited comparable impact properties to that of 2024-T3 Al at low areal weights, even though there were significant differences in the static tensile properties of these materials. The GLARE-5, however, did have a greater ballistic limit than straight aluminum sheet at higher areal weights. Furthermore, there is up to a 25% advantage in ballistic limit for the GLARE-5/foam sandwich structures compared to straight 2024-T3 Al. But no advantage in ballistic limit was observed between any of the hybrid sandwich structures and thicker versions of GLARE-5. Recommendations for future work are provided, based on these preliminary data.

  18. Spirulina-Templated Metal Microcoils with Controlled Helical Structures for THz Electromagnetic Responses

    PubMed Central

    Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori

    2014-01-01

    Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region. PMID:24815190

  19. A theoretical study on pure bending of hexagonal close-packed metal sheet

    NASA Astrophysics Data System (ADS)

    Mehrabi, Hamed; Yang, Chunhui

    2018-05-01

    Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.

  20. Joining of polymer-metal lightweight structures using self-piercing riveting (SPR) technique: Numerical approach and simulation results

    NASA Astrophysics Data System (ADS)

    Amro, Elias; Kouadri-Henni, Afia

    2018-05-01

    Restrictions in pollutant emissions dictated at the European Commission level in the past few years have urged mass production car manufacturers to engage rapidly several strategies in order to reduce significantly the energy consumption of their vehicles. One of the most relevant taken action is light-weighting of body in white (BIW) structures, concretely visible with the increased introduction of polymer-based composite materials reinforced by carbon/glass fibers. However, the design and manufacturing of such "hybrid" structures is limiting the use of conventional assembly techniques like resistance spot welding (RSW) which are not transferable as they are for polymer-metal joining. This research aims at developing a joining technique that would eventually enable the assembly of a sheet molding compound (SMC) polyester thermoset-made component on a structure composed of several high strength steel grades. The state of the art of polymer-metal joining techniques highlighted the few ones potentially able to respond to the industrial challenge, which are: structural bonding, self-piercing riveting (SPR), direct laser joining and friction spot welding (FSpW). In this study, the promising SPR technique is investigated. Modelling of SPR process in the case of polymer-metal joining was performed through the building of a 2D axisymmetric FE model using the commercial code Abaqus CAE 6.10-1. Details of the numerical approach are presented with a particular attention to the composite sheet for which Mori-Tanaka's homogenization method is used in order to estimate overall mechanical properties. Large deformations induced by the riveting process are enabled with the use of a mixed finite element formulation ALE (arbitrary Lagrangian-Eulerian). FE model predictions are compared with experimental data followed by a discussion.

  1. Method of making dished ion thruster grids

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1975-01-01

    A pair of flat grid blanks are clamped together at their edges with an impervious metal sheet on top. All of the blanks and sheets are dished simultaneously by forcing fluid to inflate an elastic sheet which contacts the bottom grid blank. A second impervious metal sheet is inserted between the two grid blanks if the grids have high percentage open areas. The dished grids are stress relieved simultaneously.

  2. Monitoring concept for structural integration of PZT-fiber arrays in metal sheets: a numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Drossel, Welf-Guntram; Schubert, Andreas; Putz, Matthias; Koriath, Hans-Joachim; Wittstock, Volker; Hensel, Sebastian; Pierer, Alexander; Müller, Benedikt; Schmidt, Marek

    2018-01-01

    The technique joining by forming allows the structural integration of piezoceramic fibers into locally microstructured metal sheets without any elastic interlayers. A high-volume production of the joining partners causes in statistical deviations from the nominal dimensions. A numerical simulation on geometric process sensitivity shows that the deviations have a high significant influence on the resulting fiber stresses after the joining by forming operation and demonstrate the necessity of a monitoring concept. On this basis, the electromechanical behavior of piezoceramic array transducers is investigated experimentally before, during and after the joining process. The piezoceramic array transducer consists of an arrangement of five electrical interconnected piezoceramic fibers. The findings show that the impedance spectrum depends on the fiber stresses and can be used for in-process monitoring during the joining process. Based on the impedance values the preload state of the interconnected piezoceramic fibers can be specifically controlled and a fiber overload.

  3. Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets.

    PubMed

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m <110>-oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shumin; Tian Hongwei; Pei Yanhui

    A novel hedgehog-like core/shell structure, consisting of a high density of vertically aligned graphene sheets and a thin graphene shell/a copper core (VGs-GS/CC), has been synthesized via a simple one-step synthesis route using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Scanning and transmission electron microscopy investigations show that the morphology of this core/shell material could be controlled by deposition time. For a short deposition time, only multilayer graphene shell tightly surrounds the copper particle, while as the deposition time is relative long, graphene sheets extend from the surface of GS/CC. The GS can protect CC particles from oxidation. The growth mechanismmore » for the obtained GS/CC and VGs-GS/CC has been revealed. Compared to VGs, VGs-GS/CC material exhibits a better electron field emission property. This investigation opens a possibility for designing a core/shell structure of different carbon-metal hybrid materials for a wide variety of practical applications. - Graphical abstract: With increasing deposition time, graphene sheets extend from the surface of GS/CC, causing the multilayer graphene encapsulated copper to be converted into vertically aligned graphene sheets-graphene shell/copper core structure. Highlights: Black-Right-Pointing-Pointer A novel hedgehog-like core/shell structure has been synthesized. Black-Right-Pointing-Pointer The structure consists of vertical graphene sheets-graphene shell and copper core. Black-Right-Pointing-Pointer The morphology of VGs-GS/CC can be controlled by choosing a proper deposition time. Black-Right-Pointing-Pointer With increasing deposition time, graphene sheets extend from the surface of GS/CC. Black-Right-Pointing-Pointer VGs-GS/CC exhibits a better electron field emission property as compared with VGs.« less

  5. Buckling Structured Stretchable Pseudocapacitor Yarn.

    PubMed

    Lee, Duck Weon; Lee, Jung Han; Min, Nam Ki; Jin, Joon-Hyung

    2017-09-20

    Cable-type stretchable electrochemical pseudocapacitors based on multi-walled carbon nanotube (MWCNT) sheets and two different metal oxide nanopowders (NP), i.e., MnO 2 and RuO 2 are developed using a newly-devised dry painting method to mechanically fix the NP to the elastic rubber-based MWCNT electrode substrate, resulting in a porous buckling structured pseudocapacitor yarn. Highly stretchable stylene-ethylene/butylene-stylene (SEBS) is used as the supporting elastomeric core for wrapping with the MWCNT sheets and the electroactive NP. The dry painting can successfully deposit NP on the soft SEBS surface, which is normally an unfavorable substrate for coating alien materials. The resulting yarn-type pseudocapacitor, composed of eight-layered MWCNT sheets, three-layered RuO 2 , and two-layered MnO 2 , showing a diameter of approximately 400 μm with a porous buckling structure, records a specific capacitance of 25 F g -1 . After being stretched by 200% in strain with no sacrifice of the porous buckling structure, the cable-type stretchable electrochemical pseudocapacitor yarn retains its electrical capacity, and is potentially applicable to energy storage devices for wearable electronics.

  6. Local laser-strengthening: Customizing the forming behavior of car body steel sheets

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Jahn, A.; Beyer, E.; Balzani, D.

    2018-05-01

    Future trends in designing lightweight components especially for automotive applications increasingly require complex and delicate structures with highest possible level of capacity [1]. The manufacturing of metallic car body components is primarily realized by deep or stretch drawing. The forming process of especially cold rolled and large-sized components is typically characterized by inhomogeneous stress and strain distributions. As a result, the avoidance of undesirable deep drawing effects like earing and local necking is among the greatest challenges in forming complex car body structures [2]. Hence, a novel local laser-treatment approach with the objective of customizing the forming behavior of car body steel sheets is currently explored.

  7. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  8. METHOD OF MAKING FUEL ELEMENTS

    DOEpatents

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  9. Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example

    NASA Astrophysics Data System (ADS)

    A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

  10. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  11. Detail of north end of the Electrical Shop (foreground) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north end of the Electrical Shop (foreground) and Sheet Metal Shop, note the metal-frame windows in the Electrical Shop, view facing east - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  12. Career Preparation Program Curriculum Guide for: Metal Fabrication, Sheet Metal.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    This curriculum outline provides secondary and postsecondary instructors with detailed information on student learning outcomes for completion of the sheet metal fabrication program requirements. A program overview discusses the aims of education; secondary school philosophy; and career preparation programs and their goals, organization, and…

  13. FOIL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  14. Experimental analysis of the sheet metal forming behavior of newly developed press hardening steels

    NASA Astrophysics Data System (ADS)

    Meza-García, Enrique; Kräusel, Verena; Landgrebe, Dirk

    2018-05-01

    The aim of this work was the characterization of the newly developed press hardening sheet alloys 1800 PHS and 2000 PHS developed by SSAB with regard to their hot forming behavior on the basis of the experimental determination of relevant mechanical and technological properties. For this purpose conventional and non-conventional sheet metal testing methods were used. To determine the friction coefficient, the strip drawing test was applied, while the deep drawing cup test was used to determine the maximum draw depth. Finally, a V-bending test was carried out to evaluate the springback behavior of the investigated alloys by varying the blank temperature and quenching media. This work provides a technological guideline for the production of press hardened sheet parts made of these investigated sheet metals.

  15. FEM-based strain analysis study for multilayer sheet forming process

    NASA Astrophysics Data System (ADS)

    Zhang, Rongjing; Lang, Lihui; Zafar, Rizwan

    2015-12-01

    Fiber metal laminates have many advantages over traditional laminates (e.g., any type of fiber and resin material can be placed anywhere between the metallic layers without risk of failure of the composite fabric sheets). Furthermore, the process requirements to strictly control the temperature and punch force in fiber metal laminates are also less stringent than those in traditional laminates. To further explore the novel method, this study conducts a finite element method-based (FEM-based) strain analysis on multilayer blanks by using the 3A method. Different forming modes such as wrinkling and fracture are discussed by using experimental and numerical studies. Hydroforming is used for multilayer forming. The Barlat 2000 yield criteria and DYNAFORM/LS-DYNA are used for the simulations. Optimal process parameters are determined on the basis of fixed die-binder gap and variable cavity pressure. The results of this study will enhance the knowledge on the mechanics of multilayer structures formed by using the 3A method and expand its commercial applications.

  16. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  17. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    NASA Astrophysics Data System (ADS)

    Oliva, Jorge; Papadimitratos, Alexios; Desirena, Haggeo; De la Rosa, Elder; Zakhidov, Anvar A.

    2015-11-01

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  18. Easily disassembled electrical connector for high voltage, high frequency connections

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    An easily accessible electrical connector capable of rapid assembly and disassembly wherein a wide metal conductor sheet may be evenly contacted over the entire width of the conductor sheet by opposing surfaces on the connector which provide an even clamping pressure against opposite surfaces of the metal conductor sheet using a single threaded actuating screw.

  19. Comparison of Ti/Pd/Ag, Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-type GaAs for electronic devices handling high current densities

    NASA Astrophysics Data System (ADS)

    Huo, Pengyun; Galiana, Beatriz; Rey-Stolle, Ignacio

    2017-04-01

    In the quest for metal contacts for electronic devices handling high current densities, we report the results of Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-GaAs and compare them to Ti/Pd/Ag and AuGe/Ni/Au. These metal systems have been designed with the goal of producing an electrical contact with (a) low metal-semiconductor specific contact resistance, (b) very high sheet conductance, (c) good bondability, (d) long-term durability and (e) cost-effectiveness. The structure of the contacts consists of an interfacial layer (either Pd or Pd/Ge) intended to produce a low metal-semiconductor specific contact resistance; a diffusion barrier (Ti/Pd) and a thick top layer of Ag to provide the desired high sheet conductance, limited cost and good bondability. The results show that both systems can achieve very low metal resistivity (ρ M ˜ 2 × 10-6 Ω cm), reaching values close to that of pure bulk silver. This fact is attributed to the Ti/Pd bilayer acting as an efficient diffusion barrier, and thus the metal sheet resistance can be controlled by the thickness of the deposited silver layer. Moreover, the use of Pd as interfacial layer produces contacts with moderate specific contact resistance (ρ C ˜ 10-4 Ω cm2) whilst the use of Pd/Ge decreases the specific contact resistance to ρ C ˜ 1.5 × 10-7 Ω cm2, as a result of the formation of a Pd4(GaAs, Ge2) compound at the GaAs interface.

  20. Thermal and Mechanical Buckling Analysis of Hypersonic Aircraft Hat-Stiffened Panels With Varying Face Sheet Geometry and Fiber Orientation

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1996-01-01

    Mechanical and thermal buckling behavior of monolithic and metal-matrix composite hat-stiffened panels were investigated. The panels have three types of face-sheet geometry: Flat face sheet, microdented face sheet, and microbulged face sheet. The metal-matrix composite panels have three types of face-sheet layups, each of which is combined with various types of hat composite layups. Finite-element method was used in the eigenvalue extractions for both mechanical and thermal buckling. The thermal buckling analysis required both eigenvalue and material property iterations. Graphical methods of the dual iterations are shown. The mechanical and thermal buckling strengths of the hat-stiffened panels with different face-sheet geometry are compared. It was found that by just microdenting or microbulging of the face sheet, the axial, shear, and thermal buckling strengths of both types of hat-stiffened panels could be enhanced considerably. This effect is more conspicuous for the monolithic panels. For the metal-matrix composite panels, the effect of fiber orientations on the panel buckling strengths was investigated in great detail, and various composite layup combinations offering, high panel buckling strengths are presented. The axial buckling strength of the metal-matrix panel was sensitive to the change of hat fiber orientation. However, the lateral, shear, and thermal buckling strengths were insensitive to the change of hat fiber orientation.

  1. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  2. Computing Mass Properties From AutoCAD

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1990-01-01

    Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).

  3. A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) based on eight-fold coordinated metals: Synthesis, crystal structure from single-crystal and powder diffraction data and thermal behaviour

    NASA Astrophysics Data System (ADS)

    Gavilan, Elisabeth; Audebrand, Nathalie; Jeanneau, Erwann

    2007-11-01

    A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) has been prepared. The crystal structures have been solved from single-crystal and powder diffraction data. The isotypical compounds crystallise with space group P2 1/ c (No. 14). The structures consist of honeycomb layers formed by eight-fold coordinated metals, in a distorted square-based antiprismatic conformation, connected together via oxalates which act as bidentate ligands and also as monodentate in a less-common μ3-bridging mode. Sheets are built from two shifted honeycomb layers and linked to each other through a hydrogen network. The resulting frameworks of the series display a compact two-dimensional arrangement of polyhedra MO 8 and M'O 8. Weakly-bonded water molecules are located between and within the sheets. Comparisons with the 3D open-framework structures of related metal oxalates are made. The dehydration processes occur in three or four steps. The final products are MO, M'O 2 and PbZrO 3 resulting from the sublimation of PbO in air. The size of PbZrO 3 crystallites, which are on average isotropic, has been evaluated to be 1055 Å from line-broadening analysis.

  4. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    PubMed

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  6. Basic Comfort Heating Principles.

    ERIC Educational Resources Information Center

    Dempster, Chalmer T.

    The material in this beginning book for vocational students presents fundamental principles needed to understand the heating aspect of the sheet metal trade and supplies practical experience to the student so that he may become familiar with the process of determining heat loss for average structures. Six areas covered are: (1) Background…

  7. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  8. Shop Math for the Metal Trades. Combination Welder Apprentice, Machinist Helper, Precision Metal Finisher, Sheet Metal Worker Apprentice. A Report on Metal Trades Industry Certified, Single-Concept, Mathematical Learning Projects to Eliminate Student Math Fears.

    ERIC Educational Resources Information Center

    Newton, Lawrence R.

    This project (1) identifies basic and functional mathematics skills (shop mathematics skills), (2) provides pretests on these functional mathematics skills, and (3) provides student learning projects (project sheets) that prepare metal trades students to read, understand, and apply mathematics and measuring skills that meet entry-level job…

  9. Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element

    NASA Astrophysics Data System (ADS)

    Akinlabi, Stephen; Akinlabi, Esther

    2017-08-01

    Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.

  10. Identification of a process window for tailored carburization of sheet metals in hot stamping

    NASA Astrophysics Data System (ADS)

    Horn, Alexander; Merklein, Marion

    2018-05-01

    Due to governmental regulations concerning the reduction of CO2 emissions and increasing safety standards, hot stamping of high strength boron manganese steel sheets has evolved into a state of the art process for manufacturing structural car body parts. The combined forming and in-die quenching process enables the formation of a fully martensitic microstructure. Therefore, press hardened steels offer high strength, but low ductility. In order to further improve passenger safety, a tailored configuration of mechanical properties is desired. Besides state of the art methods, like the application of locally different heat treatment temperatures or varying quenching rates, the adjustment of mechanical properties of sheet metals by a tailored carburization is a novel approach. For the carburization process, the specimens are first coated with graphite and subsequently heat treated. Within this contribution, different coating strategies as well as heat treatment temperatures and dwell times are investigated. For the determination of a process window, mechanical properties such as tensile strength and microhardness will be analyzed and correlated with the resulting microstructure.

  11. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  12. A framework for development of an intelligent system for design and manufacturing of stamping dies

    NASA Astrophysics Data System (ADS)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  13. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.

    PubMed

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen

    2014-12-12

    Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.

  14. Flexible Polymer/Metal/Polymer and Polymer/Metal/Inorganic Trilayer Transparent Conducting Thin Film Heaters with Highly Hydrophobic Surface.

    PubMed

    Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin

    2017-09-27

    Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.

  15. Additive Manufacturing of Functional Elements on Sheet Metal

    NASA Astrophysics Data System (ADS)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  16. Easily disassembled electrical connector for high voltage, high frequency connections

    DOEpatents

    Milner, J.R.

    1994-05-10

    An easily accessible electrical connector capable of rapid assembly and disassembly is described wherein a wide metal conductor sheet may be evenly contacted over the entire width of the conductor sheet by opposing surfaces on the connector which provide an even clamping pressure against opposite surfaces of the metal conductor sheet using a single threaded actuating screw. 13 figures.

  17. Springback effects during single point incremental forming: Optimization of the tool path

    NASA Astrophysics Data System (ADS)

    Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick

    2018-05-01

    Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.

  18. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    NASA Astrophysics Data System (ADS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  19. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa

    NASA Astrophysics Data System (ADS)

    Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.

    2015-05-01

    Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.

  20. Method of fabricating metal- and ceramic- matrix composites and functionalized textiles

    DOEpatents

    Maxwell, James L [Jemez Springs, NM; Chavez, Craig A [Los Alamos, NM; Black, Marcie R [Lincoln, MA

    2012-04-17

    A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.

  1. Experimental study of cassava sun drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.

  2. Structural response of phyllomanganates to wet aging and aqueous Mn(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.

    Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less

  3. Structural response of phyllomanganates to wet aging and aqueous Mn(II)

    DOE PAGES

    Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.

    2016-08-06

    Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less

  4. Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial

    NASA Astrophysics Data System (ADS)

    Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.

    2014-01-01

    The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.

  5. Finite element model updating of riveted joints of simplified model aircraft structure

    NASA Astrophysics Data System (ADS)

    Yunus, M. A.; Rani, M. N. Abdul; Sani, M. S. M.; Shah, M. A. S. Aziz

    2018-04-01

    Thin metal sheets are widely used to fabricate a various type of aerospace structures because of its flexibility and easily to form into any type shapes of structure. The riveted joint has turn out to be one of the popular joint types in jointing the aerospace structures because they can be easily be disassembled, maintained and inspected. In this paper, thin metal sheet components are assembled together via riveted joints to form a simplified model of aerospace structure. However, to model the jointed structure that are attached together via the mechanical joints such as riveted joint are very difficult due to local effects. Understandably that the dynamic characteristic of the joined structure can be significantly affected by these joints due to local effects at the mating areas of the riveted joints such as surface contact, clamping force and slips. A few types of element connectors that available in MSC NATRAN/PATRAN have investigated in order to presented as the rivet joints. Thus, the results obtained in term of natural frequencies and mode shapes are then contrasted with experimental counterpart in order to investigate the acceptance level of accuracy between element connectors that are used in modelling the rivet joints of the riveted joints structure. The reconciliation method via finiteelement model updating is used to minimise the discrepancy of the initial finite element model of the riveted joined structure as close as experimental data and their results are discussed.

  6. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less

  8. Structural failure; International Symposium on Structural Crashworthiness, 2nd, Massachusetts Institute of Technology, Cambridge, June 6-8, 1988, Invited Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierzbicki, T.; Jones, N.

    1989-01-01

    The book discusses the fragmentation of solids under dynamic loading, the debris-impact protection of space structures, the controlled fracturing of structures by shock-wave interaction and focusing, the tearing of thin metal sheets, and the dynamic inelastic failure of beams, and dynamic rupture of shells. Consideration is also given to investigations of the failure of brittle and composite materials by numerical methods, the energy absorption of polymer matrix composite structures (frictional effects), the mechanics of deep plastic collapse of thin-walled structures, the denting and bending of tubular beams under local loads, the dynamic bending collapse of strain-softening cantilever beams, and themore » failure of bar structures under repeated loading. Other topics discussed are on the behavior of composite and metallic superstructures under blast loading, the catastrophic failure modes of marine structures, and industrial experience with structural failure.« less

  9. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  10. Lightweight Radiator System for a Spacecraft

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.; Mason, Georgia; Weislogel, Mark M.

    2005-01-01

    Three documents describe various aspects of a proposed lightweight, deployable radiator system for dissipating excess heat from the life-support system of a habitable spacecraft. The first document focuses on a radiator tube that would include a thin metal liner surrounded and supported by a thicker carbon-fiber-reinforced composite tubular structure that, in turn, would be formed as part of a unitary composite radiator-fin structure consisting mostly of a sheet of reticulated vitreous carbon laminated between carbon-fiber-reinforced face sheets. The thermal and mechanical properties, including the anisotropies, of the component materials are taken into account in the design. The second document describes thermo-structural bumpers, in the form of exterior multiple-ply carbon-fiber sheets enclosing hollows on opposite sides of a radiator fin, which would protect the radiator tube against impinging micrometeors and orbital debris. The third document describes a radiator system that would include multiple panels containing the aforementioned components, among others. The system would also include mechanisms for deploying the panels from compact stowage. Deployment would not involve breaking and remaking of fluid connections to the radiator panels.

  11. Passivation coating for flexible substrate mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  12. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    NASA Astrophysics Data System (ADS)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  13. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Wang, H.; Wu, R. Q., E-mail: wur@uci.edu

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir–Ir@Dh–BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment.

  14. Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.

    PubMed

    Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J

    1994-04-01

    We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.

  15. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process

    PubMed Central

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979

  16. Low cost impulse compatible wideband antenna

    DOEpatents

    Rosenbury, Erwin T.; Burke, Gerald J.; Nelson, Scott D.; Stever, Robert D.; Governo, George K.; Mullenhoff, Donald J.

    2002-01-01

    An antenna apparatus and method for building the antenna is disclosed. Impulse signals travel through a feed point of the antenna with respect to a ground plane. A geometric fin structure is connected to the feed point, and through a termination resistance to the ground plane. A geometric ridge structure connected to the ground is positioned with respect to the fin in order to receive and radiate electromagnetic energy from the impulse signal at a predetermined impedance and over a predetermined set of frequencies. The fin and ridge can be either a wire or a planar surface. The fin and ridge may be disposed within a radiation cavity such as a horn. The radiation cavity is constructed of stamped and etched metal sheets bent and then soldered together. The fin and ridge are also formed from metal sheets or wires. The fin is attached to the feed point and then to the cavity through a termination resistance. The ridge is attached to the cavity and disposed with respect to the fin in order to achieve a particular set of antenna characteristics.

  17. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  18. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  19. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  20. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; Xie, Jin; Li, Yuzhang; Liao, Lei; Jin, Yang; Liu, Kai; Hsu, Po-Chun; Wang, Jiangyan; Cheng, Hui-Ming; Cui, Yi

    2017-10-01

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.

  1. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE PAGES

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; ...

    2017-07-10

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  2. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  3. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    NASA Astrophysics Data System (ADS)

    Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.

    2017-02-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.

  4. Multilayer ZnO/Pd/ZnO Structure as Sensing Membrane for Extended-Gate Field-Effect Transistor (EGFET) with High pH Sensitivity

    NASA Astrophysics Data System (ADS)

    Rasheed, Hiba S.; Ahmed, Naser M.; Matjafri, M. Z.; Al-Hardan, Naif H.; Almessiere, Munirah Abdullah; Sabah, Fayroz A.; Al-Hazeem, Nabeel Z.

    2017-10-01

    Metal oxide nanostructures have attracted considerable attention as pH-sensitive membranes because of their unique advantages. Specifically, the special properties of ZnO thin film, including high surface-to-volume ratio, nontoxicity, thermal stability, chemical stability, electrochemical activity, and high mechanical strength, have attracted massive interest. ZnO exhibits wide bandgap of 3.37 eV, good biocompatibility, high reactivity, robustness, and environmental stability. These unique properties explain why ZnO has the most applications among all nanostructured metal oxides based on its structure and properties. Moreover, ZnO has excellent electrical characteristics, enabling its use in accurate sensors with rapid response. ZnO nanostructures can be used in novel pH and biomedical sensing applications. However, ZnO thin film exhibits large sheet resistance and low conductivity. Increasing the conductivity or reducing the resistivity of ZnO sensing membranes is important to achieve low impedance. We propose herein a new design using a multilayer ZnO/Pd/ZnO structure as a pH-sensing membrane. Multiple layers were deposited by radio frequency (RF) sputtering for ZnO and direct current (DC) sputtering for Pd to achieve low sheet resistance. These multilayers with low sheet resistance of 15.8 Ω/sq were then successfully used to control the conductivity in extended-gate field-effect transistors (EGFETs). The resulting multilayered EGFET pH-sensor demonstrated improved sensing performance. The measured sensitivity of the pH sensor was 40 μA/pH and 52 mV/pH within the pH range from 2 to 12, rendering this structure suitable for use in various applications, including pH sensors and biosensors.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyu; Park, Hun; Paik, Ungyu

    We have discovered a methodology to realize the fabrication of flexible metal oxide film using two-dimensional (2D) nanosheets. Atomic scale titanium oxide (TiO{sub x}) nanosheets were exfoliated from bulk TiO{sub x} powder that had a layered structure via the modified Sasaki’s method. The vacuum-assisted filtration generates films with laterally aligned TiO{sub x} nanosheets. The 2D sheet-like structure and hydrophilic nature of TiO{sub x} nanosheets enables the film consisting of TiO{sub x} nanosheets to be bendable. Also, we demonstrate the fabrication of electrochemical capacitors using this film. The mechanically flexible metal oxide film is expected to open up the possibility ofmore » fabricating flexible energy storage devices from 2D metal oxide nanosheets. - Graphical abstract: The modified Sasaki’s method, combined process of hydrothermal reaction and bulky ion exchange, enables to obtain TiO{sub x} monolayer nanosheets. The vacuum-assisted filtration generates bendable films with laterally aligned TiO{sub x} nanosheets. Also, we demonstrate the fabrication of electrochemical capacitors using this film. - Highlights: • TiO{sub x} single sheets, a novel 2-dimensional material, were exfoliated from bulk powders via the modified Sasaki’s method. • In our method, the acid treatment of TiO{sub x} bulk powders was simply modified by applying the hydrothermal reaction. • Then, the delamination procedures of large cation exchange were conducted following the method proposed by Sasaki et al. • Reassembly of TiO{sub x} sheets into flexible free-standing films was simply achieved via vacuum assisted filtration method. • TiO{sub x} films were used as a flexible supercapaictor electrode material.« less

  6. Interpenetrating and non-interpenetrating 3-dimensional coordination polymer frameworks from multiple building blocks

    NASA Astrophysics Data System (ADS)

    Bradshaw, Darren; Rosseinsky, Matthew J.

    2005-12-01

    Reaction of Co(NO3)2ṡ6H2O with the multidentate ligands benzene-1,3,5-tricarboxylate (btc) and the flexible bipyridyl ligand 1,2-bis(4-pyridyl)ethane (bpe) affords the 3-dimensional coordination polymers [Co3(btc)2(bpe)3(eg)2]ṡ(guests) 1, where eg = ethylene glycol, and [Co2(Hbtc)2(bpe)2]ṡ(bpe) 2. Both phases are comprised of infinite metal-carboxylate dimer chains, linked into 2-dimensional sheets by the bpe ligands. These sheets are further linked to adjacent sheets through covalent interactions, 1, or through hydrogen-bonding interactions, 2, to yield the 3-dimensional structures. Phase 1 exhibits solvent filled 1-dimensional pores, whereas 2 is triply-interpenetrated to form a dense solid array.

  7. Migration in the shearing sheet and estimates for young open cluster migration

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nolting, Eric; Minchev, Ivan; De Silva, Gayandhi; Chiappini, Cristina

    2018-04-01

    Using tracer particles embedded in self-gravitating shearing sheet N-body simulations, we investigate the distance in guiding centre radius that stars or star clusters can migrate in a few orbital periods. The standard deviations of guiding centre distributions and maximum migration distances depend on the Toomre or critical wavelength and the contrast in mass surface density caused by spiral structure. Comparison between our simulations and estimated guiding radii for a few young supersolar metallicity open clusters, including NGC 6583, suggests that the contrast in mass surface density in the solar neighbourhood has standard deviation (in the surface density distribution) divided by mean of about 1/4 and larger than measured using COBE data by Drimmel and Spergel. Our estimate is consistent with a standard deviation of ˜0.07 dex in the metallicities measured from high-quality spectroscopic data for 38 young open clusters (<1 Gyr) with mean galactocentric radius 7-9 kpc.

  8. A Density Functional Theory Study of New Boron Nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Hua; Xie, Zun

    2017-11-01

    Using first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.

  9. Energy-storage-flywheel housing-design-concept development

    NASA Astrophysics Data System (ADS)

    Coppa, A. P.

    1981-09-01

    A low cost vehicular flywheel housing conceptual design was obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheet metal components for automotive vehicles provided budgetary quotations for steel housings. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.

  10. Material damage modeling and detection in a thin metallic sheet and sandwich panel using passive acoustic transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.

  11. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk; College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073; Hu, Zhirun

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of themore » screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.« less

  12. Polymer quenched prealloyed metal powder

    DOEpatents

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  13. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  14. Aircraft Assembly, Riveting and Surface Repair 1; Sheet Metal Work 2: 9855.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. The course, 135 hours in length, covers the basic techniques of cutting and trimming, drilling and hole preparation of metals. Lecture and demonstration techniques are to be utilized, with emphasis on the use of visual aids, mock-ups,…

  15. Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Fartab, Dorsa S.; Kordbacheh, Amirhossein Ahmadkhan

    2018-06-01

    The first-principles calculations based on spin-polarized density functional theory is carried out to investigate the structural, electronic and magnetic properties of a hexagonal boron nitride sheet (h-BNS) doped by one or two lithium atom(s). Moreover, a vacancy in the neighborhood of one Li-substituted atom is introduced into the system. All optimized structures indicate significant local deformations with Li atom(s) protruded to the exterior of the sheet. The defects considered at N site are energetically more favorable than their counterpart structures at B site. The spin-polarized impurity states appear within the bandgap region of the pristine h-BNS, which lead to a spontaneous magnetization with the largest magnetic moments of about 2 μB in where a single or two B atom(s) are replaced by Li atom(s). Furthermore, the Li substitution for a single B atom increases the density of holes compared to that of electrons forming a p-type semiconductor. More interestingly, the structure in which two Li are substituted two neighboring B atoms appears to show desired half-metallic behavior that may be applicable in spintronic. The results provide a way to enhance the conductivity and magnetism of the pristine h-BNS for potential applications in BN-based nanoscale devices.

  16. 17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS WERE FORMED INTO SHAPES. (7/2/86) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  17. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-04

    One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensivemore » door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.« less

  19. Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy

    PubMed Central

    Claridge, Shelley A.; Thomas, John C.; Silverman, Miles A.; Schwartz, Jeffrey J.; Yang, Yanlian; Wang, Chen; Weiss, Paul S.

    2014-01-01

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structure at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer’s and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level. PMID:24219245

  20. Transition metal doped (X = V, Cr) CdS monolayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Deb, Jyotirmoy; Paul, Debolina; Sarkar, Utpal

    2018-05-01

    In this work based on density functional theory approach with generalized gradient approximation we have investigated the effect doping and co-doping of transition metal atoms in CdS monolayer sheet. On the basis cohesive energy, we have determined the stability of all the transition metal doped systems. CdS monolayer is of nonmagnetic character but the insertion of transition metal atoms introduces the spontaneous spin polarization which results in a significant value of magnetic moment. The band structure analysis reveals that three different types of conducting nature such as spin-select-half-semiconductor, half metallic and metallic nature with total spin polarization has also been observed. The versatile conducting nature of the transition metal doped CdS monolayer predicts the possibility of using these systems in spintronics mainly as a spin filter and also to form metal-semiconductor interface etc. at nanoscale level.

  1. Thermal control structure and garment

    DOEpatents

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  2. Detection of a Pool in Semi-Continuous Castings Made of Heat-Treatable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Krushenko, G. G.; Nazarov, V. P.

    2017-12-01

    Various products (sheets, sections, etc.) manufactured by metal forming (rolled products, forged pieces, etc.) from semi-continuous castings are widely used in the aerospace industry. The so-called pool, which is the conical volume of a liquid metal, exists at the top of the liquid metal. Experience demonstrates that the geometry, the depth, and the shape of the pool substantially affect the structure formation in a casting and its quality. The application of a titanium nitride nanopowder, which is introduced in a melt in the volume of a rod, as a modifier allowed us to find the exact geometry of the pool.

  3. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  4. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  5. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    NASA Astrophysics Data System (ADS)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  6. Doubly Curved Composite Sandwich Panels for Hybrid Composite/Metal Ship Structures

    DTIC Science & Technology

    2009-08-15

    twill with a surface weight of 298 g/m2, Owens Corning Knytex WR24-5x4 woven roving at 815 g/m , and Owens Corning M-8610 continuous filament mat at...Kilburn. 24. Thermoforming Technical Bulletin, Diab website. 42 25. Owens Corning . Kyntex Woven Rovings Technical Data Sheet. One Owens Corning Parkway

  7. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  8. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  9. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    NASA Astrophysics Data System (ADS)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  10. Frequency-Independent Response of Self-Complementary Checkerboard Screens

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2015-06-01

    This research resolves a long-standing problem on the electromagnetic response of self-complementary metallic screens with checkerboardlike geometry. Although Babinet's principle implies that they show a frequency-independent response, this unusual characteristic has not been observed yet due to the singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures exhibit a flat transmission spectrum over 0.1-1.1 THz. It is also demonstrated that self-complementarity can eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.

  11. PROCESS FOR PRODUCING JACKETED BODIES

    DOEpatents

    Saller, H.A.

    1958-01-21

    A method is given for enclosing a metallic core within an outer protective jacket, such as in the production of fuel elements for neutronic reactors. The method comprises the steps of inserting the body of a first metal into an aperture in a frame of a second metal, placing a sheet of the second metal on each of opposite sides of the assembled body and frame, and bonding the sheets to the body and the frame and the body and the frame to one another.

  12. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Orme, Christine A.

    2017-04-25

    Disclosed here is a method for hydrocarbon conversion, comprising contacting at least one graphene-supported assembly with at least one hydrocarbon feedstock, wherein the graphene-supported assembly comprises (i) a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds and (ii) at least one metal chalcogenide compound disposed on the graphene sheets, wherein the chalcogen of the metal chalcogenide compound is selected from S, Se and Te, and wherein the metal chalcogenide compound accounts for at least 20 wt. % of the graphene-supported assembly.

  13. Handbook of estimating data, factors, and procedures. [for manufacturing cost studies

    NASA Technical Reports Server (NTRS)

    Freeman, L. M.

    1977-01-01

    Elements to be considered in estimating production costs are discussed in this manual. Guidelines, objectives, and methods for analyzing requirements and work structure are given. Time standards for specific specfic operations are listed for machining, sheet metal working, electroplating and metal treating; painting; silk screening, etching and encapsulating; coil winding; wire preparation and wiring; soldering; and the fabrication of etched circuits and terminal boards. The relation of the various elements of cost to the total cost as proposed for various programs by various contractors is compared with government estimates.

  14. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d

  15. 49 CFR 1245.6 - Cross reference to standard occupational classification manual.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Assist. Chemist 1845. X-ray Technician 365. Supv. Estimating 149. Junior Engineer 1639. Engineer Trainee...) 8319. Grain Elevator Operator (electrical) 8319. 414Machinists: Machinist 6813. 415Sheet Metal Workers: Sheet Metal Worker 6824. 416Skilled Trades, Helpers, Maintenance of Equipment and Stores: Helper 861...

  16. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, Jay Kevin

    1998-01-01

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.

  17. Controlling the metal to semiconductor transition of MoS 2 and WS 2 in solution

    DOE PAGES

    Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; ...

    2015-01-22

    Lithiation-exfoliation produces single to few-layered MoS 2 and WS 2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS 2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with themore » simplicity of solution processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS 2 and WS 2 within a liquid medium.« less

  18. Mechanical Behaviour of Conventional Materials at Experimental Conditions of Deep Drawing Technological Process

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Pashkouleva, D.; Kavardzhikov, V.

    2012-09-01

    The paper deals with experimental investigations on the mechanical behaviour of body-centred-cubic (BCC) and face-centred-cubic (FCC)-conventionally structured sheet metalic-metalic materials under stress-strain conditions of a deep drawing process determined by a coefficient close to the limiting one for Steel 08 and punch diameter of 50 mm. The mechanical characteristics of the investigated materials are identified by one-dimensional tension tests. The materials' responses, as results of identical loading conditions, are described by the change of blank sizes and characteristics of the forming processes. The chosen deformation path ensures obtaining a qualitative steel piece and leads to failures of aluminium and brass blanks. The reported results could be useful for investigations and predictions of the mechanical responses of such type metallic structures applying microscopic instrumented observations and numerical simulations.

  19. Water as an agent for the morphology modification of metal oxalate materials on the nanoscale: from sheets to rods

    PubMed Central

    Kim, Minog; Kim, YooJin; Kwon, WonJong; Yoon, Sungho

    2016-01-01

    A number of approaches have been used to control the shape of metal oxalates, which often used as precursors for metal oxide nanomaterials. However, attempts to use water as a regulator have not been reported. Here in we report systematic studies on related topics: nanosheets, composed of 1-dimensional [M(C2O4)(EG)] (M = Zn or Co) polymeric structure, could be transformed into nanorods by using water as a shape-shifting agent because water can readily substitute EG ligand, leading alternation of inter-chain hydrogen bonding interactions. In addition, heat-treatment of these nanomaterials with diverse morphologies resulted in porous metal oxides with high degrees of shape retention. PMID:26763973

  20. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  1. Semi-automatic for ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1990-02-13

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  2. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Taejon Ch'ungmam; Yan Li.

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figures.

  3. Semi-automatic for ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Li, Y.

    1990-02-13

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figs.

  4. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  5. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  6. Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals.

    PubMed

    Abrahamson, John

    2002-01-15

    The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball lightning energy release, and argued to be the result of a normal lightning strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to lightning strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model predicted the important properties of "average" observed ball lightning, and the extension in this paper also covers high-energy examples of ball lightning. Laboratory checks of the theory are described, and predictions given of what conditions are necessary for observing ball lightning in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball lightning through a sheet of building material, including glass, and its occasional charring of flesh on close contact.

  7. Method of constructing dished ion thruster grids to provide hole array spacing compensation

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1976-01-01

    The center-to-center spacings of a photoresist pattern for an array of holes applied to a thin metal sheet are increased by uniformly stretching the thin metal sheet in all directions along the plane of the sheet. The uniform stretching is provided by securely clamping the periphery of the sheet and applying an annular force against the face of the sheet, within the periphery of the sheet and around the photoresist pattern. The technique is used in the construction of ion thruster grid units where the outer or downstream grid is subjected to uniform stretching prior to convex molding. The technique provides alignment of the holes of grid pairs so as to direct the ion beamlets in a direction parallel to the axis of the grid unit and thereby provide optimization of the available thrust.

  8. 3D homometallic carboxylate ferrimagnet constructed from a manganese(II) succinate carboxylate layer motif pillared by isonicotinate spacers.

    PubMed

    Zeng, Ming-Hua; Wu, Mei-Chun; Liang, Hong; Zhou, Yan-Ling; Chen, Xiao-Ming; Ng, Seik-Weng

    2007-09-03

    A manganese succinate having a layer structure in which the layers are pillared by the isonicotinate spacers in a 3D architecture exhibits long-range ferrimagnetic order below 5.0 K, with the ferrimagnetism arising, for topological reasons, from the nature of the carboxylate binding modes. The compound is the first structurally authenticated example of a 3D ferrimagnet, featuring a homometallic topological ferrimagnetic sheet among metal carboxylates.

  9. Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide

    NASA Astrophysics Data System (ADS)

    Gökçe, Aytaç Gürhan; Ersan, Fatih

    2017-01-01

    First-principles plane wave calculations have been performed to study the adsorption of alkali and alkaline earth metals on monolayer germanium carbide (GeC). We found that the favourable adsorption sites on GeC sheet for single alkali and alkaline earth adatoms are generally different from graphene or germanene. Among them, Mg, Na and their dimers have weakly bounded to GeC due to their closed valence electron shells, so they may have high mobility on GeC. Two different levels of adatom coverage (? and ?) have been investigated and we concluded that different electronic structures and magnetic moments for both coverages owing to alkali and alkaline earth atoms have long range electrostatic interactions. Lithium atom prefers to adsorbed on hollow site similar to other group-IV monolayers and the adsorption results in metallisation of GeC instead of semiconducting behaviour. Na and K adsorption can induce 1 ? total magnetic moment on GeC structures and they have shown semiconductor property which may have potential use in spintronic devices. We also showed that alkali or alkaline earth metal atoms can form dimer on GeC sheet. Calculated adsorption energies suggest that clustering of alkali and alkaline earth atoms is energetically favourable. All dimer adsorbed GeC systems have nonmagnetic semiconductor property with varying band gaps from 0.391 to 1.311 eV which are very suitable values for various device applications.

  10. ICAM (Integrated Computer Aided Manufacturing) Conceptual Design for Computer-Integrated Manufacturing. Volume 1. Project Overview and Technical Summary

    DTIC Science & Technology

    1984-06-29

    sheet metal, machined and composite parts and assembling the components into final pruJucts o Planning, evaluating, testing, inspecting and...Research showed that current programs were pursuing the design and demonstration of integrated centers for sheet metal, machining and composite ...determine any metal parts required and to schedule these requirements from the machining center. Figure 3-33, Planned Composite Production, shows

  11. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, J.K.

    1998-07-07

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.

  12. 75 FR 15741 - Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,630] Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of Investigation Pursuant to Section 223..., Troy, Michigan. The petitioning workers were filing on behalf of workers employed by several...

  13. Training for a Place in the Sun.

    ERIC Educational Resources Information Center

    Fillippini, W. L.

    1979-01-01

    To train sheet metal workers in energy conservation technology, the National Training Fund (NTF) of the Sheet Metal and Air Conditioning Industry collaborated with universities in developing their apprenticeship curricula on solar-powered environmental systems, a solar air system training film, and NTF instructor training courses and workshops.…

  14. 29 CFR 779.317 - Partial list of establishments lacking “retail concept.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (such as operating instruments, X-ray machines, operating tables, etc.); establishments engaged in the... goods or facilities for the operation of such carriers (Idaho Sheet Metal Works v. Wirtz, 383 U.S. 190... distributors. Security dealers. Sheet metal contractors. Ship equipment, commercial; establishments engaged in...

  15. 29 CFR 779.317 - Partial list of establishments lacking “retail concept.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (such as operating instruments, X-ray machines, operating tables, etc.); establishments engaged in the... goods or facilities for the operation of such carriers (Idaho Sheet Metal Works v. Wirtz, 383 U.S. 190... distributors. Security dealers. Sheet metal contractors. Ship equipment, commercial; establishments engaged in...

  16. Introduction to Sheet Metal. Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This competency-based curriculum guide on the specialty area of sheet metal is part of the Introduction to Construction series. The series is designed with the flexible training requirements of open shop contractors, preapprenticeship programs, multicraft high school programs, technology education programs, and cooperative education programs in…

  17. General Metal Trades Book I. Units of Instruction. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This teacher's guide provides instructional materials for a 10-unit course in the General Metal Trades program. Each unit includes most or all of these basic components: performance objectives (unit and specific objectives), suggested teaching activities (a sheet outlining steps to follow to accomplish specific objectives), information sheets,…

  18. National Apprenticeship and Training Standards for the Sheet Metal Industry. Revised.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Bureau of Apprenticeship and Training.

    These national standards are designed to aid contractors, labor, and joint committees in setting up, conducting, and improving apprenticeship programs for individuals seeking to become skilled in the sheet metal industry. Covered in the individual sections are the following topics: the provisions of the apprenticeship standards (definitions,…

  19. SHEET METAL WORKER, A SUGGESTED TRAINING COURSE.

    ERIC Educational Resources Information Center

    RONEY, MAURICE

    THE PURPOSE OF THIS CURRICULUM GUIDE IS TO ASSIST ADMINISTRATORS AND INSTRUCTORS IN PLANNING AND DEVELOPING MANPOWER DEVELOPMENT AND TRAINING PROGRAMS TO PREPARE WORKERS FOR ENTRY-LEVEL POSITIONS IN THE SHEET METAL INDUSTRY. THE MATERIAL WAS PREPARED UNDER CONTRACTUAL AGREEMENT BY OKLAHOMA STATE UNIVERSITY AND REVIEWED BY ADVISORY GROUPS. IT IS…

  20. Stiffness management of sheet metal parts using laser metal deposition

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  1. Stabilizing benzene-like planar N6 rings to form a single atomic honeycomb BeN3 sheet with high carrier mobility.

    PubMed

    Li, Xiaoyin; Zhang, Shunhong; Zhang, Cunzhi; Wang, Qian

    2018-01-18

    It is a longstanding quest to use the planar N 6 ring as a structural unit to build stable atomic sheets. However, unlike C 6 H 6 , the neutral N 6 ring is unstable due to the strong repulsion of the lone-pair of electrons. Using first-principles calculations and the global structure search method, we show that the N 6 unit can be stabilized by the linkage of Be atoms, forming a h-BeN 3 honeycomb monolayer, in which the geometry and the π-molecular orbitals of the N 6 rings are well kept. This sheet is not only energetically, dynamically and thermally stable, but also can withstand high temperatures up to 1000 K. Band structure calculation combined with a group theory analysis and a tight-binding model uncover that h-BeN 3 has a π-band dominated band structure with an indirect band gap of 1.67 eV. While it possesses a direct band gap of 2.07 eV at the Γ point lying in the photon energy region of visual light, its interband dipole transition is symmetrically allowed so that electrons can be excited by photons free of phonons. Based on deformation potential theory, a systematic study of the transport properties reveals that the h-BeN 3 sheet possesses a high carrier mobility of ∼10 3 cm 2 V -1 s -1 , superior to the extensively studied transition metal dichalcogenide monolayers. We further demonstrate that this sheet can be rolled up into either zigzag or armchair nanotubes. These nanotubes are also dynamically stable, and are all direct band gap semiconductors with carrier mobility comparable to that of their 2D counterparts, regardless of their chirality and diameter. The robust stability and novel electronic and transport properties of the h-BeN 3 sheet and its tubular derivatives endow them with great potential for applications in nanoelectronic devices.

  2. Effect of reduction time on the structure and properties of porous graphene

    NASA Astrophysics Data System (ADS)

    Li, Guoping; Zhang, Chenhui; Zhang, Tianfu; Xia, Min; Luo, Yunjun

    2017-07-01

    Porous graphene with nanoscaled pores on the sheets was prepared by a carbon thermal reduction method, in which the molybdenum oxide nanoparticles generated from the thermal decomposition of molybdate were used as the etching reagent, and the pores were formed on the surface of the reduced graphene oxide under the conditions of 650 °C and a nitrogen atmosphere. The morphology of pores on the graphene sheets may affect their potential applications in various fields, especially in the enhancement of mass transfer. Previous studies have shown that the reduction temperature and the amount of metal oxide are the key factors affecting the morphology of porous graphene, but in fact the reduction time is a more important affecting factor according to the present study. The results of SEM/TEM showed that a disordered large sheet-like structure with wrinkles was obtained at 120 min in the carbon-thermal reaction. The structural integrity of the PG was further destroyed after the reaction time of 140 min, in which the edge exhibited slightly crush and significant fold. The PG exhibited a hollow rod-like structure at the reaction time of 180 min. FTIR, Raman, XRD, and XPS studies were performed to characterize the morphology of porous graphene prepared at different reduction times.

  3. Assessing the formability of metallic sheets by means of localized and diffuse necking models

    NASA Astrophysics Data System (ADS)

    Comşa, Dan-Sorin; Lǎzǎrescu, Lucian; Banabic, Dorel

    2016-10-01

    The main objective of the paper consists in elaborating a unified framework that allows the theoretical assessment of sheet metal formability. Hill's localized necking model and the Extended Maximum Force Criterion proposed by Mattiasson, Sigvant, and Larsson have been selected for this purpose. Both models are thoroughly described together with their solution procedures. A comparison of the theoretical predictions with experimental data referring to the formability of a DP600 steel sheet is also presented by the authors.

  4. Research on NC laser combined cutting optimization model of sheet metal parts

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  5. Synergistic effects of fibronectin and bone morphogenetic protein on the bioactivity of titanium metal.

    PubMed

    Biao, M N; Chen, Y M; Xiong, S B; Wu, B Y; Yang, B C

    2017-09-01

    To improve the biological properties of bioactive titanium metal, recombinant human bone morphogenetic protein 2(rhBMP-2) and fibronectin (Fn) were adsorbed on its surface solely or contiguously to modify the anodic oxidized titanium (AO-Ti), acid-alkali-treated titanium (AA-Ti), and polished titanium (P-Ti). It is found that the different bioactive titanium surface structures had great influence on protein adsorption. The adsorption amounts of BMP adsorbed solely and Fn/BMP adsorbed contiguously were AA-Ti > P-Ti > AO-Ti, and that for Fn adsorbed solely was AA-Ti ≈ P-Ti > AO-Ti. The conformation of proteins was changed remarkably after the adsorption. For BMP, the α-helix decreased on AA-Ti and stabilized on P-Ti and AO-Ti. For Fn, the β-sheet on PT-Ti and AA-Ti increased significantly. For Fn/BMP, the percentage of β-sheet on AA-Ti increased, and that of α-helix on all samples was stable. MSCs showed greater adhesion and spreading on Fn/BMP groups. MTT and Elisa tests showed that the synergistic effects of proteins made the cells proliferate and differentiate faster. It indicated both the surface structure and the synergistic effects of proteins could influence the biological properties of titanium metals. It provides research foundation for improving the biological properties of bioactive titanium metals by simultaneous application of several proteins. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2485-2498, 2017. © 2017 Wiley Periodicals, Inc.

  6. Thin lead sheets in the decorative features in Pavia Charterhouse.

    PubMed

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  7. Boron-Based Nanostructures, Stability, Functionality and Synthetic Routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakobson, Boris I.; Ajayan, Pulickel M.

    Boron (B) is one of the most intriguing elements not only because of its position between metals and nonmetals in periodic table but also because of its ability to form an enormous number of allotropes. Apart from several bulk three-dimensional (3D) phases, boron can form 0D clusters, 1D nanotubes and nanowires, and 2D layers. In particular, boron sheets of monoatomic thickness have raised interest as a potential new 2D-material and as a (conceptual) precursor, for example, so-called α-sheets, from which other boron structures - fullerene cages and tubes - might be constructed. In fact, a number of planar B clustersmore » up to tens of atoms, found in experiments, appear as seeds for extended sheets. In this project we developed theoretical methods to guide synthesis, have successfully identified the material substrates (Ag, Au, Cu) to producing the pure boron layers, and further even predicted what atomistic structures should be expected. These guidelines have successfully led to discoveries in several labs and now have grown into an active line of research worldwide.« less

  8. Strengthening of Metals by Means of Fibers. Chapter 6 and 7,

    DTIC Science & Technology

    1979-04-03

    the form of honeycomb panels . hot pressure forging may be performed in air, in a vacuum or in an inert gas medium, depending on the material being...tubes along the circumference and along the generatrix, 6- Sheets and plates, 7- Structural shapes, 8- Honeycomb panels , 9- Reinforced structural...A12 0,, Mor- gan Crucible %o., 10- Al2 v3 bar, d-0.25/0.75 mm, torganite Research cnd Development vompany, 11- Monocrystalline fiber 59 Tyco

  9. Structural materials for NASP

    NASA Astrophysics Data System (ADS)

    Ronald, Terence M. F.

    1991-12-01

    Structural materials for the NASP X-30 experimental vehicle are briefly reviewed including titanium alloys, titanium-based metal-matrix composites, carbon-carbon composites, ceramic-matrix composites, and copper-matrix composites. Areas of application of these materials include the airframe where these materials would be used as lightweight skin panels for honeycomb-core, truss-core, or integrally stiffened thin sheet configuration; and the engine, where they would be used in the hot gas path of the ramjet/scramjet, and in the inlet and nozzle areas.

  10. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2003-12-09

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  11. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  12. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  13. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  14. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes.

    PubMed

    Meyer, Jens; Kidambi, Piran R; Bayer, Bernhard C; Weijtens, Christ; Kuhn, Anton; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Robertson, John; Hofmann, Stephan

    2014-06-20

    The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices.

  15. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  16. On the impact of rolling direction and tool orientation angle in Rotary Peen Forming

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Hirt, G.

    2016-10-01

    Shot Peen Forming processes are suitable to produce surface curvatures that are commonly required for aircraft fuselage as well as structural components. The so called Rotary Peen Forming is an alternative process for manufacturing sheet metals with slight curvature. The forming tool consists of impactors which are connected flexibly to a rotating hub and thus moving on a circular trajectory. An industrial robot guides the Rotary Peen Forming tools. As a result, the machine design is more compact compared to traditional Shot Peen Forming. In the present work, the impact of both, the tool orientation angle and the rolling direction, on the curvature of aluminum AA5083 samples is examined. By means of a point laser measurement, the set-up enables a distance control to adjust a determined indentation depth. It can be shown, that the highest curvature is achieved when the tool is orientated parallel and when the rolling direction of the sheet metal is transversal to the curvature plane.

  17. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  18. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  19. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  1. Fabrication of resistive switching memory structure using double-sided-anodized porous alumina

    NASA Astrophysics Data System (ADS)

    Morishita, Yoshitaka; Hosono, Takaya; Ogawa, Hiroto

    2017-05-01

    Double-sides of aluminum sheet were anodized; at first, one side (front-side) of aluminum sheet was anodized, and the pores were filled with nickel using electroplating technique. Next, the other side (back side) of aluminum sheet was anodized. After formation of electrodes on both sides of anodic porous alumina, the current-voltage characteristics were examined, and reversible change in the resistance between metallic and insulating states was measured during mono-polar operation. This switching behavior could be measured for the sample with the depth of backside pores of about 100 μm. The bias voltage, at which the resistance state changed into the lower-resistance state from the higher-resistance state, decreased with decreasing the depth of backside pores, and the bias voltage was about 1 V in the case of the backside pores of about 10 μm.

  2. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  3. Sheet Metal Specialist 13-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course, adapted from military curriculum materials for use in vocational and technical education, provides training in the theory and practice of sheet metal work. Designed for student self-instruction (such as a correspondence course), the text consists of four volumes. Volume 1 discusses shop mathematics, measurement and layout tools,…

  4. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  5. Research on cutting path optimization of sheet metal parts based on ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.

  6. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property

    NASA Astrophysics Data System (ADS)

    Song, Tingting; Liu, Qi; Liu, Jingyuan; Yang, Wanlu; Chen, Rongrong; Jing, Xiaoyan; Takahashi, Kazunobu; Wang, Jun

    2015-11-01

    Inspired by natural plants such as Nepenthes pitcher plants, super slippery surfaces have been developed to improve the attributes of repellent surfaces. In this report, super slippery porous anodic aluminium oxide (AAO) surfaces have fabricated by a simple and reproducible method. Firstly, the aluminium substrates were treated by an anodic process producing micro-nano structured sheet-layered pores, and then immersed in Methyl Silicone Oil, Fluororalkylsilane (FAS) and DuPont Krytox, respectively, generating super slippery surfaces. Such a good material with excellent anti-corrosion property through a simple and repeatable method may be potential candidates for metallic application in anti-corrosion and extreme environment.

  7. On contact modelling in isogeometric analysis

    NASA Astrophysics Data System (ADS)

    Cardoso, R. P. R.; Adetoro, O. B.

    2017-11-01

    IsoGeometric Analysis (IGA) has proved to be a reliable numerical tool for the simulation of structural behaviour and fluid mechanics. The main reasons for this popularity are essentially due to: (i) the possibility of using higher order polynomials for the basis functions; (ii) the high convergence rates possible to achieve; (iii) the possibility to operate directly on CAD geometry without the need to resort to a mesh of elements. The major drawback of IGA is the non-interpolatory characteristic of the basis functions, which adds a difficulty in handling essential boundary conditions and makes it particularly challenging for contact analysis. In this work, the IGA is expanded to include frictionless contact procedures for sheet metal forming analyses. Non-Uniform Rational B-Splines (NURBS) are going to be used for the modelling of rigid tools as well as for the modelling of the deformable blank sheet. The contact methods developed are based on a two-step contact search scheme, where during the first step a global search algorithm is used for the allocation of contact knots into potential contact faces and a second (local) contact search scheme where point inversion techniques are used for the calculation of the contact penetration gap. For completeness, elastoplastic procedures are also included for a proper description of the entire IGA of sheet metal forming processes.

  8. Characterization of zinc alloy by sheet bulging test with analytical models and digital image correlation

    NASA Astrophysics Data System (ADS)

    Vitu, L.; Laforge, N.; Malécot, P.; Boudeau, N.; Manov, S.; Milesi, M.

    2018-05-01

    Zinc alloys are used in a wide range of application such as electronics, automotive and building construction. Their various shapes are generally obtained by metal forming operation such as stamping. Therefore, it is important to characterize the material with adequate characterization tests. Sheet Bulging Test (SBT) is well recognized in the metal forming community. Different theoretical models of the literature for the evaluation of thickness and radius of the deformed sheet in SBT have been studied in order to get the hardening curve of different materials. These theoretical models present the advantage that the experimental procedure is very simple. But Koç et al. showed their limitation, since the combination of thickness and radius evaluations depend on the material. As Zinc alloys are strongly anisotropic with a special crystalline structure, a procedure is adopted for characterizing the hardening curve of a Zinc alloy. The anisotropy is first studied with tensile test, and SBT with elliptical dies is also investigated. Parallel to this, Digital Image Correlation (DIC) measures are carried out. The results obtained from theoretical models and DIC measures are compared. Measures done on post-mortem specimens complete the comparisons. Finally, DIC measures give better results and the resulting hardening curve of the studied zinc alloy is provided.

  9. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    PubMed

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C; Kim, J; Park, S

    Purpose: Photon beams with energy higher than 10 MV interact with metal material in the primary barriers, where lead or steel have been widely used, neutrons can be generated. Monte Carlo simulations were performed to simulate the production of photoneutrons and the neutron shielding effect. Methods: For two photon beam energies, 15 MV and 18 MV, we simulated to strike metal sheets (steel and lead), and the ambient dose equivalents were calculated at the isocenter (in the patient plane) while delivering 1 Gy to the patient. For these cases, the thickness of the neutron shielding materials (Borated polyethylene (BPE) andmore » concrete) were simulated to reduce the patient exposure by neutron doses. Results: When 18 MV photons interact with the metal sheets in the primary barrier, the evaluated neutron doses at the isocenter inside the treatment vault were 48.7 µSv and 7.3 µSv for lead and steel, respectively. In case of 15 MV photons, the calculated neutron doses were 18.6 µSv and 0.6 µSv for lead and steel, respectively. The neutron dose delivered to the patient can be reduced to negligible levels by including a 10 cm thick sheet of BPE or 22 cm thick sheet of concrete. Conclusion: When bunker shielding is designed with a primary barrier including a metal sheet inside the wall for a high energy machine, proper neutron shielding should be constructed to avoid undesirable extra dose.« less

  11. Planar varactor frequency multiplier devices with blocking barrier

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.

  12. The 7 × 1 Fermi Surface Reconstruction in a Two-dimensional f -electron Charge Density Wave System: PrTe 3

    DOE PAGES

    Lee, Eunsook; Kim, D. H.; Kim, Hyun Woo; ...

    2016-07-25

    The electronic structure of a charge density wave (CDW) system PrTe 3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe 3more » are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along k z, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-E F Te 5p states.« less

  13. Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes.

    PubMed

    Kang, Hyungseok; Song, Sol-Ji; Sul, Young Eun; An, Byeong-Seon; Yin, Zhenxing; Choi, Yongsuk; Pu, Lyongsun; Yang, Cheol-Woong; Kim, Youn Sang; Cho, Sung Min; Kim, Jung-Gu; Cho, Jeong Ho

    2018-05-22

    In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO 3 . Solvated silver ions (Ag + ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.

  14. 75 FR 76037 - General Motors Corporation Grand Rapids Metal Center Metal Fabricating Division Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Corporation Grand Rapids Metal Center Metal Fabricating Division Including On-Site Leased Workers From... Corporation, Grand Rapids Metal Center, Metal Fabricating Division, including on- site leased workers from... of metal stampings and sub- assembled metal sheet components. The company reports that workers leased...

  15. Composite biaxially textured substrates using ultrasonic consolidation

    DOEpatents

    Blue, Craig A; Goyal, Amit

    2013-04-23

    A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.

  16. Study on electrical properties of metal/GaSb junctions using metal-GaSb alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishi, Koichi, E-mail: nishi@mosfet.t.u-tokyo.ac.jp; Yokoyama, Masafumi; Kim, Sanghyeon

    2014-01-21

    We study the metal-GaSb alloy formation, the structural properties and the electrical characteristics of the metal-alloy/GaSb diodes by employing metal materials such as Ni, Pd, Co, Ti, Al, and Ta, in order to clarify metals suitable for GaSb p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) as metal-GaSb alloy source/drain (S/D). It is found that Ni, Pd, Co, and Ti can form alloy with GaSb by rapid thermal annealing at 250, 250, 350, and 450 °C, respectively. The Ni-GaSb and Pd-GaSb alloy formation temperature of 250 °C is lower than the conventional dopant activation annealing for ion implantation, which enable us to lower the processmore » temperature. The alloy layers show lower sheet resistance (R{sub Sheet}) than that of p{sup +}-GaSb layer formed by ion implantation and activation annealing. We also study the electrical characteristics of the metal-alloy/GaSb junctions. The alloy/n-GaSb contact has large Schottky barrier height (ϕ{sub B}) for electrons, ∼0.6 eV, and low ϕ{sub B} for holes, ∼0.2 eV, which enable us to realize high on/off ratio in pMOSFETs. We have found that the Ni-GaSb/GaSb Schottky junction shows the best electrical characteristics with ideal factor (n) of 1.1 and on-current/off-current ratio (I{sub on}/I{sub off}) of ∼10{sup 4} among the metal-GaSb alloy/GaSb junctions evaluated in the present study. These electrical properties are also superior to those of a p{sup +}-n diode fabricated by Be ion implantation with activation annealing at 350 °C. As a result, the Ni-GaSb alloy can be regarded as one of the best materials to realize metal S/D in GaSb pMOSFETs.« less

  17. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  18. Separable fastening device

    DOEpatents

    Harvey, Andrew C.; Ribich, William A.; Marinaccio, Paul J.; Sawaf, Bernard E.

    1987-12-01

    A separable fastener system has a first separable member that includes a series of metal hook sheets disposed in stacked relation that defines an array of hook elements on its broad surface. Each hook sheet is a planar metal member of uniform thickness and has a body portion with a series of hook elements formed along one edge of the body. Each hook element includes a stem portion, a deflecting surface portion, and a latch portion. Metal spacer sheets are disposed between the hook sheets and may be varied in thickness and in number to control the density of the hook elements on the broad surface of the first fastener member. The hook and spacer sheets are secured together in stacked relation. A second fastener member has a surface of complementary engaging elements extending along its broad surface which are releasably interengageable with the hook elements of the first fastener member, the deflecting surfaces of the hook elements of the first fastener member tending to deflect hook engaging portions of the second fastener member and the latch portions of the hook elements of the first fastener member engaging portions of the second fastener member in fastening relation.

  19. The behavior of Aluminium Carbon/Epoxy fibre metal laminate under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Harun, W. S. W.; Salleh, Salwani Mohd; Merzuki, M. N. M.

    2017-10-01

    One of major concerns that related to the flight safety is impact of birds. To minimize the risks, there is need to increase the impact resistance of aircraft by developing a new material and has the good structural design of aircraft structures. The hybrid laminates are potential candidate material to be applied for the aircraft structures susceptible to bird strikes. The fibre metal laminate was fabricated by a compression moulding technique. The carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variations of the crosshead displacement in the quasi-static loading. The FML was modelled and analysed by using Explicit solver. Based on the experimental data of the quasi-static test, the result of 1 mm/min was 11.85 kN and higher than 5, 10, 50 and 100 mm/min which because of the aluminium ductility during the impact loading response. The numerical simulations were generally in good agreement with the experimental measurements.

  20. Phthalocyanine based metal containing porous carbon sheet

    NASA Astrophysics Data System (ADS)

    Honda, Z.; Sakaguchi, Y.; Tashiro, M.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.

    2017-03-01

    Highly-ordered fused-ring poly copper phthalocyanine (PCuPc) was prepared using copper octacyanophthalocyanine as a building block, and two-dimensional (2D) square superlattices were directly observed by the transmission electron microscopy. Remarkably, we have found a formation of polymer network that consists of a 2D porous PCuPc sheet in which the centers of phthalocyanine units are alternately occupied by Cu atom and vacancy. Using this "half-filling" PCuPc, it must be possible to create alternating arrangements for transition metal centers, and therefore control the magnetic properties of the 2D carbon sheets.

  1. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  2. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  3. Two-scale homogenization to determine effective parameters of thin metallic-structured films

    PubMed Central

    Marigo, Jean-Jacques

    2016-01-01

    We present a homogenization method based on matched asymptotic expansion technique to derive effective transmission conditions of thin structured films. The method leads unambiguously to effective parameters of the interface which define jump conditions or boundary conditions at an equivalent zero thickness interface. The homogenized interface model is presented in the context of electromagnetic waves for metallic inclusions associated with Neumann or Dirichlet boundary conditions for transverse electric or transverse magnetic wave polarization. By comparison with full-wave simulations, the model is shown to be valid for thin interfaces up to thicknesses close to the wavelength. We also compare our effective conditions with the two-sided impedance conditions obtained in transmission line theory and to the so-called generalized sheet transition conditions. PMID:27616916

  4. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  5. Dissipation in graphene and nanotube resonators

    NASA Astrophysics Data System (ADS)

    Seoánez, C.; Guinea, F.; Castro Neto, A. H.

    2007-09-01

    Different damping mechanisms in graphene nanoresonators are studied: charges in the substrate, ohmic losses in the substrate and the graphene sheet, breaking and healing of surface bonds (Velcro effect), two level systems, attachment losses, and thermoelastic losses. We find that, for realistic structures and contrary to semiconductor resonators, dissipation is dominated by ohmic losses in the graphene layer and metallic gate. An extension of this study to carbon nanotube-based resonators is presented.

  6. SparkJet Actuators for Flow Control

    DTIC Science & Technology

    2007-03-01

    volume. The ceramic component is inserted between a stainless steel holder and a threaded brass cap with a jewel orifice installed in the face (Fig. 3...single sheet of stainless steel shim stock. This metal structure is oriented vertically and clamped at the top and bottom in a Lexan® fixture. The...Laser interferometer arrangement for measuring thrust stand vibrations. In addition to a high natural frequency, the rigid design of the steel

  7. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velázquez, Daniel; Seibert, Rachel; Spentzouris, Linda

    We report on the growth of 1–10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO{sub 3}(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ∼780 cm{sup −1} and 1367.4 cm{supmore » −1}. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. Spectral analysis was performed by energy dispersive spectroscopy in order to identify the h-BN sheets after exfoliation. The use of thin film Ag allows for reduced use of Ag and makes it possible to adjust the surface morphology of the thin film prior to h-BN growth.« less

  9. Pulsed laser deposition of single layer, hexagonal boron nitride (white graphene, h-BN) on fiber-oriented Ag(111)/SrTiO3(001)

    NASA Astrophysics Data System (ADS)

    Velázquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff

    2016-03-01

    We report on the growth of 1-10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ˜780 cm-1 and 1367.4 cm-1. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. Spectral analysis was performed by energy dispersive spectroscopy in order to identify the h-BN sheets after exfoliation. The use of thin film Ag allows for reduced use of Ag and makes it possible to adjust the surface morphology of the thin film prior to h-BN growth.

  10. Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru

    2016-12-15

    Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.

  11. Development of oil canning index model for sheet metal forming products with large curvature

    NASA Astrophysics Data System (ADS)

    Kim, Honglae; Lee, Seonggi; Murugesan, Mohanraj; Hong, Seokmoo; Lee, Shanghun; Ki, Juncheol; Jung, Hunchul; Kim, Naksoo

    2017-09-01

    Oil canning is predominantly caused by unequal stretches and heterogeneous stress distributions in steel sheets, which affects the appearance of components and develop noise and vibration problems. This paper proposes the formulation of an Oil canning index (OCI) model that can predict the occurrence of oil canning in the sheet metal. To investigate the influence of material properties, we used electro-galvanized (EGI) and galvanized (GI) steel sheets with different thicknesses and processing conditions. Furthermore, this paper presents an appropriate experimental and numerical procedure for determining the sheet stiffness and indentation properties to evaluate the oil canning results. Experiments were carried out by varying the tensile force over different materials, thicknesses, and bead force. Comparison of the discrete results obtained from these experiments confirmed that the product shape characteristics, such as curvature, have a significant influence on the oil canning occurrence. Based on the results, we propose the new OCI model, which can effectively predict the oil canning occurrence owing to the shape curvature. Verification of the accuracy and usability of our model has been carried out by simulating the experiments that were done with the sheet metal. The authors observed a good agreement between the experimental and numerical results from the model. This research work can be considered as a very effective method for eliminating appearance defects from the automobile products.

  12. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    Various aspects of a sensitivity analysis, in particular, the impact of variations in metal sheet resistivity, metal line width, diffused layer sheet resistance, junction depth, base layer lifetime, optical coating thickness and optical coating refractive index and on process reproducibility for A's diffusion from a polymer dopant source and on module fabrication were studied. Model calculations show that acceptable process windows exist for each of these parameters.

  13. Method for producing solar energy panels by automation

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A solar cell panel was fabricated by photoetching a pattern of collector grid systems with appropriate interconnections and bus bar tabs into a glass or plastic sheet. These regions were then filled with a first, thin conductive metal film followed by a layer of a mixed metal oxide, such as InAsO or InSnO. The multiplicity of solar cells were bonded between the protective sheet at the sites of the collector grid systems and a back electrode substrate by conductive metal filled epoxy to complete the fabrication of an integrated solar panel.

  14. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  15. Advanced Process Possibilities in Friction Crush Welding of Aluminum, Steel, and Copper by Using an Additional Wire

    NASA Astrophysics Data System (ADS)

    Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.

    2017-12-01

    Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.

  16. Electromagnetic confinement and movement of thin sheets of molten metal

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1990-01-01

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  17. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    NASA Astrophysics Data System (ADS)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  18. Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue

    2017-12-01

    The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.

  19. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  20. Variably insulating portable heater/cooler

    DOEpatents

    Potter, Thomas F.

    1998-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  1. Material-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  2. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  3. Radiation-controlled dynamic vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  4. Variably insulating portable heater/cooler

    DOEpatents

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  5. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  6. Seal for fluid forming tools

    DOEpatents

    Golovashchenko, Sergey Fedorovich [Beverly Hills, MI; Bonnen, John Joseph Francis [Milford, MI

    2012-03-20

    An electro-hydraulic forming tool for forming a sheet metal blank in a one-sided die has first and second rigid rings that engage opposite sides of a sheet metal blank. The rigid rings are contained within slots on a die portion and a hydraulic force applicator portion of the forming tool. The seals are either resiliently biased by an elastomeric member or inherently resiliently biased into contact with the blank.

  7. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  8. A modular tooling set-up for incremental sheet forming (ISF) with subsequent stress-relief annealing under partial constraints

    NASA Astrophysics Data System (ADS)

    Maqbool, Fawad; Bambach, Markus

    2017-10-01

    Incremental sheet forming (ISF) is a manufacturing process most suitable for small-batch production of sheet metal parts. In ISF, a CNC-controlled tool moves over the sheet metal, following a specified contour to form a part of the desired geometry. This study focuses on one of the dominant process limitations associated with the ISF, i.e., the limited geometrical accuracy. In this regard, a case study is performed which shows that increased geometrical accuracy of the formed part can be achieved by a using stress-relief annealing before unclamping. To keep the tooling costs low, a modular die design consisting of a stiff metal frame and inserts made from inexpensive plastics (Sika®) were devised. After forming, the plastics inserts are removed. The metal frame supports the part during stress-relief annealing. Finite Element (FE) simulations of the manufacturing process are performed. Due to the residual stresses induced during the forming, the geometry of the formed part, from FE simulation and the actual manufacturing process, shows severe distortion upon unclamping the part. Stress relief annealing of the formed part under partial constraints exerted by the tool frame shows that a part with high geometrical accuracy can be obtained.

  9. Spectroscopic signatures of different symmetries of the superconducting order parameter in metal-decorated graphene

    NASA Astrophysics Data System (ADS)

    Saari, Timo; Nieminen, Jouko; Bansil, Arun

    2017-06-01

    Motivated by the recent experiments indicating superconductivity in metal-decorated graphene sheets, we investigate their quasi-particle structure within the framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-like pairing terms for p-type order parameter. The normal state band structure of graphene is modified not only through interaction with adsorbed metal atoms, but also due to the folding of bands at Brillouin zone boundaries resulting from a \\sqrt{3}× \\sqrt{3}R{{30}\\circ} reconstruction. Several different types of pairing symmetries are analyzed utilizing Nambu-Gorkov Green’s function techniques to show that p+\\text{i}p -symmetric nearest-neighbor pairing yields the most enhanced superconducting gap. The character of the order parameter depends on the nature of the atomic orbitals involved in the pairing process and exhibits interesting angular and radial asymmetries. Finally, we suggest a method to distinguish between singlet and triplet type superconductivity in the presence of magnetic substitutional impurities using scanning tunneling spectroscopy.

  10. Ni nanoparticles decorated onto graphene oxide with SiO2 as interlayer for high performance on histidine-rich protein separation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodan; Zhang, Min; Zheng, Jing; Li, Weizhen; Gan, Wenjun; Xu, Jingli; Hayat, Tasawar; Alharbi, Njud S.; Yang, Fan

    2018-05-01

    Sandwich-like structure of graphene oxide (GO) @SiO2@C-Ni nanosheets were prepared by combining an extended stöber method with subsequent carbonization treatment, in which polydopamine was used as reducing agent and carbon source. Firstly, the GO nanosheets were covered with SiO2 interlayer and finally coated with a outer shell of nickel ion doped polydopamine (PDA-Ni2+) with an extended stöber method. Followed by a carbonization to produce the GO@SiO2@C-Ni sheets with metallic nickel nanoparticles embedded in PDA-derived thin graphic carbon layer. Notably, silica interlayer played a vital role in the formation of such GO@SiO2@C-Ni sheets. Without the protection of SiO2, the hydrophobic graphene@C-Ni composites were obtained instead. While with silica layer as the spacer, the obtained hydrophilic GO@SiO2@C-Ni composites were not only well dispersed in the solution, but also can be adjusted in terms of the size and density of Ni nanoparticles (NPs) on surface by changing the calcination temperature or the molar ratio between dopamine and nickel salt. Furthermore, nickel nanoparticles decorated on GO@SiO2 sheets were employed to enrich His-rich proteins (BHb and BSA) via specific metal affinity force between polyhistidine groups and nickel nanoparticles.

  11. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  12. Conducting tin halides with a layered organic-based perovskite structure

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  13. Crystal structure of tin(II) perchlorate trihydrate

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Köhler, Martin; Voigt, Wolfgang

    2014-01-01

    The title compound, [Sn(H2O)3](ClO4)2, was synthesized by the redox reaction of copper(II) perchlorate hexa­hydrate and metallic tin in perchloric acid. Both the trigonal–pyramidal [Sn(H2O)3]2+ cations and tetra­hedral perchlorate anions lie on crystallographic threefold axes. In the crystal, the cations are linked to the anions by O—H⋯O hydrogen bonds, generating (001) sheets. PMID:25552969

  14. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?

    PubMed

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2015-02-21

    Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

  15. ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2).

    PubMed

    Ostadhossein, Alireza; Rahnamoun, Ali; Wang, Yuanxi; Zhao, Peng; Zhang, Sulin; Crespi, Vincent H; van Duin, Adri C T

    2017-02-02

    Two-dimensional layers of molybdenum disulfide, MoS 2 , have been recognized as promising materials for nanoelectronics due to their exceptional electronic and optical properties. Here we develop a new ReaxFF reactive potential that can accurately describe the thermodynamic and structural properties of MoS 2 sheets, guided by extensive density functional theory simulations. This potential is then applied to the formation energies of five different types of vacancies, various vacancy migration barriers, and the transition barrier between the semiconducting 2H and metallic 1T phases. The energetics of ripplocations, a recently observed defect in van der Waals layers, is examined, and the interplay between these defects and sulfur vacancies is studied. As strain engineering of MoS 2 sheets is an effective way to manipulate the sheets' electronic and optical properties, the new ReaxFF description can provide valuable insights into morphological changes that occur under various loading conditions and defect distributions, thus allowing one to tailor the electronic properties of these 2D crystals.

  16. A study of thermal conductivity in graphene diodes and transistors with intrinsic defects and subjected to metal impurities

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Rezapour, Navid

    2016-12-01

    In this paper, the effect of the presence of cavities resulting from the fabrication process and the effect of common metal impurities added during the synthesis process on the thermal conductivity of single-layer graphene sheets, diodes and transistors have been investigated by using the Reverse Non Equilibrium Molecular Dynamics (RNEMD) method. The obtained results show that thermal conductivity generally diminishes by increasing the concentration of nanoparticles and increases when porosities and impurities are at the edges of sheets. Regarding a better thermal management in graphene with the addition of nanoparticles, and considering its existing porosity, a lower thermal conductivity is achieved by adding more nanoparticles. By increasing the diameter of pores from 0.5 nm to 4.4 nm in a specific single-layer graphene sheet, thermal conductivity diminishes from 67 W/mk to 1.43 W/mk; while it diminishes from 45 to 1.0 W/mk for the same structure containing both the defects and nanoparticles over the defects. In evaluating the influences of cavities and metallic nanoparticles on thermal conductivity, it was observed that changing the share of cavities or nanoparticles has a significant effect on the thermal conductivity of graphene diodes and transistors. The rectification efficiency of diodes diminished from about 100% for the defect-free diode to about 19% for the diode containing 2 nm cavities and then increased to 75% for the diode with 5 nm cavities. While, with the increase in the concentration of iron nanoparticles, the rectification efficiency increased from about 100% for the diode with no iron particles to about 255% for the diode containing 13 wt % of iron particles. Final results demonstrate that the metallic nanoparticles and also defects with specific diameters can be effectively exploited to increase or decrease the efficiency of nanodiodes and nanotransistors. This leads to engineered design of nanodiodes and nanotransistors for various applications.

  17. Methodology of shell structure reinforcement layout optimization

    NASA Astrophysics Data System (ADS)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  18. 25. VIEW TO NORTHWEST, ENGINE PUMP EXTENSION, DETAIL OF SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW TO NORTHWEST, ENGINE PUMP EXTENSION, DETAIL OF SHEET METAL MOLDING TO OPENING BETWEEN ENGINE/PUMP HOUSE AND ENGINE/PUMP HOUSE EXTENSION - Deer Island Pumping Station, Boston, Suffolk County, MA

  19. Thermal crystallization mechanism of silk fibroin protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao

    In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor stage before crystallization. (3) The beta-sheet crystallization kinetics in silk fibroin protein were measured using X-ray, FTIR and heat flow, and the structure reveals the formation mechanism of the silk crystal network. Avrami kinetics theories, which were established for studies of synthetic polymer crystal growth, were for the first time extended to investigate protein self-assembly in multiblock silk fibroin samples. The Avrami exponent, n, was close to two for all methods, indicating formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in most synthetic homopolymers. A microphase separation pattern after chymotrypsin enzyme biodegradation was shown in the protein structures using scanning electron microscopy. A model was then used to explain the crystallization of silk fibroin protein by analogy to block copolymers. (4) The effects of metal ions during the crystallization of silk fibroin was investigated using thermal analysis. Advanced thermal analysis methods were used to analyze the thermal protein-metallic ion interactions in silk fibroin proteins. Results show that K+ and Ca2+ metallic salts play different roles in silk fibroin proteins, which either reduce (K+) or increase (Ca2+ ) the glass transition (Tg) of pure silk protein and affect the thermal stability of this structure.

  20. Single point incremental forming: Formability of PC sheets

    NASA Astrophysics Data System (ADS)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  1. Comparison of bursting pressure results of LPG tank using experimental and finite element method.

    PubMed

    Aksoley, M Egemen; Ozcelik, Babur; Bican, Ismail

    2008-03-01

    In this study, the resistance of liquefied-petroleum gas (LPG) tanks produced from carbon steel sheet metal of different thicknesses has been investigated by bursting pressure experiments and non-linear Finite Element Method (FEM) method by increasing internal pressure values. The designs of LPG tanks produced from sheet metal to be used at the study have been realized by analytical calculations made taking into consideration of related standards. Bursting pressure tests have been performed that were inclined to decreasing the sheet thickness of LPG tanks used in industry. It has been shown that the LPG tanks can be produced in compliance with the standards when the sheet thickness is lowered from 3 to 2.8mm. The FEM results have displayed close values with the bursting results obtained from the experiments.

  2. Ultrathin rhodium nanosheets.

    PubMed

    Duan, Haohong; Yan, Ning; Yu, Rong; Chang, Chun-Ran; Zhou, Gang; Hu, Han-Shi; Rong, Hongpan; Niu, Zhiqiang; Mao, Junjie; Asakura, Hiroyuki; Tanaka, Tsunehiro; Dyson, Paul Joseph; Li, Jun; Li, Yadong

    2014-01-01

    Despite significant advances in the fabrication and applications of graphene-like materials, it remains a challenge to prepare single-layered metallic materials, which have great potential applications in physics, chemistry and material science. Here we report the fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method. Atomic force microscope shows that the thickness of a rhodium nanosheet is <4 Å. Electron diffraction and X-ray absorption spectroscopy measurements suggest that the rhodium nanosheets are composed of planar single-atom-layered sheets of rhodium. Density functional theory studies reveal that the single-layered Rh nanosheet involves a δ-bonding framework, which stabilizes the single-layered structure together with the poly(vinylpyrrolidone) ligands. The poly(vinylpyrrolidone)-supported single-layered rhodium nanosheet represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.

  3. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  4. A novel mixed-metal borate with large [B12O18(OH)6]6- motif: Synthesis, structure and property

    NASA Astrophysics Data System (ADS)

    Wei, Li; Pan, Jie; Xue, Zhen-Zhen; Wang, Guo-Ming; Wang, Ying-Xia

    2018-01-01

    A new mixed-metal polyborate, Na5Li[B12O18(OH)6]·2H2O (1), has been synthesized using solvothermal method and characterized by IR spectroscopy, thermogravimetric analysis, UV-Vis spectroscopy, powder and single-crystal X-ray diffraction, respectively. It crystallizes in the trigonal space group R-3c (No. 167) with unit cell parameters of a = b = 9.6767(6) Å, c = 36.358(5) Å, and Z = 6. Its structure features unprecedented 3D framework constructed from novel honeycomb-shaped inorganic Na-O sheets with unique 12-MR sodium rings and supramolecular polyborate 2D layers of lithium-centered [B12O18(OH)6]6-. UV-Vis spectral characterization indicates that compound 1 is a wide-band-gap semiconductor.

  5. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    NASA Astrophysics Data System (ADS)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  6. An artificial vision solution for reusing discarded parts resulted after a manufacturing process

    NASA Astrophysics Data System (ADS)

    Cohal, V.; Cohal, A.

    2016-08-01

    The profit of a factory can be improved by reusing the discarded components produced. This paper is based on the case of a manufacturing process where rectangular metallic sheets of different sizes are produced. Using an artificial vision system, the shapes and the sizes of the produced parts can be determined. Those sheets which do not respect the requirements imposed are labeled as discarded. Instead of throwing these parts, a decision algorithm can analyze if another metallic sheet with smaller dimensions can be obtained from these. Two methods of decision are presented in this paper, considering the restriction that the sides of the new sheet has to be parallel with the axis of the coordinate system. The coordinates of each new part obtained from a discarded sheet are computed in order to be delivered to a milling machine. Details about implementing these algorithms (image processing and decision respectively) in the MATLAB environment using Image Processing Toolbox are given.

  7. Efficient Adsorption Characteristics of Pristine and Silver-Doped Graphene Oxide Towards Contaminants: A Potential Membrane Material for Water Purification?

    PubMed

    Panigrahi, Puspamitra; Dhinakaran, Ashok Kumar; Sekar, Yuvaraj; Ahuja, Rajeev; Hussain, Tanveer

    2018-05-16

    In this work, we have investigated the potential of pristine and silver (Ag)-functionalized graphene oxide monolayers GO (GO-Ag) as efficient membranes for water filtration. Our first principles calculations based on density functional theory (DFT) reveal the hydrophilic nature of GO surfaces. The phonon frequency calculations within density functional perturbation theory (DFPT) confirmed the stability of GO sheets in aqueous media. Van der Waals-corrected binding energies of GO sheet towards heavy metals suggest that even pristine GO sheets are completely impermeable to various heavy metals like arsenic (As) and lead (Pb). However, compared to GO, the GO-Ag sheets have a much higher affinity towards the three amino acids histidine, phenyl-alanine and tyrosine, which are the main component of a bacteria cell wall. The GO-Ag sheet is found to be extremely efficient for bacteria inactivation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and ab initioStructure Determination from Powder X-Ray Diffraction Data of a New Metallic Mixed-Valence Platinum-Lead Oxide PbPt 2O 4

    NASA Astrophysics Data System (ADS)

    Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.

    1996-07-01

    The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).

  9. Amine-controlled assembly of metal-sulfite architecture from 1D chains to 3D framework.

    PubMed

    Austria, Cristina; Zhang, Jian; Valle, Henry; Zhang, Qichun; Chew, Emily; Nguyen, Dan-Tam; Gu, J Y; Feng, Pingyun; Bu, Xianhui

    2007-08-06

    Whereas open-framework materials have been made in a variety of chemical compositions, few are known in which 3-connected SO3(2)- anions serve as basic building units. Here, we report four new metal-sulfite polymeric structures, (ZnSO3)Py (1, py = pyridine), (ZnSO3)2(2,2'-bipy)H2O (2, 2,2'-bipy = 2,2'-bipyridine), (ZnSO3)2(TMDPy) (3, TMDPy = 4,4'-trimethylenedipyridine), and (MnSO3)2en (4, en = ethylenediamine) that have been synthesized hydrothermally and structurally characterized. In these compounds, low-dimensional 1D and 2D inorganic subunits are assembled into higher 2D or 3D covalent frameworks by organic ligands. In addition to the structure-directing effect of organic ligands, the flexible coordination chemistry of Zn2+ and SO3(2)- also contributes to the observed structural diversity. In compounds 1-3, Zn2+ sites alternate with trigonal pyramidal SO3(2)- anions to form three types of [ZnSO3]n chains, whereas in compound 4, a 2D-corrugated [MnSO3]n layer is present. Compound 1 features a rail-like chain with pendant pyridine rings. The pi-pi interaction between 2,2'-bipy ligands is found between adjacent chains in compound 2, resulting in 2D sheets that are further stacked through interlayer hydrogen bonds. Compound 3 exhibits a very interesting inorganic [(ZnSO3)2]n chain constructed from two chairlike subunits, and such chains are bridged by TMDPy ligands into a 2D sheet. In compound 4, side-by-side helical chains permeate through 2D-corrugated [MnSO3]n layers, which are pillared by neutral ethylenediamine molecules into a 3D framework that can be topologically represented as a (3,6)-connected net. The results presented here illustrate the rich structural chemistry of metal-sulfites and the potential of sulfite anions as a unique structural building block for the construction of novel open-framework materials, in particular, those containing polymeric inorganic subunits that may have interesting physical properties such as low-dimensional magnetism or electronic properties.

  10. Seals, Concrete Anchors, and Connections

    DTIC Science & Technology

    1989-02-01

    brick. Medium to heavy I.. loads cannot be safely fastened to soft masonry materials (stuc-. : - . co. grout. plaster or plasterboard ) since such...588C, Type 1. Class A. Style 1 Use in: All masonry material Use in: Block, wallboard , plaster , hollow tile Use with: Sheet metal, wood or lag screws... Wallboard . plaster , paneling Use in: Wallboard or solid masonry Use with: No (- oer fastener needed Use with: Sheet metal screw Made of: Ste( Made of

  11. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.

  12. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  13. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  14. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers

    PubMed Central

    2017-01-01

    We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm–2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm–2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures. PMID:28470028

  15. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers.

    PubMed

    Deutsch, Christoph; Kainz, Martin Alexander; Krall, Michael; Brandstetter, Martin; Bachmann, Dominic; Schönhuber, Sebastian; Detz, Hermann; Zederbauer, Tobias; MacFarland, Donald; Andrews, Aaron Maxwell; Schrenk, Werner; Beck, Mattias; Ohtani, Keita; Faist, Jérôme; Strasser, Gottfried; Unterrainer, Karl

    2017-04-19

    We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 10 10 cm -2 , the highest peak output power of 151 mW is found for 7.3 × 10 10 cm -2 . Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.

  16. A New Approach to the Computer Modeling of Amorphous Nanoporous Structures of Semiconducting and Metallic Materials: A Review

    PubMed Central

    Romero, Cristina; Noyola, Juan C.; Santiago, Ulises; Valladares, Renela M.; Valladares, Alexander; Valladares, Ariel A.

    2010-01-01

    We review our approach to the generation of nanoporous materials, both semiconducting and metallic, which leads to the existence of nanopores within the bulk structure. This method, which we have named as the expanding lattice method, is a novel transferable approach which consists first of constructing crystalline supercells with a large number of atoms and a density close to the real value and then lowering the density by increasing the volume. The resulting supercells are subjected to either ab initio or parameterized—Tersoff-based—molecular dynamics processes at various temperatures, all below the corresponding bulk melting points, followed by geometry relaxations. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions without the need of incorporating ad hoc semiconducting atomic structural elements such as graphene-like sheets and/or chain-like patterns (reconstructive simulations) or of reproducing the experimental processes (mimetic simulations). We report radial (pair) distribution functions, nanoporous structures of C and Si, and some computational predictions for their vibrational density of states. We present numerical estimates and discuss possible applications of semiconducting materials for hydrogen storage in potential fuel tanks. Nanopore structures for metallic elements like Al and Au also obtained through the expanding lattice method are reported.

  17. Manufacturing of GLARE Parts and Structures

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2003-07-01

    GLARE is a hybrid material consisting of alternating layers of metal sheets and composite layers, requiring special attention when manufacturing of parts and structures is concerned. On one hand the applicable manufacturing processes for GLARE are limited, on the other hand, due to the constituents and composition of the laminate, it offers new opportunities for production. One of the opportunities is the manufacture of very large skin panels by lay-up techniques. Lay-up techniques are common for full composites, but uncommon for metallic structures. Nevertheless, large GLARE skin panels are made by lay-up processes. In addition, the sequences of forming and laminating processes, that can be selected, offer manufacturing options that are not applicable to metals or full composites. With respect to conventional manufacturing processes, the possibilities for Fibre Metal Laminates in general, are limited. The limits are partly due to the different failure modes, partly due to the properties of the constituents in the laminate. For machining processes: the wear of the cutting tools during machining operations of GLARE stems from the abrasive nature of the glass fibres. For the forming processes: the limited formability, expressed by a small failure strain, is related to the glass fibres. However, although these manufacturing issues may restrict the use of manufacturing processes for FMLs, application of these laminates in aircraft is not hindered.

  18. Dimensionally Controlled Lithiation of Chromium Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fister, Tim T.; Hu, Xianyi; Esbenshade, Jennifer

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-raymore » reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.« less

  19. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions.

    PubMed

    Zhang, Yanhong; Weng, Xuefei; Li, Huan; Li, Haobo; Wei, Mingming; Xiao, Jianping; Liu, Zhi; Chen, Mingshu; Fu, Qiang; Bao, Xinhe

    2015-05-13

    In heterogeneous catalysis molecule-metal interaction is often modulated through structural modifications at the surface or under the surface of the metal catalyst. Here, we suggest an alternative way toward this modulation by placing a two-dimensional (2D) cover on the metal surface. As an illustration, CO adsorption on Pt(111) surface has been studied under 2D hexagonal boron nitride (h-BN) overlayer. Dynamic imaging data from surface electron microscopy and in situ surface spectroscopic results under near ambient pressure conditions confirm that CO molecules readily intercalate monolayer h-BN sheets on Pt(111) in CO atmosphere but desorb from the h-BN/Pt(111) interface even around room temperature in ultrahigh vacuum. The interaction of CO with Pt has been strongly weakened due to the confinement effect of the h-BN cover, and consequently, CO oxidation at the h-BN/Pt(111) interface was enhanced thanks to the alleviated CO poisoning effect.

  20. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  1. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    PubMed Central

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  2. CVD graphene sheets electrochemically decorated with "core-shell" Co/CoO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bayev, V. G.; Fedotova, J. A.; Kasiuk, J. V.; Vorobyova, S. A.; Sohor, A. A.; Komissarov, I. V.; Kovalchuk, N. G.; Prischepa, S. L.; Kargin, N. I.; Andrulevičius, M.; Przewoznik, J.; Kapusta, Cz.; Ivashkevich, O. A.; Tyutyunnikov, S. I.; Kolobylina, N. N.; Guryeva, P. V.

    2018-05-01

    The paper reports on the first successful fabrication of Co-graphene composites by electrochemical deposition of Co nanoparticles (NPs) on the sheets of twisted graphene. Characterization of the surface morphology and element mapping of twisted graphene decorated with Co NPs by transmission and scanning electron microscopy in combination with the energy-dispersive X-ray spectroscopy reveals the formation of isolated quasi-spherical oxidized Co NPs with the mean diameter 〈 d〉 ≈ 220 nm and core-shell structure. X-ray photoelectron spectroscopy indicates that the core of deposited NPs consists of metal Co while the shell is CoO. Composite Co-graphene samples containing core-shell NPs reveal an exchange bias field up to 160 Oe at 4 K as detected by vibrating sample magnetometry after the field cooling procedure.

  3. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  4. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  5. Finite element simulation and Experimental verification of Incremental Sheet metal Forming

    NASA Astrophysics Data System (ADS)

    Kaushik Yanamundra, Krishna; Karthikeyan, R., Dr.; Naranje, Vishal, Dr

    2018-04-01

    Incremental sheet metal forming is now a proven manufacturing technique that can be employed to obtain application specific, customized, symmetric or asymmetric shapes that are required by automobile or biomedical industries for specific purposes like car body parts, dental implants or knee implants. Finite element simulation of metal forming process is being performed successfully using explicit dynamics analysis of commercial FE software. The simulation is mainly useful in optimization of the process as well design of the final product. This paper focuses on simulating the incremental sheet metal forming process in ABAQUS, and validating the results using experimental methods. The shapes generated for testing are of trapezoid, dome and elliptical shapes whose G codes are written and fed into the CNC milling machine with an attached forming tool with a hemispherical bottom. The same pre-generated coordinates are used to simulate a similar machining conditions in ABAQUS and the tool forces, stresses and strains in the workpiece while machining are obtained as the output data. The forces experimentally were recorded using a dynamometer. The experimental and simulated results were then compared and thus conclusions were drawn.

  6. Interfacial growth of large-area single-layer metal-organic framework nanosheets

    PubMed Central

    Makiura, Rie; Konovalov, Oleg

    2013-01-01

    The air/liquid interface is an excellent platform to assemble two-dimensional (2D) sheets of materials by enhancing spontaneous organizational features of the building components and encouraging large length scale in-plane growth. We have grown 2D molecularly-thin crystalline metal-organic-framework (MOF) nanosheets composed of porphyrin building units and metal-ion joints (NAFS-13) under operationally simple ambient conditions at the air/liquid interface. In-situ synchrotron X-ray diffraction studies of the formation process performed directly at the interface were employed to optimize the NAFS-13 growth protocol leading to the development of a post-injection method –post-injection of the metal connectors into the water subphase on whose surface the molecular building blocks are pre-oriented– which allowed us to achieve the formation of large-surface area morphologically-uniform preferentially-oriented single-layer nanosheets. The growth of such large-size high-quality sheets is of interest for the understanding of the fundamental physical/chemical properties associated with ultra-thin sheet-shaped materials and the realization of their use in applications. PMID:23974345

  7. Visible Thermochromism in Vanadium Pentoxide Coatings.

    PubMed

    Kumar, Sunil; Qadir, Awais; Maury, Francis; Bahlawane, Naoufal

    2017-06-28

    Although di-vanadium pentoxide (V 2 O 5 ) has been a candidate of extensive research for over half a century, its intrinsic thermochromism has not been reported so far. Films of V 2 O 5 grown on silicon, glass, and metal substrates by metal organic chemical vapor deposition in this study exhibit a thermally induced perceptible color change from bright yellow to deep orange. Temperature-dependent UV-vis spectroscopy and X-ray diffraction allow the correlation between the reversible continuous red shift of the absorption and the anisotropic thermal expansion along the (001) direction, that is, perpendicular to the sheets constituting the layered structure. Furthermore, the possibility of tuning the thermochromic behavior was demonstrated via a chemical doping with chromium.

  8. Integrated circuit package with lead structure and method of preparing the same

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W. (Inventor)

    1973-01-01

    A beam-lead integrated circuit package assembly including a beam-lead integrated circuit chip, a lead frame array bonded to projecting fingers of the chip, a rubber potting compound disposed around the chip, and an encapsulating molded plastic is described. The lead frame array is prepared by photographically printing a lead pattern on a base metal sheet, selectively etching to remove metal between leads, and plating with gold. Joining of the chip to the lead frame array is carried out by thermocompression bonding of mating goldplated surfaces. A small amount of silicone rubber is then applied to cover the chip and bonded joints, and the package is encapsulated with epoxy resin, applied by molding.

  9. Line-source excited impulsive EM field response of thin plasmonic metal films

    NASA Astrophysics Data System (ADS)

    Štumpf, Martin; Vandenbosch, Guy A. E.

    2013-08-01

    In this paper, reflection against and transmission through thin plasmonic metal films, basic building blocks of many plasmonic devices, are analytically investigated directly in the time domain for an impulsive electric and magnetic line-source excitation. The electromagnetic properties of thin metallic films are modeled via the Drude model. The problem is formulated with the help of approximate thin-sheet boundary conditions and the analysis is carried out using the Cagniard-DeHoop technique. Closed-form space-time expressions are found and discussed. The obtained time-domain analytical expressions reveal the existence of the phenomenon of transient oscillatory surface effects along a plasmonic metal thin sheet. Illustrative numerical examples of transmitted/reflected pulsed fields are provided.

  10. A numerical analysis on forming limits during spiral and concentric single point incremental forming

    NASA Astrophysics Data System (ADS)

    Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.

    2017-01-01

    Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.

  11. Research on the Micro Sheet Stamping Process Using Plasticine as Soft Punch

    PubMed Central

    Wang, Xiao; Zhang, Di; Gu, Chunxing; Shen, Zongbao; Liu, Huixia

    2014-01-01

    Plasticine is widely used in the analysis of metal forming processes, due to its excellent material flow ability. In this study, plasticine is used as the soft punch to fabricate array micro-channels on metal sheet in the micro sheet stamping process. This is because plasticine can produce a large material flow after being subjected to force and through the material flow, the plasticine can cause the sheet to fill into the micro-channels of the rigid die, leading to the generation of micro-channels in the sheet. The distribution of array micro-channels was investigated as well as the influence of load forces on the sheet deformations. It was found that the depth of micro-channels increases as the load force increases. When the load force reaches a certain level, a crack can be observed. The micro sheet stamping process was also investigated by the method of numerical simulation. The obtained experimental and numerical results for the stamping process showed that they were in good agreement. Additionally, from the simulation results, it can be seen that the corner region of the micro-channel-shape work piece has a risk to crack due to the existence of maximum von Mises stress and significant thinning. PMID:28788668

  12. Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene-TiO 2 prototype

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Liu, Zongyuan; ...

    2015-08-20

    Graphane, graphone and hydrogenated graphene (HG) have been extensively studied in recent years due to their interesting properties and potential use in commercial and industrial applications. The present study reports investigation of hydrogenated graphene/TiO 2-x (HGT) nanocomposites as photocatalysts for H 2 and O 2 production from water without the assistance of a noble metal co-catalyst. By combination of several techniques, the morphologies, bulk/atomic structure and electronic properties of all the powders were exhaustively interrogated. Hydrogenation treatment efficiently reduces TiO 2 nanoparticles, while the graphene oxide sheets undergo the topotactic transformation from a graphene-like structure to a mixture of graphiticmore » and turbostratic carbon (amorphous/disordered) upon altering the calcination atmosphere from a mildly reducing to a H 2-abundant environment. Remarkably, the hydrogenated graphene-TiO 2-x composite that results upon H 2-rich reduction exhibits the highest photocatalytic H 2 evolution performance equivalent to low loading of Pt (~0.12 wt%), whereas the addition of HG suppresses the O 2 production. As a result, we propose that such an enhancement can be attributed to a combination of factors including the introduction of oxygen vacancies and Ti 3+ states, retarding the recombination of charge carriers and thus, facilitating the charge transfer from TiO 2-x to the carbonaceous sheet.« less

  13. Metal Fabricating Specialist (AFSC 55252).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This seven-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for metal fabricating specialists. Covered in the individual volumes are general subjects (career progression, management of activities and resources, shop mathematics, and characteristics of metals); sheet metal tools and equipment…

  14. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  15. Properties of hot-rolled sheets from ferritic steel with increased strength

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.

    2017-10-01

    Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.

  16. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  17. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  18. Structural analysis of jewelry from the Moche tomb of the `lady of Cao' by X-ray digital radiography

    NASA Astrophysics Data System (ADS)

    Azeredo, S. R.; Cesareo, R.; Franco, R.; Fernandez, A.; Bustamante, A.; Lopes, R. T.

    2018-04-01

    Nose ornaments from the tomb of the `Lady of Cao', a mummified woman representative of the Moche culture and dated to the third-or-fourth century AD, were analyzed by X-ray digital radiography. These spectacular gold and silver jewels are some of the most sophisticated metalworking ever produced in ancient America. The Mochecivilization flourished along the north coast of present-day Peru, between the Andes and the Pacific Ocean, approximately between 100 and 600 AD. The Moche were very sophisticated artisans and metal smiths, being considered the finest producers of jewels and artifacts of the region. A portable X-ray digital radiography (XDR) system consisting of a flat panel detector with high resolution image and a mini X-ray tube was used for the structural analysis of the Moche jewels aiming at inferring different joining methods of the silver-gold sheets. The radiographic analysis showed some differences in the joint of the silver-and-gold sheets. Presence of filler material and adhesive for joining the silver-and-gold sheets was visible as well as silver-gold junctions without filler material (or with a material invisible in radiography). Furthermore, the technique demonstrated the advantage of using a portable XDR micro system when the sample cannot be brought to the laboratory.

  19. Electron acceleration by surface plasma waves in double metal surface structure

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  20. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOEpatents

    Kuznetsov, Stephen B.

    1987-01-01

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.

  1. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOEpatents

    Kuznetsov, S.B.

    1987-01-13

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.

  2. Laser penetration spike welding: a welding tool enabling novel process and design opportunities

    NASA Astrophysics Data System (ADS)

    Dijken, Durandus K.; Hoving, Willem; De Hosson, J. Th. M.

    2002-06-01

    A novel method for laser welding for sheet metal. is presented. This laser spike welding method is capable of bridging large gaps between sheet metal plates. Novel constructions can be designed and manufactured. Examples are light weight metal epoxy multi-layers and constructions having additional strength with respect to rigidity and impact resistance. Its capability to bridge large gaps allows higher dimensional tolerances in production. The required laser systems are commercially available and are easily implemented in existing production lines. The lasers are highly reliable, the resulting spike welds are quickly realized and the cost price per weld is very low.

  3. 47 CFR 32.101 - Structure of the balance sheet accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Structure of the balance sheet accounts. 32.101... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.101 Structure of the balance sheet accounts. The Balance Sheet accounts shall be maintained as follows...

  4. 47 CFR 32.101 - Structure of the balance sheet accounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Structure of the balance sheet accounts. 32.101... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.101 Structure of the balance sheet accounts. The Balance Sheet accounts shall be maintained as follows...

  5. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    NASA Astrophysics Data System (ADS)

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-01

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  6. Metals. Industrial Arts. Performance Objectives, Junior High School.

    ERIC Educational Resources Information Center

    Bunch, Edwood; And Others

    Several intermediate performance objectives and corresponding criterion measures are listed for a metals course for seventh, eighth, and ninth grade students. The seventh grade section includes 13 terminal objectives for a 9-week course and provides exploratory units in bench metals and sheet metals. Industrial materials and processes receive…

  7. Large area nanoscale metal meshes for use as transparent conductive layers.

    PubMed

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-21

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.

  8. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  9. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics.

    PubMed

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-05-27

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.

  10. Metallic conductance at the interface of tri-color titanate superlattices

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Cao, Yanwei; Liu, Xiaoran; Middey, S.; Meyers, D.; Chakhalian, J.

    2013-12-01

    Ultra-thin tri-color (tri-layer) titanate superlattices ([3 u.c. LaTiO3/2 u.c. SrTiO3/3 u.c. YTiO3], u.c. = unit cells) were grown in a layer-by-layer way on single crystal TbScO3 (110) substrates by pulsed laser deposition. High sample quality and electronic structure were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [3 u.c. LaTiO3/2 u.c. SrTiO3] bi-layers and all the tri-color structures, whereas a [3 u.c. YTiO3/2 u.c. SrTiO3] bi-layer shows insulating behavior. Considering that in the bulk YTiO3 is ferromagnetic below 30 K, the tri-color titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas with Mott carriers.

  11. Robust ferromagnetism in monolayer chromium nitride

    PubMed Central

    Zhang, Shunhong; Li, Yawei; Zhao, Tianshan; Wang, Qian

    2014-01-01

    Design and synthesis of two-dimensional (2D) materials with robust ferromagnetism and biocompatibility is highly desirable due to their potential applications in spintronics and biodevices. However, the hotly pursued 2D sheets including pristine graphene, monolayer BN, and layered transition metal dichalcogenides are nonmagnetic or weakly magnetic. Using biomimetic particle swarm optimization (PSO) technique combined with ab initio calculations we predict the existence of a 2D structure, a monolayer of rocksalt-structured CrN (100) surface, which is both ferromagnetic and biocompatible. Its dynamic, thermal and magnetic stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Analyses of its band structure and density of states reveal that this material is half-metallic, and the origin of the ferromagnetism is due to p-d exchange interaction between the Cr and N atoms. We demonstrate that the displayed ferromagnetism is robust against thermal and mechanical perturbations. The corresponding Curie temperature is about 675 K which is higher than that of most previously studied 2D monolayers. PMID:24912562

  12. Sandwich Panels Evaluated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2004-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment systems for next-generation engines. The bond strength between the core and face sheets is critical in maintaining the structural integrity of the sandwich structure. To improve the inspection and production of these systems, researchers at the NASA Glenn Research Center are using nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, to evaluate the brazing quality between the face plates and the metallic foam core. The capabilities and limitations of a swept-frequency approach to ultrasonic spectroscopy were evaluated with respect to these sandwich structures. This report discusses results from three regions of a sandwich panel representing different levels of brazing quality between the outer face plates and a metallic foam core. Each region was investigated with ultrasonic spectroscopy. Then, on the basis of the NDE results, three shear specimens sectioned from the sandwich panel to contain each of these regions were mechanically tested.

  13. Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Sellappan, V.; He, T.; Seyr, Norbert; Obieglo, Andreas; Erdmann, Marc; Holzleitner, Jochen

    2009-03-01

    Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.

  14. Heating Effect on Manufacturing Li4Ti5O12 Electrode Sheet with PTFE Binder on Battery Cell Performance

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Lubis, B. M.; Humaidi, S.; Prihandoko, B.

    2018-05-01

    The synthesis of Li4Ti5O12 (LTO) and study of the heating effect on the manufacturing process of LTO sheet on the electrochemical performance have been investigated. LTO anode material composed with LiOH.H2O, TiO2 as raw materials were synthesized by the solid-state process. All raw materials were stoichiometrically mixed and milled with a planetary ball mill for 4 h to become the precursor of LTO. The precursor was characterized by Simultaneous Thermal Analyzer (STA) to determine sintering temperature. The STA analysis revealed that the minimum temperature to sinter the precursor was 600 °C. The precursor was sintered by using high-temperature furnace at 900 °C for 2 h in air atmosphere. The final product was ground and sieved with a screen to get finer and more homogenous particles. The final product was characterized by X-ray Diffraction (XRD) to determined crystal structure and phases. LTO sheet was prepared by mixing LTO powders with PTFE and AB in ratio 85:10:5 wt% by varrying heating process with 40 °C, 50 °C and 70 °C to become slurry. The slurry was coated on Cu foil with doctor blade method and dried at 80 °C for 1 h. LTO sheet was characterized by FTIR to analyze functional groups. LTO sheet was cut into circular discs with 16 mm in diameter. LTO sheet was arranged with a separator, metallic lithium and electrolyte become coin cell in a glove box. Automatic battery cycler was used to measure electrochemical performance and specific capacity of the cell. From the XRD analysis showed that single phase of LTO phase with a cubic crystal structure is formed. FTIR testing showed that there are stretching vibrations of Ti-O and H-F from tetrahedral TiO6 and PTFE respectively. Increasing temperature on LTO sheet manufacturing doesn’t change the structure of LTO. Cyclic voltammetry analysis showed that sample with heating of 40 °C showed better redox process than others. Charge-discharge test also showed that sample with heating of 40 °C has higher specific capacity than other samples with 53 mAh·g-1.

  15. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Girard, F.; Florio, M.

    2012-10-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon-carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux.

  16. Evolutions of Advanced Stamping CAE — Technology Adventures and Business Impact on Automotive Dies and Stamping

    NASA Astrophysics Data System (ADS)

    Wang, Chuantao (C. T.)

    2005-08-01

    In the past decade, sheet metal forming and die development has been transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, has played a key role in this historical transition. The stamping simulation technology and its industrial applications have greatly impacted automotive sheet metal product design, die developments, die construction and tryout, and production stamping. The stamping CAE community has successfully resolved the traditional formability problems such as splits and wrinkles. The evolution of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of (1) continuously improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness), (2) resolving those historically difficult-to-resolve problems such as dimensional quality problems (springback and twist) and surface quality problems (distortion and skid/impact lines), (3) resolving total manufacturability problems in line die operations including blanking, draw/redraw, trim/piercing, and flanging, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of increasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements in automotive stamping.

  17. Surfactant-thermal method to synthesize a new Zn(II)-trimesic MOF with confined Ru(bpy){sub 3}{sup 2+} complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hui; Gao, Junkuo, E-mail: jkgao@zstu.edu.cn; Wang, Jiangpeng

    2015-03-15

    A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. The RuBpy molecules were encapsulated between the 2-D sheets in ZJU-100. ZJU-100 showed bathochromic shift in the steady-state emission spectrum and increased emission lifetimes relative to RuBpy molecules. The extended lifetime is attributed to the reduced nonradiative decay rate due to the stabilization of RuBpy within the rigid MOF framework. These results represent the first example of MOF with confined complex synthesized by surfactant, indicating that the surfactant-thermal method could offer excitingmore » opportunities for preparing new MOFs host/guest materials with novel structures and interesting luminescent properties. - Graphical abstract: A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. - Highlights: • Surfactant-thermal synthesis of crystalline metal-organic framework host/guest materials. • RuBpy molecules were encapsulated between the 2-D sheets of MOFs. • Extended lifetime is observed due to the stabilization of RuBpy within the rigid MOF framework.« less

  18. Interfacial coupling induced direct Z scheme water splitting in metal-free photocatalyst: C3N/g-C3N4 heterojunctions.

    PubMed

    Wang, Jiajun; Li, Xiaoting; You, Ya; Xintong, Yang; Wang, Ying; Li, Qunxiang

    2018-06-21

    Mimicking the natural photosynthesis in green plants, artificial Z-scheme photocatalysis enables more efficient utilization of solar energy for photocatalytic water splitting. Most currently designed g-C3N4-based Z-scheme heterojunctions are usually based on metal-containing semiconductor photocatalysts, thus exploiting metal-free photocatalysts for Z-scheme water splitting is of huge interest. Herein, we propose two metal-free C3N/g-C3N4 heterojunctions with the C3N monolayer covering g-C3N4 sheet (monolayer or bilayer) and systematically explore their electronic structures, charge distributions and photocatalytic properties by performing extensive hybrid density functional calculations. We clearly reveal that the relative strong built-in electric fields around their respective interface regions, caused by the charge transfer from C3N monolayer to g-C3N4 monolayer or bilayer, result in the bands bending, renders the transfer of photogenerated carriers in these two heterojunctions following the Z-scheme instead of the type-II pathway. Moreover, the photogenerated electrons and holes in these two C3N/g-C3N4 heterojunctions not only can be efficiently separated, but also have strong redox abilities for water oxidation and reduction. Compared with the isolated g-C3N4 sheets, the light absorption in visible to near-infrared region are significantly enhanced in these proposed heterojunctions. These theoretical findings suggest that these proposed metal-free C3N/g-C3N4 heterojunctions are promising direct Z-scheme photocatalysts for solar water splitting. © 2018 IOP Publishing Ltd.

  19. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  20. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    PubMed

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  1. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  2. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    PubMed

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  3. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    NASA Astrophysics Data System (ADS)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  4. Pulse-echo NDT of adhesively bonded joints in automotive assemblies.

    PubMed

    Titov, Sergey A; Maev, Roman Gr; Bogachenkov, Alexey N

    2008-11-01

    A new method for the detection of void-disbonds at the interfaces of adhesively bonded joins is considered. Based on a simple plane wave model, the output waveform is presented as a sum of two responses associated with the reflection of the ultrasonic wave at the first metal-adhesive interface and the second metal-adhesive interface, respectively. The strong response produced by the wave reverberating in the first metal sheet is eliminated through comparison between the pulse-echo signal measured at the area under the test and reference waveform recorded for the bare first metal sheet outside of the joint. The developed decomposition algorithm has been applied to the study of steel and aluminum samples having various adhesive layer thicknesses in a range of 0.1-1mm.

  5. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  6. Synthesis and properties of nickel cobalt boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  7. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    PubMed

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  8. Getting the current out

    NASA Astrophysics Data System (ADS)

    Burger, D. R.

    1983-11-01

    Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.

  9. Ag paste-based nanomesh electrodes for large-area touch screen panels

    NASA Astrophysics Data System (ADS)

    Chung, Sung-il; Kyeom Kim, Pan; Ha, Tae-gyu

    2017-10-01

    This study reports a novel method for fabricating a nickel nanomesh mold using phase shift lithography, suitable for use in large-area touch screen panel applications. Generally, the values of light transmittance and sheet resistance of metal mesh transparent conducting electrode (TCE) films are determined by the ratio of the aperture to metal areas. In this study, taking into consideration the optimal light transmittance, sheet resistance, and pattern visibility issues, the line width of the metal mesh pattern was ~1 µm, and the pitch of the pattern was ~100 µm. In addition, a novel method of manufacturing wiring electrodes using a phase shift lithography process was also developed and evaluated. A TCE film with a size of 370 mm  ×  470 mm was prepared and evaluated for its light transmittance and sheet resistance. In addition, wiring electrodes with a length of 70 mm were fabricated and their line resistances evaluated by varying their line width.

  10. On the lightweighting of automobile engine components : forming sheet metal connecting rod

    NASA Astrophysics Data System (ADS)

    Date, P. P.; Kasture, R. N.; Kore, A. S.

    2017-09-01

    Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.

  11. Some recent developments in sheet metal forming for production of lightweight automotive parts

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Lukács, Zs; Kovács, P.; Budai, D.

    2017-09-01

    Low cost manufacturing in the automotive industry is one of the main targets due to the ever increasing global competition among car manufacturers all over the World. Sheet metal forming is one of the most important key technologies in the automotive industry; therefore the elaboration of new, innovative low cost manufacturing processes is one of the main objectives in sheet metal forming as well. In 2015 with the initiative of the Imperial College London a research consortium was established under the umbrella Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles. The primary aim of this project is to provide affordable low cost weight reduction in mass production of vehicles considering the entire life-cycle. In this project, 19 European Institutions (Universities and Research Institutions) from 9 European countries are participating with the above targets. The University of Miskolc is one of the members of this research Consortium. In this paper, some preliminary results with the contributions of the University of Miskolc will be introduced.

  12. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  13. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOEpatents

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  14. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOEpatents

    Praeg, Walter F.

    1995-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  15. Metal/polymer composite Nuss bar for minimally invasive bar removal after Pectus Excavatum treatment: FEM simulations.

    PubMed

    Ricotti, Leonardo; Ciuti, Gastone; Ghionzoli, Marco; Messineo, Antonio; Menciassi, Arianna

    2014-12-01

    This study aims at assessing the mechanical behavior of a composite metal/polymer bar to be implanted in the retrosternal position, in order to correct chest wall deformities, such as Pectus Excavatum. A 300-mm-long, 12.7-mm-wide, and 3.5-mm-thick Nuss bar was considered, made of different metals and biodegradable polymers, fixed at its extremities, and with a constant force of 250 N applied on its center. Two different geometries for the metal elements to be embedded in the polymeric matrix were tested: in the former, thin metal sheets and in the latter, cylindrical metal reinforcing rods were considered. Finite element method simulation results are reported, in terms of maximum stress and strain of the bar. Furthermore, the maximum stress values obtained by varying metal sheet thickness or rod diameter (and therefore the volumetric percentage of metal within the matrix) for different material combinations are also shown; optimal configuration for the Pectus Excavatum treatment was finally identified for a composite Nuss bar. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Microstructure of SiC-Si-Al2O3 composites derived from silicone resin - metal aluminum filler compounds by low temperature reduction process

    NASA Astrophysics Data System (ADS)

    Narisawa, M.; Abe, Y.

    2011-06-01

    Concentrated slurry of a silicone resin with low carbon content, 3 μm aluminum particles and ethanol were prepared. After casting, addition of cross-linking agent and drying, silicone resin-aluminum composite with thick sheet form was obtained. The prepared sheet was heat-treated at 933 or 1073K with various holding times to characterize formed phases during the heat treatments. XRD patterns and FT-IR spectra revealed free Si formation and existence of Si-O-Si bond at 933K. The Si-O-Si bond, however, disappeared and silicon carbide was formed at 1073K. SEM observation indicated formation of cracks bridged with a number of tiny struts at 933K and conversion to wholly porous structure at 1073K.

  17. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β 12-Borophene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam

    2018-03-01

    This work presents an investigation of nanoribbons cut from β 12-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons (BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β 12-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β 12 BNRs are potential candidates for next-generation spintronic devices. [Figure not available: see fulltext.

  18. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  19. Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis.

    PubMed

    McKendry, Ian G; Thenuwara, Akila C; Shumlas, Samantha L; Peng, Haowei; Aulin, Yaroslav V; Chinnam, Parameswara Rao; Borguet, Eric; Strongin, Daniel R; Zdilla, Michael J

    2018-01-16

    The effect on the electrocatalytic oxygen evolution reaction (OER) of cobalt incorporation into the metal oxide sheets of the layered manganese oxide birnessite was investigated. Birnessite and cobalt-doped birnessite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and conductivity measurements. A cobalt:manganese ratio of 1:2 resulted in the most active catalyst for the OER. In particular, the overpotential (η) for the OER was 420 mV, significantly lower than the η = 780 mV associated with birnessite in the absence of Co. Furthermore, the Tafel slope for Co/birnessite was 81 mV/dec, in comparison to a Tafel slope of greater than 200 mV/dec for birnessite. For chemical water oxidation catalysis, an 8-fold turnover number (TON) was achieved (h = 70 mmol of O 2 /mol of metal). Density functional theory (DFT) calculations predict that cobalt modification of birnessite resulted in a raising of the valence band edge and occupation of that edge by holes with enhanced mobility during catalysis. Inclusion of extra cobalt beyond the ideal 1:2 ratio was detrimental to catalysis due to disruption of the layered structure of the birnessite phase.

  20. Investigation of the mineralogy and the sorption mechanism of Ni, Cu, Co and Mo by turbostratic phyllomanganates of Mn-nodules from the eastern equatorial Pacific Ocean using XAS

    NASA Astrophysics Data System (ADS)

    Wegorzewski, A.; Webb, S.; Grangeon, S.; Kuhn, T.

    2016-12-01

    Mn-nodules are Mn-Fe (oxy)hydroxides bearing high amounts of economically important metals such as Ni, Cu, Co, Mo, as well as high field strength elements. According to that nodules are interesting for science and industry. Especially the sorption sites of metals (Ni, Cu, Mo) by the mineral phases are important to understand their coordination environment and further to tailor a specific metallurgical treatment in order to optimize the metal extraction procedure. Nodules used for this study were sampled from the German license area within the Clarion Clipperton Zone in the Pacific. These nodules grow on the seafloor in 4200 m depth by metal precipitation from oxic (hydrogenetic growth) and/or suboxic waters (suboxic diagenetic growth; Halbach et al., 1988). They show a complex texture characterized by irregular, concentrically banded nm- to µm-thick layered growth structures (LGS). Electronmicroprobe and X-ray diffraction analyses reveal: suboxic diagenetic LGS have high Mn/Fe ratios (9-826; Mn ≈ 40 wt. %; Fe ≈ 0.5 wt %), high Ni (0.3-2.6 wt %) and Cu (0.5-3.0 wt %) contents but low Co content (0.02±0.01 wt %). Mineralogically those LGS are turbostratic phyllomanganates (vernadite), which consist of [MnO6]-octahedral layers, separated from each other by cations (e.g., Na, Mg) and water in the interlayer, forming 7 and 10 Å phyllomanganates (Bode et al., 2007). In contrast hydrogenetic LGS show low Mn/Fe ratios (<5), low Ni+Cu content (<1 wt%) but enrichment in Co (≤0.5 wt%). Those LGS are of δ-MnO2, which is epitaxially intergrown with an amorphous FeOOH phase. In general, phyllomanganates have a high opportunity to incorporate metals due to their negative layer charge deficit cause by abundant isomorphic substitution of Mn4+ by Mn3+ and vacancies within MnO2 sheets. The negative charge deficit can be balanced by hydrated interlayer cations (e.g., Na, Mg) or due to metals adsorption at cation vacancy sites, incorporation into the MnO2 sheet and/or adsorption at lateral edge surfaces (Peacock, 2009; Pena et al., 2015). A special emphasis of this study was to determine the boundings of Ni, Cu, Co and Mo by the Mn-mineral phases of nodules. X-ray absorption spectroscopy analyses show that metals such as Ni, Cu, Co are rather incorporated into MnO2 sheets than adsorbed as inner-sphere complexes over/below vacancies, like Mo.

  1. Die Deformation Measurement System during Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Funada, J.; Takahashi, S.; Fukiharu, H.

    2011-08-01

    In order to reduce affection to the earth environment, it is necessary to lighten the vehicles. For this purpose, high tensile steels are applied. Because of high strength, high forming force is required for producing automotive sheet metal parts. In this situation, since the dies are elastic, they are deformed during forming parts. For reducing die developing period, sheet metal forming simulation is widely applied. In the numerical simulation, rigid dies are usually used for shortening computing time. It means that the forming conditions in the actual forming and the simulation are different. It will make large errors in the results between actual forming and simulation. It can be said that if contact pressure between dies and a sheet metal in the simulation can be reproduced in the actual forming, the differences of forming results between them can also been reduced. The basic idea is to estimate die shape which can produce the same distribution as computed from simulation with rigid dies. In this study, die deformation analyses with Finite Element Method as basic technologies are evaluated. For example, simple shape and actual dies elastic contact problems were investigated. The contact width between simple shape dies was investigated. The computed solutions were in good agreement with experimental results. The one case of the actual dies in two cases was also investigated. Bending force was applied to the blank holder with a mechanical press machine. The methodology shown with applying inductive displacement sensor for measuring die deformation during applying force was also proposed.

  2. Crystal Structure of Toxoplasma gondii Porphobilinogen Synthase

    PubMed Central

    Jaffe, Eileen K.; Shanmugam, Dhanasekaran; Gardberg, Anna; Dieterich, Shellie; Sankaran, Banumathi; Stewart, Lance J.; Myler, Peter J.; Roos, David S.

    2011-01-01

    Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors. PMID:21383008

  3. Laser processing for strengthening of the self-restoring metal-elastomer interface on a silicone sheet

    NASA Astrophysics Data System (ADS)

    Yasuda, Kiyokazu

    2012-08-01

    A self-restoring microsystem is a unique concept which realizes the sensing functionality and robust interface which mechanically and electrically connects a deformable object such as a human body with printed electronic devices. For this purpose, the formation of conductive wiring on an elastomer substrate was attempted using the nickel ink printing process. Before the wiring process, surface patterning of a silicone sheet by a galvano-scanned infrared laser was conducted for the enhancement of interface adhesion of the metal deposit and polymer. Characterization of the fabricated pattern was conducted by optical microscopy. The novel method was successfully demonstrated as a fabrication of selective patterns of metal particles on self-restoring MEMS.

  4. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  5. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  6. Using Stage- and Slit-Scanning to Improve Contrast and Optical Sectioning in Dual-View Inverted Light Sheet Microscopy (diSPIM)

    PubMed Central

    KUMAR, ABHISHEK; CHRISTENSEN, RYAN; GUO, MIN; CHANDRIS, PANOS; DUNCAN, WILLIAM; WU, YICONG; SANTELLA, ANTHONY; MOYLE, MARK; WINTER, PETER W.; COLÓN-RAMOS, DANIEL; BAO, ZHIRONG; SHROFF, HARI

    2017-01-01

    Dual-view inverted selective plane illumination microscopy (diSPIM) enables high-speed, long-term, fourdimensional (4D) imaging with isotropic spatial resolution. It is also compatible with conventional sample mounting on glass coverslips. However, broadening of the light sheet at distances far from the beam waist and sample-induced scattering degrades diSPIM contrast and optical sectioning. We describe two simple improvements that address both issues and entail no additional hardware modifications to the base diSPIM. First, we demonstrate improved diSPIM sectioning by keeping the light sheet and detection optics stationary, and scanning the sample through the stationary light sheet (rather than scanning the broadening light sheet and detection plane through the stationary sample, as in conventional diSPIM). This stage-scanning approach allows a thinner sheet to be used when imaging laterally extended samples, such as fixed microtubules or motile mitochondria in cell monolayers, and produces finer contrast than does conventional diSPIM. We also used stage-scanning diSPIM to obtain high-quality, 4D nuclear datasets derived from an uncompressed nematode embryo, and performed lineaging analysis to track 97% of cells until twitching. Second, we describe the improvement of contrast in thick, scattering specimens by synchronizing light-sheet synthesis with the rolling, electronic shutter of our scientific complementary metal-oxide-semiconductor (sCMOS) detector. This maneuver forms a virtual confocal slit in the detection path, partially removing out-of-focus light. We demonstrate the applicability of our combined stage- and slit-scanning-methods by imaging pollen grains and nuclear and neuronal structures in live nematode embryos. All acquisition and analysis code is freely available online. PMID:27638693

  7. Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.

    2013-03-01

    The wire tips in twin-wire arc-spraying (TWAS) are heated in three different zones. A high-speed camera was used to observe the melting behavior, metal breakup, and particle formation under different operating conditions. In zone (I), the wire tips are melted (liquidus metal) and directly atomized in the form of smaller droplets. Their size is a function of the specific properties of the molten metal and the exerting aerodynamic forces. Zone (II) is directly beneath zone (I) and the origin of the extruded metal sheets at the wire tips. The extruded metal sheets in the case of cored wires are shorter than those observed while using solid wires. In this study, the effects of adjustable parameters and powder filling on melting behavior, particle formation, and process instability were revealed, and a comparison between solid and cored wires was made. The findings can improve the accuracy of the TWAS process modeling.

  8. Probing nonlocal effects in metals with graphene plasmons

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo J. C.; Iranzo, David Alcaraz; Gonçalves, P. A. D.; Hajati, Yaser; Bludov, Yuliy V.; Jauho, Antti-Pekka; Mortensen, N. Asger; Koppens, Frank H. L.; Peres, N. M. R.

    2018-06-01

    In this paper, we analyze the effects of nonlocality on the optical properties of a system consisting of a thin metallic film separated from a graphene sheet by a hexagonal boron nitride (hBN) layer. We show that nonlocal effects in the metal have a strong impact on the spectrum of the surface plasmon-polaritons on graphene. If the graphene sheet is nanostructured into a periodic grating, we show that the resulting extinction curves can be used to shed light on the importance of nonlocal effects in metals. Therefore graphene surface plasmons emerge as a tool for probing nonlocal effects in metallic nanostructures, including thin metallic films. As a byproduct of our study, we show that nonlocal effects may lead to smaller losses for the graphene plasmons than what is predicted by a local calculation. Finally, we demonstrate that such nonlocal effects can be very well mimicked using a local theory with an effective spacer thickness larger than its actual value.

  9. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  10. Stainless-Steel-Foam Structures Evaluated for Fan and Rotor Blades

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Raj, Sai V.; Ghosn, Louis J.; Hebsur, Mohan G.; Cosgriff, Laura M.; Min, James B.; Holland, Frederic A., Jr.

    2005-01-01

    The goal of this project is to use a sandwich structure design, consisting of two stainlesssteel face sheets and a stainless-steel-foam core, to fabricate engine fan and propeller blades. Current fan blades are constructed either of polymer matrix composites (PMCs) or hollow titanium alloys. The PMC blades are expensive and have poor impact resistance on their leading edges, thereby requiring a metallic leading edge to satisfy the Federal Aviation Administration s impact requirements relating to bird strikes. Hollow titanium blades cost more to fabricate because of the intrinsically difficult fabrication issues associated with titanium alloys. However, both these current concepts produce acceptable lightweight fan blades.

  11. InGaN laser diode with metal-free laser ridge using n+-GaN contact layers

    NASA Astrophysics Data System (ADS)

    Malinverni, Marco; Tardy, Camille; Rossetti, Marco; Castiglia, Antonino; Duelk, Marcus; Vélez, Christian; Martin, Denis; Grandjean, Nicolas

    2016-06-01

    We report on InGaN edge emitting laser diodes with a top metal electrode located beside the laser ridge. Current spreading over the ridge is achieved via a highly doped n+-type GaN layer deposited on top of the structure. The low sheet resistance of the n+-GaN layer ensures excellent lateral current spreading, while carrier injection is confined all along the ridge thanks to current tunneling at the interface between the n+-GaN top layer and the p++-GaN layer. Continuous-wave lasing at 400 nm with an output power of 100 mW is demonstrated on uncoated facet devices with a threshold current density of 2.4 kA·cm-2.

  12. Double-Lap Shear Test For Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  13. Tensile strength of composite sheets with unidirectional stringers and crack-like damage

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1984-01-01

    The damage tolerance characteristics of metal tension panels with riveted and bonded stringers are well known. The stringers arrest unstable cracks and retard propagation of fatigue cracks. Residual strengths and fatigue lives are considerably greater than those of unstiffened or integrally stiffened sheets. The damage tolerance of composite sheets with bonded composite stringers loaded in tension was determined. Cracks in composites do not readily propagate in fatigue, at least not through fibers. Moreover, the residual strength of notched composites is sometimes even increased by fatigue loading. Therefore, the residual strength aspect of damage tolerance, and not fatigue crack propagation, was investigated. About 50 graphite/epoxy composite panels were made with two sheet layups and several stringer configurations. Crack-like slots were cut in the middle of the panels to simulate damage. The panels were instrumented and monotonically loaded in tension to failure. The tests indicate that the composite panels have considerable damage tolerance, much like metal panels. The stringers arrested cracks that ran from the crack-like slots, and the residual strengths were considerably greater than those of unstiffened composite sheets. A stress intensity factor analysis was developed to predict the failing strains of the stiffened panels. Using the analysis, a single design curve was produced for composite sheets with bonded stringers of any configuration.

  14. Sheet Probability Index (SPI): Characterizing the geometrical organization of the white matter with diffusion MRI

    PubMed Central

    Tax, Chantal M.W.; Haije, Tom Dela; Fuster, Andrea; Westin, Carl-Fredrik; Viergever, Max A.; Florack, Luc; Leemans, Alexander

    2017-01-01

    The question whether our brain pathways adhere to a geometric grid structure has been a popular topic of debate in the diffusion imaging and neuroscience society. Wedeen et al. (2012a b) proposed that the brain’s white matter is organized like parallel sheets of interwoven pathways. Catani et al. (2012) concluded that this grid pattern is most likely an artifact, resulting from methodological biases that cause the tractography pathways to cross in orthogonal angles. To date, ambiguities in the mathematical conditions for a sheet structure to exist (e.g. its relation to orthogonal angles) combined with the lack of extensive quantitative evidence have prevented wide acceptance of the hypothesis. In this work, we formalize the relevant terminology and recapitulate the condition for a sheet structure to exist. Note that this condition is not related to the presence or absence of orthogonal crossing fibers, and that sheet structure is defined formally as a surface formed by two sets of interwoven pathways intersecting at arbitrary angles within the surface. To quantify the existence of sheet structure, we present a novel framework to compute the sheet probability index (SPI), which reflects the presence of sheet structure in discrete orientation data (e.g. fiber peaks derived from diffusion MRI). With simulation experiments we investigate the effect of spatial resolution, curvature of the fiber pathways, and measurement noise on the ability to detect sheet structure. In real diffusion MRI data experiments we can identify various regions where the data supports sheet structure (high SPI values), but also areas where the data does not support sheet structure (low SPI values) or where no reliable conclusion can be drawn. Several areas with high SPI values were found to be consistent across subjects, across multiple data sets obtained with different scanners, resolutions, and degrees of diffusion weighting, and across various modeling techniques. Under the strong assumption that the diffusion MRI peaks reflect true axons, our results would therefore indicate that pathways do not form sheet structures at every crossing fiber region but instead at well-defined locations in the brain. With this framework, sheet structure location, extent, and orientation could potentially serve as new structural features of brain tissue. The proposed method can be extended to quantify sheet structure in directional data obtained with techniques other than diffusion MRI, which is essential for further validation. PMID:27456538

  15. Sporicidal efficacy of thermal-sprayed copper alloy coating.

    PubMed

    Shafaghi, Romina; Mostaghimi, Javad; Pershin, Valerian; Ringuette, Maurice

    2017-05-01

    Approximately 200 000 Canadians acquire healthcare-associated bacterial infections each year and several-fold more acquire food-borne bacterial illnesses. Bacterial spores are particularly problematic because they can survive on surfaces for several months. Owing to its sporicidal activity, copper alloy sheet metal is sometimes used in hospital settings, but its widespread use is limited by cost and incompatibility with complex furniture and instrument designs and topographies. A potential alternative is the use of thermal spray technology to coat surfaces with copper alloys. We compared the sporicidal activity of thermally sprayed copper alloy on stainless steel with that of copper alloy sheet metal against Bacillus subtilis spores. Spores remained intact for at least 1 week on uncoated stainless steel, whereas spore fragmentation was initiated within 2 h of exposure to either copper surface. Less than 15% of spores were viable 2 h after exposure to either copper surface, as compared with stainless steel. By day 7, only degraded spores and petal-like nanoflowers were present on the copper surfaces. Nanoflowers, which are laminar arrangements of thin crystal sheets composed of carbon - copper phosphate, appeared to be derived from the degraded spores. Altogether, these results indicate that a thermal-sprayed copper alloy coating on stainless steel provides sporicidal activity similar to that afforded by copper alloy sheet metal.

  16. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  17. Metal phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  18. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    PubMed

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  19. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  20. Vacuum forming of thermoplastic sheet results in low-cost investment casting patterns

    NASA Technical Reports Server (NTRS)

    Clarke, A. E., Jr.

    1964-01-01

    Vacuum forming of a sheet of thermoplastic material around a mandrel conforming to the shape of the finished object provides a pattern for an investment mold. The thickness of the metal part is determined by the thickness of the plastic pattern.

  1. Higher Sensitivity in X-Ray Photography

    NASA Technical Reports Server (NTRS)

    Buggle, R. N.

    1986-01-01

    Hidden defects revealed if X-ray energy decreased as exposure progresses. Declining-potential X-ray photography detects fractures in thin metal sheet covered by unbroken sheet of twice thickness. Originally developed to check solder connections on multilayer circuit boards, technique has potential for other nondestructive testing.

  2. Processing experiments on non-Czochralski silicon sheet

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.

    1981-01-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  3. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-01

    Four new metal coordination complexes, namely, [Na(BTA)]n (1), [K2(BTA)2(μ2-H2O)]n (2), and [M(BTA)2(H2O)2]n (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1-4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of {318}. Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of {311×42}. Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1-4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail.

  4. Ultra-broadband microwave metamaterial absorber based on resistive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2017-01-01

    We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.

  5. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  6. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  7. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    NASA Astrophysics Data System (ADS)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  8. Apparatus and method for producing fragment-free openings

    DOEpatents

    Cherry, Christopher R.

    2001-01-01

    An apparatus and method for explosively penetrating hardened containers such as steel drums without producing metal fragmentation is disclosed. The apparatus can be used singularly or in combination with water disrupters and other disablement tools. The apparatus is mounted in close proximity to the target and features a main sheet explosive that is initiated at least three equidistant points along the sheet's periphery. A buffer material is placed between the sheet explosive and the target. As a result, the metallic fragments generated from the detonation of the detonator are attenuated so that no fragments from the detonator are transferred to the target. As a result, an opening can be created in containers such as steel drums through which access to the IED is obtained to defuse it with projectiles or fluids.

  9. Metal bellows custom-fabricated from tubing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Mandrel assembly mounted in a lathe chuck is used with a forming wheel to roll-form bellows from standard sheet metal tubing. Spacers and mandrels of various sizes custom-fabricate bellows of any desired dimensions.

  10. 40 CFR 471.02 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal into a mold to produce an object of desired shape. (g) “Cladding” or “metal cladding” is the art... sheet, rod, or other long shapes by solidifying the metal while it is being poured through an open-ended mold. (j) “Degreasing” is the removal of oils and greases from the surface of the metal workpiece. This...

  11. 40 CFR 471.02 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal into a mold to produce an object of desired shape. (g) “Cladding” or “metal cladding” is the art... sheet, rod, or other long shapes by solidifying the metal while it is being poured through an open-ended mold. (j) “Degreasing” is the removal of oils and greases from the surface of the metal workpiece. This...

  12. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOEpatents

    Praeg, W.F.

    1995-01-31

    An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

  13. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  14. Effects Of Heat Sinks On VPPA Welds

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.; Steranka, Paul O., Jr.

    1991-01-01

    Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.

  15. Physical characterization of functionalized spider silk: electronic and sensing properties

    PubMed Central

    Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Lopes, Elsa Branco; Brooks, James S; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of functionalized spider silk are presented for thermoelectric (Seebeck) effects and incandescence in iodine-doped pyrolized silk fibers, and metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers. In the latter case, we demonstrate the application of gold-sputtered neat spider silk to make four-terminal, flexible, ohmic contacts to organic superconductor samples. PMID:27877440

  16. 75 FR 7030 - Dawson Metal Company, Inc., Industrial Division, Jamestown, NY; Notice of Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,395] Dawson Metal Company, Inc., Industrial Division, Jamestown, NY; Notice of Affirmative Determination Regarding Application for... investigation resulted in a negative determination based on the finding that imports of precision sheet metal...

  17. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subcategory, but when present is an integral part of the aluminum forming process. (c) Contact cooling water.... (d) Continuous casting is the production of sheet, rod, or other long shapes by solidifying the metal... pulling metal through a die or succession of dies to reduce the metal's diameter or alter its shape. There...

  18. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subcategory, but when present is an integral part of the aluminum forming process. (c) Contact cooling water.... (d) Continuous casting is the production of sheet, rod, or other long shapes by solidifying the metal... pulling metal through a die or succession of dies to reduce the metal's diameter or alter its shape. There...

  19. 27 CFR 555.207 - Construction of type 1 magazines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or... constructed of, or covered with, a nonsparking material. (3) Wood frame wall construction. The exterior of... necessary for ventilation. (ii) A fabricated metal roof constructed of 3/16-inch plate steel lined with four...

  20. 27 CFR 555.207 - Construction of type 1 magazines.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or... constructed of, or covered with, a nonsparking material. (3) Wood frame wall construction. The exterior of... necessary for ventilation. (ii) A fabricated metal roof constructed of 3/16-inch plate steel lined with four...

  1. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.

  2. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  3. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.

    PubMed

    Jayaramulu, Kolleboyina; Dubal, Deepak P; Nagar, Bhawna; Ranc, Vaclav; Tomanec, Ondrej; Petr, Martin; Datta, Kasibhatta Kumara Ramanatha; Zboril, Radek; Gómez-Romero, Pedro; Fischer, Roland A

    2018-04-01

    The design of advanced high-energy-density supercapacitors requires the design of unique materials that combine hierarchical nanoporous structures with high surface area to facilitate ion transport and excellent electrolyte permeability. Here, shape-controlled 2D nanoporous carbon sheets (NPSs) with graphitic wall structure through the pyrolysis of metal-organic frameworks (MOFs) are developed. As a proof-of-concept application, the obtained NPSs are used as the electrode material for a supercapacitor. The carbon-sheet-based symmetric cell shows an ultrahigh Brunauer-Emmett-Teller (BET)-area-normalized capacitance of 21.4 µF cm -2 (233 F g -1 ), exceeding other carbon-based supercapacitors. The addition of potassium iodide as redox-active species in a sulfuric acid (supporting electrolyte) leads to the ground-breaking enhancement in the energy density up to 90 Wh kg -1 , which is higher than commercial aqueous rechargeable batteries, maintaining its superior power density. Thus, the new material provides a double profits strategy such as battery-level energy and capacitor-level power density. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Explosive bonding of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1969-01-01

    Explosive bonding process produces sheet composites of aluminum alloy reinforced by high-strength stainless steel wires. The bonds are excellent metallurgically, no external heat is required, various metals can be bonded, and the process is inexpensive.

  5. 24 CFR 3280.204 - Kitchen cabinet protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... framing members and trim are exempted from this requirement. The cabinet area over the cooking range or cooktops shall be protected by a metal hood (26-gauge sheet metal, or .017 stainless steel, or .024...

  6. Metal phthalocyanine intermediates for the preparation of polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1985-01-01

    Metal 4, 4', 4"",-tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  7. Variation simulation for compliant sheet metal assemblies with applications

    NASA Astrophysics Data System (ADS)

    Long, Yufeng

    Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly architectures, and some useful guidelines for selection of assembly architectures are summarized. In addition, to enhance the fault diagnosis, a systematic methodology is proposed for selection of measurement configurations. Specifically, principles involved in selecting measurements are generalized first; then, the corresponding quantitative indices are developed to evaluate the measurement configurations, and finally, examples are present.

  8. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    PubMed

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl 3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO 3 ), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m 2 g -1 was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg -1 in 1.0 M KOH at a scan rate of 5 mV s -1 . Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg -1 using Nafion binder is obtained under a current density of 1 Ag -1 by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  9. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...

  10. Producing intricate IPMC shapes by means of spray-painting and printing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Trabia, Sarah; Olsen, Zakai; Hwang, Taeseon; Kim, Kwang Jin

    2017-04-01

    Ionic Polymer-Metal Composites (IPMC) are common soft actuators that are Nafion® based and plated with a conductive metal, such as platinum, gold, or palladium. Nafion® is available in three forms: sheets, pellets, and water dispersion. Nafion® sheets can be cut to the desired dimensions and are best for rectangular IPMCs. However, the user is not able to change the thickness of these sheets by stacking and melting because Nafion® does not melt. A solution to this is Nafion® pellets, which can melt. These can be used for extrusion and injection molding. Though Nafion® pellets can be melted, they are difficult to work with, making the process quite challenging to master. The last form is Nafion® Water Dispersion, which can be used for casting. Casting can produce the desired thickness, but it does not solve the problem of achieving complex contours. The current methods of fabrication do not allow for complex shapes and structures. To solve this problem, two methods are presented: painting and printing. The painting method uses Nafion® Water Dispersion, an airbrush, and vinyl stencils. The stencils can be made into any shape with detailed edges. The printing method uses Nafion® pellets that are extruded into filaments and a commercially available 3D printer. The models are drawn in a Computer-Aided Drawing (CAD) program, such as SolidWorks. The produced Nafion® membranes will be compared with a commercial Nafion® membrane through a variety of tests, including Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Thermogravimetric Analysis, Dynamic Mechanical Analysis, and Optical Microscope.

  11. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.

    PubMed

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-05

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  12. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  13. Gas Forming a V-Shape Aluminum Sheet into a Trough of Saddle-Contour

    NASA Astrophysics Data System (ADS)

    Lee, Shyong; Lan, Hsien-Chin; Lee, Jye; Wang, Jian-Yih; Huang, J. C.; Chu, Chun Lin

    2012-11-01

    A sheet metal trough of aluminum alloys is manufactured by gas-forming process at 500 °C. The product with slope walls is of ~1.2 m long and ~260 mm opening width, comprising two conical sinks at two ends. The depth of one sink apex is ~350 mm, which results in the depth/width ratio reaching 1.4. To form such a complex shape with high aspect ratio, a pre-form of V-shape groove is prepared prior to the gas-forming work. When this double concave trough is turned upside down, the convex contour resembles the back of a twin hump camel. The formability of this configuration depends on the gas pressurization rate profile, the working temperature, material's micro-structure, as well as pre-form design. The latter point is demonstrated by comparing two aluminum alloys, AA5182 and SP5083, with nearly same compositions but very different grain sizes.

  14. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  15. Industrial Arts Metalworking for Intermediate and Junior High Schools. Curriculum Bulletin. 1978-79 Series. No. 8.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Educational Planning and Support.

    This curriculum bulletin is designed to present seventh and eighth graders with an overview of the metalworking industry from the acquisition of raw materials to the fabrication of the completed product. The manual is organized into five major instructional units: sheet metal, wrought metal, jewelry and art metal, bench and machine metal, and cast…

  16. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less

  17. Economical processing of fiber-reinforced components with thermal expansion molding

    NASA Technical Reports Server (NTRS)

    Schneider, K.

    1979-01-01

    The concept of economical fabrication of fiber-reinforced structural components is illustrated with an example of a typical control surface (aileron). The concept provides for fabricating struts, ribs, and a cover plate as an integral structure in a hardening device and then joining the closure cover plate mechanically. Fabrication of the integral structure is achieved by the 'thermal expansion molding' technique. The hardening pressure is produced by silicone rubber cores which expand under the influence of temperature. Test results are presented for several rubber materials as well as for various structural pieces. The technique is demonstrated extensively for an aileron, consisting of five ribs, struts, and a cover plate. Economically, for a large scale technical production of an aileron, cost savings of twenty-five percent can be realized compared to those for a sheet metal structure.

  18. Analysis of fracture in sheet bending and roll forming

    NASA Astrophysics Data System (ADS)

    Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias

    2018-05-01

    The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.

  19. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  20. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

Top